JPH02170061A - Electric power detecting device - Google Patents

Electric power detecting device

Info

Publication number
JPH02170061A
JPH02170061A JP32670088A JP32670088A JPH02170061A JP H02170061 A JPH02170061 A JP H02170061A JP 32670088 A JP32670088 A JP 32670088A JP 32670088 A JP32670088 A JP 32670088A JP H02170061 A JPH02170061 A JP H02170061A
Authority
JP
Japan
Prior art keywords
magnetic field
load
voltage
power
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32670088A
Other languages
Japanese (ja)
Inventor
Hideaki Yoda
秀昭 依田
Akira Suga
須賀 晃
Shigemi Kurashima
茂美 倉島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP32670088A priority Critical patent/JPH02170061A/en
Publication of JPH02170061A publication Critical patent/JPH02170061A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To miniaturize the electric power detecting device by using a magneto resistance element as a magnetoelectric converting element. CONSTITUTION:A load 15 is connected to a power source 14. Electric power supplied to the load 15 is detected. The source voltage of the power source 14 is insulated electrically by a transformer 25 for insulation and then applied to terminals 22a and 22b of the magneto-resistance element 22. Further, the element 22 is applied with a magnetic field 32 produced by the magnetic field producing element 31 of the load 15 with a current I flowing through the load 15. Then the current path in the element 22 is deflected according to the intensity of the magnetic field 32 to cause variation in the resistance value. The output of the element 22 is proportion to both the magnetic field 32 and the voltage of the power source 14, so the element 22 functions as a multiplier and the output of the element 22 is obtained through a processing circuit 33 to obtain a detection output 39 which is proportional to the electric power. Thus, the magneto resistance element is used as the magnetoelectric converting element to increase the sensitivity by >=10 times as compared with a case wherein a conventional Hall element is used. Therefore, a cut core need not be used, so the device can be miniaturized.

Description

【発明の詳細な説明】 産業上の利用分野 従来の技術        (第9〜12図)発明が解
決しようとする課題 課題を解決するための手段 作用 実施例 本発明の第1実施例   (第1〜6図)本発明の第2
実施例   (第7図) 本発明の第3実施例   (第8図) 発明の効果 〔概要〕 電力検知装置に関し、 アナログ乗算器やカットコアを用いずにデバイスを構成
することができ、小型で安価な電力検知装置を提供する
ことを目的とし、 所定の負荷に供給される電圧に比例した電圧で駆動され
該負荷に流れる電流により発生する磁界が直接に印加さ
れる磁電変換素子と、該磁電変換素子に所定のバイアス
磁界を印加するバイアス印加手段と、該磁電変換素子の
周囲に設けられ、非検出磁界を遮断する磁気遮断手段と
、該磁電変換素子の出力を処理して電力を検知する処理
回路と、を具備し、前記磁電変換素子は、前記電圧およ
び電流を乗算して前記処理回路に出力することにより前
記負荷に供給される電力を検知するように構成する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Applications Prior Art (Figures 9 to 12) Problems to be Solved by the Invention Examples of Means and Actions for Solving the Problems First Embodiment of the Invention (1 to 12) Figure 6) Second aspect of the present invention
Embodiment (Fig. 7) Third embodiment of the present invention (Fig. 8) Effects of the invention [Summary] Regarding the power detection device, the device can be configured without using an analog multiplier or a cut core, and is small and compact. The purpose of the present invention is to provide an inexpensive power detection device, which includes a magnetoelectric transducer that is driven by a voltage proportional to the voltage supplied to a predetermined load and to which a magnetic field generated by a current flowing through the load is directly applied, and a magnetoelectric transducer that is Bias application means for applying a predetermined bias magnetic field to the conversion element; magnetic blocking means provided around the magnetoelectric conversion element for blocking non-detection magnetic fields; and processing the output of the magnetoelectric conversion element to detect electric power. A processing circuit is provided, and the magnetoelectric conversion element is configured to detect power supplied to the load by multiplying the voltage and current and outputting the result to the processing circuit.

〔産業上の利用分野〕[Industrial application field]

本発明は、電力検知装置に係り、詳しくは磁電変換素子
を乗算器として用いるようにした電子式電力検知装置に
関する。
The present invention relates to a power detection device, and more particularly to an electronic power detection device using a magnetoelectric conversion element as a multiplier.

近年、マイクロコンピュータ技術の急速な発展に伴い、
その入力デバイスとしてのセンサデバイスに対し、小型
化、電子化の要求が強くなっている。電力計についても
将来のホームエレクトロニクス分野の発展を予想し、小
型で安価な電子式電力計が必要となる。
In recent years, with the rapid development of microcomputer technology,
There is an increasing demand for miniaturization and electronicization of sensor devices as input devices. Regarding wattmeters, in anticipation of the future development of the home electronics field, there will be a need for small and inexpensive electronic wattmeters.

〔従来の技術〕[Conventional technology]

従来この種の電子式電力計としては、例えば第9〜12
図に示すようなものがある。第9図は電力検出器の一般
的な原理を示す原理図、第10図は電力検出器の動作波
形図、第11図はアナログ乗算器を用いた電力検出器を
示す構成図、第121Fはポール素子を用いた電力検出
器を示す構成図である。
Conventionally, as this type of electronic wattmeter, for example, the 9th to 12th
There is something like the one shown in the figure. Fig. 9 is a principle diagram showing the general principle of a power detector, Fig. 10 is an operating waveform diagram of the power detector, Fig. 11 is a configuration diagram showing a power detector using an analog multiplier, and Fig. 121F is a diagram showing the power detector using an analog multiplier. FIG. 2 is a configuration diagram showing a power detector using a pole element.

第9図において、1は電力検出器であり、電力検出器1
は電流/電圧変換回路2、乗算器3および処理回路4に
より構成される。電流/電圧変換回路2に入力された負
荷電流は電流/電圧変換回路2により電圧に変換されて
乗算器3に出力され、乗算器3は変換後の電圧および負
荷電圧を乗算してその乗算結果を処理回路4に出力する
。処理回路4は入力された乗算結果を適当な信号出力に
処理して電力出力として外部に出力する。第10図は電
力検出器1の動作波形図であり、同図は電力検出器1に
負荷電圧・電流として次式■に示す電圧■、電流Iを入
力した場合の電力出力を表している。同図(a)は■、
■に位相ずれがない(φ−〇)の場合、同図(b)はφ
−90°の場合を示す。
In FIG. 9, 1 is a power detector, and power detector 1
is composed of a current/voltage conversion circuit 2, a multiplier 3, and a processing circuit 4. The load current input to the current/voltage conversion circuit 2 is converted into a voltage by the current/voltage conversion circuit 2 and output to the multiplier 3, and the multiplier 3 multiplies the converted voltage and the load voltage to obtain the multiplication result. is output to the processing circuit 4. The processing circuit 4 processes the input multiplication result into an appropriate signal output and outputs it to the outside as a power output. FIG. 10 is an operating waveform diagram of the power detector 1, and the figure shows the power output when voltage (2) and current I shown in the following equation (2) are input to the power detector 1 as the load voltage and current. Figure (a) is ■,
If there is no phase shift in ■ (φ-〇), the same figure (b) is φ
The case of −90° is shown.

但し、■o :振幅 ■o :振幅 φ :位相 電力測定は上述のように負荷にかかる電圧と電流を検知
し、この負荷電圧および負荷電流を乗算して電力出力を
得ることが基本となり、この意味から如何に乗算を行う
かが技術上重要な点となる。
However, ■o: Amplitude ■o: Amplitude φ: Phase Power measurement is basically to detect the voltage and current applied to the load as described above, and to obtain the power output by multiplying the load voltage and load current. From a technical point of view, how to perform multiplication is an important point.

例えば、第11図に示す電力検出器5は乗算器として半
導体IC技術によるアナログ乗算器6を用いた例であり
、第12図に示す電力検出器10はホール素子を用いた
例である。第12図(a)(b)において、10は電力
検出器であり、電力検出器10はホール素子11、カッ
トコア12および差動アンプ13により構成されている
。電源14には負荷15が接続されており、負荷15に
供給される電力を検出する場合を考える。第12図(b
)に示すように、電源14と並列にホール素子11を配
置して電源14による電源電圧でホール素子11を駆動
するとともに、負荷15に流れる電流Iがつくる磁界1
6をカットコア12を用いてホール素子11で受け、ホ
ール素子11の出力を差動アンプ13を通して得ること
により電力に比例した検出出力17を得るようにしてい
る。
For example, the power detector 5 shown in FIG. 11 is an example in which an analog multiplier 6 based on semiconductor IC technology is used as a multiplier, and the power detector 10 shown in FIG. 12 is an example in which a Hall element is used. In FIGS. 12(a) and 12(b), 10 is a power detector, and the power detector 10 is composed of a Hall element 11, a cut core 12, and a differential amplifier 13. Consider a case where a load 15 is connected to the power source 14 and the power supplied to the load 15 is detected. Figure 12 (b
), the Hall element 11 is arranged in parallel with the power supply 14, and the Hall element 11 is driven by the power supply voltage from the power supply 14, and the magnetic field 1 created by the current I flowing through the load 15 is
6 is received by a Hall element 11 using a cut core 12, and the output of the Hall element 11 is obtained through a differential amplifier 13, thereby obtaining a detection output 17 proportional to the electric power.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、このような従来の電力計にあっては、ア
ナログ乗算器を用いるものではアナログ乗算器自体の価
格が高いため安価な電力検知デバイスとはなり得す、ま
た、ホール素子を用いるものではカットコアを使用する
構成上どうしてもデバイスが大型化してしまうという問
題点があった。
However, in such conventional power meters, those that use analog multipliers cannot be used as inexpensive power detection devices because the analog multiplier itself is expensive, and those that use Hall elements are There was a problem in that the device inevitably became larger due to the structure using the core.

そこで本発明は、アナログ乗算器やカットコアを用いず
にデバイスを構成することができる小型で安価な電力検
知装置を提供することを目的としている。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a small and inexpensive power detection device that can be configured without using analog multipliers or cut cores.

〔課題を解決するための手段〕 本発明による電力検知装置は上記目的達成のため、所定
の負荷に供給される電圧に比例した電圧で駆動され該負
荷に流れる電流により発生する磁界が直接に印加される
磁電変換素子と、該磁電変換素子に所定のバイアス磁界
を印加するバイアス印加手段と、該磁電変換素子の周囲
に設けられ、非検出磁界を遮断する磁気遮断手段と、該
磁電変換素子の出力を処理して電力を検知する処理回路
と、を具備し、前記磁電変換素子は、前記電圧および電
流を乗算して前記処理回路に出力することにより前記負
荷に供給される電力を検知することを特徴とする電力検
知装置を備えている。
[Means for Solving the Problems] In order to achieve the above object, the power detection device according to the present invention is driven by a voltage proportional to the voltage supplied to a predetermined load, and a magnetic field generated by a current flowing through the load is directly applied. a bias applying means for applying a predetermined bias magnetic field to the magnetoelectric transducer, a magnetic blocking means provided around the magnetoelectric transducer for blocking non-detected magnetic fields, a processing circuit that processes output and detects electric power, and the magnetoelectric conversion element detects electric power supplied to the load by multiplying the voltage and current and outputting the result to the processing circuit. Equipped with a power detection device featuring:

〔作用〕[Effect]

本発明では、所定の負荷に供給される電圧および該負荷
に流れる電流により発生する磁界が印加される磁電変換
素子と、該磁電変換素子に所定のバイアス磁界を印加す
るバイアス印加手段と、該磁電変換素子の周囲に設けら
れ、非検出磁界を遮断する磁気遮断手段と、該磁電変換
素子の出力を処理して電力を検知する処理回路と、が設
けられ、該磁電変換素子は前記電圧および電流を乗算し
て前記処理回路に出力する。
The present invention includes a magnetoelectric transducer to which a magnetic field generated by a voltage supplied to a predetermined load and a current flowing through the load is applied, a bias applying means for applying a predetermined bias magnetic field to the magnetoelectric transducer, and A magnetic blocking means is provided around the conversion element to block an undetected magnetic field, and a processing circuit is provided to process the output of the magnetoelectric conversion element to detect electric power, and the magnetoelectric conversion element detects the voltage and current. is multiplied and output to the processing circuit.

該磁電変換素子として磁気抵抗素子を用いると、したが
って、ホール素子に比べて感度が10倍以上高いため、
カットコアを使わずにデバイスを構成することができ、
デバイスを小型につくることができる。
When a magnetoresistive element is used as the magnetoelectric conversion element, the sensitivity is more than 10 times higher than that of a Hall element.
Devices can be configured without using cut cores,
Devices can be made smaller.

〔実施例〕〔Example〕

以下、本発明を図面に基づいて説明する。 Hereinafter, the present invention will be explained based on the drawings.

第1〜6図は本発明に係る電力検知装置の第1実施例を
示す図であり、第1図は磁気抵抗素子を用いた電力検出
器の全体構成図、第2図は磁気抵抗素子とバイアス磁界
用磁石の構成図、第3図はバイアス磁界を加えた場合の
磁気抵抗素子の特性図、第4図はシールドケースの磁気
シールド特性図、第5図は絶縁用トランスの伝達特性図
、第6図は磁気抵抗素子を用いた電力検出器の回路構成
図である。
1 to 6 are diagrams showing a first embodiment of the power detection device according to the present invention, FIG. 1 is an overall configuration diagram of a power detector using a magnetoresistive element, and FIG. 2 is a diagram showing a power detector using a magnetoresistive element. The configuration diagram of the bias magnetic field magnet, Figure 3 is the characteristic diagram of the magnetoresistive element when a bias magnetic field is applied, Figure 4 is the magnetic shielding characteristic diagram of the shield case, Figure 5 is the transfer characteristic diagram of the isolation transformer, FIG. 6 is a circuit diagram of a power detector using a magnetoresistive element.

まず、構成を説明する。第12図に示す従来例と同一構
成部分には同一番号を付してその説明を省略する。
First, the configuration will be explained. Components that are the same as those of the conventional example shown in FIG. 12 are given the same numbers and their explanations will be omitted.

第1図において、21は電力検出器(電力検知装置)で
あり、電力検出器21はブリッジ接続された磁気抵抗素
子(磁電変換素子)22と、磁気抵抗素子22に所定の
バイアス磁界を印加するだめのバイアス磁界印加用磁石
(バイアス印加手段)23と、センサ出力の増幅・処理
を行う処理回路等が取り付けられる回路基板24と、回
路部を電気的に絶縁する絶縁用トランス25と、電源1
4および負荷15が接続される端子26.27と、外部
磁界から内部をシールドするシールドケース(磁気遮断
手段)28と、により構成されている。端子26には磁
気抵抗素子22と該磁気抵抗素子22に対して所定の方
向にバイアス磁界を印加するためのバイアス磁界印加用
磁石23とが対向して配置されるとともに、端子26.
27および絶縁用トランス25は回路基板24に取り付
けられ、磁気抵抗素子22、バイアス磁界印加用磁石2
3、回路基板24、絶縁用トランス25および端子26
.27の一部は外部磁界の影響を防くためにシールドケ
ース28内に密閉されている。
In FIG. 1, 21 is a power detector (power detection device), and the power detector 21 applies a predetermined bias magnetic field to a bridge-connected magnetoresistive element (magnetoelectric conversion element) 22 and the magnetoresistive element 22. A bias magnetic field applying magnet (bias applying means) 23, a circuit board 24 to which a processing circuit for amplifying and processing sensor output, etc. are attached, an insulating transformer 25 for electrically insulating the circuit section, and a power source 1.
4 and the load 15 are connected to the terminals 26 and 27, and a shield case (magnetic shielding means) 28 that shields the inside from external magnetic fields. A magnetoresistive element 22 and a bias magnetic field applying magnet 23 for applying a bias magnetic field in a predetermined direction to the magnetoresistive element 22 are disposed facing each other at the terminal 26 .
27 and the insulating transformer 25 are attached to the circuit board 24, and the magnetoresistive element 22 and the bias magnetic field applying magnet 2 are attached to the circuit board 24.
3. Circuit board 24, insulation transformer 25 and terminal 26
.. A portion of 27 is sealed within a shield case 28 to prevent the influence of external magnetic fields.

電源14には端子26.27を介して負荷15が接続さ
れ電力が供給されている。負荷電流■は電源14から端
子26.27を通して負荷15に流れており、このうち
端子26に流れる負荷電流Iのつくる磁界を磁気抵抗素
子22で受ける構成となっている。本実施例では磁電変
換素子として、例えばNi−Fe合金薄膜による磁気抵
抗素子22を用いている。また、バイアス磁界印加用磁
石23の構成を第2図に示すように、磁気抵抗素子22
の磁界検知方向に対してバイアス磁界印加用磁石23の
バイアス磁界方向が図示の如くになるようにバイアス磁
界印加用磁石23を配置する。第2図に示す構成により
バイアス磁界を印加した場合の磁気抵抗素子22の出力
特性を第3図に示す。第3図に示すようにバイアス磁界
Hexを加える(Hex= 0 、40.80,120
 Cθe))に従って直線性および飽和特性が改善され
ることが分かる(但し、感度はHex=0のときが最大
となる)。したがって、用途に応じてバイアス磁界He
xを切り換えるようにすれば磁気抵抗素子22の感度あ
るいはダイナミックレンジを選択することができる。シ
ールドケース28としては第4図(a)に示す形状のも
のが用いられ、材質はPC(JIS)のものが使用され
る。その磁気シールド特性は第4図(b)で示される。
A load 15 is connected to the power source 14 via terminals 26 and 27 and is supplied with power. A load current {circle around (2)} flows from the power supply 14 to the load 15 through terminals 26 and 27, and the magnetic resistance element 22 receives the magnetic field created by the load current I flowing through the terminal 26. In this embodiment, a magnetoresistive element 22 made of, for example, a Ni--Fe alloy thin film is used as the magnetoelectric conversion element. Further, as shown in FIG. 2, the configuration of the bias magnetic field applying magnet 23 is as follows:
The bias magnetic field applying magnet 23 is arranged so that the bias magnetic field direction of the bias magnetic field applying magnet 23 is as shown in the figure with respect to the magnetic field detection direction. FIG. 3 shows the output characteristics of the magnetoresistive element 22 when a bias magnetic field is applied with the configuration shown in FIG. 2. Apply a bias magnetic field Hex as shown in Figure 3 (Hex = 0, 40.80, 120
It can be seen that the linearity and saturation characteristics are improved according to Cθe) (however, the sensitivity is maximum when Hex=0). Therefore, depending on the application, the bias magnetic field He
By switching x, the sensitivity or dynamic range of the magnetoresistive element 22 can be selected. The shield case 28 has the shape shown in FIG. 4(a), and is made of PC (JIS) material. Its magnetic shielding characteristics are shown in FIG. 4(b).

また、絶縁用トランス25は第5図(a)に示すように
電源14と内部の回路部との間に設けられ、電源14と
回路部とを電気的に絶縁しつつ電源14から電源電圧に
比例した電圧Voutを出力する。なお、29.30は
抵抗器である。この絶縁用トランス25の伝達特性は第
4図(b)で示され、周波数が5011zを超えたあた
りから飽和して略フラットな特性となっていることが分
かる。
In addition, the insulating transformer 25 is provided between the power supply 14 and the internal circuit section as shown in FIG. Outputs a proportional voltage Vout. Note that 29.30 is a resistor. The transfer characteristics of this isolation transformer 25 are shown in FIG. 4(b), and it can be seen that the characteristics become saturated and become approximately flat when the frequency exceeds 5011z.

第6図は磁気抵抗素子22を用いた電力検出器21の回
路構成例であり、磁気抵抗素子22の出力を増幅・処理
するための回路である。第1.5図に示す部)4と同一
構成部材には同一番号を付している。
FIG. 6 shows an example of the circuit configuration of the power detector 21 using the magnetoresistive element 22, and is a circuit for amplifying and processing the output of the magnetoresistive element 22. Components that are the same as those shown in FIG. 1.5) are given the same numbers.

第6図において、磁気抵抗素子22はブリッジ接続によ
り構成され、そのブリッジの端子22aには絶縁用トラ
ンス25を介して電源電圧に比例した電圧が印加され、
そのブリッジの他文の端子22bは接地される。更に、
磁気抵抗素子22には負荷15を流れる電流Iによって
負荷15の磁界発生要素31が発生する磁界32が印加
されており、そのブリッジの出力端子22c、22dは
処理回路33にそれぞれ接続されている。処理回路33
は差動アンプ34、抵抗器35〜38により構成され、
磁気抵抗素子22の出力を増幅・処理して検出出力39
として出力する。
In FIG. 6, the magnetoresistive element 22 is configured by a bridge connection, and a voltage proportional to the power supply voltage is applied to the terminal 22a of the bridge via an insulating transformer 25.
The other terminal 22b of the bridge is grounded. Furthermore,
A magnetic field 32 generated by a magnetic field generating element 31 of the load 15 is applied to the magnetoresistive element 22 by a current I flowing through the load 15, and output terminals 22c and 22d of the bridge are connected to a processing circuit 33, respectively. Processing circuit 33
is composed of a differential amplifier 34 and resistors 35 to 38,
The output of the magnetoresistive element 22 is amplified and processed to provide a detection output 39.
Output as .

次に、作用を説明する。Next, the effect will be explained.

第6図に示すように、電−a14には負荷15が接続さ
れており、負荷15に供給する電力を検出するものとす
ると、電源14の電源電圧は絶縁用トランス25で電気
的に絶縁された後、磁気抵抗素子22の端子22a、2
2bに印加される一方、磁気抵抗素子22には負荷15
を流れる電流Iが負荷15の磁界発生要素31によって
発生する磁界32が印加され、電流Iの強さ(すなわち
、磁界32の強さ)に応じて磁気抵抗素子22内部の電
流路の偏向が起こり抵抗値が咄 変化する。磁気抵抗素子22の出力は、磁界32と電源
14の電圧の双方に比例する関係になるため、磁気抵抗
素子22は乗算器としての機能を有し、磁気抵抗素子2
2の出力を処理回路33を通して得ることにより電力に
比例した検出出力39を得ることができる。
As shown in FIG. 6, a load 15 is connected to the power source 14, and if the power supplied to the load 15 is to be detected, the power supply voltage of the power source 14 is electrically isolated by an insulating transformer 25. After that, the terminals 22a, 2 of the magnetoresistive element 22
2b, while a load 15 is applied to the magnetoresistive element 22.
A magnetic field 32 generated by the magnetic field generating element 31 of the load 15 is applied to the current I flowing through the load 15, and the current path inside the magnetoresistive element 22 is deflected depending on the strength of the current I (that is, the strength of the magnetic field 32). The resistance value changes rapidly. Since the output of the magnetoresistive element 22 is proportional to both the magnetic field 32 and the voltage of the power supply 14, the magnetoresistive element 22 has a function as a multiplier, and the output of the magnetoresistive element 2
By obtaining the output of 2 through the processing circuit 33, a detection output 39 proportional to the electric power can be obtained.

このように、本実施例では磁気抵抗素子22を乗算器と
して使用し、さらにこれにバイアス印加用磁石23、シ
ールドケース28、処理回路33および絶縁用トランス
25を設けるようにしている。磁気抵抗素子22はホー
ル素子に比べて感度が10倍以上高いため、第12図(
a)に示すようなカットコア12を使わずにデバイスを
構成することができ、デバイスを小型につくることがで
きる。また、高価なアナログ乗算器を使用しないのでデ
バイスを安価なものとすることができ、ボームエレクト
ロニクス分野等に幅広く適用可能である。
As described above, in this embodiment, the magnetoresistive element 22 is used as a multiplier, and is further provided with a bias applying magnet 23, a shield case 28, a processing circuit 33, and an insulating transformer 25. Since the magnetoresistive element 22 has a sensitivity more than 10 times higher than that of the Hall element, the sensitivity shown in FIG. 12 (
The device can be constructed without using the cut core 12 as shown in a), and the device can be made compact. Furthermore, since no expensive analog multiplier is used, the device can be made inexpensive, and can be widely applied to fields such as Bohm electronics.

第7図は本発明に係る電力検知装置の第2実施例を示す
図であり、電力検出器21に温度補償回路を設けた例で
ある。第1実施例に示す第6図と同一構成部分には同一
番号を付して再度の説明を省略する。第7図において、
41は感温抵抗器、42は調整用可変抵抗器であり、感
温抵抗器41、調整用可変抵抗器42は磁気抵抗素子2
2の出力端子22C122dにそれぞれ接続されている
FIG. 7 is a diagram showing a second embodiment of the power detection device according to the present invention, and is an example in which the power detector 21 is provided with a temperature compensation circuit. Components that are the same as those in FIG. 6 shown in the first embodiment are given the same numbers and will not be described again. In Figure 7,
41 is a temperature-sensitive resistor, 42 is a variable resistor for adjustment, and the temperature-sensitive resistor 41 and the variable resistor for adjustment 42 are the magnetoresistive element 2.
2 output terminals 22C122d, respectively.

磁界32を加えないときでも磁気抵抗素子22の抵抗が
完全に一致していればブリッジの両端電圧は等しいもの
となる筈であるが、実際には必ずしも一致しないことが
あり、七口点にしてもゼロとならずオフセット電圧が残
ってしまうことがある。
Even when the magnetic field 32 is not applied, if the resistances of the magnetoresistive elements 22 match perfectly, the voltages across the bridge should be equal. However, in reality, they may not always match, and the may not become zero and an offset voltage may remain.

このオフセント電圧が温度特性を持つことにより、検出
に誤差が生じてしまうから、この温度特性を補償する必
要がある。ここで、温度のドリフトは予め実験等により
知ることができる。そこで、例えば磁気抵抗素子22の
電圧が温度上昇により下がる特性を持っているとすれば
感温抵抗器41に正の温度特性を持つものを用いるよう
にすれば全体の電圧はフラットなものとなる。この場合
、ブリッジのバランスを崩さないようにするため調整用
として調整用可変抵抗器42を用いている。
Since this offset voltage has temperature characteristics, errors occur in detection, so it is necessary to compensate for these temperature characteristics. Here, the temperature drift can be known in advance through experiments or the like. Therefore, for example, if the voltage of the magnetoresistive element 22 has a characteristic of decreasing as the temperature rises, if a temperature-sensitive resistor 41 having a positive temperature characteristic is used, the overall voltage will be flat. . In this case, an adjustment variable resistor 42 is used for adjustment so as not to upset the balance of the bridge.

したがって、温度によるドリフトを補償することにより
、第1実施例の効果をより高めることができる。
Therefore, by compensating for drift due to temperature, the effects of the first embodiment can be further enhanced.

第8図は本発明に係る電力検知装置の第3実施例を示す
図であり、第1実施例の第1図と同一構成部分には同一
番号を付している。本実施例では磁気抵抗素子22が設
けられている端子26部分のみをシールドケース43で
覆うようにしている。したがって、装置の一層の小型化
を図ることができる。
FIG. 8 is a diagram showing a third embodiment of the power detection device according to the present invention, and the same components as in FIG. 1 of the first embodiment are given the same numbers. In this embodiment, only the portion of the terminal 26 where the magnetoresistive element 22 is provided is covered with the shield case 43. Therefore, further miniaturization of the device can be achieved.

〔発明の効果] 本発明によれば、アナログ乗算器やカットコアを用いず
にデバイスを構成することができ、小型で安価な電力検
知装置を実現することができる。
[Effects of the Invention] According to the present invention, a device can be configured without using an analog multiplier or a cut core, and a small and inexpensive power detection device can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜6図は本発明に係る電力検知装置の第1実施例を
示す図であり、 第1図はその電力検出器の全体構成図、第2図はその磁
気抵抗素子とバイアス磁界用磁石の構成図、 第3図はそのバイアス磁界を加えた場合の磁気抵抗素子
の特性図、 第4図はそのシールドケースの磁気シールド特性図、 第5図はその絶縁用トランスの伝達特性図、第6図はそ
の電力検出器の回路構成図、第7図は本発明に係る電力
検知装置の第2実施例を示す電力検出器の回路構成図、 第8図は本発明に係る電力検知装置の第3実施例を示す
全体構成図、 第9〜12図は従来の電力検知装置を示す図であり、 第9図はその電力検出器の一般的な原理を示す原理図、 第10図はその電力検出器の動作波形図、第11図はそ
のアナログ乗算器を用いた電力検出器を示す構成図、 第12図はそのホール素子を用いた電力検出器を示す構
成図である。 14・・・・・・電源、 15・・・・・・負荷、 21・・・・・・電力検出器(電力検知装置)、22・
・・・・・磁気抵抗素子(磁電変換素子)、22a、2
2b・・・・・・端子、 22c、22d・・・・・・出力端子、23・・・・・
・バイアス磁界印加用磁石(バイアス印加手段)、 24・・・・・・回路基板、 25・・・・・・絶縁用トランス、 26.27・・・・・・端子、 28.43・・・・・・シールドケース(磁気遮断手段
)、29.30.35〜38・・・・・・抵抗器、31
・・・・・・磁界発生要素、 32・・・・・・磁界、 33・・・・・・処理回路、 34・・・・・・差動アンプ、 39・・・・・・検出出力、 41・・・・・・怒温抵抗器、 42・・・・・・調整用可変抵抗器。 第2実施例の電力検出器の回路構成図 第3実施例の全体構成図 第8図 第1Il調 要 割 ぜ昶 ○
1 to 6 are diagrams showing a first embodiment of the power detection device according to the present invention, FIG. 1 is an overall configuration diagram of the power detector, and FIG. 2 is a diagram showing the magnetoresistive element and bias magnetic field magnet. Fig. 3 is a characteristic diagram of the magnetoresistive element when the bias magnetic field is applied, Fig. 4 is a magnetic shielding characteristic diagram of its shield case, Fig. 5 is a transfer characteristic diagram of its isolation transformer, and Fig. 6 is a circuit configuration diagram of the power detector, FIG. 7 is a circuit diagram of the power detector showing a second embodiment of the power detection device according to the present invention, and FIG. 8 is a circuit diagram of the power detection device according to the present invention. An overall configuration diagram showing the third embodiment, Figures 9 to 12 are diagrams showing a conventional power detection device, Figure 9 is a principle diagram showing the general principle of the power detector, and Figure 10 is a diagram showing the general principle of the power detector. FIG. 11 is a block diagram showing the power detector using the analog multiplier; FIG. 12 is a block diagram showing the power detector using the Hall element. 14...Power source, 15...Load, 21...Power detector (power detection device), 22...
... Magnetoresistive element (magnetoelectric conversion element), 22a, 2
2b...terminal, 22c, 22d...output terminal, 23...
- Magnet for applying bias magnetic field (bias applying means), 24... Circuit board, 25... Insulating transformer, 26.27... Terminal, 28.43... ...Shield case (magnetic blocking means), 29.30.35-38...Resistor, 31
...Magnetic field generating element, 32...Magnetic field, 33...Processing circuit, 34...Differential amplifier, 39...Detection output, 41... Angry temperature resistor, 42... Adjustable variable resistor. Circuit configuration diagram of the power detector of the second embodiment Overall configuration diagram of the third embodiment Figure 8

Claims (1)

【特許請求の範囲】 所定の負荷に供給される電圧に比例した電圧で駆動され
該負荷に流れる電流により発生する磁界が直接に印加さ
れる磁電変換素子と、 該磁電変換素子に所定のバイアス磁界を印加するバイア
ス印加手段と、 該磁電変換素子の周囲に設けられ、非検出磁界を遮断す
る磁気遮断手段と、 該磁電変換素子の出力を処理して電力を検知する処理回
路と、を具備し、 前記磁電変換素子は、前記電圧および電流を乗算して前
記処理回路に出力することにより前記負荷に供給される
電力を検知することを特徴とする電力検知装置。
[Scope of Claims] A magnetoelectric transducer that is driven by a voltage proportional to a voltage supplied to a predetermined load and to which a magnetic field generated by a current flowing through the load is directly applied, and a predetermined bias magnetic field to the magnetoelectric transducer. a bias applying means for applying a voltage, a magnetic blocking means provided around the magnetoelectric transducer to block an undetected magnetic field, and a processing circuit for processing the output of the magnetoelectric transducer to detect electric power. . A power detection device, wherein the magnetoelectric conversion element detects the power supplied to the load by multiplying the voltage and current and outputting the result to the processing circuit.
JP32670088A 1988-12-23 1988-12-23 Electric power detecting device Pending JPH02170061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32670088A JPH02170061A (en) 1988-12-23 1988-12-23 Electric power detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32670088A JPH02170061A (en) 1988-12-23 1988-12-23 Electric power detecting device

Publications (1)

Publication Number Publication Date
JPH02170061A true JPH02170061A (en) 1990-06-29

Family

ID=18190691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32670088A Pending JPH02170061A (en) 1988-12-23 1988-12-23 Electric power detecting device

Country Status (1)

Country Link
JP (1) JPH02170061A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5717327A (en) * 1995-09-22 1998-02-10 Bradford; Melvin J. Current sensor
JP2008241678A (en) * 2007-03-27 2008-10-09 Koshin Denki Kk Current sensor and current detecting device
JP2012073034A (en) * 2010-09-27 2012-04-12 Panasonic Electric Works Co Ltd Power measuring device and power measuring method
JP2012150085A (en) * 2011-01-21 2012-08-09 Panasonic Corp Power measuring device
JP2012150084A (en) * 2011-01-21 2012-08-09 Panasonic Corp Power measuring device
JP2013113758A (en) * 2011-11-30 2013-06-10 Ricoh Co Ltd Power detection sensor
JP2014029340A (en) * 2006-01-20 2014-02-13 Allegro Microsystems Llc Arrangements for integrated sensor
JPWO2013114865A1 (en) * 2012-01-31 2015-05-11 公立大学法人大阪市立大学 Battery system and charge / discharge measuring device
CN109100565A (en) * 2018-07-05 2018-12-28 国网重庆市电力公司电力科学研究院 A kind of power meter designing method and system based on giant magneto-resistance sensor
US10935612B2 (en) 2018-08-20 2021-03-02 Allegro Microsystems, Llc Current sensor having multiple sensitivity ranges
CN115219962A (en) * 2022-06-29 2022-10-21 珠海多创科技有限公司 Power measurement device, measurement equipment and power measurement method
US11567108B2 (en) 2021-03-31 2023-01-31 Allegro Microsystems, Llc Multi-gain channels for multi-range sensor

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5717327A (en) * 1995-09-22 1998-02-10 Bradford; Melvin J. Current sensor
US10069063B2 (en) 2006-01-20 2018-09-04 Allegro Microsystems, Llc Integrated circuit having first and second magnetic field sensing elements
US9859489B2 (en) 2006-01-20 2018-01-02 Allegro Microsystems, Llc Integrated circuit having first and second magnetic field sensing elements
JP2015108640A (en) * 2006-01-20 2015-06-11 アレグロ・マイクロシステムズ・エルエルシー Arrangements for integrated sensor
JP2014029340A (en) * 2006-01-20 2014-02-13 Allegro Microsystems Llc Arrangements for integrated sensor
US9082957B2 (en) 2006-01-20 2015-07-14 Allegro Microsystems, Llc Arrangements for an integrated sensor
JP2008241678A (en) * 2007-03-27 2008-10-09 Koshin Denki Kk Current sensor and current detecting device
JP2012073034A (en) * 2010-09-27 2012-04-12 Panasonic Electric Works Co Ltd Power measuring device and power measuring method
JP2012150084A (en) * 2011-01-21 2012-08-09 Panasonic Corp Power measuring device
JP2012150085A (en) * 2011-01-21 2012-08-09 Panasonic Corp Power measuring device
JP2013113758A (en) * 2011-11-30 2013-06-10 Ricoh Co Ltd Power detection sensor
JPWO2013114865A1 (en) * 2012-01-31 2015-05-11 公立大学法人大阪市立大学 Battery system and charge / discharge measuring device
US9709634B2 (en) 2012-01-31 2017-07-18 Osaka City University Battery system and charge/discharge measuring apparatus
CN109100565A (en) * 2018-07-05 2018-12-28 国网重庆市电力公司电力科学研究院 A kind of power meter designing method and system based on giant magneto-resistance sensor
US10935612B2 (en) 2018-08-20 2021-03-02 Allegro Microsystems, Llc Current sensor having multiple sensitivity ranges
US11567108B2 (en) 2021-03-31 2023-01-31 Allegro Microsystems, Llc Multi-gain channels for multi-range sensor
CN115219962A (en) * 2022-06-29 2022-10-21 珠海多创科技有限公司 Power measurement device, measurement equipment and power measurement method

Similar Documents

Publication Publication Date Title
US4596950A (en) Compensated transducer
US6362618B1 (en) Hall sensor for stress and temperature measurements in addition to magnetic field measurement
US4525668A (en) System for measuring electrical output or energy
US4520311A (en) Current to pulse-sequence transducer
JPS6148777A (en) Compensator for variation of conversion coefficient of magnetic field sensor
WO2006113459A2 (en) Current sensor
JPH02170061A (en) Electric power detecting device
US6215296B1 (en) Arrangement for the measurement of alternating or direct current
US4994742A (en) Hall effect device and magnetic coil circuits for magnetic field detection
US5103163A (en) Current transducer
JP2003075487A (en) Impedance detection apparatus and capacitance detection apparatus
CN116930589A (en) AC/DC multi-air gap magnetic resistance current sensor and current measuring method
Vopálenský et al. Wattmeter with AMR sensor
JPH0293373A (en) Current detector
JP4253084B2 (en) Load measuring device
JPS5856408B2 (en) magnetic sensor
JP2020041945A (en) Magnetic field detection sensor
JPH04131769A (en) Sampling type electric power meter
JPH08233867A (en) Bridge detection circuit
CN114280350B (en) High-precision current sensor and shunt-based high-current measurement method
JPH03170873A (en) Current detector
JPH0534182A (en) Strain/temperature composite sensor
JPH10267687A (en) Linearizing circuit for sensor output
Banjevic et al. Open-loop CMOS current transducer with low temperature cross-sensitivity
JP2003149276A (en) Electronic watt-hour meter