JP2010224112A - 撮像装置、撮像装置の制御方法およびプログラム - Google Patents

撮像装置、撮像装置の制御方法およびプログラム Download PDF

Info

Publication number
JP2010224112A
JP2010224112A JP2009069876A JP2009069876A JP2010224112A JP 2010224112 A JP2010224112 A JP 2010224112A JP 2009069876 A JP2009069876 A JP 2009069876A JP 2009069876 A JP2009069876 A JP 2009069876A JP 2010224112 A JP2010224112 A JP 2010224112A
Authority
JP
Japan
Prior art keywords
image
feature
unit
imaging apparatus
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009069876A
Other languages
English (en)
Inventor
Kazuya Sendo
一也 仙頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2009069876A priority Critical patent/JP2010224112A/ja
Publication of JP2010224112A publication Critical patent/JP2010224112A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】ブレ検出センサを設けることなく、画像に含まれるブレを検出することが可能な技術を提供する。
【解決手段】撮像装置1Aでは、主撮像素子5および副撮像素子7を含む撮像手段が、被写体像に基づいて最良画像と本撮影画像とをこの順序で取得する。そして、特徴点抽出部124が最良画像および本撮影画像それぞれから被写体の特徴点を抽出し、位置比較部125は、最良画像における特徴点の位置と、本撮影画像における特徴点の位置とを比較して、対応する特徴点の位置のズレ量を取得する。さらに、良否判定部129は、ズレ量に基づいて、本撮影画像に含まれるブレに関する判定を行う。
【選択図】図5

Description

本発明は、撮影画像の評価技術に関する。
撮像装置においては、撮影の際の手ブレを補正する技術が存在する。例えば、特許文献1には、手ブレによる撮像装置のブレを検出するためのブレ検出センサを有する撮像装置が記載されている。当該撮像装置では、連続的な撮影により複数の画像が取得され、ブレ検出センサから検出される手ブレに関する情報を用いて、複数の画像の中からブレの少ない手ブレ最小画像が特定される。そして、当該手ブレ最小画像の情報を用いて、手ブレ補正対象画像の手ブレ補正が実現される。
特開2002−247444号公報
上記特許文献1に記載の技術では、撮像装置のブレを検出するためにブレ検出センサを設け、当該ブレ検出センサで取得される情報に基づいて、画像に含まれるブレを検出していたが、ブレ検出センサを設けると撮像装置のコストアップにつながる。
そこで、本発明は、ブレ検出センサを設けることなく、画像に含まれるブレを検出することが可能な技術を提供することを目的とする。
本発明の第1の側面は、撮像装置であって、被写体像に基づいて、第1画像と第2画像とをこの順序で取得する撮像手段と、前記第1画像および前記第2画像それぞれから被写体の特徴部を抽出する特徴部抽出手段と、前記第1画像における特徴部の位置と、前記第2画像における特徴部の位置とを比較して、対応する特徴部の位置のズレ量を第1ズレ量として取得する比較手段と、前記第1ズレ量に基づいて、前記第2画像に含まれるブレに関する判定を行う判定手段とを備える。
また、本発明の第2の側面は、撮像装置であって、本撮影の際に、被写体像に基づいて本撮影画像を取得する撮像手段と、前記本撮影画像における高周波成分の評価値を取得する評価値取得手段と、前記高周波成分の評価値に基づいて、前記本撮影画像の合焦状態の良否判定を行う判定手段とを備える。
また、本発明の第3の側面は、撮像装置であって、被写体像に基づいて、第1画像と第2画像とをこの順序で取得する撮像手段と、前記第1画像および前記第2画像それぞれから被写体の特徴部を複数抽出する特徴部抽出手段と、前記第1画像における各特徴部の位置と、前記第2画像における各特徴部の位置とを比較して、前記第1画像における各特徴部に対する、前記第2画像における各特徴部の位置のズレ量およびズレ方向を前記第2画像の特徴部ごとに取得する比較手段と、前記ズレ量および前記ズレ方向に基づいて、前記第2画像中の被写体のうち動体における特徴部の平均ズレ量を算出する動体ズレ量算出手段と、前記平均ズレ量に基づいて、前記第2画像中の前記動体のブレに関する判定を行う判定手段とを備える。
本発明によれば、撮像装置のブレを検出するブレ検出センサを設けることなく、画像に含まれるブレを検出することができる。
本発明の第1実施形態に係る撮像装置の外観構成を示す図である。 本発明の第1実施形態に係る撮像装置の外観構成を示す図である。 第1実施形態に係る撮像装置の縦断面図である。 第1実施形態に係る撮像装置の縦断面図である。 第1実施形態に係る撮像装置の機能構成を示すブロック図である。 撮影画像の領域分割例を示す図である。 分割領域において演算領域を仮想的に設定した図である。 2枚の撮影画像間における特徴点の位置比較の様子を示す図である。 第1実施形態に係る撮像装置の動作を示すフローチャートである。 本撮影前ブレ評価処理のサブルーチンを示す図である。 分割領域ごとに行われる画素値の正規化の様子を示す図である。 分割領域ごとに行われる画素値の正規化の様子を示す図である。 分割領域ごとに行われる画素値の正規化の様子を示す図である。 ブレ評価処理のサブルーチンを示す図である。 第2実施形態に係る撮像装置の機能構成を示すブロック図である。 第3実施形態に係る撮像装置の機能構成を示すブロック図である。 第3実施形態に係る撮像装置の動作を示すフローチャートである。 合焦状態評価処理のサブルーチンを示す図である。 第4実施形態に係る撮像装置の機能構成を示すブロック図である。 第4実施形態に係る撮像装置の動作を示すフローチャートである。 本撮影前の合焦状態評価処理のサブルーチンを示す図である。 合焦状態評価処理のサブルーチンを示す図である。 第5実施形態に係る撮像装置の機能構成を示すブロック図である。 第5実施形態に係る撮像装置の動作を示すフローチャートである。 動体ブレ評価処理のサブルーチンを示す図である。
以下、本発明の実施形態について図面を参照して説明する。
<1.第1実施形態>
[1−1.構成]
図1および図2は、本発明の第1実施形態に係る撮像装置1Aの外観構成を示す図である。ここで、図1は、撮像装置1Aの正面外観図であり、図2は、撮像装置1Aの背面外観図である。この撮像装置1Aは、レンズ交換式一眼レフレックスタイプのデジタルカメラとして構成されている。
図1に示すように、撮像装置1Aは、カメラ本体部(カメラボディ)2を備えている。このカメラ本体部2に対して、交換式の撮影レンズユニット(交換レンズ)3が着脱可能となっている。
撮影レンズユニット3は、主として、鏡胴36、ならびに、鏡胴36の内部に設けられるレンズ群37(図3参照)および絞り(不図示)等によって構成される。レンズ群37には、光軸方向に移動することによって焦点位置を変更するフォーカスレンズ等が含まれている。
カメラ本体部2は、撮影レンズユニット3が装着される円環状のマウント部Mtを正面略中央に備え、撮影レンズユニット3を着脱するための着脱ボタン89を円環状のマウント部Mt付近に備えている。
また、カメラ本体部2は、その正面左上部にモード設定ダイアル82を備え、その正面右上部に制御値設定ダイアル86を備えている。モード設定ダイアル82を操作すると、カメラの各種モード(各種撮影モード(人物撮影モードおよび風景撮影モード等)、撮影した画像を再生する再生モード、および外部機器との間でデータ交信を行う通信モード等を含む)の設定動作(切替動作)を行うことができる。また、制御値設定ダイアル86を操作することによれば、各種撮影モードにおける制御値を設定することが可能である。
また、カメラ本体部2は、正面左端部に撮像装置1Aを把持するためのグリップ部14を備えている。グリップ部14の上面には露光開始を指示するためのレリーズボタン11が設けられている。グリップ部14の内部には電池収納室とカード収納室とが設けられている。電池収納室にはカメラの電源として、例えば4本の単3形乾電池が収納されており、カード収納室には撮影画像の画像データを記録するためのメモリカード90(図5参照)が着脱自在に収納可能となっている。
レリーズボタン11は、半押し状態(S1状態)および全押し状態(S2状態)の2つの状態を検出可能な2段階検出ボタンである。
レリーズボタン11が半押しされS1状態になると、被写体に関する記録用静止画像(本撮影画像)を取得するための準備動作(例えば、AF制御動作およびAE制御動作等)が行われる。
また、レリーズボタン11がさらに押し込まれてS2状態になると、当該本撮影画像の撮影動作(「本撮影動作」とも称する)が実行される。本撮影動作では、撮像素子(または「主撮像素子」とも称する)5(後述)を用いて被写体像に関する露光動作が行われる。そして、その露光動作で取得された画像信号に所定の画像処理を施すことによって、本撮影画像が取得される。
図2において、カメラ本体部2の背面の略中央には、モニタ12が設けられている。モニタ12は、例えばカラー液晶ディスプレイ(LCD)として構成される。モニタ12は、撮影条件等を設定するためのメニュー画面を表示したり、再生モードにおいてメモリカード90に記録された撮影画像を再生表示したりすることができる。
カメラ本体部2の背面略中央上部には、ファインダ窓10が設けられている。ファインダ窓10には、撮影レンズユニット3からの被写体像が導かれ、撮影者は、ファインダ窓10を覗くことによって、主撮像素子5によって取得される被写体像と等価な像を視認することができる。具体的には、撮影光学系に入射された被写体像は、ミラー機構6(図3参照)で上方に反射され、接眼レンズ67を介して視認される。このように、撮影者は、ファインダ窓10を覗くことによって構図決めを行うことが可能である。なお、レリーズボタン11のS2状態の検出によって本撮影画像の撮影動作が開始されると、ミラー機構6は被写体像を形成する光の光路から待避する。これにより、撮影レンズユニット3からの光(被写体像を形成する光)が主撮像素子5に到達し、主撮像素子5によって被写体に係る撮影画像(画像データ)が取得される。
ファインダ窓10の下部には、接眼検知センサ13が設けられている。接眼検知センサ13は、近接物体の有無を検知するセンサであり、撮影者によるファインダ使用の有無を検知する。
モニタ12の左上部にはメインスイッチ81が設けられている。メインスイッチ81は、2点のスライドスイッチからなり、接点を左方の「OFF」位置に設定すると、撮像装置1Aの電源がオフになり、接点を右方の「ON」位置に設定すると、撮像装置1Aの電源がオンになる。
モニタ12の右側には方向選択キー84と表示切替スイッチ9とが設けられている。方向選択キー84は、円形の操作ボタンを有し、この操作ボタンにおける上下左右の4方向の押圧操作と、右上、左上、右下および左下の4方向の押圧操作とが、それぞれ検出可能となっている。なお、方向選択キー84は、上記8方向の押圧操作とは別に、中央部のプッシュボタンの押圧操作も検出可能となっている。
表示切替スイッチ9は、3点のスライドスイッチからなる。表示切替スイッチ9の接点が上段の「光学」位置に設定されるとOVFモードが選択され、光学ファインダ視野内に被写体像が表示される。これにより、撮影者は、ファインダ窓10を介して光学ファインダ視野内の表示を視認することができ、ファインダ視野内の表示を視認した構図決め操作(「フレーミング」とも称する)を行うことが可能になる。
また、表示切替スイッチ9の接点が下段の「液晶」位置に設定されるとEVFモード(後述)が選択される。EVFモードでは、モニタ12において被写体像に係るライブビュー画像(「プレビュー画像」または「動画像」とも称する)が動画的態様にて表示(「ライブビュー表示」または「プレビュー表示」とも称する)される。これにより、撮影者は、モニタ12に表示されるライブビュー表示を視認した、フレーミングを行うことが可能になる。
また、表示切替スイッチ9の接点が中段の「自動」位置に設定されると、ファインダ窓10への接眼の有無に応じて、光学ファインダ視野内の表示とライブビュー表示とが自動的に切り替えられる。これにより、撮影者は、光学ファインダ視野内の表示、或いはライブビュー表示のいずれかを視認することによって、フレーミングを行うことが可能となる。
モニタ12の左側には、メニュー画面の設定、画像の削除などを行うための複数のボタンからなる設定ボタン群83が設けられている。
次に、撮像装置1Aの内部構成について説明する。図3および図4は、第1実施形態に係る撮像装置1Aの縦断面図である。
図3に示すように、撮像装置1Aの内部には、ファインダ部102(ファインダ光学系)、ミラー機構6、位相差AFモジュール(以下、単に「AFモジュール」とも称する)20、シャッタ4、主撮像素子5および副撮像素子7などが備えられている。
主撮像素子(ここではCCDセンサ(単にCCDとも称する))5は、撮影レンズユニット3が備えるレンズ群37の光軸L上において、光軸Lに対して垂直な平面内に配置される。主撮像素子5は、その撮像面で受光された被写体像を光電変換作用により電気的信号に変換して、本撮影画像に係る画像信号を生成する。
また、主撮像素子5の直前には、シャッタ4が配置されている。このシャッタ4は、上下方向に移動する幕体を備え、光軸Lに沿って主撮像素子5に導かれる被写体光の光路開口動作および光路遮断動作を行うメカニカルフォーカルプレーンシャッタである。
上記の光軸L上において、被写体光をファインダ部102へ向けて反射する位置には、ミラー機構6(反射板)が配置されている。撮影レンズユニット3を通過した被写体光は、ミラー機構6(後述の主ミラー61)によって上方へ反射され、焦点板(ピントグラス)63に結像される。
ファインダ部102は、ペンタミラー65とハーフミラー68と接眼レンズ67と副撮像素子7とファインダ窓10とを備えている。ペンタミラー65は、反射によって被写体像の天地左右を入れ替えて正立像にする。ハーフミラー68は、ペンタミラー65と接眼レンズ67との間に配置され、被写体光を分離(分岐)させる。分離された被写体光は、接眼レンズ67と副撮像素子7とにそれぞれ導かれる。接眼レンズ67は、分離された被写体光をファインダ窓10の外側に導く。これにより、撮影者は、ファインダ窓10を介して被写体像を視認することが可能になる。このように、ファインダ部102は、撮影待機時において被写界を確認するための光学ファインダ(OVF)として機能する。
また、副撮像素子7は、分離された他方の被写体光を受光し、被写体像に係る撮影画像(「補助画像」とも称する)を順次に取得する。取得された補助画像は、モニタ12に動画的態様にて順次に表示(ライブビュー表示)される。このように、ファインダ窓10から視認可能な被写体像は、副撮像素子7によって取得され、撮影者は、モニタ12において被写体像に関するライブビュー画像を視認することが可能となる。
ミラー機構6は、主ミラー61とサブミラー62とから構成されており、主ミラー61の背面側において、サブミラー62が主ミラー61の背面に向けて倒れるように回動可能に設けられている。主ミラー61は、例えばハーフミラーとして構成され、被写体光の一部を透過させる。主ミラー61を透過した被写体光の一部はサブミラー62によって反射され、AFモジュール20に入射される。
上記のミラー機構6は、所謂クイックリターンミラーとして構成されており、レリーズボタン11のS2状態が検出された露光時には上方に向けて跳ね上がり、焦点板63の下方位置で停止する(図4参照)。これにより、撮影レンズユニット3からの被写体光がミラー機構6によって遮られることなく主撮像素子5の撮像面に導かれ、当該主撮像素子5が露光される。露光が終了すると、ミラー機構6は元の位置(図3に示す位置)に復帰する。
AFモジュール20は、被写体のピント情報を検出するラインセンサ等からなる所謂AFセンサとして構成されている。具体的には、AFモジュール20は、撮影領域に設定された測距エリア(「AFエリア」とも称する)における被写体からの光を当該測距エリア用の一対のラインセンサで受光する。そして、AFモジュール20は、一対のラインセンサからの出力を位相差検出信号として全体制御部101に出力する機能を有している。
[1−2.機能ブロック]
次に、撮像装置1Aの機能の概要について説明する。図5は、第1実施形態に係る撮像装置1Aの機能構成を示すブロック図である。図6は、撮影画像の領域分割例を示す図である。図7は、分割領域において演算領域を仮想的に設定した図である。図8は、2枚の撮影画像間における特徴点の位置比較の様子を示す図である。
図5に示すように、撮像装置1Aは、位相差AFモジュール20、操作部80、全体制御部101、ミラー機構6、シャッタ4、主撮像素子5、副撮像素子7、A/D変換回路48、画像処理部50および画像メモリ70等を備える。
操作部80は、レリーズボタン11(図1参照)を含む各種ボタンおよびスイッチ等を備えて構成される。操作部80に対するユーザの入力操作に応答して、全体制御部101が各種動作を実現する。
主撮像素子5は、タイミング制御回路(不図示)から入力される駆動制御信号に応答して、受光面(撮像面)に結像された被写体像の露光(光電変換による電荷蓄積)を行い、当該被写体像に係る画像信号を生成する。
また、副撮像素子7は、基本的には主撮像素子5と同様の機能を有し、ファインダ光学系に導かれた被写体像の露光を行い、ライブビュー表示用の画像に関する画像信号を取得する。
主撮像素子5および副撮像素子7で取得された画像信号(アナログ信号)は、それぞれA/D変換回路48によってデジタル信号に変換される。デジタル信号に変換された画像信号は、画像処理部50に入力される。
画像処理部50に入力された画像データは、一旦、画像メモリ70に格納される。以後、この画像メモリ70に格納された画像データにアクセスして、画像処理部50の各種処理が実行される。
本撮影の際に主撮像素子5で取得された画像データは、画像処理部50によって適宜画像処理が施された後、メモリカード90に記憶される。
また、副撮像素子7によって取得された画像データ(「補助画像データ」とも称する)は、A/D変換回路48および画像処理部50において所定の処理が実行され画像メモリ70に一旦記憶された後、モニタ12に表示される。
なお、画像メモリ70は、生成された画像データを一時的に記憶するための、高速アクセス可能なメモリであり、複数フレーム分の画像データを記憶可能な容量を有している。
ここで、画像処理部50で実現される各種処理について詳述する。画像処理部50は、ホワイトバランス(WB)制御部51と画素補間部52とガンマ補正部53とYCC変換部54と領域分割部55とを有している。
ホワイトバランス制御部51は、R(赤)、G(緑)、B(青)各色成分のデジタル信号のレベルを変換するホワイトバランス補正を行う。このホワイトバランス補正では、撮影被写体から本来白色となる部分を輝度や彩度データ等から推測し、その部分のR、G、Bそれぞれの平均値とG/R比およびG/B比とを求め、これをR、Bの補正ゲインとしてレベル補正する。
画素補間部52は、画像メモリ70に格納された撮像データにおいて、画素の不足している色成分を、当該画素に隣接している周辺画素の色情報を用いて補間により求める。
ガンマ補正部53は、WB調整された画像信号の階調特性を補正するものである。具体的には、ガンマ補正部53は、予め設定されたガンマ補正用テーブルを用いて、画像信号のレベルを色成分毎に非線形変換するとともにオフセット調整を行う。
YCC変換部54は、画像データの色空間を変換する。具体的には、YCC変換部54では、マトリクス演算によりRGBの原色成分をもつ色空間が、輝度成分(Y)と色差成分(Cr、Cb)とをもつ色空間に変換される。なお以下では、輝度成分の信号を輝度信号とも称し、色差成分の信号を色差信号とも称する。
本実施形態では、主撮像素子5および副撮像素子7によって取得された画像データの色空間が変換され、画像データに関する輝度信号(より詳細には、画像データを構成する、各画素の輝度成分の信号値(「輝度成分の画素値」または単に「輝度値」とも称する))が取得される。
領域分割部55は、主撮像素子5および副撮像素子7で取得された撮影画像を複数の領域に分割する。領域分割の手法は複数存在するが、ここでは、図6に示されるように、予め設定された9つの領域BR1〜BR9に撮影画像RHを分割する場合について例示する。なお、領域分割部55で分割された各領域BR1〜BR9は、分割領域とも称される。
全体制御部101は、マイクロコンピュータとして構成され、主にCPU、RAMおよびROM等を備える。全体制御部101は、ROM内に格納されるプログラムを読み出し、当該プログラムをCPUで実行することによって、各種機能を実現する。
全体制御部101は、上述のプログラムの実行によって、位相差AF制御部121、駆動制御部122、正規化部123、特徴点抽出部124、位置比較部125、ズレ量算出部126、最良画像特定部127、良否判定部128、指示制御部129、表示制御部130およびミラー制御部131等を機能的に実現する。
位相差AF制御部121は、位相差方式による自動合焦(位相差AF)動作の実行制御を行う。具体的には、位相差AF制御部121は、AFモジュール20から出力される位相差検出信号に基づいて、合焦時の撮影レンズ(より詳細にはフォーカスレンズ)の位置(レンズ合焦位置)を特定するレンズ合焦位置特定動作を実行させる。
また、位相差AF制御部121は、駆動制御部122と協働して、当該レンズ合焦位置に撮影レンズ(フォーカスレンズ)を移動するレンズ駆動動作をも実行させる。
駆動制御部122は、撮影レンズの駆動を制御する機能を有し、位相差AF制御部121と協働して、実際に撮影レンズを駆動させる。
具体的には、位相差AF制御部121は、駆動制御部122を介して撮影レンズユニット3のレンズ側制御部31に制御信号を伝達し、レンズ駆動部38を駆動させ、撮影レンズユニット3のレンズ群37に含まれるフォーカスレンズをその光軸方向において移動させる。また、フォーカスレンズの位置は、撮影レンズユニット3のレンズ位置検出部39によって検出され、フォーカスレンズの位置を示すデータがレンズ側制御部31から本体側の全体制御部101に送られる。
正規化部123は、画像データの輝度信号のうち、最大の輝度値および最小の輝度値を検出し、画像データを構成する輝度値の正規化を行う。
特徴点抽出部124は、撮影画像の分割領域それぞれから、特徴点を抽出する機能を有している。ここでは、分割領域に含まれる被写体の角(角部分)を特徴点として抽出する場合について例示する。被写体の角は、被写体の輪郭(エッジ)を構成する画素(エッジ画素)を特定した上で、当該エッジ画素が被写体の輪郭のうち直線部分の画素であるか否かを判断することによって検出される。
具体的には、まず、特徴点抽出部124は、撮影画像における各画素を注目画素として、注目画素ごとに輝度値演算を行い、エッジ画素を特定する。エッジ画素を特定する手法としては、注目画素と当該注目画素に隣接する各画素(隣接画素)とを比較して、輝度値の差(輝度差)をそれぞれ算出し、各輝度差の合計が所定値以上だった場合、当該注目画素は、エッジ画素であると判定する手法が採用される。
次に、注目画素MGがエッジ画素であると判定された場合、特徴点抽出部124は、図7に示されるような、当該注目画素MGを中心とした5画素×5画素の演算領域RCを設定し、当該演算領域RCの外周画素SG(図7中斜線ハッチングが施された各画素)の輝度平均値と演算領域RCの中央の注目画素(中央画素)MGの輝度値との差を算出する。
ここで、演算領域RCの中央を通るエッジが直線であった場合は、演算領域RCの外周画素SGは、当該エッジによってほぼ等分されることになるので、外周画素SGの輝度平均値と注目画素MGの輝度値との差は小さくなる。一方、演算領域RCの中央を通るエッジが直線でない場合は、外周画素SGの輝度平均値と注目画素MGの輝度値との差は大きくなる。
そこで、特徴点抽出部124は、外周画素SGの輝度平均値と注目画素MGの輝度値との差が大きい場合に、検出されたエッジ画素を被写体の輪郭のうち直線部分以外の画素、すなわち被写体の角(角部分)の画素であると特定する。
なお、分割領域において被写体の角が複数検出された場合は、特徴点抽出部124は、外周画素SGの輝度平均値と注目画素MGの輝度値との差が最も大きい被写体の角を特徴点として抽出する。
このようにして、特徴点抽出部124は、各撮影画像から特徴点をそれぞれ抽出する。
位置比較部125は、取得時期の異なる2枚の撮影画像において対応する分割領域ごとに特徴点の位置を比較して、対応する特徴点の位置のズレ量を取得する。特徴点のズレ量は、2枚の撮影画像RH1,RH2それぞれにおいて分割領域における各特徴点の座標を取得し、対応する特徴点間の距離を算出することによって取得される。例えば、図8に示されるように、2枚の撮影画像RH1,RH2それぞれの分割領域BR7における特徴点TP1,TP2のズレ量を算出する場合は、分割領域BR7の左下を原点としたときの特徴点TP1,TP2の座標がそれぞれ取得される。そして、各特徴点TP1,TP2の座標に基づいて特徴点TP1,TP2間の距離DLがズレ量として算出される。
また、位置比較部125は、各特徴点のズレ方向を取得する機能も有している。各特徴点のズレ方向は、特徴点TPの座標に基づいて、ズレ方向を示すベクトルを算出することによって取得される。例えば、図8においては、特徴点TP1を始点とし特徴点TP2を終点としたベクトルVHがズレ方向を示すベクトルとして取得される。
ズレ量算出部126は、位置比較部125によって算出された各特徴点のズレ量を用いて撮影画像における各特徴点の平均ズレ量を算出する。
最良画像特定部127は、ズレ量算出部126によって算出された補助画像における各特徴点の平均ズレ量に基づいて、ズレの最も少ない、すなわち手ブレが最小の最良画像を特定する。最良画像の特定は、ライブビュー表示実行中において補助画像が取得される度に実行され、順次に取得される補助画像の中から、平均ズレ量の最も少ない補助画像が最良画像として保存される。
良否判定部128は、本撮影により取得された本撮影画像が、手ブレによるブレの少ない良好な撮影画像であるか否かを判定する。詳細は、後述する。
指示制御部129は、良否判定部128による判定結果に応じて所定動作の実行指示を行う。具体的には、良否判定部128によって良好な撮影画像でないと判定された場合、指示制御部129は、良好な撮影画像でないことをユーザに知らせる表示動作の実行指示を表示制御部130に対して行う。
表示制御部130は、モニタ12などの表示部における表示内容を制御する。具体的には、表示制御部130は、副撮像素子7によって連続的に取得される複数の画像に基づいて、モニタ12にライブビュー画像を表示させる。
また、表示制御部130は、指示制御部129からの実行指示を受けて、本撮影画像が良好な画像でないことを示す表示(本撮影の失敗表示)をライブビュー画像に合成して表示させる。
ミラー制御部131は、ミラー機構6が光路から退避した状態(ミラーアップ状態)とミラー機構6が光路を遮断した状態(ミラーダウン状態)との状態切替を制御する。ミラー制御部131は、ミラー切り替え用モータ(不図示)を駆動制御することによって、ミラーアップ状態とミラーダウン状態とを切り替える。
[1−3.動作]
以下では、撮影モードにおいてEVFモードが選択された場合の撮像装置1Aの動作について説明する。図9は、撮像装置1Aの動作を示すフローチャートである。
図9に示されるように、撮影モードにおいてEVFモードが選択されると、副撮像素子7で補助画像が取得され(ステップSP11)、モニタ12を用いたライブビュー表示が開始される(ステップSP12)。
そして、ステップSP13では、レリーズボタン11の半押し状態が検出されたか否かが判定される。レリーズボタン11の半押し状態が検出された場合は、動作工程は、ステップSP11に移行され、半押し状態が検出されるまでステップSP11〜ステップSP13の処理が繰り返し実行される。一方、レリーズボタン11の半押し状態が検出された場合は、ステップSP14に移行される。
ステップSP14では、副撮像素子7によって順次に取得される補助画像を用いて本撮影前ブレ評価処理が行われる。本撮影前ブレ評価処理の詳細については、後述する。
ステップSP15では、レリーズボタン11の全押し状態が検出されたか否かが判定される。レリーズボタン11の全押し状態が検出されなかった場合は、ステップSP11に移行され、全押し状態が検出されるまでステップSP11〜ステップSP15の処理が繰り返し実行される。全押し状態が検出されるまでの当該繰り返し処理では、順次に取得される補助画像それぞれに対してステップSP14の本撮影前ブレ評価処理が実行されることになるため、副撮像素子7で順次に取得される補助画像の中から平均ズレ量の最も少ない最良画像が取得される。
一方、ステップSP15において、レリーズボタン11の全押し状態が検出された場合は、ステップSP16に移行され、本撮影動作が実行される。
ステップSP17では、本撮影動作によって取得された本撮影画像についてのブレ評価処理が実行される。本撮影画像についてのブレ評価処理の詳細については、後述する。
ステップSP18では、指示制御部129による実行指示を受けて、本撮影画像のブレ評価に応じた所定動作が実行される。具体的には、本撮影の失敗表示をモニタ12に表示させる表示動作が、所定動作として表示制御部130によって実行される。本撮影の失敗表示としては、例えば、撮影のやり直しを促す表示(再撮影表示)または、良好でない本撮影画像の削除を促す表示(削除表示)等がある。
ここで、ステップSP14で実行される本撮影前ブレ評価処理について詳述する。図10は、本撮影前ブレ評価処理のサブルーチンを示す図である。図11、図12および図13は、分割領域ごとに行われる画素値の正規化の様子を示す図である。
上述のように、本撮影前ブレ評価処理では、補助画像のズレ量が算出され、当該ズレ量に基づいて補助画像のブレに関する評価が行われる。
具体的には、図10に示されるように、ステップSP21において、YCC変換部54によって補助画像データの色空間が変換され、補助画像データを構成する、各画素の原色成分の画素値に基づいて、当該各画素の輝度成分の画素値(輝度値)が取得される。
ステップSP22では、領域分割部55によって補助画像が、予め設定された複数の領域に分割される。
ステップSP23では、正規化部123によって、分割領域ごとに輝度値の正規化が行われる。具体的には、各分割領域において最大の輝度値(最大輝度値)「Pma」と最小の輝度値(最小輝度値)「Pmi」とがそれぞれ検出される(図11参照)。そして、各画素Gjの輝度値「Pj」から最小輝度値「Pmi」が差し引かれ(図12参照)、差し引かれた輝度値の中で最大の輝度値「Pmb」が、画素値としての最大値(例えば、8ビットの画素では「255」)となるように増幅される(図13参照)。このような正規化によって、新たに算出された各画素の輝度値「PNj」は、式(1)のように表される。なお、添字jは分割領域におけるj番目の画素であることを表している。
Figure 2010224112
なお、最大輝度値「Pma」と最小輝度値「Pmi」との差が小さい場合に、式(1)に基づいた正規化を行うと、ノイズが過度に増幅される可能性がある。このため、最大輝度値「Pma」と最小輝度値「Pmi」との差が所定の閾値より小さい場合は、増幅率が制限される。
ステップSP24では、特徴点抽出部124によって分割領域ごとに特徴点の抽出処理が行われる。
ステップSP25では、連続して取得される2枚の画像間において対応する特徴点、すなわち新たに取得された補助画像の特徴点と前回取得された補助画像の特徴点との位置比較が位置比較部125によって行われる。当該位置比較は、分割領域ごとに行われ、各分割領域の特徴点について、ズレ量とズレ方向を示すベクトルとが取得される。
ステップSP26では、ズレ量算出部126によって、各分割領域における特徴点のズレ量を平均した平均ズレ量が算出される。平均ズレ量の算出は、各特徴点のズレ方向に基づいて、全体的なズレ方向とは異なる方向にズレた特徴点のズレ量を除外して行われる。特徴点のズレ方向が、全体的なズレ方向(「基準ズレ方向」とも称する)と異なるか否かは、例えば、ズレ方向を示す各ベクトルの始点をXY直交座標系の原点としたときに、XY直交座標系においてベクトルの終点が最も多く存在する象限を基準象限とし、当該基準象限にベクトルの終点が存在するか否かによって判定してもよい。この場合、基準象限にベクトルの終点が存在する場合、当該ベクトルによって示されるズレ方向は、基準ズレ方向と一致すると判定され、基準象限にベクトルの終点が存在しない場合、当該ベクトルによって示されるズレ方向は、基準ズレ方向とは異なると判定される。
全体的なズレ方向とは異なる方向にズレる特徴点は、補助画像に含まれる被写体のうち動体の一部と考えられるので、全体的なズレ方向とは異なる方向へのズレを平均ズレ量の算出から除外することによれば、平均ズレ量に含まれる、撮像装置1Aのブレを主因とするズレに関する情報の割合を高めることができる。
ステップSP27では、最良画像特定部127によって、これまで取得された補助画像の中で、新たに取得された補助画像の平均ズレ量が最小であるか否かが判定される。平均ズレ量が最小であると判定された場合は、動作工程はステップSP28に移行される。
ステップSP28では、最良画像の更新が行われる。具体的には、新たに取得された補助画像が、手ブレの最も少ない最良画像として全体制御部101のRAMに保存されるとともに、新たに取得された補助画像の平均ズレ量および基準ズレ方向もRAMに保存される。
一方、ステップSP27において、平均ズレ量が最小でないと判定された場合は、最良画像の更新を行うことなく、本撮影前ブレ評価処理が終了され、動作工程はステップSP15に移行される(図9参照)。
このような、本撮影前ブレ評価処理は、ライブビュー表示実行中においてレリーズボタン11の半押し状態が検出されている間、補助画像が取得される度に繰り返し実行され、本撮影前に時系列で取得される複数の補助画像の中からズレの少ない撮影画像(最良画像)が特定される。
なお、補助画像が最初に取得された場合は、ステップSP27において平均ズレ量が最小であると判定され、当該補助画像が最良画像として画像メモリ70に保存される。
次に、ステップSP17で実行されるブレ評価処理について詳述する。図14は、ブレ評価処理のサブルーチンを示す図である。
上述のように、ステップSP17のブレ評価処理では、最良画像に対する本撮影画像のズレ量が算出され、当該ズレ量に基づいて本撮影画像のブレに関する評価が行われる。
図14に示されるように、ブレ評価処理のステップSP31〜ステップSP36では、本撮影前ブレ評価処理(図10参照)におけるステップSP21〜ステップSP26の各工程とほぼ同様の動作がそれぞれ実行される。具体的には、ステップSP31では、YCC変換部54によって本撮影画像の画像データ(本撮影画像データ)の色空間が変換され、本撮影画像データを構成する、各画素の輝度成分の画素値(輝度値)が取得される。
ステップSP32では、領域分割部55によって本撮影画像が予め設定された複数の領域に分割される。
ステップSP33では、正規化部123によって、本撮影画像の分割領域ごとに輝度値の正規化が行われる。
ステップSP34では、特徴点抽出部124によって本撮影画像の分割領域ごとに特徴点の抽出処理が行われる。
ステップSP35では、最良画像の特徴点と本撮影画像の特徴点との位置比較が位置比較部125によって行われ、各分割領域の特徴点について、ズレ量とズレ方向を示すベクトルとが取得される。
ステップSP36では、ズレ量算出部126によって、各分割領域における特徴点のズレ量を平均した平均ズレ量が算出される。平均ズレ量の算出は、各特徴点のズレ方向に基づいて、全体的なズレ方向とは異なる方向にズレた特徴点のズレ量を除外して行われる。
ステップSP37では、良否判定部128によって、本撮影画像のブレに関する良否判定が行われる。本撮影画像の良否判定は、例えば、本撮影画像の平均ズレ量が所定の閾値以上であるか否かに基づいて行うことができる。より詳細には、良否判定部128は、平均ズレ量が所定の閾値以上であった場合、当該本撮影画像を手ブレの影響を受けた失敗画像(不合格画像)と判定し、平均ズレ量が所定の閾値以上であった場合、当該本撮影画像を手ブレによるブレの少ない良好な画像(合格画像)と判定する。
本撮影画像が失敗画像であると判定されると、ステップSP18(図9参照)では、本撮影の失敗表示をモニタ12に表示させる表示動作が行われる。これにより、ユーザは、本撮影後にモニタ12を視認することによって、本撮影画像が手ブレによる失敗画像であることを把握することができる。
以上のように、撮像装置1Aでは、主撮像素子5および副撮像素子7を含む撮像手段が、被写体像に基づいて最良画像と本撮影画像とをこの順序で取得する。そして、特徴点抽出部124が最良画像および本撮影画像それぞれから被写体の特徴点を抽出し、位置比較部125は、最良画像における特徴点の位置と、本撮影画像における特徴点の位置とを比較して、対応する特徴点の位置のズレ量を取得する。さらに、良否判定部129は、ズレ量に基づいて、本撮影画像に含まれるブレに関する判定を行う。このような撮像装置1Aによれば、撮像装置1Aのブレを検出するブレ検出センサを設けることなく、本撮影画像に含まれる手ブレを検出することができる。
<2.第2実施形態>
次に、本発明の第2実施形態について説明する。上記第1実施形態に係る撮像装置1Aでは、ブレ評価に応じた所定動作として本撮影の失敗表示の表示動作が実行されていたが、第2実施形態に係る撮像装置1Bでは、本撮影画像中のブレを補正するブレ補正動作が実行される。なお、撮像装置1Bは、本撮影画像中のブレを補正するブレ補正動作を実行するブレ補正処理部56を有している点以外は、撮像装置1Aとほぼ同様の構造および機能(図1〜図4参照)を有しており、共通する部分については同じ符号を付して説明を省略する。図15は、第2実施形態に係る撮像装置1Bの機能構成を示すブロック図である。
図15に示されるように、撮像装置1Bの画像処理部50は、本撮影画像に含まれるブレを補正するブレ補正処理部56をさらに有している。
ブレ補正処理部56では、本撮影前ブレ評価処理で取得された最良画像から回復フィルタが生成され、当該回復フィルタを基にした画像復元アルゴリズムを用いて補正対象の本撮影画像にブレ補正処理が施される。回復フィルタは、最良画像と本撮影画像との間で画像の位置が一致するように調整された後、両画像の相関を基に生成される。なお、回復フィルタの詳細については、例えば、特開2007−36894等に記載されている。
当該ブレ補正処理部56を有する撮像装置1Bでは、本撮影画像が失敗画像である場合、ステップSP18(図9参照)において、指示制御部129による実行指示に応じて、ライブビュー表示実行中に取得された最良画像を用いたブレ補正動作が実行される。
以上のように、撮像装置1Bは、本撮影画像のブレを補正するブレ補正処理部56を有し、良否判定部128によって本撮影画像が失敗画像であると判定された場合、ライブビュー表示実行中に取得された最良画像を用いたブレ補正動作を実行させる。これによれば、撮像装置1Bのブレを検出するブレ検出センサを設けることなく、本撮影画像に含まれる手ブレを補正することが可能になる。
<3.第3実施形態>
次に、本発明の第3実施形態について説明する。上記第1実施形態に係る撮像装置1Aでは、本撮影画像のブレに関する評価が行われていたが、第3実施形態に係る撮像装置1Cでは、本撮影画像の合焦状態に関する評価が行われる。なお、撮像装置1Cは、本撮影画像の評価対象が撮像装置1Aと異なる点以外は、撮像装置1Aとほぼ同様の構造および機能(図1〜図4参照)を有しており、共通する部分については同じ符号を付して説明を省略する。図16は、第3実施形態に係る撮像装置1Cの機能構成を示すブロック図である。
図16に示されるように、撮像装置1Cの画像処理部50は、撮影画像中の高周波成分を抽出する高周波成分抽出部57をさらに有している。
高周波成分抽出部57は、正規化された撮影画像データに対してHPF(ハイパスフィルタ)を用いたフィルタ演算を行い、画素ごとにフィルタ演算値(「フィルタ結果値」または単に「評価値」とも称する)を取得する評価値取得手段として機能する。HPFの出力値であるフィルタ演算値は、各画素位置において高周波成分がどの程度含まれているか、すなわち高周波成分の含有程度を示す高周波成分の評価値であるとも表現される。
また、撮像装置1Cの全体制御部101は、プログラムの実行によって、位相差AF制御部121、駆動制御部122、正規化部123、良否判定部128、指示制御部129、表示制御部130、およびミラー制御部131に加えて、評価対象領域特定部132をさらに機能的に実現する。
評価対象領域特定部132は、領域分割部55で分割された各分割領域の中から、撮影画像の合焦状態の評価に用いる領域(「評価対象領域」とも称する)を特定する。評価対象領域特定部132では、分割領域ごとにフィルタ演算値の合計値が算出され、分割領域の中で合計値の最も大きい領域が評価対象領域として特定される。
良否判定部128は、撮影画像の合焦状態に関する良否判定を行う。詳細は、後述する。
ここで、撮像装置1Cの動作について説明する。図17は、撮像装置1Cの動作を示すフローチャートである。
図17に示されるように、撮像装置1CのステップSP41、ステップSP42では、撮像装置1AのステップSP11、ステップSP12の各工程(図9)と同様の動作がそれぞれ実行される。簡単には、副撮像素子7により補助画像が取得され、ライブビュー表示が行われる。
そして、ステップSP43において、レリーズボタン11の全押し状態が検出されたか否かが判定される。レリーズボタン11の全押し状態が検出されなかった場合、動作工程はステップSP41に移行され、レリーズボタン11の押下が検出されるまでライブビュー画像の表示動作が繰り返し実行される。一方、ステップSP43において、レリーズボタン11の全押し状態が検出された場合、動作工程は、ステップSP44に移行される。
ステップSP44では、本撮影動作が実行され、本撮影画像が取得される。
次のステップSP45では、本撮影画像の合焦状態を評価する合焦状態評価処理が実行される。
ステップSP46では、指示制御部129による実行指示を受けて、本撮影画像の合焦状態評価に応じた所定動作が実行される。所定動作としては、例えば、本撮影の失敗表示をモニタ12に表示させる表示動作が表示制御部130によって実行される。
ここで、ステップSP45で実行される合焦状態評価処理について詳述する。図18は、合焦状態評価処理のサブルーチンを示す図である。
図18に示されるように、ステップSP51〜ステップSP53では、上述のステップSP31〜ステップSP33の各工程(図14参照)と同様の動作がそれぞれ実行される。すなわち、ステップSP51では、本撮影画像データの色空間の変換によって各画素の輝度成分の輝度値が取得され、ステップSP52では、本撮影画像が複数の領域に分割される。そして、ステップSP53では、本撮影画像の各分割領域において輝度値の正規化が行われる。
次のステップSP54では、高周波成分抽出部57によって、本撮影画像の分割領域ごとに高周波成分の評価値(フィルタ演算値)が取得される。
ステップSP55では、評価対象領域特定部132によって、本撮影画像の分割領域ごとにフィルタ演算値の合計値が算出され、各分割領域のうち当該合計値の最も大きい領域が、評価対象領域として特定される。
ステップSP56では、良否判定部128によって本撮影画像の合焦状態の良否が判定される。合焦状態の良否判定は、例えば、各画素におけるフィルタ演算値を所定閾値と比較し、所定閾値よりも大きなフィルタ演算値を有する画素の個数に基づいて行ってもよい。この場合、所定閾値よりも大きなフィルタ演算値を有する画素が、評価対象領域において所定個数(例えば100個)以上あったときは、本撮影画像の合焦状態は良好である、すなわち本撮影画像はピントのあった画像であると判定される。一方、所定閾値よりも大きなフィルタ演算値を有する画素が、評価対象領域において所定個数よりも少なかったときは、本撮影画像の合焦状態は不良である、すなわち本撮影画像はピントのあっていない(ピンぼけの)画像であると判定される。
合焦状態の良否判定において、フィルタ演算値の比較対象となる所定閾値は、各分割領域において個別に行われる正規化の影響を低減させるため、各分割領域の正規化で用いられたゲインを用いて算出してもよい。すなわち、所定閾値「TH」は、予め設定された基準となる基準閾値「BH」と、分割領域(ここでは、評価対象領域)における最大輝度値「Pma」および最小輝度値「Pmi」とを用いて、式(2)のように表される。
Figure 2010224112
なお、式(2)を用いて算出される所定閾値は、良否判定部128において算出してもよく、全体制御部101において判定閾値取得部(不図示)をさらに実現し、当該判定閾値取得部において算出してもよい。
以上のように、第3実施形態に係る撮像装置1Cは、本撮影の際に、被写体像に基づいて本撮影画像を取得する主撮像素子5と、本撮影画像における高周波成分の評価値を取得する評価値取得手段と、高周波成分の評価値に基づいて、本撮影画像の合焦状態の良否判定を行う判定手段とを備える。このような撮像装置1Cによれば、本撮影後に、本撮影画像の合焦状態を判定することが可能になる。
<4.第4実施形態>
次に、本発明の第4実施形態について説明する。第4実施形態の撮像装置1Dは、第3実施形態の撮像装置1Cの変形例であり、合焦状態評価処理の高速化が図られる。なお、撮像装置1Dは、撮像装置1Aと同様の構造(図1〜図4参照)を有するとともに、撮像装置1Aと撮像装置1Cとを組み合わせた機能を有しているため、共通する部分については同じ符号を付して説明を省略する。図19は、第4実施形態に係る撮像装置1Dの機能構成を示すブロック図である。
図19に示されるように、撮像装置1Dの画像処理部50は、撮影画像中の高周波成分を抽出する高周波成分抽出部57を有している。
また、撮像装置1Dの全体制御部101は、プログラムの実行によって、位相差AF制御部121、駆動制御部122、正規化部123、特徴点抽出部124、位置比較部125、ズレ量算出部126、最良画像特定部127、良否判定部128、指示制御部129、表示制御部130、ミラー制御部131および評価対象領域特定部132等を機能的に実現する。
評価対象領域特定部132は、領域分割部55で分割された各分割領域の中から、撮影画像の合焦状態の評価に用いる評価対象領域を特定する。
良否判定部128は、撮影画像の合焦状態に関する良否判定を行う。
ここで、撮像装置1Dの動作について説明する。図20は、撮像装置1Dの動作を示すフローチャートである。図21は、本撮影前の合焦状態評価処理のサブルーチンを示す図であり、図22は、合焦状態評価処理のサブルーチンを示す図である。
図20に示されるように、撮像装置1DのステップSP61〜ステップSP65では、撮像装置1AのステップSP11〜ステップSP15の各工程(図9)と同様の動作がそれぞれ実行される。簡単には、ライブビュー表示実行中において、レリーズボタン11の半押し状態が検出されると、順次に取得される補助画像に対して本撮影前ブレ評価処理(ステップSP64)が行われ、平均ズレ量の少ない最良画像が特定される。
ステップSP65において、全押し状態が検出されると、ライブビュー画像の表示動作が終了され、動作工程は、ステップSP66およびステップSP67それぞれに移行される。
ステップSP66では、本撮影動作が実行され、本撮影画像が取得される。
一方、ステップSP67では、最良画像の合焦状態を評価する本撮影前の合焦状態評価処理が実行される。図21に示されるように、本撮影前の合焦状態評価処理では、最良画像に対して、ステップSP51〜ステップSP56(図18参照)の各工程と同様の動作が実行される。
すなわち、ステップSP71では、補助画像データの色空間の変換によって各画素の輝度成分の輝度値が取得され、ステップSP72では、補助画像が複数の領域に分割される。そして、ステップSP73では、補助画像の各分割領域において輝度値の正規化が行われる。
次のステップSP74では、高周波成分抽出部57によって、補助画像の分割領域ごとに高周波成分の評価値(フィルタ演算値)が取得される。
ステップSP75では、評価対象領域特定部132によって、補助画像の分割領域ごとにフィルタ演算値の合計値が算出され、各分割領域のうち当該合計値の最も大きい領域が、評価対象領域として特定される。
ステップSP76では、良否判定部128によって補助画像の合焦状態の良否が判定される。補助画像の合焦状態の判定結果は、例えば、モニタ12に表示してユーザに知らせるようにしてもよい。これによれば、ユーザは、本撮影前の合焦状態を把握することができる。
図20に戻って、撮像装置1Dの動作について説明を続ける。ステップSP66およびステップSP67が終了すると、動作工程は、ステップSP68に移行される。
ステップSP68では、本撮影画像の合焦状態を評価する合焦状態評価処理が実行される。撮像装置1Dの当該合焦状態評価処理では、ステップSP67で最良画像の合焦状態を評価する際に用いられた評価対象領域(最良画像における評価対象領域)に基づいて、本撮影画像の合焦状態を評価する際に用いる評価対象領域(本撮影画像における評価対象領域)が特定される。具体的には、最良画像と本撮影画像とでは、ピントの合っている分割領域が同じであることが多いので、本撮影画像において、最良画像における評価対象領域に対応した分割領域が本撮影画像における評価対象領域として用いられる。
ステップSP68の工程を詳述すると、図22に示されるように、ステップSP81では、ステップSP51(図18参照)と同様に、本撮影画像データの色空間の変換によって各画素の輝度成分の輝度値が取得される。
ステップSP82では、ステップSP52と同様に、本撮影画像が複数の領域に分割される。
次のステップSP83では、評価対象領域特定部132によって、本撮影画像の各分割領域のうち、最良画像における評価対象領域に対応した分割領域が本撮影画像における評価対象領域として特定される。
そして、ステップSP84では、本撮影画像における評価対象領域に関して輝度値の正規化が行われる。
ステップSP85では、高周波成分抽出部57によって、本撮影画像における評価対象領域に関して高周波成分の評価値(フィルタ演算値)が取得される。
ステップSP86では、ステップSP56と同様に、良否判定部128によって、評価対象領域における高周波成分の評価値に基づいて、本撮影画像の合焦状態の良否が判定される。
このような合焦状態評価処理が終了すると、動作工程はステップSP69(図20)に移行され、ステップSP69では、指示制御部129による実行指示を受けて、本撮影画像の合焦状態評価に応じた所定動作が実行される。
以上のように、第4実施形態に係る撮像装置1Dでは、本撮影前に取得される補助画像から最良画像を特定し、当該最良画像の合焦状態評価処理を実行するので、本撮影前の合焦状態に関する情報を取得できる。また、撮像装置1Dでは、最良画像の合焦状態評価処理の際に特定された最良画像における評価対象領域を用いて、本撮影画像における評価対象領域を特定するので、本撮影画像の合焦状態評価処理に要する演算量を低減することができる。
<5.第5実施形態>
次に、本発明の第5実施形態について説明する。上記第1実施形態に係る撮像装置1Aでは、本撮影画像のブレに関する評価が行われていたが、第5実施形態に係る撮像装置1Eでは、本撮影画像中の動体である被写体のブレに関する評価が行われる。なお、撮像装置1Eは、本撮影画像の評価対象が撮像装置1Aと異なる点以外は、撮像装置1Eとほぼ同様の構造および機能(図1〜図4参照)を有しており、共通する部分については同じ符号を付して説明を省略する。図23は、第5実施形態に係る撮像装置1Eの機能構成を示すブロック図である。
上述のように、撮像装置1Eは、本撮影画像中の被写体のうち動体のブレ(「動体ブレ」とも称する)に関する評価を行う。
具体的には、図23に示されるように、撮像装置1Eの全体制御部101は、プログラムの実行によって、位相差AF制御部121、駆動制御部122、正規化部123、特徴点抽出部124、位置比較部125、ズレ量算出部126、最良画像特定部127、良否判定部128、指示制御部129、表示制御部130、ミラー制御部131および動体ズレ量算出部133等を機能的に実現する。
動体ズレ量算出部133は、位置比較部125によって算出された各特徴点のズレ量および各特徴点のズレ方向に基づいて、撮影画像中の被写体のうち動体における各特徴点の平均ズレ量(「平均動体ズレ量」とも称する)を算出する。
良否判定部128は、撮影画像中における被写体の動体ブレに関する良否判定を行う。詳細は、後述する。
ここで、撮像装置1Eの動作について説明する。図24は、撮像装置1Eの動作を示すフローチャートであり、図25は、動体ブレ評価処理のサブルーチンを示す図である。
図25に示されるように、撮像装置1EのステップSP91〜ステップSP95では、撮像装置1AのステップSP11〜ステップSP15の各工程(図9)と同様の動作がそれぞれ実行される。簡単には、ライブビュー表示実行中において、レリーズボタン11の半押し状態が検出されると、順次に取得される補助画像に対して本撮影前ブレ評価処理(ステップSP94)が行われ、平均ズレ量の少ない最良画像が特定される。
ステップSP95において、全押し状態が検出されると、ライブビュー画像の表示動作が終了され、動作工程は、ステップSP96に移行される。
ステップSP96では、本撮影動作が実行され、本撮影画像が取得される。
ステップSP97では、本撮影画像中の動体ブレを評価する動体ブレ評価処理が実行される。具体的には、図25に示されるように、撮像装置1Eの当該合焦状態評価処理では、まずステップSP101において、ステップSP31(図14参照)と同様に、本撮影画像データの色空間の変換によって各画素の輝度成分の輝度値が取得される。
ステップSP102では、ステップSP32と同様に、本撮影画像が複数の領域に分割される。
次のステップSP103では、ステップSP33と同様に、正規化部123によって、本撮影画像の分割領域ごとに輝度値の正規化が行われる。
ステップSP104では、ステップSP34と同様に、特徴点抽出部124によって本撮影画像の分割領域ごとに特徴点の抽出処理が行われる。
ステップSP105では、ステップSP35と同様に、最良画像の特徴点と本撮影画像の特徴点との位置比較が位置比較部125によって行われ、各分割領域の特徴点について、ズレ量とズレ方向を示すベクトルとが取得される。
ステップSP106では、動体ズレ量算出部133によって、各特徴点の全体的なズレ方向とは異なる方向にズレた特徴点が、動体における特徴点として特定される。そして、当該動体における特徴点のズレ量を平均した動体平均ズレ量が算出される。
ステップSP107では、良否判定部128によって、本撮影画像中の動体ブレに関する良否判定が行われる。動体ブレに関する良否判定は、例えば、本撮影画像の動体平均ズレ量が所定の閾値以上であるか否かに基づいて行うことができる。この場合、良否判定部128は、動体平均ズレ量が所定の閾値以上であった場合、当該本撮影画像を不合格画像(失敗画像)と判定し、動体平均ズレ量が所定の閾値以上であった場合、当該本撮影画像を合格画像と判定する。
本撮影画像が失敗画像であると判定されると、ステップSP98(図24参照)では、指示制御部129による実行指示を受けて、本撮影画像の動体ブレ評価に応じた所定動作が実行される。所定動作としては、例えば、本撮影の失敗表示をモニタ12に表示させる表示動作が表示制御部130によって実行される。これにより、ユーザは、本撮影後にモニタ12を視認することによって、本撮影画像が動体ブレを有した失敗画像であることを把握することができる。
以上のように、第5実施形態に係る撮像装置1Eは、被写体像に基づいて、最良画像と本撮影画像とをこの順序で取得する撮像手段と、最良画像および本撮影画像それぞれから被写体の特徴点を複数抽出する特徴点抽出部124と、最良画像における各特徴点の位置と、本撮影画像における各特徴点の位置とを比較して、最良画像における各特徴点に対する、本撮影画像における各特徴点の位置のズレ量およびズレ方向を本撮影画像の特徴点ごとに取得する位置比較部125と、ズレ量およびズレ方向に基づいて、本撮影画像中の被写体のうち動体における特徴点の平均ズレ量を算出する動体ズレ量算出部133と、平均ズレ量に基づいて、本撮影画像中の動体のブレに関する判定を行う良否判定部129とを備える。このような撮像装置1Eによれば、本撮影画像中の動体ブレを検出して、本撮影画像の動体ブレに関する評価を得ることができる。
<6.変形例>
以上、この発明の実施の形態について説明したが、この発明は、上記に説明した内容に限定されるものではない。
例えば、上記各実施形態では、本撮影前の補助画像は、副撮像素子7で取得していたが、これに限定されない。具体的には、EVFモードにおいてミラーアップ状態とし、本撮影画像取得用の撮像素子で補助画像を取得してもよい。この場合、撮像手段は、本撮影画像取得用の撮像素子で構成されることになる。
また、上記第2実施形態では、本撮影画像に対して手ブレ補正処理を実行した後、ブレ補正後の本撮影画像に対してブレに関する良否判定を再度行ってもよい。そして、再度の良否判定で、再び失敗画像と判定された場合は、本撮影の失敗表示をモニタ12に表示させる表示動作が実行してもよい。
1A,1B,1C,1D,1E 撮像装置
5 主撮像素子
7 副撮像素子
12 モニタ
50 画像処理部
55 領域分割部
56 ブレ補正処理部
57 高周波成分抽出部
70 画像メモリ
123 正規化部
124 特徴点抽出部
125 位置比較部
126 ズレ量算出部
127 最良画像特定部
128 良否判定部
129 表示制御部
132 評価対象領域特定部
133 動体ズレ量算出部
TP,TP1,TP2 特徴点

Claims (8)

  1. 被写体像に基づいて、第1画像と第2画像とをこの順序で取得する撮像手段と、
    前記第1画像および前記第2画像それぞれから被写体の特徴部を抽出する特徴部抽出手段と、
    前記第1画像における特徴部の位置と、前記第2画像における特徴部の位置とを比較して、対応する特徴部の位置のズレ量を第1ズレ量として取得する比較手段と、
    前記第1ズレ量に基づいて、前記第2画像に含まれるブレに関する判定を行う判定手段と、
    を備える撮像装置。
  2. 本撮影前に前記撮像手段によって時系列で取得される複数の画像の中から、手ブレが最小の最良画像を特定する特定手段、
    をさらに備え、
    前記特徴部抽出手段は、前記複数の画像それぞれから前記特徴部を抽出し、
    前記比較手段は、前記複数の画像のうち、連続して取得される2枚の画像間における前記特徴部を比較して、対応する特徴部の位置のズレ量を第2ズレ量として取得し、
    前記特定手段は、前記第2ズレ量に基づいて、前記最良画像を前記第1画像として特定し、
    前記撮像手段は、前記第2画像を本撮影の際に取得する請求項1に記載の撮像装置。
  3. 前記判定手段による判定結果に応じて、所定動作の実行指示を行う指示制御部、
    をさらに備える請求項2に記載の撮像装置。
  4. 前記指示制御部からの前記実行指示に応じて、前記第1画像に基づいて前記第2画像に含まれるブレを補正するブレ補正手段、
    をさらに備える請求項3に記載の撮像装置。
  5. a)被写体像に基づいて、第1画像と第2画像とをこの順序で取得する工程と、
    b)前記第1画像および前記第2画像それぞれから被写体の特徴部を抽出する工程と、
    c)前記第1画像における特徴部の位置と、前記第2画像における特徴部の位置とを比較して、対応する特徴部の位置のズレ量を第1ズレ量として取得する工程と、
    d)前記第1ズレ量に基づいて、前記第2画像に含まれるブレに関する判定を行う工程と、
    を備える撮像装置の制御方法。
  6. 撮像装置に内蔵されたコンピュータに、
    a)被写体像に基づいて、第1画像と第2画像とをこの順序で取得する工程と、
    b)前記第1画像および前記第2画像それぞれから被写体の特徴部を抽出する工程と、
    c)前記第1画像における特徴部の位置と、前記第2画像における特徴部の位置とを比較して、対応する特徴部の位置のズレ量を第1ズレ量として取得する工程と、
    d)前記第1ズレ量に基づいて、前記第2画像に含まれるブレに関する判定を行う工程と、
    を実行させるプログラム。
  7. 本撮影の際に、被写体像に基づいて本撮影画像を取得する撮像手段と、
    前記本撮影画像における高周波成分の評価値を取得する評価値取得手段と、
    前記高周波成分の評価値に基づいて、前記本撮影画像の合焦状態の良否判定を行う判定手段と、
    を備える撮像装置。
  8. 被写体像に基づいて、第1画像と第2画像とをこの順序で取得する撮像手段と、
    前記第1画像および前記第2画像それぞれから被写体の特徴部を複数抽出する特徴部抽出手段と、
    前記第1画像における各特徴部の位置と、前記第2画像における各特徴部の位置とを比較して、前記第1画像における各特徴部に対する、前記第2画像における各特徴部の位置のズレ量およびズレ方向を前記第2画像の特徴部ごとに取得する比較手段と、
    前記ズレ量および前記ズレ方向に基づいて、前記第2画像中の被写体のうち動体における特徴部の平均ズレ量を算出する動体ズレ量算出手段と、
    前記平均ズレ量に基づいて、前記第2画像中の前記動体のブレに関する判定を行う判定手段と、
    を備える撮像装置。
JP2009069876A 2009-03-23 2009-03-23 撮像装置、撮像装置の制御方法およびプログラム Pending JP2010224112A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009069876A JP2010224112A (ja) 2009-03-23 2009-03-23 撮像装置、撮像装置の制御方法およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009069876A JP2010224112A (ja) 2009-03-23 2009-03-23 撮像装置、撮像装置の制御方法およびプログラム

Publications (1)

Publication Number Publication Date
JP2010224112A true JP2010224112A (ja) 2010-10-07

Family

ID=43041387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009069876A Pending JP2010224112A (ja) 2009-03-23 2009-03-23 撮像装置、撮像装置の制御方法およびプログラム

Country Status (1)

Country Link
JP (1) JP2010224112A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458845A2 (en) 2010-11-25 2012-05-30 Sony Corporation Imaging Device, Image Processing Method, and Computer Program
WO2016088628A1 (ja) * 2014-12-02 2016-06-09 オリンパス株式会社 画像評価装置、内視鏡システム、画像評価装置の作動方法および画像評価装置の作動プログラム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458845A2 (en) 2010-11-25 2012-05-30 Sony Corporation Imaging Device, Image Processing Method, and Computer Program
US8593531B2 (en) 2010-11-25 2013-11-26 Sony Corporation Imaging device, image processing method, and computer program
WO2016088628A1 (ja) * 2014-12-02 2016-06-09 オリンパス株式会社 画像評価装置、内視鏡システム、画像評価装置の作動方法および画像評価装置の作動プログラム
JPWO2016088628A1 (ja) * 2014-12-02 2017-04-27 オリンパス株式会社 画像評価装置、内視鏡システム、画像評価装置の作動方法および画像評価装置の作動プログラム

Similar Documents

Publication Publication Date Title
JP5233720B2 (ja) 撮像装置、撮像装置の制御方法およびプログラム
JP5257157B2 (ja) 撮像装置、撮像装置の制御方法およびプログラム
JP5217600B2 (ja) 撮像装置
JP5277873B2 (ja) 撮像装置、画像処理装置および画像処理方法
US8988579B2 (en) Imaging apparatus
JP4860568B2 (ja) 撮影装置
JP5042938B2 (ja) 撮像装置
JP2004040712A (ja) 撮像装置
JP2002271654A (ja) 電子カメラ
US9247112B2 (en) Imaging device and method for displaying electronic viewfinder
JP5967865B2 (ja) 撮像装置、撮像装置の制御方法及びプログラム
JP2008287064A (ja) 撮像装置
US7724297B2 (en) Imaging device having a display to display images captured by a plurality of image sensors with different display regions
JP2010224112A (ja) 撮像装置、撮像装置の制御方法およびプログラム
JP2006080960A (ja) 撮像装置および撮像方法
JP5153441B2 (ja) 撮像装置、その制御方法及びプログラム
WO2013042420A1 (ja) 撮像装置、ファインダ及びその表示方法
JP2004159051A (ja) 手ぶれ補正装置及び撮像装置
JP2009139423A (ja) 撮像装置及び被写体距離算出方法
JP2010016469A (ja) 電子カメラ
JP5643464B2 (ja) 画像表示装置
JP5040669B2 (ja) 撮像装置
US8243181B2 (en) Digital image processing apparatus and method of controlling the same
JP2006325067A (ja) 撮像装置、撮像装置の制御方法
JP4139187B2 (ja) ディジタルカメラの露出制御システム