JP2010223929A - Magnetic core and current sensor using the same - Google Patents

Magnetic core and current sensor using the same Download PDF

Info

Publication number
JP2010223929A
JP2010223929A JP2009097435A JP2009097435A JP2010223929A JP 2010223929 A JP2010223929 A JP 2010223929A JP 2009097435 A JP2009097435 A JP 2009097435A JP 2009097435 A JP2009097435 A JP 2009097435A JP 2010223929 A JP2010223929 A JP 2010223929A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic core
magnetic material
current
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009097435A
Other languages
Japanese (ja)
Inventor
Nobuyuki Shinchi
信幸 新地
Akira Okada
章 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohshin Electric Corp
Original Assignee
Kohshin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohshin Electric Corp filed Critical Kohshin Electric Corp
Priority to JP2009097435A priority Critical patent/JP2010223929A/en
Publication of JP2010223929A publication Critical patent/JP2010223929A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Hall/Mr Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide: a magnetic core for a current sensor which is easily processed and assembled, which can be miniaturized, which can be reduced in cost because it can be made of a rectangular magnetic material of the same dimensions without waste loss, and which can adjust a range of currents to be measured; and a current sensor using the same. <P>SOLUTION: The magnetic core is structured such that a magnetic circuit is formed by at least one plate-like magnetic material and a gap part formed by a void provided between ends of the magnetic material by bending the magnetic material substantially circularly. The ends of the magnetic material form the gap part by facing each other at a predetermined distance from each other with predetermined areas, and at least one of the ends faces a convexly-processed surface. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、導体を流れる被測定電流の計測に利用する磁気回路の一部を成す磁気コア、ならびに前記磁気コアを備えて構成した電流センサに関するものである。  The present invention relates to a magnetic core that forms part of a magnetic circuit used to measure a current to be measured flowing through a conductor, and a current sensor that includes the magnetic core.

被測定電流の計測に利用する磁気コアは、被測定電流の流れる導体を取り囲む様に設置し、磁気コアに設けたギャップ部とともに磁気回路を形成する。磁気コアを利用した電流センサは、ギャップ部に設置した磁電変換素子を通じて、被測定電流により磁気回路に生じた磁束の大きさを測定することで、非接触で被測定電流の大きさを測定する。  The magnetic core used for measuring the current to be measured is installed so as to surround the conductor through which the current to be measured flows, and forms a magnetic circuit together with the gap portion provided in the magnetic core. The current sensor using the magnetic core measures the magnitude of the current to be measured in a non-contact manner by measuring the magnitude of the magnetic flux generated in the magnetic circuit by the current to be measured through the magnetoelectric transducer installed in the gap portion. .

従来の電流センサを構成する磁気コアの例として、1枚あるいは複数枚の板状の磁性材に曲げ等の何らかの加工を施し、ギャップ部とともに磁気回路を構成した磁気コアがある。(例えば、特許文献1、2または3参照)  As an example of a magnetic core constituting a conventional current sensor, there is a magnetic core in which one or a plurality of plate-like magnetic materials are subjected to some processing such as bending, and a magnetic circuit is formed with a gap portion. (For example, see Patent Documents 1, 2, or 3)

特開2000−284000JP 2000-284000 特開2006−17457JP2006-17457 特開2008−233013JP2008-233303

上記特許文献1に開示されている電流検出装置の磁気コアは、板材から曲げ加工を施して作製した、2つのコの字型の磁性材を連結することで構成され、フェライトなどの磁性材を焼結して形成した磁気コアに比べて薄型となる利点がある。また他の実施例には、周縁部を折り曲げた、別の2つのコの字型の磁性材を連結することで構成した磁気コアが示され、集磁効果を向上する利点がある。しかしながら、1つの板材からの加工は困難な磁気コア構造であり、少なくとも2つの磁性材の連結が必要なため、組立工程が増加する問題点があった。また、コの字型の磁性材が必要なため、母材となる板材からの材料取りを考慮した場合、必ず不用となる板材部分が発生し、低コスト化に向かないという問題点があった。さらにまた、集磁効果向上のためには、周縁部を拡大した別のコの字型の磁性材を準備する必要があるため、電流センサの定格等、複数の仕様を満たすためには複数種類の板状磁性材の所持が必須となり、保管場所の増大等、低コスト化に向かないという問題点があった。  The magnetic core of the current detection device disclosed in Patent Document 1 is formed by connecting two U-shaped magnetic materials produced by bending a plate material, and a magnetic material such as ferrite is used. There is an advantage that it is thinner than a magnetic core formed by sintering. In another embodiment, there is shown a magnetic core constructed by connecting two other U-shaped magnetic materials whose peripheral portions are bent, which has the advantage of improving the magnetic flux collection effect. However, since the magnetic core structure is difficult to process from one plate material, and it is necessary to connect at least two magnetic materials, there is a problem that the assembly process increases. In addition, since a U-shaped magnetic material is required, there is a problem that an unnecessary plate material part is always generated when considering material removal from the base material, which is not suitable for cost reduction. . Furthermore, in order to improve the magnetic flux collection effect, it is necessary to prepare another U-shaped magnetic material with an enlarged peripheral edge, so multiple types are required to satisfy multiple specifications such as current sensor ratings. It is essential to have a plate-like magnetic material, and there is a problem that it is not suitable for cost reduction such as an increase in storage space.

上記特許文献2に開示されている電流センサユニットの磁気コアは、1枚の長方形の板状磁性材に曲げ加工を施して形成され、フェライトなどの磁性材を焼結して形成した磁気コアに比べて加工が容易であり、かつ小型となる利点がある。また他の実施例には、ギャップ部の間隔や重なり面積の調整、磁性コアの分割、あるいは磁性材を追加して構成した磁気コアが示され、ギャップ部における磁束の大きさの調整、つまりは被測定電流範囲が調整できる効果がある。しかしながら、同一寸法の一枚の板状である磁性材から、上記特許文献2に示された各種の磁気コアを実現することは困難であり、電流センサの定格等、複数の仕様を満たすためには複数種類の板状の磁性材所持が必須となり、保管場所の増大等、低コスト化に向かないという問題点があった。  The magnetic core of the current sensor unit disclosed in Patent Document 2 is formed by bending a single rectangular plate-shaped magnetic material, and is formed by sintering a magnetic material such as ferrite. Compared with this, there is an advantage that the processing is easy and the size is reduced. In another embodiment, there is shown a magnetic core formed by adjusting the gap interval and overlapping area, dividing the magnetic core, or adding a magnetic material, and adjusting the magnitude of the magnetic flux in the gap, that is, There is an effect that the current range to be measured can be adjusted. However, it is difficult to realize various magnetic cores shown in Patent Document 2 from a single plate-shaped magnetic material having the same dimensions, in order to satisfy a plurality of specifications such as current sensor ratings. However, it is necessary to have multiple types of plate-like magnetic materials, and there is a problem that it is not suitable for cost reduction such as an increase in storage space.

上記特許文献3に開示されている電流センサ用の磁気コアは、1枚の板状磁性材に曲げ加工を施して形成され、フェライトなどの磁性材を焼結して形成した磁気コアに比べて加工が容易となる利点がある。また、磁気コアのギャップ部を形成する磁性材の端部に向かって、磁性材の幅が傾斜するように加工して構成した磁気コアであるため、ギャップ部における磁束の大きさの調整、つまりは被測定電流範囲が調整できる効果がある。しかしながら、幅に傾斜を持たせた磁性材が必要なため、母材となる板材からの材料取りを考慮した場合、必ず不用となる板材部分が発生し、低コスト化に向かないという問題点があった。また、電流センサの定格等、複数の仕様を満たすためには、磁性材の幅寸法や傾斜の程度を可変した複数種類の板状磁性材の所持が必須となり、保管場所の増大等、低コスト化に向かないという問題点があった。さらにまた、傾斜構造を有する磁気コアのため薄型化に向かず、電流センサを構成する上で、体積が増加するという問題点があった。  The magnetic core for a current sensor disclosed in Patent Document 3 is formed by bending a single plate-like magnetic material, and compared with a magnetic core formed by sintering a magnetic material such as ferrite. There is an advantage that processing becomes easy. In addition, since the magnetic core is formed by processing the magnetic material so that the width of the magnetic material is inclined toward the end of the magnetic material forming the gap portion of the magnetic core, the adjustment of the magnitude of the magnetic flux in the gap portion, that is, Has the effect of adjusting the measured current range. However, since a magnetic material with an inclined width is required, there is a problem that an unnecessary plate material part is generated and it is not suitable for cost reduction in consideration of material removal from the base material. there were. Also, in order to satisfy multiple specifications such as current sensor ratings, it is essential to have multiple types of plate-like magnetic materials with variable width and inclination of the magnetic material, which reduces the cost of storage, etc. There was a problem that it was not suitable. Furthermore, since the magnetic core having an inclined structure is not suitable for thinning, there is a problem that the volume is increased in configuring the current sensor.

この発明は上記のような課題を鑑み、解決するためになされたもので、加工及び組立が容易で、小型化でき、廃棄ロスのない同一寸法の長方形の板状磁性材が利用できるため低コスト化でき、かつ被測定電流範囲を調整できる、電流センサ用の磁気コア及びこれを用いた電流センサを提供することを目的とする。  The present invention has been made in order to solve the above-mentioned problems, and is easy to process and assemble, can be downsized, and can use a rectangular plate-like magnetic material having the same dimensions without waste loss. It is an object of the present invention to provide a magnetic core for a current sensor and a current sensor using the same.

この発明に係わる磁気コアは、少なくとも1枚の板状の磁性材と、前記磁性材を略環状に屈曲し、前記磁性材の端部間に設けられた空隙による1つのギャップ部により、磁気回路が形成される構造をとるもので、前記磁性材の両端部は互いに所定の距離、かつ所定の面積をもって対向しギャップ部を形成するとともに、少なくとも一つの端部の対向面は凸状に加工されている。  A magnetic core according to the present invention includes a magnetic circuit including at least one plate-like magnetic material and a gap portion formed by bending the magnetic material into a substantially annular shape and a gap provided between end portions of the magnetic material. The both ends of the magnetic material are opposed to each other with a predetermined distance and a predetermined area to form a gap portion, and at least one of the opposing surfaces of the end portion is processed into a convex shape. ing.

また、この発明に係わる磁気コアは、前記磁性材の両端部は互いに所定の距離、かつ所定の面積をもって対向してギャップ部を形成するとともに、少なくとも一つの端部の対向面は少なくとも一つの平坦部を有する凸状に加工されていてもよい。  In the magnetic core according to the present invention, both end portions of the magnetic material are opposed to each other with a predetermined distance and a predetermined area to form a gap portion, and at least one flat surface of at least one end portion is flat. It may be processed into a convex shape having a portion.

また、この発明に係わる磁気コアは、前記磁性材の両端部は互いに所定の距離、かつ所定の面積をもって対向してギャップ部を形成するとともに、少なくとも一つの端部の対向面は凹状に加工されていてもよい。  In the magnetic core according to the present invention, both end portions of the magnetic material are opposed to each other with a predetermined distance and a predetermined area to form a gap portion, and at least one end surface of the magnetic material is processed into a concave shape. It may be.

また、この発明に係わる磁気コアは、前記磁性材の両端部は互いに所定の距離、かつ所定の面積をもって対向してギャップ部を形成するとともに、少なくとも一つの端部の対向面は少なくとも一つの平坦部を有する凹状に加工されていてもよい。  In the magnetic core according to the present invention, both end portions of the magnetic material are opposed to each other with a predetermined distance and a predetermined area to form a gap portion, and at least one flat surface of at least one end portion is flat. You may be processed into the concave shape which has a part.

また、この発明に係わる電流センサは、前記いずれかの磁気コアと、前記ギャップ部に設置される少なくとも一つの磁電変換素子と、前記磁電変換素子に接続するセンサ回路部とを備え、前記磁電変換素子を前記ギャップ部の所定の位置に保持するとともに前記センサ回路部を設置したセンサ基板を、前記磁気コアに固定している。  The current sensor according to the present invention includes any one of the magnetic cores, at least one magnetoelectric conversion element installed in the gap portion, and a sensor circuit unit connected to the magnetoelectric conversion element. A sensor substrate on which the element is held at a predetermined position of the gap portion and the sensor circuit portion is installed is fixed to the magnetic core.

この発明の磁気コアによると、1枚の磁性材である板材を略環状に屈曲し、磁性材の端部間にギャップ部を形成する磁気コア構成のため、磁気コアの加工が容易であり、小型化の効果もある。
また、この発明の磁気コアによると、1枚の磁性材である板材の元の寸法を変えることなく、少なくとも一つの磁性材の端部の形状を凸状、あるいは凹状、あるいは少なくとも一つの平坦部を有する凸状、あるいは少なくとも一つの平坦部を有する凹状に加工することで、容易に被測定電流範囲を調整でき、複数の仕様に対して元の磁性材を共通化でき、複数の寸法の磁性材を所持する必要もないため、低コスト化の効果もある。
また、この発明の磁気コアによると、1枚の磁性材である板材の元の形状は長方形であるため、母材となる板材からの材料取りで不用となる部分が生じず、廃棄ロスを低減できるため、低コスト化の効果がある。
According to the magnetic core of the present invention, the magnetic core is formed by bending a plate material, which is a single magnetic material, into a substantially annular shape, and forming a gap portion between the end portions of the magnetic material. There is also an effect of miniaturization.
In addition, according to the magnetic core of the present invention, the shape of the end of at least one magnetic material is convex, concave, or at least one flat portion without changing the original dimensions of the plate material that is one magnetic material. Can be easily adjusted to the current range to be measured, the original magnetic material can be shared for multiple specifications, and multiple dimensions of magnetism can be achieved. Since there is no need to possess materials, there is also an effect of cost reduction.
In addition, according to the magnetic core of the present invention, since the original shape of the plate material, which is a single magnetic material, is a rectangle, there is no unnecessary part in removing material from the base material plate, reducing waste loss. As a result, the cost can be reduced.

また、この発明の電流センサによると、磁電変換素子とセンサ回路を設けたセンサ基板を、磁気コアに固定する構造のため、小型な電流センサが提供できる。  Also, according to the current sensor of the present invention, a small current sensor can be provided because of the structure in which the sensor substrate provided with the magnetoelectric conversion element and the sensor circuit is fixed to the magnetic core.

この発明の実施形態1による磁気コアの斜視図である。It is a perspective view of the magnetic core by Embodiment 1 of this invention. この発明の実施形態1による磁気コアの平面図である。It is a top view of the magnetic core by Embodiment 1 of this invention. この発明の実施形態1による磁気コアの一部の断面図である。It is sectional drawing of a part of magnetic core by Embodiment 1 of this invention. 一般的な電流センサの構成概略図である。It is a structure schematic diagram of a general current sensor. 従来の磁気コアの一部の断面図である。It is a sectional view of a part of a conventional magnetic core. この発明の実施形態1による別の磁気コアの一部の断面図である。It is sectional drawing of a part of another magnetic core by Embodiment 1 of this invention. この発明の実施形態1による複数の磁気コアにおける被測定電流値−ホール電圧の関係図である。It is a relationship figure of to-be-measured current value-Hall voltage in the some magnetic core by Embodiment 1 of this invention. この発明の実施形態1による磁気コアの一部の別の断面図である。It is another sectional drawing of a part of magnetic core by Embodiment 1 of this invention. この発明の実施形態1による複数のホール素子における被測定電流値−ホール電圧の関係図である。It is a relationship figure of measured current value-Hall voltage in a plurality of Hall elements by Embodiment 1 of this invention. この発明の実施形態1による複数のホール素子における補正後の被測定電流値−ホール電圧の関係図である。It is a relationship figure of to-be-measured current value after correction | amendment-Hall voltage in the some Hall element by Embodiment 1 of this invention. この発明の実施形態2による電流センサの斜視図である。It is a perspective view of the current sensor by Embodiment 2 of this invention.

実施の形態1.
図1は、この発明の実施の形態1による磁気コアの斜視図を示すもので、図2は図1の平面図、図3は図1および図2におけるAA’断面(YZ面)を示す断面図(磁気コア1の一部の断面図)である。図において、磁気コア1は、1枚の略長方形の板状の磁性材2を略環状に屈曲して、磁性材2の内側端部4と外側端部5の間にギャップ部3を形成し、磁気コア1の内部には中空部6を有するように構成される。また、磁気コア1は、磁性材2およびギャップ部3により磁気回路が構成される。ここでは特に、内側端部4は外側端部5に向かって平坦部7を有した凸形状に加工している。
電流センサとして構成するためには、少なくとも磁気コア1の中空部6に被測定電流の流れる導体、ならびにギャップ部3の所定の位置に磁電変換素子が設置されるが、電流センサとしての構成の詳細は、実施の形態2において説明する。
Embodiment 1 FIG.
FIG. 1 is a perspective view of a magnetic core according to Embodiment 1 of the present invention, FIG. 2 is a plan view of FIG. 1, and FIG. 3 is a cross section showing an AA ′ section (YZ plane) in FIGS. It is a figure (a sectional view of a part of magnetic core 1). In the figure, a magnetic core 1 is formed by bending a substantially rectangular plate-shaped magnetic material 2 into a substantially annular shape to form a gap 3 between an inner end 4 and an outer end 5 of the magnetic material 2. The magnetic core 1 is configured to have a hollow portion 6 inside. In the magnetic core 1, a magnetic circuit is constituted by the magnetic material 2 and the gap portion 3. Here, in particular, the inner end portion 4 is processed into a convex shape having a flat portion 7 toward the outer end portion 5.
In order to configure as a current sensor, a conductor through which the current to be measured flows at least in the hollow portion 6 of the magnetic core 1 and a magnetoelectric conversion element are installed at a predetermined position in the gap portion 3. Details of the configuration as a current sensor Will be described in Embodiment 2.

まず、磁気コア1の作製方法について説明する。
磁気コア1の主たる構成を成す磁性材2は、透磁率の大きい軟磁性材料を利用し、例えばケイ素鋼やパーマロイなどが用いられる。磁性材2は、磁気コア1へ加工する前は、長方形状の板材として用意され、例えばケイ素鋼などの母材としての板材から切り出すことで作製する。母材から長方形状の短冊状に磁性材2を切り出すため、基本的には廃棄材は発生せず、環境に配慮した設計となっている。
長方形状の板材である磁性材2は、最初に端部の加工を行う。本実施の形態では、磁気コア1の中空部6側に位置することになる内側端部4のみを加工するが、内側端部に限るものではない。内側端部4は、外側端部5に向かって、つまりは図3のYZ断面において下向きに凸となるように、プレス加工などにより凸型の形状が形成される。ここでは平坦部7を有した凸形状としたが、平坦部7の有無、大小等、凸部の形状は、目的とする定格、ひいては目的とする被測定電流範囲を有する電流センサを構築する上で、ギャップ部3に設置される磁電変換素子に印加したい磁束の大きさにより調整される。なお磁性材2の長手方向において、凸形状を形成する範囲は、最大でも内側端部4に最も近い磁性材2の屈折部8までであり、凸形状部と屈折部8が交錯等して、極端なエッジを有する加工形状となるのは、磁気回路に影響を与えるため、避けるのが望ましい。
次に、磁性材2を略環状に屈曲し、磁気コア1を形成する。そのときギャップ部3を形成する内側端部4と外側端部5の間隔は、ギャップ部3に設置される磁電変換素子に印加したい磁束が得られる距離とし、かつ少なくとも後に磁電変換素子が安定的に設置できる距離に設定する。ただし目的とする定格や被測定電流範囲が異なるときに、必要とされる磁界の調整は、まず内側端部4の凸形状によって概略の調整を行い、必要あれば次に内側端部4と外側端部5の間隔をもって行うものとする。こうした調整により、一定長さの長方形状の磁性材2において、磁性コア1の外形寸法を大きく変えることなく、複数の定格、あるいは被測定電流範囲等、複数の仕様に対応可能となる。なお、磁性コア1の外形寸法は大きく変わることはないため、Y方向から見て内側端部4と外側端部5の重なり合う面積は、略一定となる。図1あるいは図2からわかるように、本実施の形態では、略環状に屈曲する際に形成される4つの屈折部8は、略直角としたがこれに限るものではなく、円弧状等他の形態でも構わない。また中空部6の形状は、中空部6内に設置する導体の形状、および寸法等に依存して決定するのがよい。
First, a method for manufacturing the magnetic core 1 will be described.
The magnetic material 2 constituting the main configuration of the magnetic core 1 uses a soft magnetic material having a high magnetic permeability, and for example, silicon steel or permalloy is used. The magnetic material 2 is prepared as a rectangular plate before being processed into the magnetic core 1, and is produced by cutting out from a plate as a base material such as silicon steel. Since the magnetic material 2 is cut into a rectangular strip from the base material, basically no waste material is generated and the design is environmentally friendly.
The magnetic material 2 which is a rectangular plate material is first processed at the end. In the present embodiment, only the inner end 4 that will be positioned on the hollow portion 6 side of the magnetic core 1 is processed, but the present invention is not limited to the inner end. The inner end portion 4 is formed in a convex shape by pressing or the like so as to protrude downward toward the outer end portion 5, that is, in the YZ section of FIG. Although the convex shape having the flat portion 7 is used here, the shape of the convex portion, such as the presence / absence, size, etc. of the flat portion 7, is used for constructing a current sensor having a target rating and a target current range to be measured. Thus, it is adjusted according to the magnitude of the magnetic flux to be applied to the magnetoelectric conversion element installed in the gap portion 3. In addition, in the longitudinal direction of the magnetic material 2, the range in which the convex shape is formed is up to the refracting portion 8 of the magnetic material 2 closest to the inner end portion 4, and the convex shape portion and the refracting portion 8 are crossed, etc. A machining shape having an extreme edge is desirably avoided because it affects the magnetic circuit.
Next, the magnetic material 2 is bent into a substantially annular shape to form the magnetic core 1. At that time, the distance between the inner end 4 and the outer end 5 forming the gap 3 is a distance at which a magnetic flux to be applied to the magnetoelectric conversion element installed in the gap 3 is obtained, and at least later, the magnetoelectric conversion element is stable. Set to a distance that can be installed in. However, when the target rating and the current range to be measured are different, the required magnetic field is adjusted first by the convex shape of the inner end 4, and then if necessary, the inner end 4 and the outer It shall be performed with the space | interval of the edge part 5. FIG. By such adjustment, the rectangular magnetic material 2 having a certain length can be adapted to a plurality of specifications such as a plurality of ratings or a current range to be measured without greatly changing the external dimensions of the magnetic core 1. In addition, since the external dimension of the magnetic core 1 does not change greatly, the overlapping area of the inner end portion 4 and the outer end portion 5 is substantially constant when viewed from the Y direction. As can be seen from FIG. 1 or FIG. 2, in the present embodiment, the four refracting portions 8 formed when bending in a substantially annular shape are substantially perpendicular, but this is not restrictive. It does not matter in the form. The shape of the hollow portion 6 is preferably determined depending on the shape and dimensions of the conductor installed in the hollow portion 6.

本実施の形態1における磁気コア1の機能について説明する。
図4は、一般的な磁気コアを有する電流センサの構成概略である。図において、磁気コア1はギャップ部3とともに磁気回路9を形成し、ギャップ部3には磁電変換素子11が設置される。磁気コア1の中空部6を貫通して導体10が設けられ、導体10に被測定電流が流れると右ねじの法則に従い、磁束が生じる。このとき発生する磁束の大きさは、被測定電流に応じた大きさとなる。仮に図4の+Z方向に被測定電流が流れると、磁気回路9において、図4の矢印の向きに磁束の流れ12が生じる。ギャップ部3は空気層であるため、磁気コア1を構成する磁性材と比べて透磁率が低く漏れ磁束が生じるが、設置された磁電変換素子11を磁束が通過するため、磁電変換素子11は磁束の大きさに応じて可変する、何らかの検出信号を出力する。例えば磁電変換素子11としてホール素子を用いた場合、磁束の大きさに応じて、ホール効果によりホール電圧が出力され、つまりは被測定電流の大きさが計測される。
図5は、特許文献1または2に示される、従来の磁気コアの一部であるギャップ部における断面図である。図において、内側端部4aと外側端部5aは平坦部のみで構成され、両者はギャップ部3aを介して略平行な配置となっている。導体に被測定電流が流れ、磁気コアに磁束の流れが生じたとき、ギャップ部3aには内側端部4aと外側端部5aを結ぶように磁束が発生する。図5に、磁束線13aの分布概略を矢印で表す。内側端部4a、外側端部5aの両脇部分では、漏れ磁束により婉曲した磁束線となるが、ギャップ部3a内では一様に略平行な磁束線13aを示す。
図3は、本実施の形態1のギャップ部3における断面図だが、従来例を示した図5と異なり、内側端部4は外側端部5に向かって平坦部7を有した凸形状に加工され、外側端部5は平坦部のみで構成している。中空部6に導体を設置し、導体に被測定電流が流れ、磁気コアに磁束の流れが生じたとき、図5と同様にギャップ部3には内側端部4と外側端部5を結ぶように磁束が発生する。しかしながら、内側端部4の形状が異なるため、磁束線13の分布概略は図5と異なり、凸形状の先端部分、つまりギャップ部3の中央部分に磁束が集中し、この部分の磁束の大きさが図5のような略平行配置と比較して大きくなる。
図3と図5の比較からわかるように、磁性材の端部を除く形状が同一で、かつ端部を除き磁性材に生じる磁束の大きさが同一であっても、少なくとも一つの磁性材の端部形状を変えることで、ギャップ部に生じる磁束の大きさを可変することが可能となる。
The function of the magnetic core 1 in the first embodiment will be described.
FIG. 4 is a schematic configuration diagram of a current sensor having a general magnetic core. In the figure, the magnetic core 1 forms a magnetic circuit 9 together with the gap portion 3, and a magnetoelectric conversion element 11 is installed in the gap portion 3. When a conductor 10 is provided through the hollow portion 6 of the magnetic core 1 and a current to be measured flows through the conductor 10, a magnetic flux is generated according to the right-handed screw law. The magnitude of the magnetic flux generated at this time is a magnitude corresponding to the current to be measured. If a current to be measured flows in the + Z direction in FIG. 4, a magnetic flux 12 is generated in the magnetic circuit 9 in the direction of the arrow in FIG. 4. Since the gap portion 3 is an air layer, the magnetic permeability is lower than that of the magnetic material constituting the magnetic core 1 and a leakage magnetic flux is generated. However, since the magnetic flux passes through the installed magnetoelectric conversion element 11, the magnetoelectric conversion element 11 is Some detection signal that varies according to the magnitude of the magnetic flux is output. For example, when a Hall element is used as the magnetoelectric conversion element 11, a Hall voltage is output by the Hall effect according to the magnitude of the magnetic flux, that is, the magnitude of the current to be measured is measured.
FIG. 5 is a cross-sectional view of a gap portion, which is a part of a conventional magnetic core, disclosed in Patent Document 1 or 2. In the figure, the inner end portion 4a and the outer end portion 5a are constituted only by a flat portion, and both are arranged substantially in parallel via the gap portion 3a. When a current to be measured flows through the conductor and a magnetic flux flows through the magnetic core, a magnetic flux is generated in the gap portion 3a so as to connect the inner end portion 4a and the outer end portion 5a. In FIG. 5, the distribution outline of the magnetic flux lines 13a is represented by arrows. In both side portions of the inner end portion 4a and the outer end portion 5a, the magnetic flux lines are bent by the leakage magnetic flux, but in the gap portion 3a, the substantially parallel magnetic flux lines 13a are shown.
FIG. 3 is a cross-sectional view of the gap portion 3 according to the first embodiment. Unlike FIG. 5 showing the conventional example, the inner end portion 4 is processed into a convex shape having a flat portion 7 toward the outer end portion 5. The outer end 5 is composed only of a flat portion. When a conductor is installed in the hollow portion 6 and a current to be measured flows through the conductor and a magnetic flux flows through the magnetic core, the inner end portion 4 and the outer end portion 5 are connected to the gap portion 3 as in FIG. Magnetic flux is generated. However, since the shape of the inner end 4 is different, the distribution outline of the magnetic flux lines 13 is different from that shown in FIG. 5, and the magnetic flux concentrates on the convex tip portion, that is, the central portion of the gap portion 3. Is larger than the substantially parallel arrangement as shown in FIG.
As can be seen from the comparison between FIG. 3 and FIG. 5, even if the shape of the magnetic material excluding the end portion is the same and the magnitude of the magnetic flux generated in the magnetic material is the same except for the end portion, at least one magnetic material By changing the end shape, it is possible to vary the magnitude of the magnetic flux generated in the gap portion.

図6は、図3に示した本実施の形態1における一部の断面図の変形例を示すもので、内側端部4bは外側端部5bに向かって平坦部7bを有した凹形状に加工され、外側端部5bは平坦部のみで構成している。中空部6に導体を設置し、導体に被測定電流が流れ、磁気コアに磁束の流れが生じたとき、図5と同様にギャップ部3bには内側端部4bと外側端部5bを結ぶように磁束が発生する。しかしながら、内側端部4bの形状が異なるため、磁束線13bの分布概略は図5と異なり、凹形状の先端部分、つまりギャップ部3の両側部分に磁束が集中し、この部分の磁束の大きさが図5のような略平行配置と比較して大きくなる。
図5と図6の比較からわかるように、磁性材の端部を除く形状が同一で、かつ端部を除き磁性材に生じる磁束の大きさが同一であっても、少なくとも一つの磁性材の端部形状を変えることで、ギャップ部に生じる磁束の大きさを可変することが可能となる。
FIG. 6 shows a modification of a partial cross-sectional view in the first embodiment shown in FIG. 3, and the inner end 4b is processed into a concave shape having a flat portion 7b toward the outer end 5b. The outer end 5b is composed only of a flat portion. When a conductor is installed in the hollow portion 6 and a current to be measured flows through the conductor and a magnetic flux flows through the magnetic core, the inner end 4b and the outer end 5b are connected to the gap 3b as in FIG. Magnetic flux is generated. However, since the shape of the inner end portion 4b is different, the distribution outline of the magnetic flux lines 13b is different from that in FIG. 5, and the magnetic flux concentrates on the concave tip portion, that is, both side portions of the gap portion 3, and the magnitude of the magnetic flux in this portion. Is larger than the substantially parallel arrangement as shown in FIG.
As can be seen from the comparison between FIG. 5 and FIG. 6, even if the shape of the magnetic material excluding the end portion is the same and the magnitude of the magnetic flux generated in the magnetic material is the same except for the end portion, at least one magnetic material By changing the end shape, it is possible to vary the magnitude of the magnetic flux generated in the gap portion.

少なくとも一つの磁性材の端部の形状可変による被測定電流範囲の調整について、磁電変換素子としてホール素子14を一つ、ギャップ部の中心近傍に設置した例において説明する。
図7は、被測定電流値に対してホール素子14の出力であるホール電圧を示したグラフの概略である。3本のプロットは、それぞれ図3、図5、図6に示した磁性材の端部形状に対応したものである。図7からわかるように、磁性材の端部を除く磁気コアの形状が同一で、かつ端部を除き磁性材に生じる磁束の大きさが同一であっても、少なくとも一つの磁性材の端部形状を変えることで、ギャップ部に生じる磁束の大きさを可変できる。例えば、図7でA1(A)の被測定電流が流れたとき、発生する磁束は同じでも、出力されるホール電圧は磁性材の端部形状に対応して、X、Y、Zと異なる。つまり、磁性材の端部形状に対応して、必要なホール電圧と被測定電流範囲が自由に選択できることになる。なお図7では、ホール電圧は被測定電流値に対応して制限なくリニアに変化することを示したが、実際にはホール電圧は、ホール素子に供給する電圧や電流等により制限される。またホール電圧は、選択した磁性材の磁気特性の飽和現象によっても制限されるため、必要なホール電圧と被測定電流範囲によって、磁性材を選択し、磁性材の幅や厚み等の寸法を決定する必要がある。
The adjustment of the measured current range by changing the shape of the end of at least one magnetic material will be described in an example in which one Hall element 14 is installed near the center of the gap as a magnetoelectric conversion element.
FIG. 7 is a schematic graph showing the Hall voltage that is the output of the Hall element 14 with respect to the measured current value. The three plots correspond to the end shapes of the magnetic materials shown in FIGS. 3, 5, and 6, respectively. As can be seen from FIG. 7, even if the shape of the magnetic core excluding the end of the magnetic material is the same and the magnitude of the magnetic flux generated in the magnetic material is the same except for the end, the end of at least one magnetic material By changing the shape, the magnitude of the magnetic flux generated in the gap can be varied. For example, when the current to be measured of A1 (A) flows in FIG. 7, the generated Hall voltage is different from X, Y, and Z corresponding to the end shape of the magnetic material even though the generated magnetic flux is the same. That is, the required Hall voltage and current range to be measured can be freely selected according to the end shape of the magnetic material. Although FIG. 7 shows that the Hall voltage changes linearly without limitation in accordance with the measured current value, the Hall voltage is actually limited by the voltage or current supplied to the Hall element. Since the Hall voltage is also limited by the saturation phenomenon of the magnetic properties of the selected magnetic material, the magnetic material is selected according to the required Hall voltage and the current range to be measured, and the dimensions such as the width and thickness of the magnetic material are determined. There is a need to.

ここまでは、磁電変換素子として一つのホール素子を、ギャップ部の中心近傍に設置した例について示したが、さらに二つのホール素子を設置した例について説明する。
図8は、図2におけるBB’断面(YZ面)を示す断面図(磁気コア1の一部の断面図)である。図3に示したAA’断面と同様に、内側端部4cは外側端部5cに向かって平坦部7cを有した凸形状に加工され、外側端部5cは平坦部のみで構成しているが、凸形状の高さが異なるため、ギャップ部3cにおける内側端部4cと外側端部5cの間隔15がAA’断面と異なっている。これまでに示した磁気コアの一部の断面と同様に、ギャップ部3cには内側端部4cと外側端部5cを結ぶように磁束が発生する。図3と同様に、凸形状の凸となる部分に磁束が集中するものの、平坦部7cが拡大しているため、この中央部分の磁束の大きさは、図5よりは大きいが、図3よりは小さくなる。図9は、図3、図8に示したギャップ部のそれぞれにホール素子14を設置したときの被測定電流値に対して出力されるホール電圧を示したグラフの概略である。それぞれ図3、図8に示した磁性材の端部形状に対応したものである。つまりホール素子14cの位置では、被測定電流が比較的大きくても、ホール素子14cに印加される磁束の大きさは小さく、抑制されたものとなり、出力の制限などを気にすることなく、かつ磁気コアの外形寸法を大型化することなく、大きな被測定電流の計測が容易に行える。一方、ホール素子14の位置では、被測定電流がやや小さくなってもホール素子14に印加される磁束の抑制度は小さく、出力の低下によるS/Nの悪化などを気にすることなく、やや小容量の被測定電流の計測が容易に行える。よって、やや小容量の被測定電流の計測時はホール素子14、比較的大きな被測定電流の計測時はホール素子14cを利用するように構成すれば、同じ出力特性のホール素子を用いても、各ホール素子の回路部における増幅率等の若干の調整で、図10に示すように被測定電流範囲の拡大した精度の良い電流センサを構築することが可能となる。
Up to this point, an example in which one Hall element is installed as the magnetoelectric conversion element in the vicinity of the center of the gap portion has been described, but an example in which two Hall elements are further installed will be described.
8 is a cross-sectional view (a partial cross-sectional view of the magnetic core 1) showing a BB ′ cross-section (YZ plane) in FIG. Similar to the AA ′ cross section shown in FIG. 3, the inner end 4c is processed into a convex shape having a flat portion 7c toward the outer end 5c, and the outer end 5c is constituted only by a flat portion. Since the height of the convex shape is different, the interval 15 between the inner end 4c and the outer end 5c in the gap 3c is different from the AA ′ cross section. Similar to the partial cross section of the magnetic core shown so far, a magnetic flux is generated in the gap portion 3c so as to connect the inner end portion 4c and the outer end portion 5c. Similar to FIG. 3, although the magnetic flux concentrates on the convex portion of the convex shape, the flat portion 7c is enlarged, so the magnitude of the magnetic flux in this central portion is larger than that in FIG. Becomes smaller. FIG. 9 is a schematic graph showing the Hall voltage output with respect to the measured current value when the Hall element 14 is installed in each of the gap portions shown in FIGS. 3 and 8. These correspond to the end shapes of the magnetic materials shown in FIGS. 3 and 8, respectively. That is, at the position of the Hall element 14c, even if the current to be measured is relatively large, the magnitude of the magnetic flux applied to the Hall element 14c is small and suppressed, without worrying about the output limitation and the like. Measurement of a large current to be measured can be easily performed without increasing the outer dimension of the magnetic core. On the other hand, at the position of the Hall element 14, even when the current to be measured is slightly reduced, the degree of suppression of the magnetic flux applied to the Hall element 14 is small, and without worrying about the deterioration of S / N due to a decrease in output, etc. It is easy to measure a small current to be measured. Therefore, if the Hall element 14 is used when measuring a measured current with a small capacity, and the Hall element 14c is used when measuring a relatively large measured current, a Hall element having the same output characteristics can be used. By slightly adjusting the amplification factor and the like in the circuit portion of each Hall element, it becomes possible to construct a highly accurate current sensor with an expanded current range to be measured as shown in FIG.

なお、本実施の形態1では、内側端部のみの形状を可変した例を示したが、これに限るものではなく、外側端部のみの形状を可変しても良く、あるいは所望の磁束の大きさにより、内側端部と外側端部の両方の形状を可変しても良い。
また、本実施の形態1では、磁性体2の端部において、長手方向となるx方向に直角に凸部、あるいは凹部を形成したが、これに限るものではなく、z方向に直角に凸部、あるいは凹部を形成しても良い。
In the first embodiment, an example in which the shape of only the inner end portion is varied has been described. However, the present invention is not limited to this, and the shape of only the outer end portion may be varied, or a desired magnetic flux size may be changed. Accordingly, the shapes of both the inner end portion and the outer end portion may be varied.
Further, in the first embodiment, at the end of the magnetic body 2, a convex portion or a concave portion is formed at right angles to the longitudinal x direction, but this is not restrictive, and the convex portion is perpendicular to the z direction. Alternatively, a recess may be formed.

以上のように、本実施の形態1によれば、1枚の磁性材である板材を略環状に屈曲し、磁性材の端部間にギャップ部を形成する磁気コア構成のため、磁気コアの加工が容易であり、小型化の効果もある。  As described above, according to the first embodiment, the magnetic core is configured such that one magnetic material plate is bent into a substantially annular shape and a gap is formed between the ends of the magnetic material. Processing is easy and there is an effect of miniaturization.

また、この発明の磁気コアによると、1枚の磁性材である板材の元の寸法を変えることなく、少なくとも一つの磁性材の端部の形状を凸状、あるいは凹状、あるいは少なくとも一つの平坦部を有する凸状、あるいは少なくとも一つの平坦部を有する凹状に加工することで、磁電変換素子を設置するギャップ部の磁束の大きさを容易に可変でき、つまりは被測定電流範囲を調整できるため、複数の仕様に対して元の磁性材を共通化でき、複数の寸法の磁性材を所持する必要がなくなり、低コスト化の効果もある。  In addition, according to the magnetic core of the present invention, the shape of the end of at least one magnetic material is convex, concave, or at least one flat portion without changing the original dimensions of the plate material that is one magnetic material. By processing into a convex shape having or a concave shape having at least one flat portion, the magnitude of the magnetic flux in the gap portion where the magnetoelectric conversion element is installed can be easily varied, that is, the current range to be measured can be adjusted. The original magnetic material can be used in common for a plurality of specifications, and it is not necessary to have a magnetic material having a plurality of dimensions, which has the effect of reducing costs.

また、この発明の磁気コアによると、1枚の磁性材である板材の元の形状は長方形であるため、母材となる板材からの材料取りで不用となる部分が生じず、廃棄ロスを低減できるため、環境に配慮した設計であると共に、低コスト化の効果もある。  In addition, according to the magnetic core of the present invention, since the original shape of the plate material, which is a single magnetic material, is a rectangle, there is no unnecessary part in removing material from the base material plate, reducing waste loss. As a result, the design is environmentally friendly and has the effect of reducing costs.

さらにまた、ギャップ部内に異なる磁束の大きさを示す箇所が存在する構造のため、磁気コアのギャップ部に複数の磁電変換素子を設置することで、小型で、かつ測定レンジを精度良く拡大できる効果がある。  Furthermore, because there is a structure where there are different magnetic flux sizes in the gap, the installation of multiple magnetoelectric transducers in the gap of the magnetic core makes it possible to reduce the size and increase the measurement range with high accuracy. There is.

実施の形態2.
図11は、この発明の実施の形態2による電流センサの斜視図である。図において、電流センサ16は、磁気コア1と、ホール素子14、センサ回路部17、外部端子18を有するセンサ基板19と、導体10により構成される。
実施の形態2は、実施の形態1に示した磁気コア1に、新たにホール素子14、センサ回路部17、外部端子18を有するセンサ基板19と、導体10を付加した構成であり、導体10に流れる被測定電流の大きさを、被測定電流の大きさに応じた電気的な信号として出力するようにしたものである。なお、磁気コア1についての説明は重複するため省略する。
Embodiment 2. FIG.
FIG. 11 is a perspective view of a current sensor according to Embodiment 2 of the present invention. In the figure, the current sensor 16 includes a magnetic core 1, a Hall element 14, a sensor circuit unit 17, a sensor substrate 19 having an external terminal 18, and a conductor 10.
The second embodiment has a configuration in which a sensor substrate 19 having a hall element 14, a sensor circuit unit 17, and an external terminal 18 and a conductor 10 are newly added to the magnetic core 1 shown in the first embodiment. The magnitude of the current to be measured flowing through is output as an electrical signal corresponding to the magnitude of the current to be measured. In addition, since the description about the magnetic core 1 overlaps, it abbreviate | omits.

実施の形態2における電流センサ16の全体構成について説明する。
実施の形態2では、磁気コア1は実施の形態1の図1に示したような、内側端部4が外側端部5に向かって凸型の形状を有する構造とし、外側端部5を有する磁気コア1のギャップ部3側となる一面上に、磁性材幅と略一致した形状のセンサ基板19を設置する。センサ基板19の設置方法は特に図示しないが、接着剤や樹脂モールド化、あるいは磁気コア1へのねじ止め等により行うものとし、ここでは接着剤を介して貼付した例を示した。
センサ基板19には、磁電変換素子としての1つのホール素子14とセンサ回路部17を配置し、中空部6を貫通して設置した導体10に流れる被測定電流の大きさを、所定の電気的信号として、外部端子18を介して出力する。ホール素子14は、センサ基板19に、機械的な設置だけでなく、センサ回路部17と電気的に接続されるように、電気的にも接続される。ホール素子14のセンサ基板19上の設置位置は、Z方向においては内側端部4の凸型の形状に対向する位置とし、X方向およびY方向においては、ホール素子14に付与したい磁束の大きさ、つまりは被測定電流の大きさに応じて決定する。特にY方向においては、その決定された位置に応じて、センサ基板19の厚みを可変する等により設置位置を調整する。ここでは1つのホール素子14を設置する例を示すが、実施の形態1の変形例にて説明したように、2つ、あるいはさらに複数のホール素子を設置しても構わない。また、ホール素子を内蔵し処理回路等を一体化したホールICを用いてもよい。
センサ回路部17は、ホール素子14に一定の電圧、あるいは一定の電流を供給するとともに、与えた磁束の大きさに応じて発生するホール電圧に適度な増幅等の処理を施して出力する。電流センサ16と外部の入出力端を電気的に接続するためには、外部端子18を利用する。
被測定電流の流れる導体10は、中空部6を貫通して設置する。ここでは中空部6を通過する導体10を1本とした例を示したが、磁気コア1に与える磁束を大きくするために、磁気コア1を構成する磁性材に複数回、導体10を巻回した構成としてもよい。
The overall configuration of the current sensor 16 in the second embodiment will be described.
In the second embodiment, the magnetic core 1 has a structure in which the inner end 4 has a convex shape toward the outer end 5 as shown in FIG. 1 of the first embodiment, and has the outer end 5. On one surface of the magnetic core 1 on the gap portion 3 side, a sensor substrate 19 having a shape substantially coincident with the magnetic material width is installed. Although the method of installing the sensor substrate 19 is not particularly illustrated, it is assumed that the sensor substrate 19 is formed by an adhesive, resin molding, screwing to the magnetic core 1, or the like, and here, an example in which the sensor substrate 19 is attached via the adhesive is shown.
On the sensor substrate 19, one Hall element 14 as a magnetoelectric conversion element and the sensor circuit portion 17 are arranged, and the magnitude of the current to be measured flowing through the conductor 10 installed through the hollow portion 6 is set to a predetermined electrical level. A signal is output via the external terminal 18. The Hall element 14 is not only mechanically installed on the sensor substrate 19 but also electrically connected so as to be electrically connected to the sensor circuit unit 17. The installation position of the Hall element 14 on the sensor substrate 19 is a position facing the convex shape of the inner end portion 4 in the Z direction, and the magnitude of the magnetic flux to be applied to the Hall element 14 in the X direction and the Y direction. That is, it is determined according to the magnitude of the current to be measured. Particularly in the Y direction, the installation position is adjusted by changing the thickness of the sensor substrate 19 according to the determined position. Here, an example in which one Hall element 14 is installed is shown, but as described in the modification of the first embodiment, two or more Hall elements may be installed. A Hall IC in which a Hall element is incorporated and a processing circuit or the like is integrated may be used.
The sensor circuit unit 17 supplies a constant voltage or a constant current to the Hall element 14, and performs a process such as appropriate amplification on the Hall voltage generated according to the magnitude of the applied magnetic flux and outputs the Hall voltage. In order to electrically connect the current sensor 16 and an external input / output terminal, an external terminal 18 is used.
The conductor 10 through which the current to be measured flows is installed through the hollow portion 6. Here, an example in which the number of conductors 10 passing through the hollow portion 6 is one is shown. However, in order to increase the magnetic flux applied to the magnetic core 1, the conductor 10 is wound around the magnetic material constituting the magnetic core 1 a plurality of times. It is good also as the structure which carried out.

次に、電流センサ16の動作について説明する。
導体10に被測定電流が流れると右ねじの法則に従い磁束が生じ、このとき発生する磁束の大きさは、被測定電流に応じた大きさとなる。磁束は、磁気コア1を構成する、高い透磁率を有する磁性材内を安定して流れ、ギャップ部3に設置したホール素子14を通過する。ホール素子14は、磁束の大きさに応じて、ホール効果によりホール電圧が発生し、接続されたセンサ回路部17を介し、外部端子18を通じて、発生した磁束の大きさ、つまりは被測定電流の大きさに応じた電気的な信号を外部へ出力する。このようにして導体10に流れる被測定電流が計測される。
なお本実施の形態では、発生した磁束の大きさ、つまりは被測定電流の大きさに応じた電気的な信号を、そのまま外部へ出力する磁気比例型の構成としたが、磁気コア1に補償導電線を巻回し、ホール素子14で発生したホール電圧に基づいて補償導電線に、磁性材内を流れる磁束を打ち消すように電流を供給する磁気平衡型の構成としてもよい。
Next, the operation of the current sensor 16 will be described.
When a current to be measured flows through the conductor 10, a magnetic flux is generated according to the right-handed screw law, and the magnitude of the magnetic flux generated at this time is a magnitude corresponding to the current to be measured. The magnetic flux stably flows in the magnetic material having a high magnetic permeability constituting the magnetic core 1 and passes through the Hall element 14 installed in the gap portion 3. The Hall element 14 generates a Hall voltage due to the Hall effect in accordance with the magnitude of the magnetic flux, and the magnitude of the generated magnetic flux through the external terminal 18 via the connected sensor circuit unit 17, that is, the current to be measured. An electrical signal corresponding to the size is output to the outside. In this way, the current to be measured flowing through the conductor 10 is measured.
In the present embodiment, the magnetic core 1 is configured to output an electric signal corresponding to the magnitude of the generated magnetic flux, that is, the magnitude of the current to be measured, to the outside. A magnetic balance type configuration may be employed in which a conductive wire is wound and current is supplied to the compensation conductive wire based on the Hall voltage generated by the Hall element 14 so as to cancel the magnetic flux flowing in the magnetic material.

以上のように、本実施の形態2によれば、ホール素子とセンサ回路部、および外部端子を有するセンサ基板を、ギャップ部3を含む磁気コア上に配置したため、実施の形態1に示した磁気コアの外形寸法を拡大することなく電流センサ1を構築でき、小型化の効果がある。  As described above, according to the second embodiment, since the sensor substrate having the Hall element, the sensor circuit unit, and the external terminal is arranged on the magnetic core including the gap portion 3, the magnetic field described in the first embodiment is used. The current sensor 1 can be constructed without enlarging the outer dimension of the core, and there is an effect of downsizing.

1 磁気コア、2 磁性材、3 ギャップ部、4 内側端部、5 外側端部、6 中空部、7 平坦部、8 屈折部、9 磁気回路、10 導体、11 磁電変換素子、12 磁束の流れ、13 磁束線、14 ホール素子、15 各端部間隔、16 電流センサ、17 センサ回路部、18 外部端子、19 センサ基板DESCRIPTION OF SYMBOLS 1 Magnetic core, 2 Magnetic material, 3 Gap part, 4 Inner edge part, 5 Outer edge part, 6 Hollow part, 7 Flat part, 8 Refraction part, 9 Magnetic circuit, 10 Conductor, 11 Magnetoelectric conversion element, 12 Flow of magnetic flux , 13 Magnetic flux lines, 14 Hall elements, 15 Space between each end, 16 Current sensor, 17 Sensor circuit part, 18 External terminal, 19 Sensor substrate

Claims (5)

少なくとも1枚の板状の磁性材と、前記磁性材を略環状に屈曲し、前記磁性材の端部間に設けられた空隙による1つのギャップ部により、磁気回路が形成される磁気コアにおいて、前記磁性材の両端部は互いに所定の距離、かつ所定の面積をもって対向しギャップ部を形成するとともに、少なくとも一つの端部の対向面を凸状に加工したことを特徴とする磁気コア。  In a magnetic core in which a magnetic circuit is formed by at least one plate-like magnetic material and a gap portion formed by a gap formed between the end portions of the magnetic material by bending the magnetic material in a substantially annular shape. The magnetic core is characterized in that both end portions of the magnetic material face each other with a predetermined distance and a predetermined area to form a gap portion, and the opposing surface of at least one end portion is processed into a convex shape. 前記磁気コアにおいて、前記磁性材の両端部は互いに所定の距離、かつ所定の面積をもって対向してギャップ部を形成するとともに、少なくとも一つの端部の対向面を、少なくとも一つの平坦部を有する凸状に加工したことを特徴とする磁気コア。  In the magnetic core, both end portions of the magnetic material are opposed to each other with a predetermined distance and a predetermined area to form a gap portion, and at least one opposite end surface is formed with a convex portion having at least one flat portion. Magnetic core characterized by being processed into a shape. 前記磁気コアにおいて、前記磁性材の両端部は互いに所定の距離、かつ所定の面積をもって対向してギャップ部を形成するとともに、少なくとも一つの端部の対向面を凹状に加工したことを特徴とする磁気コア。  In the magnetic core, both end portions of the magnetic material are opposed to each other with a predetermined distance and a predetermined area to form a gap portion, and a facing surface of at least one end portion is processed into a concave shape. Magnetic core. 前記磁気コアにおいて、前記磁性材の両端部は互いに所定の距離、かつ所定の面積をもって対向してギャップ部を形成するとともに、少なくとも一つの端部の対向面を、少なくとも一つの平坦部を有する凹状に加工したことを特徴とする磁気コア。  In the magnetic core, both end portions of the magnetic material are opposed to each other with a predetermined distance and a predetermined area to form a gap portion, and at least one end portion facing surface is a concave shape having at least one flat portion. Magnetic core characterized by being processed into 請求項1から請求項4の何れかに記載の磁気コアと、前記ギャップ部に設置される少なくとも一つの磁電変換素子と、前記磁電変換素子に接続するセンサ回路部とを備え、前記磁電変換素子を前記ギャップ部の所定の位置に保持するとともに前記センサ回路部を設置したセンサ基板を、前記磁気コアに固定したことを特徴とする電流センサ。  A magnetic core according to any one of claims 1 to 4, at least one magnetoelectric conversion element installed in the gap portion, and a sensor circuit unit connected to the magnetoelectric conversion element, the magnetoelectric conversion element Is held at a predetermined position of the gap portion, and a sensor substrate on which the sensor circuit portion is installed is fixed to the magnetic core.
JP2009097435A 2009-03-19 2009-03-19 Magnetic core and current sensor using the same Pending JP2010223929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009097435A JP2010223929A (en) 2009-03-19 2009-03-19 Magnetic core and current sensor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009097435A JP2010223929A (en) 2009-03-19 2009-03-19 Magnetic core and current sensor using the same

Publications (1)

Publication Number Publication Date
JP2010223929A true JP2010223929A (en) 2010-10-07

Family

ID=43041251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009097435A Pending JP2010223929A (en) 2009-03-19 2009-03-19 Magnetic core and current sensor using the same

Country Status (1)

Country Link
JP (1) JP2010223929A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2515125A3 (en) * 2011-04-21 2014-11-26 Abb Ag Current sensor with a magnetic core
JP2015141196A (en) * 2014-01-27 2015-08-03 甲神電機株式会社 Magnetic core and current sensor using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171606A (en) * 1984-09-14 1986-04-12 Fuji Electric Co Ltd Uniform magnetic field magnet
JPH07218552A (en) * 1994-02-04 1995-08-18 Nippon Soken Inc Current measuring device
JPH08236338A (en) * 1995-02-28 1996-09-13 Toshiba Meter Techno Kk Magnetic field application core
WO2003056347A1 (en) * 2001-12-27 2003-07-10 Matsushita Electric Industrial Co., Ltd. Current sensor
JP2003215169A (en) * 2002-01-21 2003-07-30 Yazaki Corp Method of manufacturing core for contactless type sensor, core for contactless type sensor, and non-contact type sensor
JP2004354254A (en) * 2003-05-29 2004-12-16 Asahi Kasei Electronics Co Ltd Current sensor
JP2008180718A (en) * 2007-01-25 2008-08-07 Robert Seuffer Gmbh & Co Kg Instrument for measuring current flowing in electric conductor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171606A (en) * 1984-09-14 1986-04-12 Fuji Electric Co Ltd Uniform magnetic field magnet
JPH07218552A (en) * 1994-02-04 1995-08-18 Nippon Soken Inc Current measuring device
JPH08236338A (en) * 1995-02-28 1996-09-13 Toshiba Meter Techno Kk Magnetic field application core
WO2003056347A1 (en) * 2001-12-27 2003-07-10 Matsushita Electric Industrial Co., Ltd. Current sensor
JP2003215169A (en) * 2002-01-21 2003-07-30 Yazaki Corp Method of manufacturing core for contactless type sensor, core for contactless type sensor, and non-contact type sensor
JP2004354254A (en) * 2003-05-29 2004-12-16 Asahi Kasei Electronics Co Ltd Current sensor
JP2008180718A (en) * 2007-01-25 2008-08-07 Robert Seuffer Gmbh & Co Kg Instrument for measuring current flowing in electric conductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2515125A3 (en) * 2011-04-21 2014-11-26 Abb Ag Current sensor with a magnetic core
JP2015141196A (en) * 2014-01-27 2015-08-03 甲神電機株式会社 Magnetic core and current sensor using the same

Similar Documents

Publication Publication Date Title
JP6131588B2 (en) Current sensor
US7259650B2 (en) Magnetic element
JP2013501928A (en) Current sensor array
JP4893506B2 (en) Current sensor
EP1785697A1 (en) Position sensor
US20120306486A1 (en) Device for measuring a current flowing through an electric cable
JP6119296B2 (en) Current sensor
JP5234459B2 (en) Current sensor
WO2013080557A1 (en) Current sensor
US10704930B2 (en) Electromagnetic induction type displacement detection apparatus and measuring instrument using the same
CN107850647B (en) Magnetic detection device
JP5641276B2 (en) Current sensor
US20140292467A1 (en) Transformer
JP2013145165A (en) Current sensor mechanism
JP2013044641A (en) Magnetic sensor
JP2008216230A (en) Current sensor
JP2010223929A (en) Magnetic core and current sensor using the same
JP2013054016A (en) Shape of magnetic core in current sensor
JP2009168790A (en) Current sensor
JP4766477B2 (en) Current detection device and power conversion device including the same
JP2019174140A (en) Magnetic sensor
JP2010256316A (en) Current sensor
JP2009204415A (en) Current sensor and watt-hour meter
JP2005227297A (en) Magneto-impedance sensor element with electromagnet coil
JP2015184175A (en) current sensor and current sensor set

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130924