JPH07218552A - Current measuring device - Google Patents

Current measuring device

Info

Publication number
JPH07218552A
JPH07218552A JP6033115A JP3311594A JPH07218552A JP H07218552 A JPH07218552 A JP H07218552A JP 6033115 A JP6033115 A JP 6033115A JP 3311594 A JP3311594 A JP 3311594A JP H07218552 A JPH07218552 A JP H07218552A
Authority
JP
Japan
Prior art keywords
current
core member
gap
hall element
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6033115A
Other languages
Japanese (ja)
Other versions
JP3234394B2 (en
Inventor
Takahide Kitahara
高秀 北原
Michiyasu Moritsugu
通泰 森次
Fumio Asakura
史生 浅倉
Shoichi Sasaki
正一 佐々木
Kosuke Suzui
康介 鈴井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP03311594A priority Critical patent/JP3234394B2/en
Publication of JPH07218552A publication Critical patent/JPH07218552A/en
Application granted granted Critical
Publication of JP3234394B2 publication Critical patent/JP3234394B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To measure accurately the current in a wide range from a small amperage to a large. CONSTITUTION:A ring-shaped core member 2 made of a ferro-magnetic substance and cut apart at one point on the circumference is furnished as surrounding a current path 1 stretching straight. The gap lengths Lg1, Lg2 at the cut ends 21a, 21b, 22a, 22b of the core member 2 differ in the direction across the width, and Hall elements 3A, 3B are installed in gaps 23, 24 having different lengths. A control circuit 4 is provided to calculate the amperage through the current path 1 from the output signals of the Hall elements 3A, 3B, and switches 5A, 5B, 6A, 6B are furnished which connect one of the Hall elements 3A, 3B to this control circuit 4 selectively according to the amperage obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電流測定装置に関し、特
に電流路の周りに形成される誘導磁界の強度を感磁手段
で検出することにより電流値を知る電流測定装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current measuring device, and more particularly to a current measuring device for knowing a current value by detecting the strength of an induction magnetic field formed around a current path by a magnetic sensing means.

【0002】[0002]

【従来の技術】かかる電流測定装置は、電子、電気機器
等に広く使用されており、例えば電気自動車のバッテリ
残存量を放電電流の積算値から求める等の用途が考えら
れる。この場合、電気自動車の消費電流は平坦路を走行
する定常状態では小さく、発進時や坂路走行時等では大
きくなって、広い範囲で電流値が変化する。そこで、広
い範囲の電流値測定が可能な測定装置が求められてお
り、その一例を図8に示す。図において、直線状に延び
る平板状の電流路1には、これを囲んでコア部材2が設
けてある。コア部材2は略四角の環状に成形された強磁
性体よりなり、周方向の一か所で切り離されて切離し端
27a,27b間に一定間隔の間隙(ギャップ)28が
形成されている。上記ギャップ28中には感磁手段たる
ホール素子3が設けられ、これに駆動回路7より駆動電
流が供給されるとともに、その出力電圧は二つの増幅回
路8A,8Bへ入力している。増幅回路8Aは小電流時
に使用するもので、ゲインを増幅回路8Bよりも大きく
してある。これら増幅回路8A,8Bで増幅された出力
は制御回路4内のアナログ・デジタル変換器41を経て
マイクロコンピュータ42へ入力している。
2. Description of the Related Art Such a current measuring device is widely used in electronic devices, electric devices, etc., and may be used, for example, for obtaining a battery remaining amount of an electric vehicle from an integrated value of discharge current. In this case, the current consumption of the electric vehicle is small in a steady state traveling on a flat road, and is large when starting or traveling on a slope, and the current value changes in a wide range. Therefore, there is a demand for a measuring device capable of measuring a current value in a wide range, and an example thereof is shown in FIG. In the figure, a core member 2 is provided so as to surround a flat plate-shaped current path 1 that extends linearly. The core member 2 is made of a ferromagnetic material formed into a substantially square ring shape, and is separated at one position in the circumferential direction to form a gap 28 at a constant interval between the separated ends 27a and 27b. A Hall element 3 serving as a magnetic sensing means is provided in the gap 28, a drive current is supplied from the drive circuit 7, and the output voltage thereof is input to the two amplifier circuits 8A and 8B. The amplifier circuit 8A is used for a small current, and has a larger gain than the amplifier circuit 8B. The outputs amplified by the amplifier circuits 8A and 8B are input to the microcomputer 42 via the analog / digital converter 41 in the control circuit 4.

【0003】コア部材2の透磁率は間隙の透磁率に比べ
非常に大きいので上記ギャップ28内の磁束密度Bgは
下式で近似できる。 Bg=μO ・I/Lg…… ここで、μO は間隙の透磁率、Lgはギャップ長、Iは
電流路を流れる被測定電流である。また、ホール素子3
の出力電圧VH は下式で示される。 VH =KH /d・IH ・Bg…… ここで、KH はホール係数、dはホール素子の厚さ、I
H は駆動電流である。しかして、マイクロコンピュータ
は式、式を使用して上記出力電圧VH より被測定電
流Iを算出する。この場合、ホール素子3の出力電圧の
飽和等を考慮すると、被測定電流範囲が広い場合には図
9に示す如くギャップ長Lgを大きくする必要がある
が、この場合には低電流時の出力電圧が小さくなるた
め、これを大きなゲインで増幅しているのである。
Since the magnetic permeability of the core member 2 is much larger than the magnetic permeability of the gap, the magnetic flux density Bg in the gap 28 can be approximated by the following equation. Bg = μO · I / Lg ... Here, μO is the permeability of the gap, Lg is the gap length, and I is the measured current flowing through the current path. Hall element 3
Of the output voltage VH is shown by the following equation. VH = KH / d * IH * Bg ... where KH is the Hall coefficient, d is the thickness of the Hall element, I
H is the drive current. Then, the microcomputer calculates the measured current I from the output voltage VH using the formula. In this case, considering the saturation of the output voltage of the Hall element 3 and the like, when the measured current range is wide, it is necessary to increase the gap length Lg as shown in FIG. 9, but in this case, the output at low current is increased. Since the voltage becomes small, it is amplified with a large gain.

【0004】[0004]

【発明が解決しようとする課題】ここで、ホール素子3
の出力電圧VH を検討すると、次式に示す如く、磁束
密度Bgにより変化する感度項(第1項)と磁界零での
オフセット電圧に相当する不平衡電圧項(第2項)の和
となっている。 VH =K1 ・Bg・IH +K2 ・IH …… なお、K1 ,K2 はいずれも温度により変動する係数で
ある。このうち、係数K1 の温度ドリフトはホール素子
3の材質で決まり、GaAsの場合−0.06%/℃と
ほぼ一定であるのに対して、係数K2 の温度ドリフトは
その変化が不規則であり、これをキャンセルすることは
困難である。したがって、出力電圧VH が小さい低電流
測定時には、上記第1項に対して上記第2項が相対的に
大きくなるため、上記の如く、これをたとえ大きなゲイ
ンで増幅してもS/N比は改善されず、測定誤差が大き
くなるという問題がある。
Here, the Hall element 3 is used.
When the output voltage VH is examined, it becomes the sum of the sensitivity term (first term) that changes with the magnetic flux density Bg and the unbalanced voltage term (second term) corresponding to the offset voltage at the magnetic field zero, as shown in the following equation. ing. VH = K1 * Bg * IH + K2 * IH ... Both K1 and K2 are coefficients that vary with temperature. Among them, the temperature drift of the coefficient K1 is determined by the material of the Hall element 3, and in the case of GaAs, it is almost constant at −0.06% / ° C., whereas the temperature drift of the coefficient K2 changes irregularly. , It is difficult to cancel this. Therefore, when measuring a low current with a small output voltage VH, the second term becomes relatively large with respect to the first term. Therefore, even if the second term is amplified with a large gain as described above, the S / N ratio becomes large. There is a problem that it is not improved and the measurement error becomes large.

【0005】なお、特開昭63−38168号公報に
は、コア部材の切離し端を対向方向へ尖った形状として
測定感度を上げたものが示されている。
JP-A-63-38168 discloses that the cut-off end of the core member is sharpened in the opposite direction to improve the measurement sensitivity.

【0006】本発明は上記課題を解決するもので、小電
流から大電流まで広い範囲の電流を高精度に測定するこ
とができる電流測定装置を提供することを目的とする。
The present invention solves the above problems, and an object of the present invention is to provide a current measuring device capable of measuring a wide range of currents from a small current to a large current with high accuracy.

【0007】[0007]

【課題を解決するための手段】本発明の構成を説明する
と、直線状に延びる電流路(1)を囲むように、強磁性
体よりなり周方向の一か所で切り離した環状のコア部材
(2)を設け、該コア部材(2)の切離し端(21a,
21b,22a,22b,25a,25b)の対向間隔
(Lg1 ,Lg2 )を幅方向で異ならしめて、異なる対
向間隔の間隙(23,24)中にそれぞれ感磁手段(3
A,3B)を配設し、感磁手段(3A,3B)の出力信
号より上記電流路(1)を流通する電流値を算出する電
流値算出手段(4)を設けるとともに、上記電流値に応
じて上記感磁手段(3A,3B)の一つを選択的に上記
電流値算出手段(4)に接続する切換え手段(5A,5
B)を設けたものである。本発明の一の態様としては、
上記切離し端(21a,21b,22a,22b)の対
向間隔(Lg1 ,Lg2 )を幅方向へ段付きに異ならし
めてある。また、本発明の他の態様としては、上記切離
し端(25a,25b)の対向間隔Lgを幅方向へ連続
的に異ならしめてある。
The structure of the present invention will be described. An annular core member made of a ferromagnetic material and separated at one circumferential position so as to surround a linearly extending current path (1) ( 2) is provided, and the cut-off end (21a, 21a,
21b, 22a, 22b, 25a, 25b), the facing intervals (Lg1, Lg2) are made different in the width direction, and the magnetic sensing means (3) are respectively placed in the gaps (23, 24) having different facing intervals.
A, 3B), and a current value calculating means (4) for calculating the current value flowing through the current path (1) from the output signal of the magnetic sensing means (3A, 3B), and Accordingly, switching means (5A, 5) for selectively connecting one of the magnetic sensing means (3A, 3B) to the current value calculating means (4).
B) is provided. According to one aspect of the present invention,
The facing intervals (Lg1, Lg2) of the cut-off ends (21a, 21b, 22a, 22b) are stepwise varied in the width direction. Further, as another aspect of the present invention, the facing distance Lg of the cut-off ends (25a, 25b) is continuously made different in the width direction.

【0008】[0008]

【作用】上記構成において、電流路1を被測定電流が流
れるとその周囲に磁界が誘導され、コア部材2内に磁束
が生じる。この磁束は間隙(ギャップ)23,24中に
も現れるが、その磁束密度Bgは上式に示したように
ギャップ長(対向間隔)Lg1 ,Lg2 に反比例して小
さくなる。そこで、ギャップ長Lg1 <Lg2 としてお
くと、電流路1を流れる同一電流に対して、ギャップ長
Lg1に配設した感磁手段3Aの出力は大きく、ギャッ
プ長Lg2に配設した感磁手段3Bの出力は小さい。し
たがって、被測定電流の電流値が小さい場合には、切換
え手段5A,5Bにより感磁手段3Aを電流値算出手段
4に接続すると、小電流においても上式の出力電圧V
H は大きく、式の第2項の不平衡電圧項の影響を受け
ることなく高精度の電流測定がなされる。被測定電流が
大きくなるとギャップ長Lg1 ,Lg2 の小さい側では
磁束密度が飽和し、それ以上の電流測定ができなくな
る。そこで、切換え手段5A,5Bにより電流値算出手
段4に感磁手段3Aに代えて感磁手段3Bを接続する
と、ギャップ24内では磁束が未だ飽和しておらず、か
つ上式の出力電圧VH も大きくなっているから、この
範囲で高精度の電流測定がなされる。
In the above structure, when a current to be measured flows through the current path 1, a magnetic field is induced around it and a magnetic flux is generated in the core member 2. This magnetic flux also appears in the gaps 23 and 24, but its magnetic flux density Bg decreases in inverse proportion to the gap lengths (opposing intervals) Lg1 and Lg2 as shown in the above equation. Therefore, if the gap length Lg1 <Lg2 is set, the output of the magnetic sensing means 3A arranged in the gap length Lg1 is large for the same current flowing in the current path 1, and the magnetic sensing means 3B arranged in the gap length Lg2 is large. Output is small. Therefore, when the current value of the current to be measured is small, if the magnetic sensing means 3A is connected to the current value calculation means 4 by the switching means 5A and 5B, the output voltage V of the above equation can be obtained even with a small current.
H is large, and accurate current measurement can be performed without being affected by the unbalanced voltage term in the second term of the equation. When the measured current becomes large, the magnetic flux density saturates on the side where the gap lengths Lg1 and Lg2 are small, and it becomes impossible to measure the current further. Therefore, when the magnetic sensing means 3B is connected to the current value calculation means 4 by the switching means 5A, 5B instead of the magnetic sensing means 3A, the magnetic flux is not yet saturated in the gap 24, and the output voltage VH of the above equation is also Because of the large size, highly accurate current measurement can be performed in this range.

【0009】[0009]

【実施例1】図1において、直線状に延びる平板状の電
流路1を囲んで四角環状のコア部材2が設けてあり、こ
のコア部材2は全体が強磁性体よりなるとともに、周方
向の一か所で切り離されている。そして、対向する切離
し端21a,21b,22a,22bの間隔(ギャッ
プ)23,24は幅方向へ段付きに異ならしめてあり、
対向間隔(ギャップ長)Lg1 の小さいギャップ23中
にホール素子3Aが、ギャップ長Lg2 の大きいギャッ
プ24中にホール素子3Bがそれぞれ設けてある。
EXAMPLE 1 In FIG. 1, a square annular core member 2 is provided surrounding a linearly extending flat plate current path 1. The core member 2 is entirely made of a ferromagnetic material and Separated in one place. Then, the gaps (gap) 23, 24 between the facing cut-off ends 21a, 21b, 22a, 22b are stepwise different in the width direction,
The Hall element 3A is provided in the gap 23 having a small facing distance (gap length) Lg1, and the Hall element 3B is provided in the gap 24 having a large gap length Lg2.

【0010】各ホール素子3A,3Bにはスイッチ6
A,6Bを介して駆動回路7が接続されるとともに、ス
イッチ5A,5Bを介して増幅回路8が接続され、増幅
回路8の出力は制御回路4のA/D変換器41を介して
マイクロコンピュータ42へ入力している。各スイッチ
5A,5Bと6A,6Bはc,a接点間、c,b接点間
が同期して作動し、c,a接点間が導通するとホール素
子3Aに駆動電流が供給されるとともに、その出力電圧
が増幅回路8に入力する。また、c,b接点間が導通す
るとホール素子3Bに駆動電流が供給されるとともに、
その出力電圧が増幅回路8に入力する。
A switch 6 is provided on each Hall element 3A, 3B.
The drive circuit 7 is connected via A and 6B, and the amplifier circuit 8 is connected via switches 5A and 5B, and the output of the amplifier circuit 8 is connected to the microcomputer via the A / D converter 41 of the control circuit 4. 42. Each of the switches 5A, 5B and 6A, 6B operates in synchronization between the c and a contacts and between the c and b contacts, and when the c and a contacts conduct, a drive current is supplied to the Hall element 3A and its output The voltage is input to the amplifier circuit 8. When the c and b contacts are electrically connected, a drive current is supplied to the Hall element 3B,
The output voltage is input to the amplifier circuit 8.

【0011】ところで、ギャップ23,24間に生じる
磁束は図2に示す如きものであり、ギャップ長Lg1 が
小さいギャップ23では被測定電流が小さい範囲で十分
な磁束密度が得られるが、ホール素子3Aの直線性が保
証される範囲も被測定電流が小さい範囲に限られる。一
方、ギャップ長Lg2 が大きいギャップ24では被測定
電流の広い範囲でホール素子3B出力の直線性が保証さ
れるが、被測定電流がある程度小さくなると磁束密度が
全体的に小さくなるため上式の不平衡電圧項(第2
項)が相対的に大きくなって直線性が保証されなくな
る。
By the way, the magnetic flux generated between the gaps 23 and 24 is as shown in FIG. 2. In the gap 23 having a small gap length Lg1, a sufficient magnetic flux density can be obtained in the range where the measured current is small, but the Hall element 3A is used. The range in which the linearity is guaranteed is limited to the range where the measured current is small. On the other hand, in the gap 24 having a large gap length Lg2, the linearity of the output of the Hall element 3B is guaranteed in a wide range of the measured current, but when the measured current becomes small to some extent, the magnetic flux density becomes small as a whole. Balance voltage term (second
Term) becomes relatively large and linearity cannot be guaranteed.

【0012】そこで、コンピュータ42は図3に示す手
順でスイッチを切り換える。すなわち、ステップ101
ではスイッチ5A〜6Bを「ハイ」にして接点c,a間
を導通せしめ、ホール素子3Aを駆動してその出力を増
幅回路8へ入力せしめる。そして、ステップ102で増
幅回路8の出力電圧V(I)より電流路1を流れる被測
定電流が比較的小さい範囲を計測する(図4参照)。こ
の状態で上記電圧V(I)がV2 (±Ia)を越える
と、スイッチ5A〜6Bを「ロウ」に切り換え(ステッ
プ104)、接点c,b間を導通せしめてホール素子3
Bを駆動し、その出力を増幅回路8へ入力せしめる。な
お、V2 (±Ia)は、ホール素子3Aにおいて、被測
定電流が+Ia,−Iaとなった時の増幅回路8の出力
電圧である。ステップ105で増幅回路8の出力電圧V
(I)より、被測定電流の大きい範囲を計測する(図4
参照)。この状態で電圧V(I)がV1 (±Ia)以下
になると再びスイッチ5A〜6Bを「ハイ」に切り換え
(ステップ106からステップ101)、ホール素子3
Aを増幅回路8に接続する。なお、V1 (±Ia)は、
ホール素子3Bにおいて、被測定電流が+Ia,−Ia
となった時の増幅回路8の出力電圧である。
Therefore, the computer 42 switches the switch in the procedure shown in FIG. That is, step 101
Then, the switches 5A to 6B are set to "high" so that the contacts c and a are electrically connected to each other, and the Hall element 3A is driven to input the output thereof to the amplifier circuit 8. Then, in step 102, a range in which the measured current flowing through the current path 1 is relatively smaller than the output voltage V (I) of the amplifier circuit 8 is measured (see FIG. 4). In this state, when the voltage V (I) exceeds V2 (± Ia), the switches 5A to 6B are switched to "low" (step 104), the contacts c and b are electrically connected, and the Hall element 3 is connected.
B is driven and its output is input to the amplifier circuit 8. It should be noted that V2 (± Ia) is the output voltage of the amplifier circuit 8 when the measured current becomes + Ia, -Ia in the Hall element 3A. In step 105, the output voltage V of the amplifier circuit 8
From (I), measure the range of large measured current (Fig. 4).
reference). When the voltage V (I) becomes V1 (± Ia) or less in this state, the switches 5A to 6B are switched to "high" again (step 106 to step 101), and the hall element 3
A is connected to the amplifier circuit 8. V1 (± Ia) is
In the Hall element 3B, the measured current is + Ia, −Ia.
Is the output voltage of the amplifier circuit 8 when

【0013】かくして、被測定電流Iが+Ia,−Ia
を越えるか否かによりギャップ23,24中のホール素
子3A,3Bを切り換えることにより、常に出力の直線
性が保証された範囲でホール素子3A,3Bを使用しつ
つ、広い電流範囲を精度良く測定することができる。
Thus, the measured current I is + Ia, -Ia.
By switching the Hall elements 3A and 3B in the gaps 23 and 24 depending on whether or not to exceed the range, the Hall elements 3A and 3B are always used in the range where the linearity of the output is guaranteed, and the wide current range is accurately measured. can do.

【0014】[0014]

【実施例2】増幅回路8の出力電圧特性を、図5に示す
ように、ホール素子3Aからホール素子3Bへ電圧V
(±Ia)で連続するようになし、この電圧V(±I
a)でスイッチ5A〜6Bを切り換えるようにしても、
上記実施例1と同様の効果がある。
Second Embodiment As shown in FIG. 5, the output voltage characteristic of the amplifier circuit 8 is changed from the Hall element 3A to the Hall element 3B by the voltage V.
This voltage V (± Ia)
Even if the switches 5A to 6B are switched in a),
It has the same effect as that of the first embodiment.

【0015】[0015]

【実施例3】図6に示す如く、コア部材2の切離し端2
5a,25bの形状を傾斜面として、ギャップ26のギ
ャップ長Lgが漸次大きくなるようになし、ギャップ長
Lgの小さい側にホール素子3Aを、大きい側にホール
素子3Bをそれぞれ配する構造としても上記各実施例と
同様の効果がある。
Third Embodiment As shown in FIG. 6, the cut-off end 2 of the core member 2
5a and 25b are used as inclined surfaces so that the gap length Lg of the gap 26 is gradually increased, and the Hall element 3A is arranged on the side where the gap length Lg is small and the Hall element 3B is arranged on the side where the gap length Lg is large. The same effect as each embodiment is obtained.

【0016】[0016]

【実施例4】コア部材2の切離し端を図7に示す如く三
段の段付きとし、ギャップ長Lg1,Lg2 ,Lg3 の
異なる三つのギャップ中にそれぞれホール素子3A,3
B,3Cを設ける構成とすれば、さらに広い電流範囲を
正確に測定することができる。
[Embodiment 4] The cut-off end of the core member 2 has three steps as shown in FIG. 7, and the Hall elements 3A and 3 are respectively provided in three gaps having different gap lengths Lg1, Lg2 and Lg3.
If B and 3C are provided, a wider current range can be accurately measured.

【0017】上記各実施例において、コア部材切離し端
の段数は二段、三段に限られず、用途に応じて増やすこ
とができる。また、切離し端を傾斜面とした上記実施例
3において、ホール素子の設置数は二個に限られないこ
とはもちろんである。また、ホール素子に代えて、磁気
抵抗素子等を使用することができる。なお、本発明にお
ける幅方向とは図1の左右方向に限らず、図1の奥行き
方向に伸びる幅方向であってもよい。
In each of the above embodiments, the number of steps of the core member separating end is not limited to two steps or three steps, but can be increased according to the application. Further, in the third embodiment in which the cut-off end is an inclined surface, it goes without saying that the number of Hall elements installed is not limited to two. Further, a magnetoresistive element or the like can be used instead of the Hall element. The width direction in the present invention is not limited to the left-right direction in FIG. 1, but may be the width direction extending in the depth direction in FIG.

【0018】[0018]

【発明の効果】以上の如く、本発明の電流測定装置によ
れば、小電流から大電流まで広い範囲の電流測定を精度
良く行うことができる。
As described above, according to the current measuring device of the present invention, it is possible to accurately measure the current in a wide range from a small current to a large current.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1における電流測定装置の全体
ブロック構成図である。
FIG. 1 is an overall block configuration diagram of a current measuring device according to a first embodiment of the present invention.

【図2】電流とギャップ中の磁束密度の関係を示すグラ
フである。
FIG. 2 is a graph showing the relationship between the current and the magnetic flux density in the gap.

【図3】マイクロコンピュータのスイッチ切り換え手順
を示すフローチャートである。
FIG. 3 is a flowchart showing a switch switching procedure of the microcomputer.

【図4】被測定電流に対する増幅回路出力電圧の変化を
示すグラフである。
FIG. 4 is a graph showing a change in an amplifier circuit output voltage with respect to a measured current.

【図5】本発明の実施例2における被測定電流に対する
増幅回路出力電圧の変化を示すグラフである。
FIG. 5 is a graph showing changes in the output voltage of the amplifier circuit with respect to the measured current in Example 2 of the present invention.

【図6】本発明の実施例3におけるコア部材の切離し端
部の拡大斜視図である。
FIG. 6 is an enlarged perspective view of a separated end portion of a core member according to a third embodiment of the present invention.

【図7】本発明の実施例4におけるコア部材の全体斜視
図である。
FIG. 7 is an overall perspective view of a core member according to a fourth embodiment of the present invention.

【図8】従来例を示す電流測定装置の全体ブロック構成
図である。
FIG. 8 is an overall block configuration diagram of a current measuring device showing a conventional example.

【図9】被測定電流とホール素子出力の関係を示すグラ
フである。
FIG. 9 is a graph showing the relationship between the measured current and the Hall element output.

【符号の説明】[Explanation of symbols]

1 電流路 2 コア部材 21a,21b,22a,22b 切離し端 23,24 ギャップ(間隙) 3A,3B ホール素子(感磁素子) 4 制御回路(電流値算出手段) 5A,5B スイッチ(切換え手段) 1 Current Path 2 Core Member 21a, 21b, 22a, 22b Separation End 23, 24 Gap (Gap) 3A, 3B Hall Element (Magnetic Sensing Element) 4 Control Circuit (Current Value Calculating Means) 5A, 5B Switch (Switching Means)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅倉 史生 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 佐々木 正一 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 鈴井 康介 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Fumio Asakura 14 Iwatani, Shimohakaku-cho, Nishio-shi, Aichi Japan Auto Parts Research Institute (72) Inventor Shoichi Sasaki 1-cho, Toyota-cho, Aichi Prefecture Toyota Auto Car Co., Ltd. (72) Inventor Kosuke Suzui 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 直線状に延びる電流路を囲むように、強
磁性体よりなり周方向の一か所で切り離した環状のコア
部材を設け、該コア部材の切離し端の対向間隔を幅方向
で異ならしめて、異なる対向間隔の間隙中にそれぞれ感
磁手段を配設し、感磁手段の出力信号より上記電流路を
流通する電流値を算出する電流値算出手段を設けるとと
もに、上記電流値に応じて上記感磁手段の一つを選択的
に上記電流値算出手段に接続する切換え手段を設けたこ
とを特徴とする電流測定装置。
1. An annular core member made of a ferromagnetic material and separated in one circumferential direction is provided so as to surround a linearly extending current path, and a facing distance between the cut-off ends of the core member in the width direction is provided. Dissimilarly, the magnetic sensing means are respectively arranged in the gaps of different facing intervals, and the current value calculating means for calculating the current value flowing through the current path from the output signal of the magnetic sensing means is provided, and according to the current value. And a switching means for selectively connecting one of the magnetic sensing means to the current value calculating means.
【請求項2】 上記切離し端の対向間隔を幅方向へ段付
きに異ならしめた請求項1記載の電流測定装置。
2. The current measuring device according to claim 1, wherein the facing intervals of the cut-off ends are stepwise varied in the width direction.
【請求項3】 上記切離し端の対向間隔を幅方向へ連続
的に異ならしめた請求項1記載の電流測定装置。
3. The current measuring device according to claim 1, wherein the facing intervals of the cut-off ends are continuously varied in the width direction.
JP03311594A 1994-02-04 1994-02-04 Current measuring device Expired - Fee Related JP3234394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03311594A JP3234394B2 (en) 1994-02-04 1994-02-04 Current measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03311594A JP3234394B2 (en) 1994-02-04 1994-02-04 Current measuring device

Publications (2)

Publication Number Publication Date
JPH07218552A true JPH07218552A (en) 1995-08-18
JP3234394B2 JP3234394B2 (en) 2001-12-04

Family

ID=12377649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03311594A Expired - Fee Related JP3234394B2 (en) 1994-02-04 1994-02-04 Current measuring device

Country Status (1)

Country Link
JP (1) JP3234394B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000043795A1 (en) * 1999-01-21 2000-07-27 Tdk Corporation Current sensor
DE10228764A1 (en) * 2002-06-27 2004-01-29 Infineon Technologies Ag Arrangement for testing semiconductor devices
JP2007187528A (en) * 2006-01-12 2007-07-26 Denso Corp Current sensor
JP2007198905A (en) * 2006-01-26 2007-08-09 Denso Corp Current sensor
JP2007303952A (en) * 2006-05-11 2007-11-22 Yazaki Corp Current measuring device
JP2008514930A (en) * 2004-09-28 2008-05-08 ザ・ユニバーシティ・オブ・クイーンズランド Magnetic dosimeter
US7400132B2 (en) 2005-10-31 2008-07-15 Denso Corporation Current sensor and method of manufacturing the same
US7411382B2 (en) 2005-04-14 2008-08-12 Denso Corporation Current detection apparatus
JP2010164594A (en) * 2003-02-21 2010-07-29 Fisher Controls Internatl Llc Magnetic position sensor including integrated hall effect switch
JP2010190611A (en) * 2009-02-16 2010-09-02 Tokai Rika Co Ltd Current sensor
JP2010223929A (en) * 2009-03-19 2010-10-07 Kohshin Electric Corp Magnetic core and current sensor using the same
WO2012005042A1 (en) * 2010-07-07 2012-01-12 アルプス・グリーンデバイス株式会社 Current sensor
JP2012083241A (en) * 2010-10-13 2012-04-26 Hioki Ee Corp Current detection sensor
JP2014006181A (en) * 2012-06-26 2014-01-16 Aisin Seiki Co Ltd Current sensor
JP2014010012A (en) * 2012-06-28 2014-01-20 Denso Corp Current sensor
JP2014132269A (en) * 2006-01-20 2014-07-17 Allegro Microsystems Llc Arrangements for integrated sensor
CN104007305A (en) * 2013-02-20 2014-08-27 爱信精机株式会社 Current sensor
JP2014185935A (en) * 2013-03-22 2014-10-02 Aisin Seiki Co Ltd Current sensor
JP2015079012A (en) * 2015-01-30 2015-04-23 矢崎総業株式会社 Current detector
EP2730930A3 (en) * 2012-11-13 2016-08-03 GIRA GIERSIEPEN GmbH & Co. KG Flow concentrator for a sensor assembly and corresponding sensor assembly and a socket
JP2017049182A (en) * 2015-09-03 2017-03-09 日立金属株式会社 Leak detector
WO2017115623A1 (en) * 2015-12-28 2017-07-06 株式会社日立製作所 Current sensor, and measuring device and measuring method employing same
JP2019020224A (en) * 2017-07-14 2019-02-07 矢崎総業株式会社 Magnetic permeable member and current detecting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3306325B1 (en) * 2016-10-05 2021-07-21 Fico Triad, S.A. A current measuring device

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000043795A1 (en) * 1999-01-21 2000-07-27 Tdk Corporation Current sensor
EP1067391A1 (en) * 1999-01-21 2001-01-10 TDK Corporation Current sensor
US6411078B1 (en) 1999-01-21 2002-06-25 Tdk Corporation Current sensor apparatus
EP1067391A4 (en) * 1999-01-21 2003-06-25 Tdk Corp Current sensor
DE10228764B4 (en) * 2002-06-27 2006-07-13 Infineon Technologies Ag Arrangement for testing semiconductor devices
US6836137B2 (en) 2002-06-27 2004-12-28 Infineon Technologies Ag Configuration for testing semiconductor devices
DE10228764A1 (en) * 2002-06-27 2004-01-29 Infineon Technologies Ag Arrangement for testing semiconductor devices
JP2010164594A (en) * 2003-02-21 2010-07-29 Fisher Controls Internatl Llc Magnetic position sensor including integrated hall effect switch
JP4871281B2 (en) * 2004-09-28 2012-02-08 ザ・ユニバーシティ・オブ・クイーンズランド Magnetic dosimeter
JP2008514930A (en) * 2004-09-28 2008-05-08 ザ・ユニバーシティ・オブ・クイーンズランド Magnetic dosimeter
US7411382B2 (en) 2005-04-14 2008-08-12 Denso Corporation Current detection apparatus
US7400132B2 (en) 2005-10-31 2008-07-15 Denso Corporation Current sensor and method of manufacturing the same
JP2007187528A (en) * 2006-01-12 2007-07-26 Denso Corp Current sensor
JP4531702B2 (en) * 2006-01-12 2010-08-25 株式会社デンソー Current sensor
JP2014132269A (en) * 2006-01-20 2014-07-17 Allegro Microsystems Llc Arrangements for integrated sensor
JP2007198905A (en) * 2006-01-26 2007-08-09 Denso Corp Current sensor
JP2007303952A (en) * 2006-05-11 2007-11-22 Yazaki Corp Current measuring device
JP2010190611A (en) * 2009-02-16 2010-09-02 Tokai Rika Co Ltd Current sensor
US8415948B2 (en) 2009-02-16 2013-04-09 Kabushiki Kaisha Tokai Rika Denki Seisakusho Current sensor
JP2010223929A (en) * 2009-03-19 2010-10-07 Kohshin Electric Corp Magnetic core and current sensor using the same
CN102959408A (en) * 2010-07-07 2013-03-06 阿尔卑斯绿色器件株式会社 Current sensor
US8970214B2 (en) 2010-07-07 2015-03-03 Alps Green Devices Co., Ltd. Current sensor
WO2012005042A1 (en) * 2010-07-07 2012-01-12 アルプス・グリーンデバイス株式会社 Current sensor
JP2012083241A (en) * 2010-10-13 2012-04-26 Hioki Ee Corp Current detection sensor
JP2014006181A (en) * 2012-06-26 2014-01-16 Aisin Seiki Co Ltd Current sensor
JP2014010012A (en) * 2012-06-28 2014-01-20 Denso Corp Current sensor
EP2730930A3 (en) * 2012-11-13 2016-08-03 GIRA GIERSIEPEN GmbH & Co. KG Flow concentrator for a sensor assembly and corresponding sensor assembly and a socket
JP2014160035A (en) * 2013-02-20 2014-09-04 Aisin Seiki Co Ltd Current sensor
CN104007305A (en) * 2013-02-20 2014-08-27 爱信精机株式会社 Current sensor
JP2014185935A (en) * 2013-03-22 2014-10-02 Aisin Seiki Co Ltd Current sensor
JP2015079012A (en) * 2015-01-30 2015-04-23 矢崎総業株式会社 Current detector
JP2017049182A (en) * 2015-09-03 2017-03-09 日立金属株式会社 Leak detector
WO2017115623A1 (en) * 2015-12-28 2017-07-06 株式会社日立製作所 Current sensor, and measuring device and measuring method employing same
JP2019020224A (en) * 2017-07-14 2019-02-07 矢崎総業株式会社 Magnetic permeable member and current detecting device

Also Published As

Publication number Publication date
JP3234394B2 (en) 2001-12-04

Similar Documents

Publication Publication Date Title
JP3234394B2 (en) Current measuring device
KR100338611B1 (en) Magnetic sensor
US7977941B2 (en) Magnetic field sensing device
US4464625A (en) Magnetoresistive current detector
US8519703B2 (en) Magnetic sensor device and method of determining resistance values
JP7140149B2 (en) Current sensors, magnetic sensors and circuits
GB2089514A (en) Magnetic sensor switch device
US11249116B2 (en) Magnetic sensor and current sensor
JP2008216230A (en) Current sensor
EP2495578B1 (en) Magnetic sensors
JPH07294561A (en) Current measuring apparatus
JP2002243815A (en) Magnetic detector
JPH01105178A (en) Current detector
JPH069306Y2 (en) Position detector
JPH03170873A (en) Current detector
JP2002006014A (en) Magnetic sensor
JPS6361170A (en) Shape of magnetic core in current sensor
US6861717B2 (en) Device for defecting a magnetic field, magnetic field measure and current meter
JP2000055930A (en) Acceleration sensor
JPS6040197B2 (en) Magnetoelectric conversion device
JPH08233867A (en) Bridge detection circuit
JPH03223685A (en) Detecting sensor for external magnetic field
JP2002040043A (en) Acceleration sensor
Park et al. Openable-core AC and DC leakage-current detector
JPH07280587A (en) Position detector using differential transformer

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010911

LAPS Cancellation because of no payment of annual fees