JPH08233867A - Bridge detection circuit - Google Patents

Bridge detection circuit

Info

Publication number
JPH08233867A
JPH08233867A JP7037864A JP3786495A JPH08233867A JP H08233867 A JPH08233867 A JP H08233867A JP 7037864 A JP7037864 A JP 7037864A JP 3786495 A JP3786495 A JP 3786495A JP H08233867 A JPH08233867 A JP H08233867A
Authority
JP
Japan
Prior art keywords
circuit
bridge
output
detection circuit
linearity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7037864A
Other languages
Japanese (ja)
Inventor
Masahiro Miyamori
雅裕 宮森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
NEC Corp
Original Assignee
NEC Home Electronics Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd, Nippon Electric Co Ltd filed Critical NEC Home Electronics Ltd
Priority to JP7037864A priority Critical patent/JPH08233867A/en
Publication of JPH08233867A publication Critical patent/JPH08233867A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R17/00Measuring arrangements involving comparison with a reference value, e.g. bridge
    • G01R17/10AC or DC measuring bridges

Abstract

PURPOSE: To compensate for and improve the linearity of a detection circuit detecting a current in a non-contact manner or a circuit detecting a magnetic change. CONSTITUTION: This detecting circuit is in the constitution of a bridge comprising a semiconductor magnetoresistance element R11 and three reference resistors R12, R13 and R14 to convert a near-by passing current or a magnetic flux change to a voltage signal by the magnetoresistance element. In the detecting circuit, an output of an amplifier circuit 2 for amplifying an output terminal of the bridge and a constant source voltage are negatively fed back by a synchronous addition circuit 3, which are impressed to an input terminal of a power source of the bridge thereby improving the linearity. The source voltage impressed to the synchronous addition circuit 3 is an output of a temperature compensation circuit 4 consisting of a semiconductor element and resistors, so that the temperature is compensated for as well as the linearity. The linearity can thus by compensated for in a wide dynamic range simply by adding the simple addition circuit, achieving high accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非接触で電流検出をする
ブリッジ検出回路、あるいは磁気変化を検出するブリッ
ジ検出回路の直線性を補償し、改善する回路技術に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circuit technique for compensating for and improving the linearity of a bridge detection circuit for non-contact current detection or a bridge detection circuit for detecting magnetic changes.

【0002】[0002]

【従来の技術】従来、1つの半導体磁気抵抗素子と3つ
の基準抵抗によりブリッジに構成された電流検出回路に
より近接通過電流あるいは磁束変化を電圧信号に変換す
る検出回路は、図4に示すように、入力端子間に温度補
償した電圧を印加し、出力端子間の電圧を一定ゲインの
差動増幅器により出力電圧を得るため、該出力電圧は該
磁気抵抗素子の抵抗変化に対して出力電気信号が直線的
変化とならない。
2. Description of the Related Art Conventionally, as shown in FIG. 4, a detection circuit for converting a proximity passing current or a change in magnetic flux into a voltage signal by a current detection circuit formed in a bridge by one semiconductor magnetoresistive element and three reference resistors is shown in FIG. , A temperature-compensated voltage is applied between the input terminals, and the output voltage is obtained by the differential amplifier having a constant gain between the output terminals. It does not change linearly.

【0003】すなわち近接通過電流あるいは磁束変化で
被検出半導体磁気抵抗素子の抵抗がRからR+Δrにな
るとする。またこの抵抗変化△rは温度係数β(一般に
β<0)の温度特性を有し、3つの基準抵抗の温度係数
は微小で無視できるとすると、端子電圧△Vは、
That is, it is assumed that the resistance of the semiconductor magnetoresistive element to be detected changes from R to R + Δr due to the proximity passing current or the change in magnetic flux. Further, this resistance change Δr has a temperature characteristic of a temperature coefficient β (generally β <0), and if the temperature coefficients of the three reference resistors are minute and negligible, the terminal voltage ΔV becomes

【0004】[0004]

【数式1】 となり、この端子電圧ΔVは分母、分子にΔrの項があ
るため、抵抗変化Δrに対して直線的変化をしない。
[Formula 1] Since this terminal voltage ΔV has a term of Δr in the denominator and numerator, it does not change linearly with respect to the resistance change Δr.

【0005】[0005]

【発明が解決しようとする課題】このため、従来の構成
はΔrの小さいところでしか使えない、あるいはフルス
ケールにおいて直線的に使えない課題を抱えていた。
For this reason, the conventional structure has a problem that it cannot be used only at a small Δr, or cannot be used linearly at full scale.

【0006】またΔrの温度依存性を相殺するため、V
INにΔrの温度特性と反対方向の温度特性を持たせるこ
とは既知の技術である。すなわち入力電圧をVSUPと
し、トランジスタQ4のベース・エミッタ飽和電圧をVB
Eとすると、
Further, in order to cancel the temperature dependence of Δr, V
It is a known technique to give IN a temperature characteristic in the opposite direction to the temperature characteristic of Δr. That is, the input voltage is VSUP and the base-emitter saturation voltage of the transistor Q4 is VB.
E

【0007】[0007]

【数式2】 より[Formula 2] Than

【0008】[0008]

【数式3】 となり、Δrが温度に対して、負特性で減少しても、V
BEが温度に対して負特性であるためVINは増加し、Δr
の温度依存性は相殺できるが分母、分子にΔrの項があ
るためその効果には限界がある。
[Formula 3] Therefore, even if Δr decreases with respect to temperature due to the negative characteristic, V
Since BE has a negative characteristic with respect to temperature, VIN increases and Δr
Although the temperature dependence of can be canceled out, its effect is limited because the denominator and the numerator have a term of Δr.

【0009】本発明は、上記課題を解決するもので、そ
の目的とするところは、上述した従来技術が有するΔr
の微小範囲でしか直線性を保持しない、あるいはそのた
めにダイナミックレンジに限界があるという課題及び温
度補償の限界を解決し、該ブリッジの出力電圧を被検出
半導体磁気抵抗素子の抵抗変化に対して直線的に変化で
きるようにした装置を提供するものである。
The present invention is intended to solve the above-mentioned problems, and its object is to provide Δr possessed by the above-mentioned prior art.
Solves the problem that the linearity is maintained only in a very small range, or the limit of the dynamic range is therefor and the limit of temperature compensation, and the output voltage of the bridge is linear with respect to the resistance change of the semiconductor magnetic resistance element to be detected. The present invention provides a device that can be changed dynamically.

【0010】[0010]

【課題を解決するための手段】本発明は上述の目的を達
成するため、半導体磁気抵抗素子と基準抵抗とでブリッ
ジに構成され、該磁気抵抗素子により近接通過電流ある
いは磁束変化を電圧信号に変換するブリッジ検出回路に
おいて、該ブリッジの出力電圧を増幅する増幅回路と、
該増幅回路の出力と電源電圧とを入力し、かつ同期をと
って加算する同期加算回路と、該増幅回路の出力を該同
期加算回路により負帰還を加えて、該ブリッジの電源入
力端子に印加する負帰還回路とを備えたものである。
In order to achieve the above-mentioned object, the present invention comprises a semiconductor magnetoresistive element and a reference resistance in a bridge, and the magnetoresistive element converts a proximity passing current or a magnetic flux change into a voltage signal. In the bridge detection circuit to do, an amplifier circuit for amplifying the output voltage of the bridge,
A synchronous adder circuit for inputting the output of the amplifier circuit and a power supply voltage and adding them in synchronization, and a negative feedback of the output of the amplifier circuit by the synchronous adder circuit, and applying it to the power supply input terminal of the bridge And a negative feedback circuit that operates.

【0011】また、本発明は、該同期加算回路に印加さ
れる電源電圧が半導体素子と抵抗による温度補償回路の
出力からなることを特徴とする構成を採用するものであ
る。
Further, the present invention adopts a constitution characterized in that the power supply voltage applied to the synchronous adder circuit comprises an output of a temperature compensating circuit by a semiconductor element and a resistor.

【0012】[0012]

【作用】本発明は、上述のように近接通過電流あるいは
磁束変化を検出するため、半導体磁気抵抗素子と基準抵
抗とでブリッジに構成され、該磁気抵抗素子により近接
通過電流あるいは磁束変化を電圧信号に変換するブリッ
ジ検出回路において、該ブリッジの出力電圧を増幅する
増幅回路と、該増幅回路の出力と電源電圧とを入力し、
かつ同期をとって加算する同期加算回路と、該増幅回路
の出力を該同期加算回路により負帰還を加えて該ブリッ
ジの電源入力端子に印加する負帰還回路とを備えたの
で、該ブリッジの出力電圧をダイナミック・レンジ全体
に渡って被検出磁気抵抗素子の抵抗変化に直線的に変化
できるようにし、出力電圧の直線性を補償することが可
能である。
According to the present invention, in order to detect a change in the proximity passing current or the magnetic flux as described above, a semiconductor magnetoresistive element and a reference resistor are formed in a bridge, and the magnetoresistive element changes the proximity passing current or the magnetic flux change into a voltage signal. In the bridge detection circuit for converting to, an amplifier circuit that amplifies the output voltage of the bridge, and the output of the amplifier circuit and the power supply voltage are input,
Further, since the synchronous adder circuit for adding in a synchronized manner and the negative feedback circuit for applying the negative feedback of the output of the amplifier circuit to the power source input terminal of the bridge, the output of the bridge is provided. The voltage can be linearly changed with the resistance change of the magnetoresistive element to be detected over the entire dynamic range, and the linearity of the output voltage can be compensated.

【0013】また、本発明は前記ブリッジ検出回路にお
いて、該同期加算回路に印加される一定電源電圧が半導
体素子と抵抗による温度補償回路の出力からなることを
特徴とするため出力電圧の温度補償を直線性補償と併せ
て行うことが可能である。
Further, according to the present invention, in the bridge detection circuit, the constant power supply voltage applied to the synchronous adder circuit is composed of the output of the temperature compensation circuit by the semiconductor element and the resistor. It can be performed in combination with linearity compensation.

【0014】[0014]

【実施例】以下、本発明の実施例について、図1ないし
図3を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0015】図1は、本発明のブリッジ検出回路の一実
施例を示す概略回路ブロック図である。また、図2は図
1の応用回路例である。さらに、図3は本発明のブリッ
ジ検出回路の一実施例を示す回路構成図である。本発明
は、図2のように用いられ、近接電流あるいは磁束変化
を検出するものである。
FIG. 1 is a schematic circuit block diagram showing an embodiment of the bridge detection circuit of the present invention. Further, FIG. 2 is an example of the application circuit of FIG. 3 is a circuit configuration diagram showing an embodiment of the bridge detection circuit of the present invention. The present invention is used as shown in FIG. 2 to detect a proximity current or a change in magnetic flux.

【0016】図1、図3において、近接電流あるいは磁
束変化を1つの被検出半導体磁気抵抗素子R11と3つの
基準抵抗R12、R13及びR14で構成されたブリッジにお
いてR11の抵抗変化を介して検出する。
In FIGS. 1 and 3, a proximity current or a magnetic flux change is detected through a resistance change of R11 in a bridge composed of one semiconductor magnetic resistance element R11 to be detected and three reference resistors R12, R13 and R14. .

【0017】入力端子に印可する電圧をVINとし、R11
=R12=R13=R14=R、R11の近接電流および磁束変
化に応じた抵抗変化をΔrとすると端子電圧ΔVは
The voltage applied to the input terminal is VIN, and R11
= R12 = R13 = R14 = R, assuming that the resistance change according to the proximity current and the magnetic flux change of R11 is Δr, the terminal voltage ΔV is

【0018】[0018]

【数式4】 となる。[Formula 4] Becomes

【0019】ここで増幅回路2のゲイン(増幅率)をK
1とすると、検出電圧VOUTはK1・ΔVである。増幅回
路2は既知の計測用差動増幅器で構成され、K1は演算
増幅器の周辺の抵抗で設定できる。 VOUT=K1・ΔV ・・・ この出力電圧VOUTと一定電圧Vを次段の同期加算回路
3 に印加する。ここで加算の比率を
Here, the gain (amplification factor) of the amplifier circuit 2 is set to K.
Assuming 1, the detection voltage VOUT is K1 · ΔV. The amplifier circuit 2 is composed of a known measurement differential amplifier, and K1 can be set by a resistance around the operational amplifier. VOUT = K1ΔV ... The output voltage VOUT and the constant voltage V are applied to the synchronous addition circuit 3 of the next stage. Where the addition ratio is

【0020】[0020]

【数式5】 とするように同期加算回路3の抵抗R31、R32、R
33を R33/R31=K2、 R32=R33と
設定する。
[Formula 5] So that the resistors R31, R32, R of the synchronous adder circuit 3
33 is set as R33 / R31 = K2 and R32 = R33.

【0021】そうすると同期加算回路3の出力は V+
K2・VOUT である。この出力をVINとして前記ブリッ
ジの入力端子に負帰還をかける。
Then, the output of the synchronous adder circuit 3 is V +
It is K2 · VOUT. With this output as VIN, negative feedback is applied to the input terminal of the bridge.

【0022】すなわち VIN=V+K2・VOUT ・・・
が成立する。 、より
That is, VIN = V + K2 · VOUT ...
Is established. ,Than

【0023】[0023]

【数式6】 ここでを代入すると、[Formula 6] Substituting here,

【0024】[0024]

【数式7】 これを整理すると、{4・R−(2−K1・K2)Δr}
VOUT=K1・Δr・V となる。
[Formula 7] This can be summarized as {4 · R- (2-K1 · K2) Δr}
VOUT = K1 · Δr · V.

【0025】ここでK1・K2=2とする。すなわち増幅
回路2のゲインと同期加算回路3の倍率K2の積を2に
なるように設定すると、
Here, K1 · K2 = 2. That is, when the product of the gain of the amplifier circuit 2 and the magnification K2 of the synchronous addition circuit 3 is set to 2,

【0026】[0026]

【数式8】 となり、出力電圧VOUTはΔrすなわち被検出磁気抵抗
素子の変化に直線的に比例した出力となる。
[Formula 8] Therefore, the output voltage VOUT is an output that is linearly proportional to Δr, that is, the change of the magnetoresistive element to be detected.

【0027】また、磁気抵抗素子が温度特性を有する場
合、この温度係数をβとするとより出力電圧は
If the magnetoresistive element has temperature characteristics, the output voltage is

【0028】[0028]

【数式9】 ここで、温度補償回路により[Formula 9] Here, the temperature compensation circuit

【0029】[0029]

【数式10】 を適用すると、Δrの温度特性とVの温度特性が相反す
る方向に働き、温度補償をすることが可能である。
[Formula 10] When is applied, the temperature characteristic of Δr and the temperature characteristic of V work in opposite directions, and it is possible to perform temperature compensation.

【0030】[0030]

【発明の効果】以上説明したように、本発明は、半導体
磁気抵抗素子と基準抵抗とでブリッジに構成され、該磁
気抵抗素子により近接通過電流あるいは磁束変化を電圧
信号に変換するブリッジ検出回路において、該ブリッジ
の出力電圧を増幅する増幅回路と、該増幅回路の出力と
電源電圧とを入力し、かつ同期をとって加算する同期加
算回路と、該増幅回路の出力を該同期加算回路により負
帰還を加えて該ブリッジの電源入力端子に印加する負帰
還回路からなるので、従来に比べて簡単な追加回路を付
加するだけで、高い汎用性を有する直線性補償をするこ
とが可能であるという優れた効果を奏する。
As described above, the present invention provides a bridge detection circuit in which a semiconductor magnetoresistive element and a reference resistance are formed in a bridge, and the magnetoresistive element converts a proximity passing current or a magnetic flux change into a voltage signal. , An amplifier circuit for amplifying the output voltage of the bridge, a synchronous adder circuit for inputting the output of the amplifier circuit and the power supply voltage, and adding them in synchronization, and an output of the amplifier circuit for negative output by the synchronous adder circuit. Since it consists of a negative feedback circuit that adds feedback and applies it to the power supply input terminal of the bridge, it is possible to perform linearity compensation with high versatility by adding a simple additional circuit as compared with the conventional one. It has an excellent effect.

【0031】また、前記検出回路のブリッジ検出回路に
おいて、該同期加算回路に印加される一定電源電圧が半
導体素子と抵抗による温度補償回路の出力からなるの
で、出力電圧の温度補償を直線性補償と併せてすること
が可能であるという優れた効果を奏する。
Further, in the bridge detection circuit of the detection circuit, since the constant power supply voltage applied to the synchronous addition circuit is composed of the output of the temperature compensating circuit by the semiconductor element and the resistor, the temperature compensation of the output voltage is linearity compensation. It has an excellent effect that it can be done together.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のブリッジ検出回路の一実施例を示す概
略回路ブロック図である。
FIG. 1 is a schematic circuit block diagram showing an embodiment of a bridge detection circuit of the present invention.

【図2】図1の示したブリッジ検出回路の応用回路例で
ある。
FIG. 2 is an application circuit example of the bridge detection circuit shown in FIG.

【図3】本発明のブリッジ検出回路の一実施例を示す回
路構成図である。
FIG. 3 is a circuit configuration diagram showing an embodiment of a bridge detection circuit of the present invention.

【図4】従来の検出回路の一例を示す概略回路ブロック
図である。
FIG. 4 is a schematic circuit block diagram showing an example of a conventional detection circuit.

【符号の説明】[Explanation of symbols]

1 半導体磁気抵抗素子を含むセンサ 2 増幅回路 3 同期加算回路 4 温度補償回路 5 本発明のブリッジ検出回路 R11、 半導体磁気抵抗素子 R12、R13、R14 基準抵抗 R31、R32、R33 加算ゲインの設定抵抗 R41、R42 温度補償用抵抗 Q4 温度補償用トランジスタ素子 1 sensor including semiconductor magnetoresistive element 2 amplifier circuit 3 synchronous addition circuit 4 temperature compensation circuit 5 bridge detection circuit R11 of the present invention, semiconductor magnetoresistive elements R12, R13, R14 reference resistance R31, R32, R33 summing gain setting resistance R41 , R42 Temperature compensation resistor Q4 Temperature compensation transistor element

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】半導体磁気抵抗素子と基準抵抗とでブリッ
ジに構成され、該磁気抵抗素子により近接通過電流ある
いは磁束変化を電圧信号に変換するブリッジ検出回路に
おいて、該ブリッジの出力電圧を増幅する増幅回路と、
該増幅回路の出力と電源電圧とを入力し、かつ同期をと
って加算する同期加算回路と、該増幅回路の出力を該同
期加算回路により負帰還を加えて、該ブリッジの電源入
力端子に印加する負帰還回路とを具備することを特徴と
するブリッジ検出回路。
1. A bridge detection circuit comprising a semiconductor magnetoresistive element and a reference resistance, wherein the magnetoresistive element converts a proximity passing current or a magnetic flux change into a voltage signal, and an amplifier for amplifying an output voltage of the bridge. Circuit,
A synchronous adder circuit for inputting the output of the amplifier circuit and a power supply voltage and adding them in synchronization, and a negative feedback of the output of the amplifier circuit by the synchronous adder circuit, and applying it to the power supply input terminal of the bridge And a negative feedback circuit for performing the bridge detection circuit.
【請求項2】該同期加算回路に印加される電源電圧は、
半導体素子と抵抗による温度補償回路の出力からなるこ
とを特徴とする請求項1記載のブリッジ検出回路。
2. The power supply voltage applied to the synchronous adder circuit is
The bridge detection circuit according to claim 1, wherein the bridge detection circuit comprises an output of a temperature compensation circuit including a semiconductor element and a resistor.
JP7037864A 1995-02-27 1995-02-27 Bridge detection circuit Pending JPH08233867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7037864A JPH08233867A (en) 1995-02-27 1995-02-27 Bridge detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7037864A JPH08233867A (en) 1995-02-27 1995-02-27 Bridge detection circuit

Publications (1)

Publication Number Publication Date
JPH08233867A true JPH08233867A (en) 1996-09-13

Family

ID=12509414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7037864A Pending JPH08233867A (en) 1995-02-27 1995-02-27 Bridge detection circuit

Country Status (1)

Country Link
JP (1) JPH08233867A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164098A (en) * 2010-01-15 2011-08-25 Institute Of National Colleges Of Technology Japan Magnetic sensor
JP2015503735A (en) * 2011-12-30 2015-02-02 江▲蘇▼多▲維▼科技有限公司Jiang Su Multi Dimension Technology Co.,Ltd Current sensor
WO2022209719A1 (en) * 2021-03-31 2022-10-06 株式会社村田製作所 Sensor output compensation circuit
WO2022209720A1 (en) * 2021-03-31 2022-10-06 株式会社村田製作所 Sensor output compensation circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164098A (en) * 2010-01-15 2011-08-25 Institute Of National Colleges Of Technology Japan Magnetic sensor
JP2015503735A (en) * 2011-12-30 2015-02-02 江▲蘇▼多▲維▼科技有限公司Jiang Su Multi Dimension Technology Co.,Ltd Current sensor
WO2022209719A1 (en) * 2021-03-31 2022-10-06 株式会社村田製作所 Sensor output compensation circuit
WO2022209720A1 (en) * 2021-03-31 2022-10-06 株式会社村田製作所 Sensor output compensation circuit

Similar Documents

Publication Publication Date Title
US7298132B2 (en) Current sensor
US5231351A (en) Magnetoresistive speed sensor processing circuit utilizing a symmetrical hysteresis signal
JPH0351733A (en) Amplifying and compensating circuit for semiconductor pressure sensor
JP3797149B2 (en) Current sensor
JP3271633B2 (en) Position detection circuit
CA1195735A (en) In-phase voltage elimination circuit for hall element
JPH03176682A (en) Magnetic field measuring instrument
JPH02170061A (en) Electric power detecting device
JPH08233867A (en) Bridge detection circuit
JP3916225B2 (en) Current detector
JP5126536B2 (en) Magnetic proportional current sensor gain adjustment method
CN216718524U (en) High-precision low-temperature drift open-loop hall current sensor
KR20000067035A (en) apparatus and method for second order gradient of magnetic field to use SQUID
CN115469251A (en) Fully-integrated closed-loop Hall sensor device
JP3516644B2 (en) Magnetic sensor device and current sensor device
JP2003035730A (en) Current detector
JPH0627150A (en) Hall element type current sensor
JP3684691B2 (en) Temperature characteristic compensation circuit and magnetoelectric conversion element driving device using the temperature characteristic compensation circuit
JP2596125Y2 (en) Operational amplifier circuit
JPH09105680A (en) Temperature measuring circuit
JP2938657B2 (en) Current detection circuit
JP2816528B2 (en) Torque detector
JPH01138433A (en) Semiconductor sensor circuit
JPS6139948Y2 (en)
JPH0851328A (en) Small signal amplifier circuit

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010703