JPH03170873A - Current detector - Google Patents

Current detector

Info

Publication number
JPH03170873A
JPH03170873A JP1309279A JP30927989A JPH03170873A JP H03170873 A JPH03170873 A JP H03170873A JP 1309279 A JP1309279 A JP 1309279A JP 30927989 A JP30927989 A JP 30927989A JP H03170873 A JPH03170873 A JP H03170873A
Authority
JP
Japan
Prior art keywords
core
current
magnetic flux
ferromagnetic
ferromagnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1309279A
Other languages
Japanese (ja)
Other versions
JP2867276B2 (en
Inventor
Hiroshi Abe
洋 阿部
Kikuo Tsuruga
紀久夫 敦賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP1309279A priority Critical patent/JP2867276B2/en
Publication of JPH03170873A publication Critical patent/JPH03170873A/en
Application granted granted Critical
Publication of JP2867276B2 publication Critical patent/JP2867276B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To obtain a detector having both of the high sensitivity characteristic within a small current range requiring resolving power and a wide current detection range for a large current range by constituting a core by inserting other ferromagnetic material different in saturated magnetic flux density in the central part of a ferromagnetic core in series. CONSTITUTION:A through-type electric wire 5 allowing a current to be measured to flow is allowed to pierce through a ferromagnetic core 3. The magnetic flux generated by the current of the electric wire 5 is converged by the core 3 to generate magnetic flux in the space of the magnetic gap 1 of the core 3 and the intensity of the magnetic flux is measured by a magnetism-sensitive element 2. A thin plate-shaped ferromagnetic material B4 low in saturated magnetic flux density is inserted in the central part of the core 3 formed of a ferromagnetic material A high in saturated magnetic flux density and a core is constituted by the series connection of two or more kinds of magnetic materials. A current detector using the core thus constituted has two-step sensitivities across a point where the part of the ferromagnetic material B4 is saturated. That is, a detection current range can be extended by keeping conventional sensitivity within a small current range requiring resolving power and lowering sensitivity within a large current range.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は,電子機器または電気機城等に使用される電t
..検出器に関するもので,特にトロイダル状強磁性体
コアの一部にギャップを設け該ギヤップ内に感磁素子を
構成した方式の電流検出器の強磁性体コアの構成に関す
るものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is applicable to electric appliances used in electronic equipment or electric machinery, etc.
.. .. The present invention relates to a detector, and in particular to the configuration of a ferromagnetic core of a current detector in which a gap is provided in a part of a toroidal ferromagnetic core and a magnetic sensing element is configured within the gap.

[従来の技術] 従来,この種の電流検出器(第2図)に於いては,磁気
回路を形戊する部分に使用されている強磁性体コア3に
は,特に検出電流範囲を広げるために飽和磁束密度の高
い強磁性材料Aまたは検出課差を小さくするために保磁
力の小さい強磁性材料Bが使用され,ホール素子,また
は磁気抵抗効果素子のような感磁素子2を挿入する磁気
ギャップ1を形成し,その磁気ギャップ1に感磁素子2
を押入して貫通電線5に流れる被測定電流に比例した磁
界が発生する磁気ギャップ1内に押入した感磁素子2に
より,電流の大きさに比例した出力電圧を得ている。
[Prior Art] Conventionally, in this type of current detector (Fig. 2), the ferromagnetic core 3 used in the part forming the magnetic circuit has a ferromagnetic core 3 in particular in order to widen the detection current range. A ferromagnetic material A with a high saturation magnetic flux density or a ferromagnetic material B with a low coercive force is used to reduce the detection difference, and the magnetic material into which a magnetically sensitive element 2 such as a Hall element or a magnetoresistive element is inserted is used. A gap 1 is formed, and a magnetic sensing element 2 is placed in the magnetic gap 1.
An output voltage proportional to the magnitude of the current is obtained by the magnetic sensing element 2 inserted into the magnetic gap 1 which generates a magnetic field proportional to the current to be measured flowing through the through wire 5.

感磁素子2で検出した貫通電線5の電流に比例した出力
電圧は,信号増幅回路によって増幅されて電流の大きさ
に比例した出力電圧を得,貫通電流の大きさを検出して
いる。
The output voltage proportional to the current in the through wire 5 detected by the magnetic sensing element 2 is amplified by a signal amplification circuit to obtain an output voltage proportional to the magnitude of the current, thereby detecting the magnitude of the through current.

C発明が解決しようとする課題] しかしながら,従来の電流検出器に於いて,磁気回路を
形戊する部分に使用されている強磁性体コアの飽和磁束
密度は直接検出電流範囲に影響し,この強磁性体の飽和
磁束密度とコアの形状によって6度及び検出電流範囲が
一対象に限定設計されていた。そのために分解能が必要
な小電流範囲で高感度を得るl)に磁気ギャップを小さ
くすると強磁性体コアが飽和しやすくなり,十分な電流
検出範囲が得られなかった。又大電流範囲でリニャリテ
ィを上げるため磁気ギャップを大きくすると小電流範囲
の出力が小さいため、大電流検出と小電流検出は別々の
電流検出器が必要であった。
Problem to be solved by the invention C] However, in conventional current detectors, the saturation magnetic flux density of the ferromagnetic core used in the part that forms the magnetic circuit directly affects the detection current range; The design was limited to 6 degrees and the detection current range to one target depending on the saturation magnetic flux density of the ferromagnetic material and the shape of the core. Therefore, if the magnetic gap is made small in order to obtain high sensitivity in a small current range where resolution is required (1), the ferromagnetic core tends to become saturated, making it impossible to obtain a sufficient current detection range. Furthermore, if the magnetic gap is increased to increase linearity in the large current range, the output in the small current range is small, so separate current detectors are required for large current detection and small current detection.

[課題を解決するための手段] 本発明によれば.従来のかかる欠点を除くためトロイダ
ル状強磁性体コアの磁路の一部にギャップを設け,該ギ
ャップ内に感磁素子を挿入構或した電流検出器の強磁性
体コアにおいて,該強磁性体コアの中央部分に飽和磁束
密度の異なる他の強磁性材料を直列に挿入することによ
って二種類以上の強磁性材料の直列接続でコアを構成し
,二股階以上の感度を持つことを特徴とする電流検出器
が得られる。
[Means for solving the problem] According to the present invention. In order to eliminate this conventional drawback, a gap is provided in a part of the magnetic path of the toroidal ferromagnetic core, and a magnetic sensing element is inserted into the gap. The core is constructed by connecting two or more types of ferromagnetic materials in series by inserting other ferromagnetic materials with different saturation magnetic flux densities in series in the central part of the core, and is characterized by having a sensitivity of two or more orders of magnitude. A current detector is obtained.

[允明のfM成] トロイダル状の強磁性体コアの磁路の一部にギャップを
設け該ギャップ内に感磁素子を神入構成した電流検出器
の強磁性体コアに於いて,第ILJに示すように飽和磁
束密度の高い強磁性伺料Aで形成するトロイダル状の強
磁性体コア3のコア中央部に飽和磁束密度の低い磁性材
料Bの?”N 阪を神人し,二秤類あるいはそれ以上の
磁性材料の直列接続でコアを構成する。
[Tamaki's fM construction] In the ferromagnetic core of a current detector in which a gap is provided in a part of the magnetic path of the toroidal-shaped ferromagnetic core and a magnetic sensing element is carefully constructed within the gap, the ILJ As shown in the figure, a toroidal ferromagnetic core 3 made of a ferromagnetic material A with a high saturation magnetic flux density has a magnetic material B with a low saturation magnetic flux density in the center of the core. ``The core is composed of two or more magnetic materials connected in series.

[作用] 第1図のように構成したコアを用いた電流検出器は強磁
性材料Bが磁気飽和点に至るまでの感度は,@気ギャッ
プ長さL 貫通電線巻数N,検出g 電流Iによって(NI/L  )に比例する。磁性g 材料Bが飽和した後,磁性材料B部分には1それ以上の
磁束は通らず,等価的に磁気ギャップと見なすことがで
き,強磁性体コアは第1図(b)と同等な動作をする。
[Function] In a current detector using a core configured as shown in Fig. 1, the sensitivity until the ferromagnetic material B reaches the magnetic saturation point is determined by @gap length L, number of turns of through wire N, detection g, current I. It is proportional to (NI/L). Magnetic g After material B is saturated, no more than 1 magnetic flux passes through the magnetic material B portion, which can be equivalently regarded as a magnetic gap, and the ferromagnetic core operates in the same manner as in Figure 1 (b). do.

よって強磁性材料Bが飽和した後の感度は,(Nl/L
  +L2)に比例する。
Therefore, the sensitivity after the ferromagnetic material B is saturated is (Nl/L
+L2).

g 以後強磁性材料Aが飽和に至るまでリニアな出力を得る
ことができる。また,磁性材料Aの飽和点は磁気ギャッ
プが等価的に拡大したことにより伸び,検出電流検出器
範囲は広くなる。
g From then on, a linear output can be obtained until the ferromagnetic material A reaches saturation. Furthermore, the saturation point of the magnetic material A is extended due to the equivalent expansion of the magnetic gap, and the range of the detected current detector becomes wider.

[実施例] 実施例について図面を参照して説明すると.第2図は従
来の電流検出器の構或正面図である。トロイダル状の強
磁性体コア3に被測定電流を流す貫通電線5を貫通させ
,該貫通電線5の電流によって生じる磁束を強磁性体コ
ア3が集束し,該強磁性体コア3の磁気ギャップ1の空
間に磁束を生じさせ.磁気ギャップ1の磁束を感磁素子
2にて磁束の強さをdPI定するものである。この第2
図の電流検出器の感度は,(Nl/L  )に比例する
[Example] An example will be explained with reference to the drawings. FIG. 2 is a front view of the structure of a conventional current detector. A toroidal ferromagnetic core 3 is passed through a through wire 5 through which a current to be measured flows, and the ferromagnetic core 3 focuses the magnetic flux generated by the current in the through wire 5, and the magnetic gap 1 of the ferromagnetic core 3 is Create a magnetic flux in the space. The strength of the magnetic flux in the magnetic gap 1 is determined by the magnetic sensing element 2 as dPI. This second
The sensitivity of the current detector shown in the figure is proportional to (Nl/L).

g 第2図の強磁性体コアに方向性硅素鋼を用いたときの入
出力特性を第3図破線で示す。
g The input/output characteristics when grain-oriented silicon steel is used for the ferromagnetic core shown in FIG. 2 are shown by broken lines in FIG.

第1図に本発明電流検出器の強磁性体コア構成一実施例
を示す。強磁性体Aに飽和磁束密度が高い強磁性材料で
ある方向性硅素鋼,強磁性体Bに飽和磁束密度が低い強
磁性材料であるパーマロイを用いて図1の様な強磁性体
コアを構成している。
FIG. 1 shows an embodiment of the ferromagnetic core structure of the current detector of the present invention. A ferromagnetic core as shown in Figure 1 is constructed using grain-oriented silicon steel, a ferromagnetic material with a high saturation magnetic flux density, as the ferromagnetic material A, and permalloy, a ferromagnetic material with a low saturation magnetic flux density, as the ferromagnetic material B. are doing.

第3図において.実線で本実施例のコアを用いた電流検
出器の人出力特性が示されている。第3図において,点
Pまで,パーマロイ部はコアの一部として動作し,その
感度は(N.I/L  )に比例g する。第3図点P−Lではパーマロイ部は飽和して磁気
ギャップと等価になり,電流検出器の感度は(N I/
L  +L2)に比例し.この区間の出g 力もリニアである。感度は磁気ギャップか増えた分低下
したことにより,硅素鋼のみで構戊した電流検出器の検
出電流範囲が第3図A1であったらのが,実施例の電流
険出器では第3図A2まで検出電流範囲が広くなってい
る。
In Figure 3. The solid line indicates the human output characteristic of the current detector using the core of this example. In FIG. 3, up to point P, the permalloy part operates as part of the core, and its sensitivity is proportional to (N.I/L). At point P-L in Figure 3, the permalloy part is saturated and becomes equivalent to the magnetic gap, and the sensitivity of the current detector is (N I/
L + L2). The output g force in this section is also linear. The sensitivity decreased as the magnetic gap increased, so that the detection current range of the current detector made only of silicon steel was A1 in Figure 3, but it was A2 in the current detector of the example. The detection current range is widened.

図1のように構成したコアを用いた電流検出器はパーマ
ロイ部分が飽和する点(変極点)を境に二段階の感度を
持ち,これにより分解能の必要な小電流範囲での高感度
特性と大電流範囲用の店い電流検出範囲を合わせ持つ電
流検出器の提供が可能となった。
A current detector using a core configured as shown in Figure 1 has two levels of sensitivity at the point where the permalloy part saturates (inflection point), and this has high sensitivity characteristics in the small current range where resolution is required. It has now become possible to provide a current detector that has a narrow current detection range for large current ranges.

[発明の効果] 以上のように,分解能か必要な小電流範囲では従来の感
度を保ち,大竜流範囲で感度を落とすことて険出電流範
囲をリニアに拡大することができる。又この電流検出器
のz度の変極点及び変極点以後の傾きは,揮入する強磁
性体Bの種類及び厚さ(L2)を選択することにより任
意に設定することができる。この二段階の感度を持つ電
流検出器は分j4t能が必要な小電流電流検出器と,大
電流までリニアな出力が必要な大電流検出器の特徴を合
わせ持つため,一つの電流検出器の外に大電流険出用貫
通電線及び小電流検出用貫通電線を巻くことにより一つ
の電流検出器で大電流検出と小電流検出をかねることが
でき,産業上有益な発明である。
[Effects of the Invention] As described above, the current sensitivity can be linearly expanded by maintaining the conventional sensitivity in the small current range where resolution is required and decreasing the sensitivity in the large current range. Further, the inflection point of the z degree of this current detector and the slope after the inflection point can be arbitrarily set by selecting the type and thickness (L2) of the ferromagnetic material B to be volatilized. This current detector with two levels of sensitivity has the features of a small current detector that requires a high resolution capability and a large current detector that requires a linear output up to large currents, so it By winding the through wire for large current detection and the through wire for small current detection on the outside, one current detector can serve both large current detection and small current detection, which is an industrially useful invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の電流検出器の強磁性体コア部分
,第1図(b)は第1図(a)の強磁性体Bを除いた状
態を示す図,第2図は一般に用いられている電流検出器
の構成を示す構成正面図,第3図は電流検出器の入出力
特性を示す図である。 なお,丈線は本発明の一実施例の強磁性体コアを用いた
電流検出器,破線は方向性硅素鋼のみを用いた電流検出
器を示す。 1・・・磁気ギャップ,2・・・感磁素子,3・・強磁
性材料A(方向性硅素鋼),4・・・強磁性材料B(パ
ーマロイ),5・・・貫通電線.6・・・回路部品,7
回路実装基仮,8・・・外部端子。
Fig. 1(a) shows the ferromagnetic core portion of the current detector of the present invention, Fig. 1(b) shows the state in which the ferromagnetic material B of Fig. 1(a) is removed, and Fig. 2 shows the ferromagnetic core part of the current detector of the present invention. FIG. 3 is a front view showing the structure of a commonly used current detector, and a diagram showing the input/output characteristics of the current detector. Note that the solid line represents a current detector using a ferromagnetic core according to an embodiment of the present invention, and the broken line represents a current detector using only grain-oriented silicon steel. DESCRIPTION OF SYMBOLS 1...Magnetic gap, 2...Magnetic sensing element, 3...Ferromagnetic material A (grain-oriented silicon steel), 4...Ferromagnetic material B (permalloy), 5...Through electric wire. 6...Circuit parts, 7
Temporary circuit mounting board, 8...external terminal.

Claims (1)

【特許請求の範囲】[Claims] (1)トロイダル状強磁性体コアの磁路の一部にギャッ
プを設け、該ギャップ内に感磁素子を挿入構成した電流
検出器の強磁性体コアにおいて、該強磁性体コアの中央
部分に飽和磁束密度の異なる他の強磁性材料を直列に挿
入することによって二種類以上の強磁性材料の直列接続
でコアを構成し、二段階以上の感度を持つことを特徴と
する電流検出器。
(1) In a ferromagnetic core of a current detector in which a gap is provided in a part of the magnetic path of a toroidal ferromagnetic core and a magnetically sensitive element is inserted into the gap, the center portion of the ferromagnetic core is A current detector characterized in that the core is constructed by connecting two or more types of ferromagnetic materials in series by inserting other ferromagnetic materials with different saturation magnetic flux densities in series, and the current detector has two or more levels of sensitivity.
JP1309279A 1989-11-30 1989-11-30 Current detector Expired - Fee Related JP2867276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1309279A JP2867276B2 (en) 1989-11-30 1989-11-30 Current detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1309279A JP2867276B2 (en) 1989-11-30 1989-11-30 Current detector

Publications (2)

Publication Number Publication Date
JPH03170873A true JPH03170873A (en) 1991-07-24
JP2867276B2 JP2867276B2 (en) 1999-03-08

Family

ID=17991088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1309279A Expired - Fee Related JP2867276B2 (en) 1989-11-30 1989-11-30 Current detector

Country Status (1)

Country Link
JP (1) JP2867276B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1726967A1 (en) * 2005-05-25 2006-11-29 Lisa Dräxlmaier GmbH Method and device for measuring a current flowing in an electric conductor
US7332903B2 (en) 2005-08-25 2008-02-19 Lisa Dräxlmaier GmbH Device and method for measuring a current flowing in an electrical conductor
JP2009058451A (en) * 2007-09-03 2009-03-19 Osaki Electric Co Ltd Current sensor-use magnetic core and current sensor employing the same
US7923986B2 (en) 2006-07-14 2011-04-12 Lisa Draexlmaier Gmbh Device and method for measuring a current flowing in an electrical conductor
GB2595777A (en) * 2020-06-01 2021-12-08 Secr Defence Injury protection device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1726967A1 (en) * 2005-05-25 2006-11-29 Lisa Dräxlmaier GmbH Method and device for measuring a current flowing in an electric conductor
US7541799B2 (en) 2005-05-25 2009-06-02 Lisa Dräxlmaier GmbH Method and device for measuring a current flowing in an electrical conductor
US7332903B2 (en) 2005-08-25 2008-02-19 Lisa Dräxlmaier GmbH Device and method for measuring a current flowing in an electrical conductor
US7923986B2 (en) 2006-07-14 2011-04-12 Lisa Draexlmaier Gmbh Device and method for measuring a current flowing in an electrical conductor
JP2009058451A (en) * 2007-09-03 2009-03-19 Osaki Electric Co Ltd Current sensor-use magnetic core and current sensor employing the same
GB2595777A (en) * 2020-06-01 2021-12-08 Secr Defence Injury protection device

Also Published As

Publication number Publication date
JP2867276B2 (en) 1999-03-08

Similar Documents

Publication Publication Date Title
US5831431A (en) Miniaturized coil arrangement made by planar technology, for the detection of ferromagnetic materials
US6750644B1 (en) Magnetic field sensor and method for calibrating the same
US7218092B2 (en) Magnetic bridge type current sensor, magnetic bridge type current detecting method, and magnetic bridge for use in that sensor and detecting method
US6794860B2 (en) Transformer for a current sensor
US6885183B2 (en) Current probe
EP0356171A2 (en) Direct-coupled fluxgate current sensor and sensing method using the same
JP2002243766A (en) Electric current sensor
JPH07218552A (en) Current measuring device
US7911198B2 (en) Arrangement and method for measuring a current flowing in an electrical conductor
JP2009180608A (en) Ic chip type current sensor
JP2002228733A (en) Magnetism detecting device
JPH03170873A (en) Current detector
JPH10232259A (en) Current leakage sensor
JP2609383B2 (en) Current detector
JP2011017574A (en) Electric current detector
JPH112647A (en) Direct current sensor and method for preventing flowing-out of direct current
JPH0293373A (en) Current detector
JP2867275B2 (en) Current detector
US2929017A (en) Quadripole magnetic amplifier
JP2552683B2 (en) Current sensor
US11573280B2 (en) Coil assembly for compensation current sensor
JP2514338B2 (en) Current detector
JPS58197892A (en) Magnetic field detecting element
JPH05126654A (en) Magnetostrictive torque sensor
JP2532324Y2 (en) DC current sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees