JP2013044641A - Magnetic sensor - Google Patents

Magnetic sensor Download PDF

Info

Publication number
JP2013044641A
JP2013044641A JP2011182529A JP2011182529A JP2013044641A JP 2013044641 A JP2013044641 A JP 2013044641A JP 2011182529 A JP2011182529 A JP 2011182529A JP 2011182529 A JP2011182529 A JP 2011182529A JP 2013044641 A JP2013044641 A JP 2013044641A
Authority
JP
Japan
Prior art keywords
connection point
series circuit
magnetic
magnetic field
magnetoresistive elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011182529A
Other languages
Japanese (ja)
Inventor
Masahiko Washihira
雅彦 鷲平
Masaya Ueda
雅也 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2011182529A priority Critical patent/JP2013044641A/en
Publication of JP2013044641A publication Critical patent/JP2013044641A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic sensor that can suppress fluctuation of an operating point and variations in resistance value ratios and in which temperature characteristics are improved.SOLUTION: A magnetic sensor 1 comprises a sensor circuit unit 2. The sensor circuit unit 2 includes a first series circuit 6 where first and third magnetic resistance elements R1, R3 are connected in series and a second series circuit 7 where second and fourth magnetic resistance elements R2, R4 are connected in series, and is constituted by a bridge circuit 5 where the first series circuit 6 and the second series circuit 7 are connected in parallel. Surfaces of the first through fourth magnetic resistance elements R1-R4 are covered with an insulator film 12. Further, the surfaces of the third magnetic resistance element R3 and the fourth magnetic resistance element R4 are formed with a magnetic flux magnetism collecting film 13 made of a magnetic material, with the insulator film 12 sandwiched therebetween.

Description

本発明は、磁気抵抗素子を用いて磁界を検出する磁気センサに関する。   The present invention relates to a magnetic sensor that detects a magnetic field using a magnetoresistive element.

一般に、4個の第1ないし第4の磁気抵抗素子によってブリッジ回路を構成した磁気センサが知られている(例えば、特許文献1参照)。第1の方向の磁界強さを大きくしていった場合、第1および第2の磁気抵抗素子の抵抗値は減少する傾向があり、第3および第4の磁気抵抗素子の抵抗値は不変である。一方、第1の方向と直角方向の磁界強さを大きくしていった場合、第3および第4の磁気抵抗素子の抵抗値は減少する傾向があり、第1および第2の磁気抵抗素子の抵抗値は不変である。第1の磁気抵抗素子と第3の磁気抵抗素子とは、第1の接続点を介して直列接続されて第1の直列回路をなし、第2の磁気抵抗素子と第4の磁気抵抗素子とは、第2の接続点を介して直列接続されて第2の直列回路をなす。さらに、第1の直列回路の第1の磁気抵抗素子側と第2の直列回路の第4の磁気抵抗素子側とは第3の接続点を介して共通接続されると共に、第1の直列回路の第3の磁気抵抗素子側と第2の直列回路の第2の磁気抵抗素子側とを第4の接続点を介して共通接続され、第3の接続点および第4の接続点を介して電源電圧が印加されると共に、第1の接続点および第2の接続点を介して磁界変化に伴う出力電圧が取り出される。なお、一般的に、4個の第1ないし第4の磁気抵抗素子は、互いに同じ温度特性となるように、同じ材料を用いてほぼ同じ形状に形成される。   In general, a magnetic sensor in which a bridge circuit is configured by four first to fourth magnetoresistive elements is known (see, for example, Patent Document 1). When the magnetic field strength in the first direction is increased, the resistance values of the first and second magnetoresistive elements tend to decrease, and the resistance values of the third and fourth magnetoresistive elements remain unchanged. is there. On the other hand, when the magnetic field strength in the direction perpendicular to the first direction is increased, the resistance values of the third and fourth magnetoresistive elements tend to decrease. The resistance value is unchanged. The first magnetoresistive element and the third magnetoresistive element are connected in series via the first connection point to form a first series circuit, and the second magnetoresistive element, the fourth magnetoresistive element, Are connected in series via the second connection point to form a second series circuit. Furthermore, the first magnetoresistive element side of the first series circuit and the fourth magnetoresistive element side of the second series circuit are commonly connected via a third connection point, and the first series circuit The third magnetoresistive element side and the second magnetoresistive element side of the second series circuit are commonly connected via a fourth connection point, and are connected via the third connection point and the fourth connection point. A power supply voltage is applied, and an output voltage accompanying a magnetic field change is taken out via the first connection point and the second connection point. In general, the four first to fourth magnetoresistive elements are formed in substantially the same shape using the same material so as to have the same temperature characteristics.

特開平7−297463号公報JP 7-297463 A

ところで、第1の方向から第2の方向に傾斜した磁界が磁気センサに作用すると、この磁界の第1の方向の成分によって第1および第2の磁気抵抗素子の抵抗値が変化するのに加えて、この磁界の第2の方向の成分によって第3および第4の磁気抵抗素子の抵抗値も変化する。この結果、例えば第1の接続点の電位と第2の接続点の電位の大きさが逆転する磁界強度を磁気センサの動作点としたときに、この動作点は磁気センサに与えられる磁界の方向に応じて変化する。具体的には、磁気センサに与えられる磁界を第1の方向から第2の方向に近づく方向に傾斜角度を順次変化させると、傾斜角度が大きくなるに従って、第3および第4の磁気抵抗素子の抵抗値の変化が大きくなるため、磁気センサの動作点の変動も大きくなるという問題がある。   By the way, when a magnetic field tilted from the first direction to the second direction acts on the magnetic sensor, the resistance values of the first and second magnetoresistive elements are changed by the component of the magnetic field in the first direction. Thus, the resistance values of the third and fourth magnetoresistive elements also change depending on the component of the magnetic field in the second direction. As a result, for example, when the magnetic field strength at which the potential of the first connection point and the potential of the second connection point are reversed is set as the operating point of the magnetic sensor, this operating point is the direction of the magnetic field applied to the magnetic sensor. It changes according to. Specifically, when the inclination angle of the magnetic field applied to the magnetic sensor is sequentially changed from the first direction toward the second direction, the third and fourth magnetoresistive elements increase as the inclination angle increases. Since the change in resistance value becomes large, there is a problem that the fluctuation of the operating point of the magnetic sensor also becomes large.

このような問題点を考慮して、特許文献1の磁気センサでは、第3および第4の磁気抵抗素子のパターン線幅を狭くすることで磁気抵抗効果を小さくし、第3および第4の磁気抵抗素子の感度を低下させている。しかし、第1および第2の磁気抵抗素子と、第3および第4の磁気抵抗素子とではパターン線幅が異なるため、磁気抵抗素子を形成する際の加工ばらつきの影響の度合いが異なる。この結果、第1と第2の磁気抵抗素子との間で抵抗値比と、第3と第4の磁気抵抗素子との間で抵抗値比に大きなばらつきが発生し、磁気センサの製造ロット毎に特性ばらつきが発生しやすいという問題がある。また、第1ないし第4の磁気抵抗素子のパターン線幅や厚さが異なる結果、各磁気抵抗素子の温度係数にばらつきが生じ、温度特性が一定しないという問題がある。   In consideration of such problems, the magnetic sensor of Patent Document 1 reduces the magnetoresistive effect by narrowing the pattern line width of the third and fourth magnetoresistive elements, and the third and fourth magnetic sensors. The sensitivity of the resistance element is reduced. However, since the pattern line width is different between the first and second magnetoresistive elements and the third and fourth magnetoresistive elements, the degree of influence of processing variations when forming the magnetoresistive elements is different. As a result, a large variation occurs in the resistance value ratio between the first and second magnetoresistive elements and the resistance value ratio between the third and fourth magnetoresistive elements. There is a problem that characteristic variations tend to occur. Further, as a result of different pattern line widths and thicknesses of the first to fourth magnetoresistive elements, there is a problem that the temperature coefficient of each magnetoresistive element varies and the temperature characteristics are not constant.

本発明は上述の問題に鑑みなされたものであり、本発明の目的は、動作点の変動と抵抗値比のばらつきを抑制することができると共に、温度特性を改善した磁気センサを提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a magnetic sensor that can suppress variation in operating point and variation in resistance value ratio, and that has improved temperature characteristics. is there.

上記課題を解決するために、請求項1の発明は、第1の方向の検知磁界が与えられると抵抗値が最大に変化する第1および第2の磁気抵抗素子と、第3および第4の磁気抵抗素子とを有し、前記第1の磁気抵抗素子と前記第3の磁気抵抗素子とを第1の接続点を介して直列接続してなる第1の直列回路と、前記第2の磁気抵抗素子と前記第4の磁気抵抗素子とを第2の接続点を介して直列接続してなる第2の直列回路とを、前記第1の直列回路の前記第1の磁気抵抗素子側と前記第2の直列回路の前記第4の磁気抵抗素子側とを第3の接続点を介して共通接続すると共に、前記第1の直列回路の前記第3の磁気抵抗素子側と前記第2の直列回路の前記第2の磁気抵抗素子側とを第4の接続点を介して共通接続し、前記第3の接続点および前記第4の接続点を介して電源電圧を印加すると共に、前記第1の接続点および前記第2の接続点を介して磁界変化に伴う出力電圧を取り出す磁気センサにおいて、前記第3および第4の磁気抵抗素子の表面に磁束集磁手段を設け、前記第1の方向の検知磁界と異なる方向の磁界が与えられたときに、前記第3および第4の磁気抵抗素子に印加される磁界を前記磁束集磁手段に集磁し、前記第3および第4の磁気抵抗素子の抵抗値の変化を低減したことを特徴としている。   In order to solve the above problem, the invention of claim 1 is characterized in that the first and second magnetoresistive elements whose resistance values change to the maximum when a detection magnetic field in the first direction is applied, and the third and fourth A first series circuit comprising a magnetoresistive element, wherein the first magnetoresistive element and the third magnetoresistive element are connected in series via a first connection point; and the second magnetism A second series circuit formed by connecting a resistance element and the fourth magnetoresistive element in series via a second connection point; a first magnetoresistive element side of the first series circuit; and The fourth series resistance side of the second series circuit is commonly connected via a third connection point, and the third series resistance side of the first series circuit and the second series are connected. The second magnetoresistive element side of the circuit is connected in common through a fourth connection point, and the third connection point and the circuit In the magnetic sensor for applying the power supply voltage through the four connection points and extracting the output voltage accompanying the magnetic field change through the first connection point and the second connection point, the third and fourth magnets Magnetic flux collecting means is provided on the surface of the resistance element, and when a magnetic field in a direction different from the detection magnetic field in the first direction is applied, the magnetic field applied to the third and fourth magnetoresistance elements is changed to the magnetic flux. The magnetic flux collecting means collects the magnetic flux and the change in the resistance value of the third and fourth magnetoresistive elements is reduced.

請求項2の発明は、第1の方向の検知磁界が与えられると抵抗値が最大に変化する第1および第2の磁気抵抗素子と、第3および第4の磁気抵抗素子とを有し、前記第1の磁気抵抗素子と前記第3の磁気抵抗素子とを第1の接続点を介して直列接続してなる第1の直列回路と、前記第2の磁気抵抗素子と前記第4の磁気抵抗素子とを第2の接続点を介して直列接続してなる第2の直列回路とを、前記第1の直列回路の前記第1の磁気抵抗素子側と前記第2の直列回路の前記第4の磁気抵抗素子側とを第3の接続点を介して共通接続すると共に、前記第1の直列回路の前記第3の磁気抵抗素子側と前記第2の直列回路の前記第2の磁気抵抗素子側とを第4の接続点を介して共通接続し、前記第3の接続点および前記第4の接続点を介して電源電圧を印加すると共に、前記第1の接続点および前記第2の接続点を介して磁界変化に伴う出力電圧を取り出す磁気センサにおいて、前記第1および第2の磁気抵抗素子の表面に第1の磁束集磁手段を設けると共に、該第1の磁束集磁手段よりも透磁率の大きい第2の磁束集磁手段を前記第3および第4の磁気抵抗素子の表面に設け、前記第1の方向の検知磁界と異なる方向の磁界が与えられたときに、前記第1および第2の磁気抵抗素子に印加される磁界が前記第1の磁束集磁手段に集磁される量に比べて、前記第3および第4の磁気抵抗素子に印加される磁界が前記第2の磁束集磁手段に集磁される量を多くなし、前記第1および第2の磁気抵抗素子の抵抗値の変化に比べて前記第3および第4の磁気抵抗素子の抵抗値の変化を低減したことを特徴としている。   The invention of claim 2 has first and second magnetoresistive elements whose resistance values change to the maximum when a detection magnetic field in the first direction is applied, and third and fourth magnetoresistive elements, A first series circuit formed by connecting the first magnetoresistive element and the third magnetoresistive element in series via a first connection point; the second magnetoresistive element; and the fourth magnetism. A second series circuit formed by connecting a resistive element in series via a second connection point, the first magnetoresistive element side of the first series circuit, and the second series circuit of the second series circuit; 4 and the second magnetoresistance element side of the first series circuit and the second magnetoresistance element of the second series circuit are connected in common through a third connection point. The element side is connected in common through the fourth connection point, and the power source power is supplied through the third connection point and the fourth connection point. And a first magnetic flux on the surfaces of the first and second magnetoresistive elements in a magnetic sensor that extracts an output voltage accompanying a magnetic field change through the first connection point and the second connection point. A magnetic flux collecting means is provided, and a second magnetic flux collecting means having a larger permeability than the first magnetic flux collecting means is provided on the surfaces of the third and fourth magnetoresistive elements. The magnetic field applied to the first and second magnetoresistive elements when a magnetic field in a direction different from the detected magnetic field is applied, compared to the amount of magnetic flux collected by the first magnetic flux collecting means. The amount of the magnetic field applied to the third and fourth magnetoresistive elements is increased by the second magnetic flux collecting means, and compared with the change in the resistance value of the first and second magnetoresistive elements. Reduced changes in the resistance values of the third and fourth magnetoresistive elements It is characterized in.

請求項3の発明では、前記第3および第4の接続点側には、前記第1の直列回路および前記第2の直列回路を挟むようにヨークが設けられている。   According to a third aspect of the present invention, a yoke is provided on the third and fourth connection point sides so as to sandwich the first series circuit and the second series circuit.

請求項1の発明では、第3および第4の磁気抵抗素子の表面に磁束集磁手段を設けたから、第1の方向の検知磁界と異なる方向の磁界が与えられたときに、第3および第4の磁気抵抗素子に印加される磁界を磁束集磁手段に集磁し、第3および第4の磁気抵抗素子の抵抗値の変化を低減することができる。このため、磁界が第1の方向から傾斜して作用したときでも、第3および第4の磁気抵抗素子の抵抗値の変化を小さくすることができ、磁気センサの動作点の変動を抑制することができる。   In the first aspect of the present invention, since the magnetic flux collecting means is provided on the surfaces of the third and fourth magnetoresistive elements, when a magnetic field in a direction different from the detected magnetic field in the first direction is applied, The magnetic field applied to the four magnetoresistive elements can be collected by the magnetic flux collecting means, and the change in the resistance values of the third and fourth magnetoresistive elements can be reduced. For this reason, even when the magnetic field acts with an inclination from the first direction, the change in the resistance value of the third and fourth magnetoresistive elements can be reduced, and the fluctuation of the operating point of the magnetic sensor can be suppressed. Can do.

また、第1ないし第4の磁気抵抗素子は全て同じパターン線幅や厚さで形成することができる。このため、磁気抵抗素子を形成する際の加工ばらつきが生じたときでも、第1および第2の磁気抵抗素子と第3および第4の磁気抵抗素子との間で抵抗値比は殆ど変わらないから、抵抗値比のばらつきを抑制することができる。さらに、第1ないし第4の磁気抵抗素子のパターン線幅や厚さ、および、成膜材料をそろえたことにより、第1ないし第4の磁気抵抗素子の各温度抵抗係数をほぼ一定にすることができる。また、表皮効果によって各磁気抵抗素子の表面近傍には電流が集中して流れるが、第1ないし第4の磁気抵抗素子のパターン線幅や厚さをそろえたことにより、各磁気抵抗素子に及ぼす表皮効果の影響はほぼ一定となる。これらの結果、磁気センサを構成する第1ないし第4の磁気抵抗素子に係る、温度係数のばらつきを低減することができる。   The first to fourth magnetoresistive elements can all be formed with the same pattern line width and thickness. For this reason, even when processing variations occur when forming the magnetoresistive element, the resistance value ratio hardly changes between the first and second magnetoresistive elements and the third and fourth magnetoresistive elements. The variation in resistance value ratio can be suppressed. Further, by arranging the pattern line width and thickness of the first to fourth magnetoresistive elements and the film forming materials, the temperature resistance coefficients of the first to fourth magnetoresistive elements are made substantially constant. Can do. Further, although the current flows in the vicinity of the surface of each magnetoresistive element due to the skin effect, the pattern line widths and thicknesses of the first to fourth magnetoresistive elements are made uniform, thereby affecting each magnetoresistive element. The effect of the skin effect is almost constant. As a result, it is possible to reduce variations in temperature coefficients related to the first to fourth magnetoresistive elements constituting the magnetic sensor.

請求項2の発明では、第1および第2の磁気抵抗素子の表面に第1の磁束集磁手段を設けると共に、第3および第4の磁気抵抗素子の表面に第1の磁束集磁手段よりも透磁率の大きい第2の磁束集磁手段を設ける構成とした。このため、第1の方向の検知磁界と異なる方向の磁界が与えられたときに、第1および第2の磁気抵抗素子に印加される磁界が第1の磁束集磁手段に集磁される量に比べて、第3および第4の磁気抵抗素子に印加される磁界が第2の磁束集磁手段に集磁される量を多くして、第1および第2の磁気抵抗素子の抵抗値の変化に比べて第3および第4の磁気抵抗素子の抵抗値の変化を低減することができる。このため、磁界が第1の方向から傾斜して作用したときでも、第3および第4の磁気抵抗素子の抵抗値の変化を小さくすることができ、磁気センサの動作点の変動を抑制することができる。   In the invention of claim 2, the first magnetic flux collecting means is provided on the surfaces of the first and second magnetoresistive elements, and the first magnetic flux collecting means is provided on the surfaces of the third and fourth magnetoresistive elements. Also, the second magnetic flux collecting means having a high magnetic permeability is provided. For this reason, when a magnetic field in a direction different from the detection magnetic field in the first direction is applied, the amount by which the magnetic field applied to the first and second magnetoresistive elements is collected by the first magnetic flux collecting means The amount of magnetic field applied to the third and fourth magnetoresistive elements is increased by the second magnetic flux collecting means, and the resistance values of the first and second magnetoresistive elements are increased. Compared with the change, the change in the resistance value of the third and fourth magnetoresistance elements can be reduced. For this reason, even when the magnetic field acts with an inclination from the first direction, the change in the resistance value of the third and fourth magnetoresistive elements can be reduced, and the fluctuation of the operating point of the magnetic sensor can be suppressed. Can do.

また、第1ないし第4の磁気抵抗素子は全て同じパターン線幅や厚さで形成することができるから、請求項1の発明と同様に、抵抗値比のばらつきを抑制することができ、また、磁気センサを構成する第1ないし第4の磁気抵抗素子に係る温度係数のばらつきを低減することができる。   In addition, since all of the first to fourth magnetoresistive elements can be formed with the same pattern line width and thickness, variation of the resistance value ratio can be suppressed as in the first aspect of the invention, and In addition, it is possible to reduce variations in temperature coefficients related to the first to fourth magnetoresistive elements constituting the magnetic sensor.

請求項3の発明では、第3および第4の接続点側には、第1の直列回路および第2の直列回路を挟むようにヨークを設けたから、ヨークの間では第1の方向に沿うように磁界を形成することができる。このため、第2の方向の磁界を低減することができるから、磁気センサの動作点の変動や抵抗値比のばらつきをさらに抑制することができる。   In the invention of claim 3, since the yoke is provided on the third and fourth connection point sides so as to sandwich the first series circuit and the second series circuit, the yokes are arranged along the first direction. A magnetic field can be formed. For this reason, since the magnetic field of a 2nd direction can be reduced, the fluctuation | variation of the operating point of a magnetic sensor and the dispersion | variation in resistance value ratio can further be suppressed.

本発明の第1の実施の形態による磁気センサを示す正面図である。It is a front view which shows the magnetic sensor by the 1st Embodiment of this invention. 磁気センサを図1中の矢示II−II方向からみた断面図である。It is sectional drawing which looked at the magnetic sensor from the arrow II-II direction in FIG. 磁気センサを示す回路図である。It is a circuit diagram which shows a magnetic sensor. 磁気センサに作用する磁界を示す説明図である。It is explanatory drawing which shows the magnetic field which acts on a magnetic sensor. 比較例において、磁界のY方向成分の強度と出力電圧との関係を示す特性線図である。In a comparative example, it is a characteristic line figure showing the relation between the intensity of the Y direction component of a magnetic field, and the output voltage. 第2の実施の形態による磁気センサを示す正面図である。It is a front view which shows the magnetic sensor by 2nd Embodiment. 第3の実施の形態による磁気センサを示す正面図である。It is a front view which shows the magnetic sensor by 3rd Embodiment. 図7中の磁気センサにX方向成分を含む磁界が作用した状態を示す説明図である。It is explanatory drawing which shows the state which the magnetic field containing an X direction component acted on the magnetic sensor in FIG. 図7中の磁気センサにX方向成分を含まない磁界が作用した状態を示す説明図である。It is explanatory drawing which shows the state which the magnetic field which does not contain an X direction component acted on the magnetic sensor in FIG. 磁気センサを図7中の矢示X−X方向からみた断面図である。It is sectional drawing which looked at the magnetic sensor from the arrow XX direction in FIG. 変形例による磁気センサを示す図10と同様な位置の断面図である。It is sectional drawing of the position similar to FIG. 10 which shows the magnetic sensor by a modification.

以下、本発明の実施の形態による磁気センサについて、添付図面を参照しつつ詳細に説明する。   Hereinafter, a magnetic sensor according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1ないし図4を用いて、第1の実施の形態による磁気センサ1を説明する。磁気センサ1は、磁性薄膜磁気抵抗素子からなるセンサ回路部2および差動増幅器3とを備え、パッケージ内部に集積化することで小型化され、AMR−IC(Anisotropic Magneto Resistance Integrated Circuit)として形成される。   The magnetic sensor 1 according to the first embodiment will be described with reference to FIGS. The magnetic sensor 1 includes a sensor circuit unit 2 made of a magnetic thin film magnetoresistive element and a differential amplifier 3, and is miniaturized by being integrated inside the package, and is formed as an AMR-IC (Anisotropic Magneto Resistance Integrated Circuit). The

センサ回路部2は、例えば互いに直交したX方向およびY方向に沿って広がる基板4の表面に形成される。センサ回路部2は、4個の磁気抵抗素子R1〜R4から構成される。磁気抵抗素子R1〜R4は、長い短冊状パターンと、短い短冊状パターンとを交互に接続することで、ミアンダ状に形成される。第1および第2の磁気抵抗素子R1,R2における長い短冊状パターンの伸長方向はX方向に沿って延び、第1の方向となるY方向の検知磁界が与えられると抵抗値は最も小さくなる。一方、第3および第4の磁気抵抗素子R3,R4における長い短冊状パターンの伸長方向はY方向に沿って延び、第2の方向となるX方向の検知磁界が与えられると抵抗値は最も小さくなる。なお、磁気抵抗素子R1〜R4は、例えば、磁気抵抗材料であるパーマロイ(NiFe)等を基板4に成膜したのち、フォトリソグラフィ技術等の微細加工技術を用いて所定形状に形成される。   The sensor circuit unit 2 is formed, for example, on the surface of the substrate 4 extending along the X direction and the Y direction orthogonal to each other. The sensor circuit unit 2 is composed of four magnetoresistive elements R1 to R4. The magnetoresistive elements R1 to R4 are formed in a meander shape by alternately connecting a long strip-shaped pattern and a short strip-shaped pattern. The extending direction of the long strip pattern in the first and second magnetoresistive elements R1 and R2 extends along the X direction, and the resistance value becomes the smallest when a detection magnetic field in the Y direction which is the first direction is given. On the other hand, the elongated strip pattern extending in the third and fourth magnetoresistive elements R3 and R4 extends in the Y direction, and the resistance value is smallest when a detection magnetic field in the X direction, which is the second direction, is applied. Become. The magnetoresistive elements R1 to R4 are formed in a predetermined shape by using, for example, a micro processing technique such as a photolithography technique after depositing a permalloy (NiFe), which is a magnetoresistive material, on the substrate 4.

図1に示すように、第1の磁気抵抗素子R1は、基板4の左下に配置形成されると共に、第2の磁気抵抗素子R2は基板4の右上に配置形成される。また、第3の磁気抵抗素子R3は基板4の左上に配置形成される共に、第4の磁気抵抗素子R4は基板4の右下に配置形成される。   As shown in FIG. 1, the first magnetoresistive element R <b> 1 is disposed and formed on the lower left side of the substrate 4, and the second magnetoresistive element R <b> 2 is disposed and formed on the upper right side of the substrate 4. The third magnetoresistive element R3 is disposed and formed on the upper left side of the substrate 4, and the fourth magnetoresistive element R4 is disposed and formed on the lower right side of the substrate 4.

これら第1ないし第4の磁気抵抗素子R1〜R4はフルブリッジで接続され、ブリッジ回路5を構成する。具体的には、第1の磁気抵抗素子R1と第3の磁気抵抗素子R3とを第1の接続点P1を介して直列接続することにより、第1の直列回路6を構成する。また、第2の磁気抵抗素子R2と第4の磁気抵抗素子R4とを第2の接続点P2を介して直列接続することにより、第2の直列回路7を構成する。   The first to fourth magnetoresistive elements R1 to R4 are connected by a full bridge to form a bridge circuit 5. Specifically, the first series circuit 6 is configured by connecting the first magnetoresistive element R1 and the third magnetoresistive element R3 in series via the first connection point P1. The second series circuit 7 is configured by connecting the second magnetoresistive element R2 and the fourth magnetoresistive element R4 in series via the second connection point P2.

第1の直列回路6の第1の磁気抵抗素子R1側と第2の直列回路7の第4の磁気抵抗素子R4側とを第3の接続点P3を介して共通接続する。第1の直列回路6の第3の磁気抵抗素子R3側と第2の直列回路7の第2の磁気抵抗素子R2側とを第4の接続点P4を介して共通接続する。これにより、第1の直列回路6と第2の直列回路7が並列接続され、ブリッジ回路5が構成される。   The first magnetoresistive element R1 side of the first series circuit 6 and the fourth magnetoresistive element R4 side of the second series circuit 7 are commonly connected via a third connection point P3. The third magnetoresistive element R3 side of the first series circuit 6 and the second magnetoresistive element R2 side of the second series circuit 7 are commonly connected via a fourth connection point P4. As a result, the first series circuit 6 and the second series circuit 7 are connected in parallel to form the bridge circuit 5.

そして、第3の接続点P3は、外部のグランドGNDに接続するためのグランド端子8が電気的に接続される。また、第4の接続点P4は、駆動電圧Vddを供給するための駆動電圧端子9が電気的に接続される。これにより、ブリッジ回路5には、第3の接続点P3および第4の接続点P4を介して電源電圧となる駆動電圧Vddが印加される。   The third connection point P3 is electrically connected to a ground terminal 8 for connection to an external ground GND. Further, the drive voltage terminal 9 for supplying the drive voltage Vdd is electrically connected to the fourth connection point P4. As a result, the drive voltage Vdd serving as the power supply voltage is applied to the bridge circuit 5 via the third connection point P3 and the fourth connection point P4.

一方、第1の接続点P1および第2の接続点P2は、出力電圧V1,V2を取り出すための出力端子10,11がそれぞれ電気的に接続される。これにより、ブリッジ回路5は、第1の接続点P1および第2の接続点P2を介して磁界変化に伴う出力電圧V1,V2を取り出すことができる。   On the other hand, the first connection point P1 and the second connection point P2 are electrically connected to output terminals 10 and 11 for extracting output voltages V1 and V2, respectively. Thereby, the bridge circuit 5 can take out the output voltages V1 and V2 accompanying the magnetic field change through the first connection point P1 and the second connection point P2.

差動増幅器3の入力端子は、第1の接続点P1および第2の接続点P2にそれぞれ接続される。差動増幅器3は、2つの入力端子の間に生じる電位差、即ち出力電圧V1,V2間の電位差(V1−V2)を差動増幅し、検出信号Voutを出力する。   The input terminal of the differential amplifier 3 is connected to the first connection point P1 and the second connection point P2, respectively. The differential amplifier 3 differentially amplifies a potential difference generated between two input terminals, that is, a potential difference (V1−V2) between the output voltages V1 and V2, and outputs a detection signal Vout.

第1ないし第4の磁気抵抗素子R1〜R4の表面には、絶縁材料からなる絶縁膜12が形成される。また、第3の磁気抵抗素子R3および第4の磁気抵抗素子R4を覆うように、絶縁膜12の表面には、磁性材料で形成されてなる磁束集磁手段としての、略四角形状の磁束集磁膜13が設けられる。   An insulating film 12 made of an insulating material is formed on the surfaces of the first to fourth magnetoresistive elements R1 to R4. Further, a substantially quadrangular magnetic flux collecting means is provided on the surface of the insulating film 12 as a magnetic flux collecting means formed of a magnetic material so as to cover the third magnetoresistive element R3 and the fourth magnetoresistive element R4. A magnetic film 13 is provided.

磁束集磁膜13は、例えば蒸着、スパッタ等の成膜手段を用いて形成した金属膜やセラミック膜でもよく、磁性体粉末を混入した樹脂を塗布した膜でもよい。磁束集磁膜13の透磁率、厚さ寸法、磁気抵抗素子R3,R4との離間寸法(絶縁膜12の厚さ寸法)等は、磁束集磁膜13を設けた場合においてX方向の磁界を与えたときの磁気抵抗素子R3,R4の抵抗値と、磁束集磁膜13を設けない場合において同じ強度のX方向の磁界を与えたときの磁気抵抗素子R3,R4の抵抗値との比が、磁気センサの仕様に応じて所定の割合以下、例えば1/2以下となるように設定される。なお、磁束集磁膜13は一般的に、透磁率が大きく、厚さが厚いことが磁束集磁効果を高めるために望ましい。これにより、Y方向以外の磁界φが与えられたときには、磁界φを磁束集磁膜13に集磁して、第3および第4の磁気抵抗素子R3,R4に印加される磁界φを低減することができる。   The magnetic flux collecting film 13 may be a metal film or a ceramic film formed by using a film forming means such as vapor deposition or sputtering, or may be a film coated with a resin mixed with magnetic powder. When the magnetic flux collecting film 13 is provided, the magnetic permeability of the magnetic flux collecting film 13, the thickness dimension, the distance from the magnetoresistive elements R 3 and R 4 (thickness dimension of the insulating film 12), etc. The ratio between the resistance values of the magnetoresistive elements R3 and R4 when applied and the resistance values of the magnetoresistive elements R3 and R4 when the magnetic field in the X direction having the same strength is applied when the magnetic flux collecting film 13 is not provided. Depending on the specifications of the magnetic sensor, it is set to a predetermined ratio or less, for example, 1/2 or less. In general, it is desirable that the magnetic flux collecting film 13 has a high magnetic permeability and a large thickness in order to enhance the magnetic flux collecting effect. Thus, when a magnetic field φ other than the Y direction is applied, the magnetic field φ is collected on the magnetic flux collecting film 13 to reduce the magnetic field φ applied to the third and fourth magnetoresistive elements R3 and R4. be able to.

本発明の実施の形態による磁気センサ1は以上のような構成を有するものであり、次に磁界の検出動作について説明する。   The magnetic sensor 1 according to the embodiment of the present invention has the above-described configuration. Next, a magnetic field detection operation will be described.

最初に、磁束集磁膜13を設けていない比較例としての磁気センサの、磁界の検出動作について説明する。まず、磁気センサに、Y方向成分φyのみからなり、X方向成分φxは存在しない+(プラス)向きのY方向の磁界φを与える。このとき、磁界φの強度が大きくなるにつれ、即ち、+向きのY方向成分φyが大きくなるにつれて、第1および第2の磁気抵抗素子R1,R2の抵抗値が減少する。一方、磁界φの強度が大きくなってもX方向成分φxは存在しないため、第3および第4の磁気抵抗素子R3,R4の抵抗値は殆ど変化しない。このため、図5中に実線で示すように、+向きのY方向成分φyの強度が大きくなるに従って、接続点P1の出力電圧V1が減少し、接続点P2の出力電圧V2が増加する。なお、+向きと180度方向が異なる、−(マイナス)向きのY方向成分φyの場合についても、+向きのY方向成分φyと同様の出力特性となる。   First, a magnetic field detection operation of a magnetic sensor as a comparative example in which the magnetic flux collecting film 13 is not provided will be described. First, a magnetic field φ in the Y direction, which is composed only of the Y direction component φy and does not exist in the X direction component φx, is provided to the magnetic sensor. At this time, as the strength of the magnetic field φ increases, that is, as the positive Y-direction component φy increases, the resistance values of the first and second magnetoresistive elements R 1 and R 2 decrease. On the other hand, since the X-direction component φx does not exist even when the strength of the magnetic field φ increases, the resistance values of the third and fourth magnetoresistive elements R3 and R4 hardly change. Therefore, as indicated by the solid line in FIG. 5, as the intensity of the Y-direction component φy in the + direction increases, the output voltage V1 at the connection point P1 decreases and the output voltage V2 at the connection point P2 increases. In the case of the Y direction component φy in the − (minus) direction, which is different from the + direction by 180 degrees, the output characteristics are the same as those in the + direction Y direction component φy.

ここで、Y方向成分φyの強度が0(A/m)(φy=0(A/m))のときに、接続点P1の出力電圧V1が接続点P2の出力電圧V2よりも大きくなるように、磁気抵抗素子R1,R3の抵抗値を設定する。これにより、Y方向成分φyの強度が0(A/m)付近となるときには、差動増幅器3の検出信号Voutは、Highレベルとなる。Y方向成分φyの強度が増加して動作点φy0に達すると、接続点P1の出力電圧V1と接続点P2の出力電圧V2がほぼ同じ値となる。そして、Y方向成分φyの強度が動作点φy0を超えて増加すると、接続点P1の出力電圧V1が接続点P2の出力電圧V2よりも小さくなり、差動増幅器3の検出信号Voutは、Lowレベルに切り換わる。   Here, when the intensity of the Y-direction component φy is 0 (A / m) (φy = 0 (A / m)), the output voltage V1 at the connection point P1 is larger than the output voltage V2 at the connection point P2. The resistance values of the magnetoresistive elements R1 and R3 are set. As a result, when the intensity of the Y-direction component φy is near 0 (A / m), the detection signal Vout of the differential amplifier 3 is at a high level. When the intensity of the Y-direction component φy increases and reaches the operating point φy0, the output voltage V1 at the connection point P1 and the output voltage V2 at the connection point P2 become substantially the same value. When the intensity of the Y direction component φy increases beyond the operating point φy0, the output voltage V1 at the connection point P1 becomes smaller than the output voltage V2 at the connection point P2, and the detection signal Vout of the differential amplifier 3 is at the low level. Switch to.

一方、Y方向からX方向に向けて傾斜した磁界φが与えられたときには、磁界φの向きのY方向成分φyに応じて第1および第2の磁気抵抗素子R1,R2の抵抗値が変化し、Y方向成分φyの強度が大きくなるに従って、第1および第2の磁気抵抗素子R1,R2の抵抗値が減少する。このとき、±向きのY方向成分φyが大きくなると、±向きのX方向成分φxも大きくなるのに加え、磁界φの±向きのX方向成分φxの強度に応じて第3および第4の磁気抵抗素子R3,R4の抵抗値が変化する。   On the other hand, when a magnetic field φ tilted from the Y direction toward the X direction is applied, the resistance values of the first and second magnetoresistive elements R1 and R2 change according to the Y direction component φy of the direction of the magnetic field φ. As the strength of the Y direction component φy increases, the resistance values of the first and second magnetoresistive elements R1, R2 decrease. At this time, when the ± direction Y-direction component φy increases, the ± direction X-direction component φx also increases, and in addition, the third and fourth magnetic fields according to the intensity of the ± direction X-direction component φx of the magnetic field φ. Resistance values of the resistance elements R3 and R4 change.

このため、図5中に破線で示すように、±向きのX方向成分φxを含む磁界φが作用したときには、±向きのY方向成分φyの強度が変化しても、接続点P1,P2の出力電圧V1,V2の変化が小さくなる。この結果、差動増幅器3の検出信号VoutがLowレベルからHighレベルに切り換わるときの磁界φのY方向成分φyの強度、即ち動作点φy1は、Y方向成分φyだけの磁界φが与えられたときの動作点φy0に比べて大きくなり、磁界の検出感度が低下する傾向がある。   Therefore, as shown by the broken line in FIG. 5, when a magnetic field φ including a ± direction X-direction component φx is applied, even if the intensity of the ± direction Y-direction component φy changes, the connection points P1, P2 Changes in the output voltages V1 and V2 are reduced. As a result, the intensity of the Y-direction component φy of the magnetic field φ when the detection signal Vout of the differential amplifier 3 switches from the Low level to the High level, that is, the operating point φy1, is given the magnetic field φ of only the Y-direction component φy. The operating point becomes larger than the operating point φy0, and the magnetic field detection sensitivity tends to decrease.

次に、本実施の形態による磁気センサ1での磁界の検出動作について説明する。本実施の形態による磁気センサ1でも、±向きのX方向成分φxを含まない磁界φが作用したときには、前述した比較例とほぼ同様な検出動作を行う。このため、磁界φの±向きのY方向成分φyの強度が大きくなるに従って、接続点P1の出力電圧V1が低下し、接続点P2の出力電圧V2が増加する。そして、±向きのY方向成分φyの強度が動作点φy0よりも小さいときには、差動増幅器3の検出信号VoutはHighレベルとなり、Y方向成分φyの強度が動作点φy0よりも大きいときには、差動増幅器3の検出信号Voutは、Lowレベルになる。   Next, the magnetic field detection operation in the magnetic sensor 1 according to the present embodiment will be described. Also in the magnetic sensor 1 according to the present embodiment, when a magnetic field φ that does not include the ± direction X-direction component φx is applied, a detection operation substantially similar to that of the comparative example described above is performed. For this reason, as the intensity of the Y direction component φy in the ± direction of the magnetic field φ increases, the output voltage V1 at the connection point P1 decreases and the output voltage V2 at the connection point P2 increases. When the intensity of the Y direction component φy in the ± direction is smaller than the operating point φy0, the detection signal Vout of the differential amplifier 3 is at a high level, and when the intensity of the Y direction component φy is larger than the operating point φy0, The detection signal Vout of the amplifier 3 becomes a low level.

一方、±向きのX方向成分φxを含む磁界φが作用したときには、本実施の形態による磁気センサ1は、比較例と異なり、±向きのX方向成分φxの影響を低減して、±向きのY方向成分φyだけの磁界φが与えられたときに近い検出動作を行うことができる。   On the other hand, when the magnetic field φ including the ± direction X-direction component φx is applied, the magnetic sensor 1 according to the present embodiment, unlike the comparative example, reduces the influence of the ± direction X-direction component φx, A near detection operation can be performed when a magnetic field φ of only Y-direction component φy is given.

具体的に説明すると、本実施の形態による磁気センサ1では、第3および第4の磁気抵抗素子R3,R4の表面には磁束集磁膜13を設けた。このため、±向きのY方向から傾いた磁界φが与えられたときには、第1および第2の磁気抵抗素子R1,R2には磁界φがそのまま作用するのに対し、第3および第4の磁気抵抗素子R3,R4付近の磁界φは、磁束集磁膜13に引き付けられ、第3および第4の磁気抵抗素子R3,R4には作用し難い。この結果、±向きのX方向成分φxを含む磁界φが与えられたときでも、第3および第4の磁気抵抗素子R3,R4の抵抗値の変化を小さくすることができるから、±向きのX方向成分φxの影響を抑えて、主に±向きのY方向成分φyによって出力電圧V1,V2を変化させることができる。従って、X方向成分φxを含む磁界φが与えられたときでも、差動増幅器3の検出信号VoutがHighレベルからLowレベルに切り換わるときの動作点を、Y方向成分φyだけの磁界φが与えられたときの動作点φy0に近付けることができ、動作点の変動を小さくすることができる。   Specifically, in the magnetic sensor 1 according to the present embodiment, the magnetic flux collecting film 13 is provided on the surfaces of the third and fourth magnetoresistive elements R3 and R4. For this reason, when a magnetic field φ tilted from the ± Y direction is applied, the magnetic field φ acts on the first and second magnetoresistive elements R 1 and R 2 as they are, whereas the third and fourth magnetisms. The magnetic field φ in the vicinity of the resistance elements R3 and R4 is attracted to the magnetic flux collecting film 13 and hardly acts on the third and fourth magnetoresistance elements R3 and R4. As a result, even when the magnetic field φ including the X direction component φx in the ± direction is applied, the change in the resistance value of the third and fourth magnetoresistive elements R3 and R4 can be reduced. The output voltages V1 and V2 can be changed mainly by the Y direction component φy in the ± direction while suppressing the influence of the direction component φx. Therefore, even when the magnetic field φ including the X-direction component φx is applied, the operating point when the detection signal Vout of the differential amplifier 3 switches from the high level to the low level is given by the magnetic field φ of only the Y-direction component φy. Therefore, the operating point φy0 can be approached, and the operating point variation can be reduced.

また、第1ないし第4の磁気抵抗素子R1〜R4は全て同じパターン線幅や厚さで形成することができる。このため、磁気抵抗素子R1〜R4を形成する際の加工ばらつきが生じたときでも、第1および第2の磁気抵抗素子R1,R2と第3および第4の磁気抵抗素子R3,R4との間で抵抗値比は殆ど変わらないから、抵抗値比のばらつきを抑制することができ、センサ毎の特性ばらつきを小さくすることができる。さらに、第1ないし第4の磁気抵抗素子R1〜R4のパターン線幅や厚さ、および、成膜材料をそろえたことにより、第1ないし第4の磁気抵抗素子R1〜R4の各温度抵抗係数をほぼ一定にすることができる。また、表皮効果によって各磁気抵抗素子の表面近傍には電流が集中して流れるが、第1ないし第4の磁気抵抗素子R1〜R4のパターン線幅や厚さをそろえたことにより、各磁気抵抗素子に及ぼす表皮効果の影響はほぼ一定となる。これらの結果、磁気センサ1を構成する第1ないし第4の磁気抵抗素子R1〜R4に係る、温度係数のばらつきを低減することができる。   The first to fourth magnetoresistive elements R1 to R4 can all be formed with the same pattern line width and thickness. For this reason, even when processing variations occur when forming the magnetoresistive elements R1 to R4, the first and second magnetoresistive elements R1 and R2 and the third and fourth magnetoresistive elements R3 and R4 Therefore, since the resistance value ratio hardly changes, the variation of the resistance value ratio can be suppressed, and the characteristic variation for each sensor can be reduced. Further, by arranging the pattern line width and thickness of the first to fourth magnetoresistive elements R1 to R4 and the film forming materials, the temperature resistance coefficients of the first to fourth magnetoresistive elements R1 to R4 are arranged. Can be made almost constant. In addition, the current concentrates near the surface of each magnetoresistive element due to the skin effect. However, by aligning the pattern line widths and thicknesses of the first to fourth magnetoresistive elements R1 to R4, The effect of the skin effect on the element is almost constant. As a result, it is possible to reduce variations in temperature coefficients related to the first to fourth magnetoresistive elements R1 to R4 constituting the magnetic sensor 1.

次に、図6に、第2の実施の形態による磁気センサを示す。第2の実施の形態の特徴は、第1および第2の磁気抵抗素子の表面に第1の磁束集磁手段を設けると共に、第1の磁束集磁手段よりも透磁率の大きい第2の磁束集磁手段を第3および第4の磁気抵抗素子の表面に設けたことにある。なお、第2の実施の形態では第1の実施の形態と同一の構成要素には同一の符号を付し、その説明を省略するものとする。   Next, FIG. 6 shows a magnetic sensor according to the second embodiment. The feature of the second embodiment is that the first magnetic flux collecting means is provided on the surfaces of the first and second magnetoresistive elements, and the second magnetic flux having a larger permeability than the first magnetic flux collecting means. The magnetism collecting means is provided on the surfaces of the third and fourth magnetoresistive elements. In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

第2の実施の形態による磁気センサ21は、第1の実施の形態による磁気センサ1と同様に、センサ回路部2を備えると共に、このセンサ回路部2は、第1および第3の磁気抵抗素子R1,R3を直列接続した第1の直列回路6と、第2および第4の磁気抵抗素子R2,R4を直列接続した第2の直列回路7とを並列接続したブリッジ回路5によって構成されている。そして、第1ないし第4の磁気抵抗素子R1〜R4の表面は絶縁膜12によって覆われる。   Similar to the magnetic sensor 1 according to the first embodiment, the magnetic sensor 21 according to the second embodiment includes a sensor circuit unit 2, and the sensor circuit unit 2 includes first and third magnetoresistive elements. The bridge circuit 5 includes a first series circuit 6 in which R1 and R3 are connected in series and a second series circuit 7 in which the second and fourth magnetoresistive elements R2 and R4 are connected in series. . The surfaces of the first to fourth magnetoresistive elements R1 to R4 are covered with the insulating film 12.

第1の磁気抵抗素子R1および第2の磁気抵抗素子R2の表面には、絶縁膜12を挟んで磁性材料からなる第1の磁束集磁手段としての第1の磁束集磁膜22が形成される。また、第3の磁気抵抗素子R3および第4の磁気抵抗素子R4の表面には、絶縁膜12を挟んで磁性材料からなる第2の磁束集磁手段としての第2の磁束集磁膜23が形成される。第2の磁束集磁膜23の透磁率は、第1の磁束集磁膜22の透磁率よりも大きい。   On the surfaces of the first magnetoresistive element R1 and the second magnetoresistive element R2, a first magnetic flux collecting film 22 is formed as a first magnetic flux collecting means made of a magnetic material with the insulating film 12 interposed therebetween. The A second magnetic flux collecting film 23 as a second magnetic flux collecting means made of a magnetic material is sandwiched between the surfaces of the third magnetoresistive element R3 and the fourth magnetoresistive element R4. It is formed. The magnetic permeability of the second magnetic flux collecting film 23 is larger than the magnetic permeability of the first magnetic flux collecting film 22.

これにより、Y方向の検知磁界と異なる方向の磁界が与えられたときに、第1および第2の磁気抵抗素子R1,R2に印加される磁界が第1の磁束集磁膜22に集磁される量に比べて、第3および第4の磁気抵抗素子R3,R4に印加される磁界が第2の磁束集磁膜23に集磁される量を多くなる。この結果、第1および第2の磁気抵抗素子R1,R2の抵抗値の変化に比べて第3および第4の磁気抵抗素子R3,R4の抵抗値の変化を低減することができる。   Thereby, when a magnetic field in a direction different from the detection magnetic field in the Y direction is applied, the magnetic field applied to the first and second magnetoresistive elements R 1 and R 2 is collected in the first magnetic flux collecting film 22. The amount of the magnetic field applied to the third and fourth magnetoresistive elements R 3 and R 4 is collected by the second magnetic flux collecting film 23 is larger than the amount of the magnetic flux collecting film 23. As a result, the change in resistance value of the third and fourth magnetoresistive elements R3, R4 can be reduced compared to the change in resistance value of the first and second magnetoresistive elements R1, R2.

かくして、第2の実施の形態でも第1の実施の形態と同様の作用効果を得ることができる。   Thus, the second embodiment can provide the same effects as those of the first embodiment.

次に、図7ないし図10に、第3の実施の形態による磁気センサを示す。第3の実施の形態の特徴は、第3および第4の接続点側に、第1の直列回路および第2の直列回路を挟むようにヨークを設けたことにある。なお、第3の実施の形態では第1の実施の形態と同一の構成要素には同一の符号を付し、その説明を省略するものとする。   Next, FIGS. 7 to 10 show a magnetic sensor according to a third embodiment. A feature of the third embodiment is that a yoke is provided on the third and fourth connection point sides so as to sandwich the first series circuit and the second series circuit. In the third embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

磁気センサ31は、第1の実施の形態による磁気センサ1と同様、センサ回路部2を備えると共に、このセンサ回路部2は、第1および第3の磁気抵抗素子R1,R3を直列接続した第1の直列回路6と、第2および第4の磁気抵抗素子R2,R4を直列接続した第2の直列回路7とを並列接続したブリッジ回路5によって構成されている。   Similar to the magnetic sensor 1 according to the first embodiment, the magnetic sensor 31 includes a sensor circuit unit 2, and the sensor circuit unit 2 includes a first magnetoresistive element R 1 and a third magnetoresistive element R 3 connected in series. 1 and a bridge circuit 5 in which a second series circuit 7 in which the second and fourth magnetoresistive elements R2 and R4 are connected in series is connected in parallel.

そして、第1ないし第4の磁気抵抗素子R1〜R4の表面は絶縁膜12によって覆われる。また、第3の磁気抵抗素子R3および第4の磁気抵抗素子R4の表面には、絶縁膜12を挟んで磁性材料からなる磁束集磁膜13が形成される。   The surfaces of the first to fourth magnetoresistive elements R1 to R4 are covered with the insulating film 12. A magnetic flux collecting film 13 made of a magnetic material is formed on the surfaces of the third magnetoresistive element R3 and the fourth magnetoresistive element R4 with the insulating film 12 interposed therebetween.

ヨーク32,33は、磁性体材料を用いて細長いブロック状に形成される。このヨーク32,33は、チップ状の基板4とは別個に設けられ、基板4をY方向両側から挟む位置に配置される。このとき、ヨーク32は、第3の接続点P3側(図7の基板4の下側)に配置され、ヨーク33は、第4の接続点P4側(図7の基板4の上側)に配置される。そして、ヨーク32,33は、第1の直列回路6および第2の直列回路7を磁界の検知方向、即ちY方向両側から挟んでいる。   The yokes 32 and 33 are formed in an elongated block shape using a magnetic material. The yokes 32 and 33 are provided separately from the chip-like substrate 4 and are disposed at positions sandwiching the substrate 4 from both sides in the Y direction. At this time, the yoke 32 is disposed on the third connection point P3 side (lower side of the substrate 4 in FIG. 7), and the yoke 33 is disposed on the fourth connection point P4 side (upper side of the substrate 4 in FIG. 7). Is done. The yokes 32 and 33 sandwich the first series circuit 6 and the second series circuit 7 from both sides of the magnetic field detection direction, that is, the Y direction.

ヨーク32,33のX方向の長さ寸法は、第1,第3の磁気抵抗素子R1,R3の長さ寸法と第4,第2の磁気抵抗素子R4,R2の長さ寸法とを加えた値よりも大きく形成され、具体的には基板4よりも大きく形成される。また、ヨーク32,33の厚さ寸法は、例えば磁気抵抗素子R1〜R4と基板4とを含めた高さ寸法よりも大きく形成される。これにより、Y方向から基板4を見たときには、ヨーク32,33によって磁気抵抗素子R1〜R4全体が隠れる。   The lengths of the yokes 32 and 33 in the X direction are obtained by adding the lengths of the first and third magnetoresistive elements R1 and R3 and the lengths of the fourth and second magnetoresistive elements R4 and R2. It is formed larger than the value, specifically, larger than the substrate 4. Further, the thickness dimension of the yokes 32 and 33 is formed larger than the height dimension including the magnetoresistive elements R1 to R4 and the substrate 4, for example. Thus, when the substrate 4 is viewed from the Y direction, the entire magnetoresistive elements R1 to R4 are hidden by the yokes 32 and 33.

かくして、第3の実施の形態でも第1の実施の形態と同様の作用効果を得ることができる。特に、第3の実施の形態では、第3および第4の接続点P3,P4側には、第1の直列回路6および第2の直列回路7を挟むようにヨーク32,33を設けたから、図8および図9に示すように、ヨーク32,33の間ではY方向に沿うように磁界を形成することができる。このため、磁界のY方向成分を増やし、X方向成分を減らすことができるから、磁気センサ31の動作点の変動や抵抗値比のばらつきをさらに抑制することができる。また、第1および第2の実施の形態と同様に、第1ないし第4の磁気抵抗素子R1〜R4に係る温度係数のばらつきを低減することができる。   Thus, the third embodiment can provide the same operational effects as those of the first embodiment. In particular, in the third embodiment, the yokes 32 and 33 are provided on the third and fourth connection points P3 and P4 side so as to sandwich the first series circuit 6 and the second series circuit 7, respectively. As shown in FIGS. 8 and 9, a magnetic field can be formed between the yokes 32 and 33 along the Y direction. For this reason, since the Y direction component of the magnetic field can be increased and the X direction component can be reduced, fluctuations in the operating point of the magnetic sensor 31 and variations in the resistance value ratio can be further suppressed. Further, similarly to the first and second embodiments, it is possible to reduce variations in temperature coefficients related to the first to fourth magnetoresistive elements R1 to R4.

なお、第3の実施の形態では、ヨーク32,33を基板4とは別個に設ける構成としたが、図11に示す変形例による磁気センサ41のように、基板42上にヨーク43,44を設ける構成としてもよい。この場合、第3の実施の形態のように、ヨーク32,33を基板4とは別個に設けた場合に比べて、磁気センサ41の外形寸法を小さくすることができる。   Although the yokes 32 and 33 are provided separately from the substrate 4 in the third embodiment, the yokes 43 and 44 are provided on the substrate 42 like the magnetic sensor 41 according to the modification shown in FIG. It is good also as a structure to provide. In this case, the external dimensions of the magnetic sensor 41 can be reduced as compared with the case where the yokes 32 and 33 are provided separately from the substrate 4 as in the third embodiment.

また、前記各実施の形態では、絶縁膜12の表面に形成した磁束集磁膜13,22,23によって磁束集磁手段を構成したが、例えば絶縁膜12の表面に接着固定した板状の磁性体片によって磁束集磁手段を構成してもよい。   In each of the above-described embodiments, the magnetic flux collecting means is configured by the magnetic flux collecting films 13, 22, and 23 formed on the surface of the insulating film 12, but for example, a plate-like magnetic material adhered and fixed to the surface of the insulating film 12 The magnetic flux collecting means may be constituted by the body pieces.

また、前記各実施の形態では、磁気センサ1,21,31は磁気抵抗素子R1〜R4を有するセンサ回路部2と、差動増幅器3とを集積化する構成としたが、差動増幅器3を省く構成としてもよい。   In each of the above embodiments, the magnetic sensors 1, 21 and 31 are configured to integrate the sensor circuit unit 2 having the magnetoresistive elements R1 to R4 and the differential amplifier 3. The configuration may be omitted.

また、前記各実施の形態では、第1ないし第4の磁気抵抗素子R1〜R4は近接して平行に形成された複数本の線状パターンを先端部で互い違いに接続する構成とした。しかし、本発明はこれに限らず、例えば1本の線状パターンによって磁気抵抗素子R1〜R4を構成してもよい。   In each of the above embodiments, the first to fourth magnetoresistive elements R1 to R4 are configured to alternately connect a plurality of linear patterns formed in close proximity to each other at the tip. However, the present invention is not limited to this. For example, the magnetoresistive elements R1 to R4 may be configured by one linear pattern.

1,21,31,41 磁気センサ
4,42 基板
6 第1の直列回路
7 第2の直列回路
13 磁束集磁膜(磁束集磁手段)
22 第1の磁束集磁膜(第1の磁束集磁手段)
23 第2の磁束集磁膜(第2の磁束集磁手段)
32,33,43,44 ヨーク
R1 第1の磁気抵抗素子
R2 第2の磁気抵抗素子
R3 第3の磁気抵抗素子
R4 第4の磁気抵抗素子
P1 第1の接続点
P2 第2の接続点
P3 第3の接続点
P4 第4の接続点
1, 2, 31, 41 Magnetic sensor 4, 42 Substrate 6 First series circuit 7 Second series circuit 13 Magnetic flux collecting film (magnetic flux collecting means)
22 First magnetic flux collecting film (first magnetic flux collecting means)
23 Second magnetic flux collecting film (second magnetic flux collecting means)
32, 33, 43, 44 Yoke R1 1st magnetoresistive element R2 2nd magnetoresistive element R3 3rd magnetoresistive element R4 4th magnetoresistive element P1 1st connection point P2 2nd connection point P3 2nd 3 connection points P4 4th connection point

Claims (3)

第1の方向の検知磁界が与えられると抵抗値が最大に変化する第1および第2の磁気抵抗素子と、第3および第4の磁気抵抗素子とを有し、
前記第1の磁気抵抗素子と前記第3の磁気抵抗素子とを第1の接続点を介して直列接続してなる第1の直列回路と、前記第2の磁気抵抗素子と前記第4の磁気抵抗素子とを第2の接続点を介して直列接続してなる第2の直列回路とを、前記第1の直列回路の前記第1の磁気抵抗素子側と前記第2の直列回路の前記第4の磁気抵抗素子側とを第3の接続点を介して共通接続すると共に、前記第1の直列回路の前記第3の磁気抵抗素子側と前記第2の直列回路の前記第2の磁気抵抗素子側とを第4の接続点を介して共通接続し、
前記第3の接続点および前記第4の接続点を介して電源電圧を印加すると共に、前記第1の接続点および前記第2の接続点を介して磁界変化に伴う出力電圧を取り出す磁気センサにおいて、
前記第3および第4の磁気抵抗素子の表面に磁束集磁手段を設け、
前記第1の方向の検知磁界と異なる方向の磁界が与えられたときに、前記第3および第4の磁気抵抗素子に印加される磁界を前記磁束集磁手段に集磁し、前記第3および第4の磁気抵抗素子の抵抗値の変化を低減したことを特徴とする磁気センサ。
A first and second magnetoresistive elements whose resistance value changes to the maximum when a detection magnetic field in the first direction is applied; and third and fourth magnetoresistive elements;
A first series circuit formed by connecting the first magnetoresistive element and the third magnetoresistive element in series via a first connection point; the second magnetoresistive element; and the fourth magnetism. A second series circuit formed by connecting a resistive element in series via a second connection point, the first magnetoresistive element side of the first series circuit, and the second series circuit of the second series circuit; 4 and the second magnetoresistance element side of the first series circuit and the second magnetoresistance element of the second series circuit are connected in common through a third connection point. The element side is connected in common through the fourth connection point,
In a magnetic sensor for applying a power supply voltage through the third connection point and the fourth connection point and extracting an output voltage accompanying a magnetic field change through the first connection point and the second connection point ,
Magnetic flux collecting means is provided on the surfaces of the third and fourth magnetoresistive elements,
When a magnetic field in a direction different from the detection magnetic field in the first direction is applied, the magnetic field applied to the third and fourth magnetoresistive elements is collected in the magnetic flux collecting means, and the third and A magnetic sensor characterized by reducing a change in the resistance value of the fourth magnetoresistive element.
第1の方向の検知磁界が与えられると抵抗値が最大に変化する第1および第2の磁気抵抗素子と、第3および第4の磁気抵抗素子とを有し、
前記第1の磁気抵抗素子と前記第3の磁気抵抗素子とを第1の接続点を介して直列接続してなる第1の直列回路と、前記第2の磁気抵抗素子と前記第4の磁気抵抗素子とを第2の接続点を介して直列接続してなる第2の直列回路とを、前記第1の直列回路の前記第1の磁気抵抗素子側と前記第2の直列回路の前記第4の磁気抵抗素子側とを第3の接続点を介して共通接続すると共に、前記第1の直列回路の前記第3の磁気抵抗素子側と前記第2の直列回路の前記第2の磁気抵抗素子側とを第4の接続点を介して共通接続し、
前記第3の接続点および前記第4の接続点を介して電源電圧を印加すると共に、前記第1の接続点および前記第2の接続点を介して磁界変化に伴う出力電圧を取り出す磁気センサにおいて、
前記第1および第2の磁気抵抗素子の表面に第1の磁束集磁手段を設けると共に、
該第1の磁束集磁手段よりも透磁率の大きい第2の磁束集磁手段を前記第3および第4の磁気抵抗素子の表面に設け、
前記第1の方向の検知磁界と異なる方向の磁界が与えられたときに、前記第1および第2の磁気抵抗素子に印加される磁界が前記第1の磁束集磁手段に集磁される量に比べて、前記第3および第4の磁気抵抗素子に印加される磁界が前記第2の磁束集磁手段に集磁される量を多くなし、
前記第1および第2の磁気抵抗素子の抵抗値の変化に比べて前記第3および第4の磁気抵抗素子の抵抗値の変化を低減したことを特徴とする磁気センサ。
A first and second magnetoresistive elements whose resistance value changes to the maximum when a detection magnetic field in the first direction is applied; and third and fourth magnetoresistive elements;
A first series circuit formed by connecting the first magnetoresistive element and the third magnetoresistive element in series via a first connection point; the second magnetoresistive element; and the fourth magnetism. A second series circuit formed by connecting a resistive element in series via a second connection point, the first magnetoresistive element side of the first series circuit, and the second series circuit of the second series circuit; 4 and the second magnetoresistance element side of the first series circuit and the second magnetoresistance element of the second series circuit are connected in common through a third connection point. The element side is connected in common through the fourth connection point,
In a magnetic sensor for applying a power supply voltage through the third connection point and the fourth connection point and extracting an output voltage accompanying a magnetic field change through the first connection point and the second connection point ,
Providing first magnetic flux collecting means on the surfaces of the first and second magnetoresistive elements;
A second magnetic flux collecting means having a larger magnetic permeability than the first magnetic flux collecting means is provided on the surfaces of the third and fourth magnetoresistive elements;
The amount by which the magnetic field applied to the first and second magnetoresistive elements is collected by the first magnetic flux collecting means when a magnetic field in a direction different from the detected magnetic field in the first direction is applied. In comparison with the above, the magnetic field applied to the third and fourth magnetoresistive elements is increased in amount collected by the second magnetic flux collecting means,
A magnetic sensor characterized in that a change in resistance value of the third and fourth magnetoresistive elements is reduced as compared with a change in resistance value of the first and second magnetoresistive elements.
前記第3および第4の接続点側には、前記第1の直列回路および前記第2の直列回路を挟むようにヨークが設けられてなる請求項1または2に記載の磁気センサ。   The magnetic sensor according to claim 1, wherein a yoke is provided on the third and fourth connection point sides so as to sandwich the first series circuit and the second series circuit.
JP2011182529A 2011-08-24 2011-08-24 Magnetic sensor Pending JP2013044641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011182529A JP2013044641A (en) 2011-08-24 2011-08-24 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011182529A JP2013044641A (en) 2011-08-24 2011-08-24 Magnetic sensor

Publications (1)

Publication Number Publication Date
JP2013044641A true JP2013044641A (en) 2013-03-04

Family

ID=48008663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011182529A Pending JP2013044641A (en) 2011-08-24 2011-08-24 Magnetic sensor

Country Status (1)

Country Link
JP (1) JP2013044641A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103630855A (en) * 2013-12-24 2014-03-12 江苏多维科技有限公司 High-sensitivity push-pull bridge type magnetic sensor
JP2015094732A (en) * 2013-11-14 2015-05-18 アルプス電気株式会社 Magnetism detection device
JP2017133886A (en) * 2016-01-26 2017-08-03 株式会社東芝 Magnetic sensor and magnetic sensor device
WO2017209169A1 (en) * 2016-05-31 2017-12-07 株式会社村田製作所 Magnetic sensor
WO2019035269A1 (en) * 2017-08-16 2019-02-21 株式会社村田製作所 Magnetic sensor
CN109752677A (en) * 2019-01-10 2019-05-14 东南大学 A kind of double bridge formula thin-film magnetoresistive sensor
WO2019111765A1 (en) * 2017-12-04 2019-06-13 株式会社村田製作所 Magnetic sensor
WO2019111766A1 (en) * 2017-12-04 2019-06-13 株式会社村田製作所 Magnetic sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0943327A (en) * 1995-08-03 1997-02-14 Nec Corp Magneto-resistive current sensor
JP2001345498A (en) * 2000-06-02 2001-12-14 Yamaha Corp Magnetic sensor and manufacturing method thereof
JP2009162540A (en) * 2007-12-28 2009-07-23 Alps Electric Co Ltd Magnetometric sensor and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0943327A (en) * 1995-08-03 1997-02-14 Nec Corp Magneto-resistive current sensor
JP2001345498A (en) * 2000-06-02 2001-12-14 Yamaha Corp Magnetic sensor and manufacturing method thereof
JP2009162540A (en) * 2007-12-28 2009-07-23 Alps Electric Co Ltd Magnetometric sensor and its manufacturing method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015094732A (en) * 2013-11-14 2015-05-18 アルプス電気株式会社 Magnetism detection device
CN103630855A (en) * 2013-12-24 2014-03-12 江苏多维科技有限公司 High-sensitivity push-pull bridge type magnetic sensor
JP2017133886A (en) * 2016-01-26 2017-08-03 株式会社東芝 Magnetic sensor and magnetic sensor device
WO2017209169A1 (en) * 2016-05-31 2017-12-07 株式会社村田製作所 Magnetic sensor
CN110998349A (en) * 2017-08-16 2020-04-10 株式会社村田制作所 Magnetic sensor
WO2019035269A1 (en) * 2017-08-16 2019-02-21 株式会社村田製作所 Magnetic sensor
CN110998349B (en) * 2017-08-16 2021-11-16 株式会社村田制作所 Magnetic sensor
WO2019111765A1 (en) * 2017-12-04 2019-06-13 株式会社村田製作所 Magnetic sensor
WO2019111766A1 (en) * 2017-12-04 2019-06-13 株式会社村田製作所 Magnetic sensor
CN111433620A (en) * 2017-12-04 2020-07-17 株式会社村田制作所 Magnetic sensor
CN111448470A (en) * 2017-12-04 2020-07-24 株式会社村田制作所 Magnetic sensor
US11333723B2 (en) 2017-12-04 2022-05-17 Murata Manufacturing Co., Ltd. Magnetic sensor
CN111433620B (en) * 2017-12-04 2022-06-28 株式会社村田制作所 Magnetic sensor
CN111448470B (en) * 2017-12-04 2022-07-22 株式会社村田制作所 Magnetic sensor
US11467231B2 (en) 2017-12-04 2022-10-11 Murata Manufacturing Co., Ltd. Magnetic sensor
CN109752677A (en) * 2019-01-10 2019-05-14 东南大学 A kind of double bridge formula thin-film magnetoresistive sensor

Similar Documents

Publication Publication Date Title
JP2013044641A (en) Magnetic sensor
JP5867235B2 (en) Magnetic sensor device
JP5297539B2 (en) Magnetic sensor
JP4837749B2 (en) Magnetic sensor and magnetic encoder using the same
JP6590422B2 (en) Sensor element with temperature compensation function and magnetic sensor and power measuring device using the same
JP5899012B2 (en) Magnetic sensor
WO2009084433A1 (en) Magnetic sensor and magnetic sensor module
WO2014111976A1 (en) Magnetic sensor and production method therefor
JP2017072375A (en) Magnetic sensor
JP2011007673A (en) Geomagnetic sensor
JP2015219227A (en) Magnetic sensor
JP7070532B2 (en) Magnetic sensor
WO2020137861A1 (en) Magnetic sensor
WO2011074488A1 (en) Magnetic sensor
WO2014156751A1 (en) Magnetic sensor
JPWO2014203862A1 (en) Current sensor
JP2019174140A (en) Magnetic sensor
CN111693911B (en) Magnetic sensor device
US7279891B1 (en) Permalloy bridge with selectable wafer-anistropy using multiple layers
WO2014045559A1 (en) Current sensor
US11022660B2 (en) Magnetic sensor including a magnetic member offset from a magnetoresistive effect element
WO2012060069A1 (en) Current sensor
JP2013047610A (en) Magnetic balance type current sensor
WO2015125699A1 (en) Magnetic sensor
JP2010243232A (en) Current sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150630