JP2010243232A - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
JP2010243232A
JP2010243232A JP2009089910A JP2009089910A JP2010243232A JP 2010243232 A JP2010243232 A JP 2010243232A JP 2009089910 A JP2009089910 A JP 2009089910A JP 2009089910 A JP2009089910 A JP 2009089910A JP 2010243232 A JP2010243232 A JP 2010243232A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetoresistive elements
detection unit
bias magnetic
current sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009089910A
Other languages
Japanese (ja)
Inventor
Masataka Tagawa
正孝 田川
Kazuhiro Onaka
和弘 尾中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009089910A priority Critical patent/JP2010243232A/en
Publication of JP2010243232A publication Critical patent/JP2010243232A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a miniaturizable current sensor whose detectable current-value range is wide. <P>SOLUTION: In this current sensor, first to fourth magnetoresistive elements 2a-2d are arranged so that a first and third magnetoresistive elements 2a and 2c and a signal magnetic field B are parallel to each other, and second and fourth magnetoresistive elements 2b and 2d and the signal field B are perpendicular to each other. First and second bias magnetic fields B1 and B2 are applied in a direction which forms an angle of 45° with respect to the first and second magnetoresistive elements 2a and 2b, and in a direction which forms the angle of 45° with respect to the third and fourth magnetoresistive elements 2c and 2d respectively. Moreover, the direction of the second bias field B2 is made to be a direction which forms an angle of 180° with respect to the direction of the first bias field B1, or a direction which forms an angle of 90° with respect to the first bias field B1 so that a component parallel to the signal field B becomes opposite in direction to the first bias field B1. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は各種電子機器の導線に流れる電流を検出するための電流センサに関するものである。   The present invention relates to a current sensor for detecting a current flowing in a conductive wire of various electronic devices.

従来のこの種の電流センサは、互いの延伸方向が90°の角度をもった2つの磁気抵抗素子を有し、全ての磁気抵抗素子の延伸方向が、導体を流れる電流から発生する信号磁界の方向と45°の角度をなすように配置するとともに、バイアス磁界がこの信号磁界の方向と90°の角度をなすように磁石を配置していた。そして、得られた出力信号(電圧)から信号磁界の強さを検知し、この信号磁界の強さから導体を流れる電流値を検出するようにしていた。   A conventional current sensor of this type has two magnetoresistive elements whose extending directions are 90 ° to each other, and the extending directions of all the magnetoresistive elements are signal magnetic fields generated from the current flowing through the conductor. The magnet is arranged so as to form an angle of 45 ° with the direction, and the bias magnetic field forms an angle of 90 ° with the direction of the signal magnetic field. Then, the strength of the signal magnetic field is detected from the obtained output signal (voltage), and the value of the current flowing through the conductor is detected from the strength of the signal magnetic field.

なお、この出願の発明に関する先行技術文献情報としては、例えば、特許文献1が知られている。
特開2004−20371号公報
As prior art document information relating to the invention of this application, for example, Patent Document 1 is known.
JP 2004-20371 A

上記した従来の電流センサにおいては、検出できる電流値の範囲が狭く、かつ小型化が困難であるという課題を有していた。   The conventional current sensor described above has a problem that the range of current values that can be detected is narrow and it is difficult to reduce the size.

すなわち、磁気抵抗素子は信号磁界に対する出力が非線形になる部分があるため、検出できる電流値の範囲が狭く、また、検出できる電流値の範囲を広くするために出力の線形部分を広くしようとすれば、バイアス磁界を強くすることが必要となるが、このためには大きな磁石を使用することが必要となるからである。   That is, the magnetoresistive element has a portion where the output with respect to the signal magnetic field becomes non-linear, so the range of the current value that can be detected is narrow, and the linear portion of the output should be widened to widen the range of the current value that can be detected. This is because it is necessary to increase the bias magnetic field, and for this purpose, it is necessary to use a large magnet.

本発明は上記従来の課題を解決するもので、検出できる電流値の範囲が広く、かつ小型化が可能な電流センサを提供することを目的とするものである。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object of the present invention is to provide a current sensor that has a wide range of detectable current values and can be miniaturized.

上記目的を達成するために、本発明は以下の構成を有するものである。   In order to achieve the above object, the present invention has the following configuration.

本発明の請求項1に記載の発明は、導体を流れる電流から発生する信号磁界を検出して導体に流れる電流を検出するための電流センサにおいて、延伸方向が直交しかつ端部で互いに接続された第1の磁気抵抗素子と第2の磁気抵抗素子からなる第1の検出部と、延伸方向が直交しかつ端部で互いに接続された第3の磁気抵抗素子と第4の磁気抵抗素子からなる第2の検出部と、前記第1、第2の磁気抵抗素子の接続部に形成された第1の出力部と、前記第3、第4の磁気抵抗素子の接続部に形成された第2の出力部とを備え、前記第1〜第4の磁気抵抗素子の前記接続部に接続されていない側の端部において、前記第1、第3の磁気抵抗素子は電圧端子に接続するとともに、前記第2、第4の磁気抵抗素子はグランドに接続し、前記第1、第3の磁気抵抗素子と前記信号磁界とが互いに平行になるように前記第1、第3の磁気抵抗素子を配置するとともに、前記第2、第4の磁気抵抗素子と前記信号磁界とが互いに垂直になるように前記第2、第4の磁気抵抗素子を配置し、前記第1の検出部において、前記第1、第2の磁気抵抗素子の延伸方向と45°の角度をなす方向に第1のバイアス磁界を印加し、前記第2の検出部において、前記第3、第4の磁気抵抗素子の延伸方向と45°の角度をなす方向に第2のバイアス磁界を印加し、この第2のバイアス磁界の方向を、前記第1のバイアス磁界の方向と180°の角度をなす方向、または前記信号磁界と平行な成分が前記第1のバイアス磁界と逆向きになるように前記第1のバイアス磁界の方向と90°の角度をなす方向になるようにしたもので、この構成によれば、第1の検出部で得られる出力と第2の検出部で得られる出力を電圧(出力)軸に対して対称にすることができるため、両者を差動処理すれば磁気抵抗素子の特性の非線形部分を打ち消すことができ、これにより、信号磁界に対する差動処理で得られた出力の直線性が向上するため、大きな磁石を用いなくても、検出できる電流値の範囲を広くすることができるという作用効果が得られるものである。   According to a first aspect of the present invention, in a current sensor for detecting a signal magnetic field generated from a current flowing through a conductor and detecting a current flowing through the conductor, the extending directions are orthogonal and connected to each other at the end. A first detection unit composed of the first magnetoresistive element and the second magnetoresistive element, and a third magnetoresistive element and a fourth magnetoresistive element whose extending directions are orthogonal and connected to each other at the ends. A second detection unit, a first output unit formed at the connection between the first and second magnetoresistive elements, and a second output formed at the connection between the third and fourth magnetoresistive elements. The first and third magnetoresistive elements are connected to voltage terminals at the end of the first to fourth magnetoresistive elements that are not connected to the connecting section. The second and fourth magnetoresistive elements are connected to the ground, and the first and second magnetoresistive elements are connected to the ground. The first and third magnetoresistive elements are arranged so that the magnetoresistive element and the signal magnetic field are parallel to each other, and the second and fourth magnetoresistive elements and the signal magnetic field are perpendicular to each other. The second and fourth magnetoresistive elements are arranged so that the first detection unit has a first angle in a direction that forms an angle of 45 ° with the extending direction of the first and second magnetoresistive elements. A bias magnetic field is applied, and the second detector applies a second bias magnetic field in a direction that forms an angle of 45 ° with the extending direction of the third and fourth magnetoresistive elements. The first bias magnetic field so that the direction of the magnetic field is a direction that forms an angle of 180 ° with the direction of the first bias magnetic field, or a component parallel to the signal magnetic field is opposite to the first bias magnetic field. To be in a direction that makes an angle of 90 ° with the direction of According to this configuration, the output obtained by the first detection unit and the output obtained by the second detection unit can be symmetric with respect to the voltage (output) axis. The dynamic processing can cancel out the non-linear part of the characteristics of the magnetoresistive element, thereby improving the linearity of the output obtained by the differential processing with respect to the signal magnetic field, and can be detected without using a large magnet. The effect that the range of the current value can be widened can be obtained.

本発明の請求項2に記載の発明は、特に、第1の検出部、第2の検出部をそれぞれ構成する磁気抵抗素子をフルブリッジ回路になるように構成したもので、この構成によれば、第1、第2の検出部のそれぞれにおいて2つの出力部の差動をとれば2倍の出力が得られるため、第1の検出部で得られた出力と第2の検出部で得られた出力を差動処理すれば、この差動処理で得られる出力の信号磁界の変動に対応する変化が大きくなり、これにより、より正確な電流値検出が可能になるという作用効果が得られるものである。   According to the second aspect of the present invention, the magnetoresistive elements respectively constituting the first detection unit and the second detection unit are configured to be a full bridge circuit. According to this configuration, In each of the first and second detection units, the output of the first detection unit and the second detection unit are obtained because the output of the first detection unit and the second detection unit can be doubled by obtaining a differential output of the two output units. If the output is differentially processed, the change corresponding to the fluctuation in the signal magnetic field of the output obtained by this differential processing becomes large, and thereby the effect of enabling more accurate current value detection can be obtained. It is.

本発明の請求項3に記載の発明は、特に、第1、第2のバイアス磁界の強さを、検出する最大の電流で発生する信号磁界の強さの2.5倍以上としたもので、この構成によれば、直線性誤差を1%未満にすることができるという作用効果が得られるものである。   In the invention according to claim 3 of the present invention, in particular, the strength of the first and second bias magnetic fields is 2.5 times or more than the strength of the signal magnetic field generated at the maximum current to be detected. According to this configuration, it is possible to obtain an operational effect that the linearity error can be less than 1%.

本発明の請求項4に記載の発明は、特に、第1の検出部と第2の検出部を互いに導体の反対側に位置させるようにしたもので、この構成によれば、第1の検出部で得られる出力と第2の検出部で得られる出力を差動処理すれば、外部磁界をキャンセルできるという作用効果が得られるものである。   In the invention according to claim 4 of the present invention, in particular, the first detection unit and the second detection unit are positioned on opposite sides of the conductor. According to this configuration, the first detection unit If the output obtained by the unit and the output obtained by the second detection unit are differentially processed, an effect of canceling the external magnetic field can be obtained.

本発明の請求項5に記載の発明は、特に、基板にCoPtからなる磁石を薄膜で形成することにより第1、第2のバイアス磁界を印加するようにしたもので、この構成によれば、電流センサの薄型化、小型化が可能になるという作用効果が得られるものである。   The invention according to claim 5 of the present invention is such that the first and second bias magnetic fields are applied by forming a CoPt magnet on the substrate as a thin film. According to this configuration, The effect that the current sensor can be reduced in thickness and size can be obtained.

以上のように本発明の電流センサは、第1、第3の磁気抵抗素子と信号磁界とが互いに平行になるように前記第1、第3の磁気抵抗素子を配置するとともに、第2、第4の磁気抵抗素子と前記信号磁界とが互いに垂直になるように前記第2、第4の磁気抵抗素子を配置し、第1の検出部において、前記第1、第2の磁気抵抗素子の延伸方向と45°の角度をなす方向に第1のバイアス磁界を印加し、第2の検出部において、前記第3、第4の磁気抵抗素子の延伸方向と45°の角度をなす方向に第2のバイアス磁界を印加し、この第2のバイアス磁界の方向を、前記第1のバイアス磁界の方向と180°の角度をなす方向、または前記信号磁界と平行な成分が前記第1のバイアス磁界と逆向きになるように前記第1のバイアス磁界の方向と90°の角度をなす方向になるようにしているため、第1の検出部(第1の出力部)で得られる出力と第2の検出部(第2の出力部)で得られる出力を電圧(出力)軸に対して対称にすることができ、これにより、両者を差動処理すれば磁気抵抗素子の特性の非線形部分を打ち消すことができるため、信号磁界に対する差動処理で得られた出力の直線性は向上することになり、その結果、大きな磁石を用いなくても、検出できる電流値の範囲を広くすることができるという優れた効果を奏するものである。   As described above, in the current sensor of the present invention, the first and third magnetoresistive elements are arranged so that the first and third magnetoresistive elements and the signal magnetic field are parallel to each other, and the second and second magnetoresistive elements are arranged. The second and fourth magnetoresistive elements are arranged so that the four magnetoresistive elements and the signal magnetic field are perpendicular to each other, and the first and second magnetoresistive elements are extended in the first detection unit. The first bias magnetic field is applied in a direction that forms an angle of 45 ° with the direction, and the second detection unit performs a second operation in a direction that forms an angle of 45 ° with the extending direction of the third and fourth magnetoresistive elements. The bias magnetic field is applied, and the direction of the second bias magnetic field is set to a direction that forms an angle of 180 ° with the direction of the first bias magnetic field, or a component parallel to the signal magnetic field is the first bias magnetic field. The direction of the first bias magnetic field and 90 Therefore, the output obtained by the first detection unit (first output unit) and the output obtained by the second detection unit (second output unit) are converted into voltages (outputs). ) The output can be made symmetrical with respect to the axis, and if the two are differentially processed, the nonlinear portion of the characteristics of the magnetoresistive element can be canceled out. As a result, it is possible to widen the range of current values that can be detected without using a large magnet.

以下、本発明の一実施の形態における電流センサについて、図面を参照しながら説明する。   Hereinafter, a current sensor according to an embodiment of the present invention will be described with reference to the drawings.

図1は本発明の一実施の形態における電流センサの主要部の上面図、図2は同電流センサを側面から見たときの模式図である。   FIG. 1 is a top view of a main part of a current sensor according to an embodiment of the present invention, and FIG. 2 is a schematic view of the current sensor as viewed from the side.

本発明の一実施の形態における電流センサは、図1、図2に示すように、基台1aの上面に設けられアルミナ等で構成された絶縁性の基板1bに、第1、第2の磁気抵抗素子2a、2bと第3、第4の磁気抵抗素子2c,2dとが備えられている。そして、第1、第2の磁気抵抗素子2a,2bは延伸方向が互いに直交するように接続して構成され、そして、この第1、第2の磁気抵抗素子2a,2bと、第1、第2の磁気抵抗素子2a,2bの接続部3に形成された第1の出力部4とにより第1の検出部5が構成されている。また、第3、第4の磁気抵抗素子2c,2dも延伸方向が互いに直交するように接続して構成され、そして、この第3、第4の磁気抵抗素子2c,2dと、第3、第4の磁気抵抗素子2c,2dの接続部6に形成された第2の出力部7とにより第2の検出部8が構成されているものである。このとき、第1〜第4の磁気抵抗素子2a〜2dにおける前記接続部3,6に接続されていない側の端部において、前記第1、第3の磁気抵抗素子2a,2cは電圧端子に接続するとともに、前記第2、第4の磁気抵抗素子2b,2dはグランドに接続しているものである。   As shown in FIGS. 1 and 2, the current sensor according to the embodiment of the present invention has a first and a second magnetic field formed on an insulating substrate 1b provided on the upper surface of a base 1a and made of alumina or the like. Resistance elements 2a and 2b and third and fourth magnetoresistance elements 2c and 2d are provided. The first and second magnetoresistive elements 2a and 2b are connected so that the extending directions are orthogonal to each other, and the first and second magnetoresistive elements 2a and 2b are connected to the first and second magnetoresistive elements 2a and 2b. The first detection unit 5 is configured by the first output unit 4 formed at the connection unit 3 of the two magnetoresistive elements 2a and 2b. The third and fourth magnetoresistive elements 2c and 2d are also connected so that their extending directions are orthogonal to each other, and the third and fourth magnetoresistive elements 2c and 2d are connected to the third and fourth magnetoresistive elements 2c and 2d. The second detection unit 8 is configured by the second output unit 7 formed in the connection unit 6 of the four magnetoresistive elements 2c and 2d. At this time, at the end of the first to fourth magnetoresistive elements 2a to 2d that are not connected to the connecting parts 3 and 6, the first and third magnetoresistive elements 2a and 2c are used as voltage terminals. The second and fourth magnetoresistive elements 2b and 2d are connected to the ground while being connected.

なお、前記第1〜第4の磁気抵抗素子2a〜2dは、基板1b上に蒸着などの方法で形成され、その形状は、図1では矩形状に示されているが、実際は長手方向の辺で折り返すように蛇行状に構成されているものである。そして、磁界が印加されていないとき、第1〜第4の磁気抵抗素子2a〜2dのそれぞれの抵抗値は略同一である。さらに、第1〜第4の磁気抵抗素子2a〜2d(第1、第2の検出部5,8)は保護膜9により保護されている。なお、図2では、第1〜第4の磁気抵抗素子2a〜2dは示されていないが、この第1〜第4の磁気抵抗素子2a〜2dは基板1bと保護膜9との間に位置している。   The first to fourth magnetoresistive elements 2a to 2d are formed on the substrate 1b by a method such as vapor deposition, and the shape thereof is shown as a rectangular shape in FIG. It is configured in a meandering manner so as to be folded back. And when the magnetic field is not applied, each resistance value of the 1st-4th magnetoresistive elements 2a-2d is substantially the same. Furthermore, the first to fourth magnetoresistive elements 2 a to 2 d (first and second detection units 5 and 8) are protected by the protective film 9. In FIG. 2, the first to fourth magnetoresistive elements 2 a to 2 d are not shown, but the first to fourth magnetoresistive elements 2 a to 2 d are located between the substrate 1 b and the protective film 9. is doing.

また、導体10を流れる電流から信号磁界Bが発生するが、この信号磁界Bの方向については、第1、第3の磁気抵抗素子2a,2cと信号磁界Bとが互いに平行に、そして、第2、第4の磁気抵抗素子2b,2dと信号磁界Bとが互いに垂直になるように第1〜第4の磁気抵抗素子2a〜2dを配置する。なお、図1では、導体10を流れる電流の方向のみを示す。また、電流の方向は必ずしも図1の方向に限定されるものではない。   In addition, a signal magnetic field B is generated from the current flowing through the conductor 10. Regarding the direction of the signal magnetic field B, the first and third magnetoresistive elements 2a and 2c and the signal magnetic field B are parallel to each other, and The first to fourth magnetoresistive elements 2a to 2d are arranged so that the second and fourth magnetoresistive elements 2b and 2d and the signal magnetic field B are perpendicular to each other. In FIG. 1, only the direction of the current flowing through the conductor 10 is shown. Further, the direction of current is not necessarily limited to the direction of FIG.

ここで、電流センサと接するように、あるいは一定の距離を介して導体10が設けられ、そして、この導体10を流れる電流によって信号磁界Bが発生する。このとき、第1〜第4の磁気抵抗素子2a〜2dにおいて電圧端子とグランド間に電圧を印加し、第1の出力部4から得られる出力(電圧V01)と第2の出力部7から得られる出力(電圧V02)を差動処理して得られた出力によってこの信号磁界Bを検出する。そして、この信号磁界Bから導体10を流れる電流値を算出する。なお、図1では、基板1bを省略するとともに信号磁界Bの方向も示す。   Here, the conductor 10 is provided so as to be in contact with the current sensor or through a certain distance, and the signal magnetic field B is generated by the current flowing through the conductor 10. At this time, in the first to fourth magnetoresistive elements 2a to 2d, a voltage is applied between the voltage terminal and the ground, and the output (voltage V01) obtained from the first output unit 4 and the second output unit 7 are obtained. This signal magnetic field B is detected by the output obtained by differentially processing the output (voltage V02). Then, the current value flowing through the conductor 10 is calculated from the signal magnetic field B. In FIG. 1, the substrate 1b is omitted and the direction of the signal magnetic field B is also shown.

さらに、図1では示されていないが、第1の検出部5に第1のバイアス磁界B1、第2の検出部8に第2のバイアス磁界B2を印加するために、基台1aの下面にBaFe、SrFe等からなる磁石11が設けられている。なお、この磁石11は第1〜第4の磁気抵抗素子2a〜2dの上方または下方に形成されればよく、また、磁石11をCoPtで構成するとともに、薄膜技術により形成すれば、電流センサの薄型化、小型化が可能になる。このとき、前記基板1b上に磁石11を設け、そして、その上に絶縁膜を介して第1〜第4の磁気抵抗素子2a〜2dを形成するようにしてもよいし、あるいは、基板1b上に第1〜第4の磁気抵抗素子2a〜2dを設け、そして、その上に絶縁膜を介して磁石11を形成するようにしてもよい。   Further, although not shown in FIG. 1, in order to apply the first bias magnetic field B1 to the first detector 5 and the second bias magnetic field B2 to the second detector 8, the lower surface of the base 1a is applied. A magnet 11 made of BaFe, SrFe or the like is provided. The magnet 11 only needs to be formed above or below the first to fourth magnetoresistive elements 2a to 2d. If the magnet 11 is made of CoPt and formed by thin film technology, the current sensor Thinning and miniaturization are possible. At this time, the magnet 11 may be provided on the substrate 1b, and the first to fourth magnetoresistive elements 2a to 2d may be formed thereon via an insulating film. Alternatively, the magnet 11 may be formed on the substrate 1b. The first to fourth magnetoresistive elements 2a to 2d may be provided, and the magnet 11 may be formed thereon via an insulating film.

次に、第1のバイアス磁界B1、第2のバイアス磁界B2の印加される方向について説明する。   Next, the direction in which the first bias magnetic field B1 and the second bias magnetic field B2 are applied will be described.

図3に示すように、第1のバイアス磁界B1は、第1、第2の磁気抵抗素子2a,2bの延伸方向と45°の角度をなす方向に印加されている。   As shown in FIG. 3, the first bias magnetic field B1 is applied in a direction that forms an angle of 45 ° with the extending direction of the first and second magnetoresistive elements 2a and 2b.

そして、第2のバイアス磁界B2は、第3、第4の磁気抵抗素子2c,2dの延伸方向と45°の角度をなす方向で、かつ第1のバイアス磁界B1の方向と180°の角度をなす方向に印加されている。   The second bias magnetic field B2 is in a direction that forms an angle of 45 ° with the extending direction of the third and fourth magnetoresistive elements 2c and 2d, and an angle of 180 ° with the direction of the first bias magnetic field B1. It is applied in the direction to make.

なお、この場合、図4に示すように、第2のバイアス磁界B2の方向を、導体10を流れる電流から発生する信号磁界Bと平行な成分が前記第1のバイアス磁界B1と逆向きになるように前記第1のバイアス磁界B1の方向と90°の角度をなす方向になるようにしてもよい。   In this case, as shown in FIG. 4, the direction of the second bias magnetic field B2 is such that the component parallel to the signal magnetic field B generated from the current flowing through the conductor 10 is opposite to the first bias magnetic field B1. As described above, the direction of the first bias magnetic field B1 may be 90 °.

上記した本発明の一実施の形態における電流センサにおいては、第1の検出部5において、第1、第2の磁気抵抗素子2a,2bの延伸方向と45°の角度をなす方向に第1のバイアス磁界B1を印加し、そして、第2の検出部8において、第3、第4の磁気抵抗素子2c,2dの延伸方向と45°の角度をなす方向に第2のバイアス磁界B2を印加し、この第2のバイアス磁界B2の方向を、前記第1のバイアス磁界B1の方向と180°の角度をなす方向、または信号磁界Bと平行な成分が前記第1のバイアス磁界B1と逆向きになるように前記第1のバイアス磁界B1の方向と90°の角度をなす方向になるようにしているため、第1の検出部5(第1の出力部4)で得られる電圧V01と第2の検出部8(第1の出力部7)で得られる電圧V02を電圧(出力)軸に対して対称にすることができ、これにより、両者を差動処理すれば磁気抵抗素子の特性の非線形部分を打ち消すことができるため、信号磁界Bに対する差動処理で得られた出力の直線性が向上し、この結果、大きな磁石を用いなくても、検出できる電流値の範囲を広くすることができるという効果が得られるものである。   In the current sensor according to the embodiment of the present invention described above, the first detection unit 5 includes the first sensor in a direction that forms an angle of 45 ° with the extending direction of the first and second magnetoresistive elements 2a and 2b. A bias magnetic field B1 is applied, and the second detection unit 8 applies a second bias magnetic field B2 in a direction that forms an angle of 45 ° with the extending direction of the third and fourth magnetoresistive elements 2c and 2d. The direction of the second bias magnetic field B2 is set to a direction that forms an angle of 180 ° with the direction of the first bias magnetic field B1, or a component parallel to the signal magnetic field B is opposite to the first bias magnetic field B1. Since the direction of the first bias magnetic field B1 is 90 ° with respect to the voltage V01 obtained by the first detector 5 (first output unit 4) and the second Obtained by the detection unit 8 (first output unit 7) Since the voltage V02 can be symmetric with respect to the voltage (output) axis, and if both are differentially processed, the nonlinear portion of the characteristics of the magnetoresistive element can be canceled, so that the differential processing for the signal magnetic field B Thus, the linearity of the output obtained in (1) is improved. As a result, the range of current values that can be detected can be widened without using a large magnet.

すなわち、上記のように第1、第2のバイアス磁界B1,B2を印加すると、第1の検出部5の第1の出力部4で出力される電圧V01と導体10を流れる電流から発生する信号磁界Bとの関係は、図5の実線で示されるように下に凸の非線形部分が生じ、一方、第2の検出部8の第2の出力部7で出力される電圧V02と信号磁界Bとの関係は、図5の破線で示されるように下に凸の非線形部分が生じ、かつ電圧(出力)軸に対して互いに対称となるため、電圧V01と電圧V02を差動処理すれば、電圧V02における下に凸の非線形部分が上に凸の非線形部分となり、これを電圧V01における下に凸の非線形部分と足し合わせることになり、これにより、図6に示すように、信号磁界Bと、第1の検出部5と第2の検出部8とにおける差動処理から得られる出力との関係は直線性を有するようになる。   That is, when the first and second bias magnetic fields B 1 and B 2 are applied as described above, the signal generated from the voltage V 01 output from the first output unit 4 of the first detection unit 5 and the current flowing through the conductor 10. As shown by the solid line in FIG. 5, the relationship with the magnetic field B is a downwardly protruding non-linear portion, while the voltage V02 output from the second output unit 7 of the second detection unit 8 and the signal magnetic field B As shown by the broken line in FIG. 5, a non-linear part protruding downward is generated and is symmetrical with respect to the voltage (output) axis. Therefore, if the voltage V01 and the voltage V02 are differentially processed, The downwardly convex non-linear portion in the voltage V02 becomes the upward convex non-linear portion, and this is added to the downward convex non-linear portion in the voltage V01, and as a result, as shown in FIG. In the first detection unit 5 and the second detection unit 8, Relationship between the output obtained from the differential processing is to have a linearity.

この結果、出力の直線部分の範囲が広くなるため、検出できる電流値の範囲が広くなり、さらに、このとき、大きな磁石、強力な磁石を用いる必要もないため、小型化が可能で、かつ安価に電流センサを生産できる。   As a result, since the range of the linear portion of the output is widened, the range of current values that can be detected is widened. Further, at this time, it is not necessary to use a large magnet or a strong magnet, so that downsizing is possible and inexpensive. Can produce current sensors.

次に、信号磁界Bの強さと、第1、第2のバイアス磁界B1,B2の強さとの関係、および信号磁界Bの方向と第1、第2のバイアス磁界B1,B2の方向とがなす角度について説明する。   Next, the relationship between the strength of the signal magnetic field B and the strength of the first and second bias magnetic fields B1 and B2, and the direction of the signal magnetic field B and the direction of the first and second bias magnetic fields B1 and B2 are made. The angle will be described.

(表1)は、導体10を流れる電流から発生する信号磁界Bの強さを±100ガウス(±0.01T)としたときの、第1、第2のバイアス磁界B1,B2の強さ、および第1、第2のバイアス磁界B1,B2の方向と信号磁界Bの方向とのなす角度についての直線性誤差を示した表である。   (Table 1) shows the strength of the first and second bias magnetic fields B1 and B2 when the strength of the signal magnetic field B generated from the current flowing through the conductor 10 is ± 100 gauss (± 0.01 T). 4 is a table showing a linearity error with respect to an angle formed between the direction of the first and second bias magnetic fields B1 and B2 and the direction of the signal magnetic field B.

Figure 2010243232
Figure 2010243232

ここで、第1、第2の出力部4,7の差動処理から得られる出力と実際の直線との差の割合の最大値を直線性誤差として表している。   Here, the maximum value of the ratio of the difference between the output obtained from the differential processing of the first and second output units 4 and 7 and the actual straight line is represented as a linearity error.

(表1)から明らかなように、第1、第2のバイアス磁界B1,B2の強さを強くすれば、直線性が向上することがわかる。また、信号磁界Bの方向と第1、第2のバイアス磁界B1,B2の方向とのなす角度は、90°ではなく45°にする必要があることがわかる。ここで、この角度が90°のときでも、第1、第2のバイアス磁界B1,B2の強さを強くすれば直線性は向上するが、バイアス磁界B1,B2を強くしようとすると磁石11を大型化する必要が生じ、小型化が困難になったりコスト面で不利になったりして好ましくない。   As is clear from Table 1, it can be seen that the linearity is improved by increasing the strength of the first and second bias magnetic fields B1 and B2. It can also be seen that the angle formed between the direction of the signal magnetic field B and the direction of the first and second bias magnetic fields B1 and B2 needs to be 45 ° instead of 90 °. Here, even when the angle is 90 °, the linearity is improved by increasing the strengths of the first and second bias magnetic fields B1 and B2, but if the bias magnetic fields B1 and B2 are increased, the magnet 11 is moved. It is not preferable because it is necessary to increase the size, which makes it difficult to reduce the size and disadvantages in terms of cost.

図7は、導体10を流れる電流から発生する信号磁界Bの方向と、第1、第2のバイアス磁界B1,B2の方向とのなす角度を45°とし、かつ信号磁界Bの強さを±100ガウスとしたときの、信号磁界Bの強さの第1、第2のバイアス磁界B1,B2の強さに対する比率と、直線性誤差との関係を示す図である。このときの信号磁界Bは、電流センサで検出できる電流のうち最大の電流で発生する磁界を示す。   FIG. 7 shows that the angle between the direction of the signal magnetic field B generated from the current flowing through the conductor 10 and the direction of the first and second bias magnetic fields B1 and B2 is 45 °, and the strength of the signal magnetic field B is ± It is a figure which shows the relationship between the ratio with respect to the intensity | strength of 1st, 2nd bias magnetic field B1, B2 of the intensity | strength of the signal magnetic field B when it is 100 gauss, and a linearity error. The signal magnetic field B at this time indicates a magnetic field generated at the maximum current among currents that can be detected by the current sensor.

図7から明らかなように、第1、第2のバイアス磁界B1,B2の強さが信号磁界Bの強さより2.5倍以上であれば、直線性誤差を1%未満にすることができる。このとき、直線性誤差が1%未満であれば、ユーザからの高精度な電流値検出の要望にも対応できる。   As is apparent from FIG. 7, if the strength of the first and second bias magnetic fields B1 and B2 is 2.5 times or more than the strength of the signal magnetic field B, the linearity error can be made less than 1%. . At this time, if the linearity error is less than 1%, it is possible to respond to a user's request for highly accurate current value detection.

なお、上記した本発明の一実施の形態における電流センサにおいては、第1、第2の検出部5,8のそれぞれを構成する磁気抵抗素子をハーフブリッジ回路に構成したものについて説明したが、フルブリッジ回路に構成してもよい。この構成によれば、第1、第2の検出部5,8のそれぞれにおいて2つの出力部4,7の差動をとれば2倍の出力が得られるため、第1の検出部5で得られた出力と第2の検出部8で得られた出力をさらに差動処理すれば、この差動処理の結果、得られる出力の信号磁界Bの変動に対する変化は大きくなり、これにより、より正確な電流値検出が可能になる。   In the above-described current sensor according to the embodiment of the present invention, the magnetoresistive element constituting each of the first and second detection units 5 and 8 has been described as a half bridge circuit. You may comprise in a bridge circuit. According to this configuration, if the differential between the two output units 4 and 7 is obtained in each of the first and second detection units 5 and 8, a double output can be obtained. If the output obtained and the output obtained by the second detection unit 8 are further differentially processed, the change in the signal magnetic field B of the output obtained as a result of the differential processing becomes large, and thereby more accurate Current value can be detected.

また、第1、第2の検出部5,8を同一面に配置するのではなく、図8に示すように、第1の検出部5と第2の検出部8を互いに導体10の反対側に位置させるようにしてもよい。   Further, the first and second detection units 5 and 8 are not arranged on the same plane, but the first detection unit 5 and the second detection unit 8 are opposite to each other on the conductor 10 as shown in FIG. You may make it locate in this.

通常、外部磁界Bexは第1、第2の検出部5,8に同方向に印加されるため、このような構成にすることにより、第1の検出部5(第1の出力部4)で得られる出力と第2の検出部8(第2の出力部7)で得られる出力を差動処理すれば、外部磁界Bexをキャンセルできる。さらに、第1の検出部5に印加される信号磁界Bの方向と第2の検出部8に印加される信号磁界Bの方向が逆方向(180°)になるため、2つの出力の差動処理をすることによって出力成分が増幅され、これにより、より正確な電流値検出が可能になるものである。なお、図8では、基台1a、磁石11を省略している。   Normally, the external magnetic field Bex is applied to the first and second detection units 5 and 8 in the same direction. With this configuration, the first detection unit 5 (first output unit 4) uses this configuration. If the output obtained and the output obtained by the second detection unit 8 (second output unit 7) are differentially processed, the external magnetic field Bex can be canceled. Further, since the direction of the signal magnetic field B applied to the first detector 5 and the direction of the signal magnetic field B applied to the second detector 8 are opposite (180 °), the differential of the two outputs By performing the processing, the output component is amplified, thereby enabling more accurate current value detection. In FIG. 8, the base 1a and the magnet 11 are omitted.

本発明に係る電流センサは、検出できる電流値の範囲が広く、かつ小型化が可能になるという効果を有するものであり、特に、各種電子機器の導線に流れる電流を検出するための電流センサ等に適用することにより有用となるものである。   The current sensor according to the present invention has an effect that a range of current values that can be detected is wide and can be reduced in size, and in particular, a current sensor for detecting a current flowing in a conductor of various electronic devices, etc. It becomes useful by applying to.

本発明の一実施の形態における電流センサの主要部の上面図The top view of the principal part of the current sensor in one embodiment of the present invention 同電流センサを側面から見たときの模式図Schematic view when viewing the same current sensor from the side 同電流センサにおける第1のバイアス磁界、第2のバイアス磁界の方向を示す図The figure which shows the direction of the 1st bias magnetic field in the same current sensor, and the 2nd bias magnetic field 同電流センサにおける第1のバイアス磁界、第2のバイアス磁界の方向を示す図The figure which shows the direction of the 1st bias magnetic field in the same current sensor, and the 2nd bias magnetic field 同電流センサにおける第1、第2の出力部でそれぞれ得られる出力と信号磁界との関係を示す図The figure which shows the relationship between the output and signal magnetic field which are each obtained in the 1st, 2nd output part in the same current sensor 同電流センサにおける第1、第2の出力部で得られる出力を差動処理したときに得られる出力と信号磁界との関係を示す図The figure which shows the relationship between the output and signal magnetic field which are obtained when the output obtained in the 1st, 2nd output part in the same current sensor is differentially processed 同電流センサにおける信号磁界の強さの第1、第2のバイアス磁界の強さに対する比率と、直線性誤差との関係を示す図The figure which shows the relationship between the ratio with respect to the intensity | strength of the 1st, 2nd bias magnetic field of the signal magnetic field intensity in the same current sensor, and a linearity error. 同電流センサを側面から見たときの他の例を示す主要部の模式図Schematic diagram of the main part showing another example when the current sensor is viewed from the side.

1b 基板
2a〜2d 第1〜第4の磁気抵抗素子
3 第1の磁気抵抗素子と第2の磁気抵抗素子の接続部
4 第1の出力部
5 第1の検出部
6 第3の磁気抵抗素子と第4の磁気抵抗素子の接続部
7 第2の出力部
8 第2の検出部
10 導体
11 磁石
DESCRIPTION OF SYMBOLS 1b Substrate 2a-2d 1st-4th magnetoresistive element 3 Connection part of 1st magnetoresistive element and 2nd magnetoresistive element 4 1st output part 5 1st detection part 6 3rd magnetoresistive element And 4th magnetoresistive element connection part 7 2nd output part 8 2nd detection part 10 Conductor 11 Magnet

Claims (5)

導体を流れる電流から発生する信号磁界を検出して導体に流れる電流を検出するための電流センサにおいて、
延伸方向が直交しかつ端部で互いに接続された第1の磁気抵抗素子と第2の磁気抵抗素子からなる第1の検出部と、
延伸方向が直交しかつ端部で互いに接続された第3の磁気抵抗素子と第4の磁気抵抗素子からなる第2の検出部と、
前記第1、第2の磁気抵抗素子の接続部に形成された第1の出力部と、
前記第3、第4の磁気抵抗素子の接続部に形成された第2の出力部とを備え、
前記第1〜第4の磁気抵抗素子の前記接続部に接続されていない側の端部において、前記第1、第3の磁気抵抗素子は電圧端子に接続するとともに、前記第2、第4の磁気抵抗素子はグランドに接続し、
前記第1、第3の磁気抵抗素子と前記信号磁界とが互いに平行になるように前記第1、第3の磁気抵抗素子を配置するとともに、前記第2、第4の磁気抵抗素子と前記信号磁界とが互いに垂直になるように前記第2、第4の磁気抵抗素子を配置し、
前記第1の検出部において、前記第1、第2の磁気抵抗素子の延伸方向と45°の角度をなす方向に第1のバイアス磁界を印加し、
前記第2の検出部において、前記第3、第4の磁気抵抗素子の延伸方向と45°の角度をなす方向に第2のバイアス磁界を印加し、
この第2のバイアス磁界の方向を、前記第1のバイアス磁界の方向と180°の角度をなす方向、または前記信号磁界と平行な成分が前記第1のバイアス磁界と逆向きになるように前記第1のバイアス磁界の方向と90°の角度をなす方向になるようにした電流センサ。
In the current sensor for detecting the signal magnetic field generated from the current flowing through the conductor and detecting the current flowing through the conductor,
A first detection unit composed of a first magnetoresistive element and a second magnetoresistive element whose extending directions are orthogonal to each other and connected to each other at an end;
A second detection unit composed of a third magnetoresistive element and a fourth magnetoresistive element whose extending directions are orthogonal to each other and connected to each other at an end;
A first output portion formed at a connection portion of the first and second magnetoresistive elements;
A second output portion formed at a connection portion of the third and fourth magnetoresistive elements,
At the end of the first to fourth magnetoresistive elements that are not connected to the connecting portion, the first and third magnetoresistive elements are connected to voltage terminals, and the second and fourth magnetoresistive elements are connected to voltage terminals. The magnetoresistive element is connected to ground,
The first and third magnetoresistive elements are arranged so that the first and third magnetoresistive elements and the signal magnetic field are parallel to each other, and the second and fourth magnetoresistive elements and the signal are arranged. The second and fourth magnetoresistive elements are arranged so that the magnetic field is perpendicular to each other,
In the first detection unit, a first bias magnetic field is applied in a direction that forms an angle of 45 ° with the extending direction of the first and second magnetoresistive elements,
In the second detection unit, a second bias magnetic field is applied in a direction that forms an angle of 45 ° with the extending direction of the third and fourth magnetoresistive elements,
The direction of the second bias magnetic field is set to a direction that forms an angle of 180 ° with the direction of the first bias magnetic field, or the component parallel to the signal magnetic field is opposite to the first bias magnetic field. A current sensor arranged to form a 90 ° angle with the direction of the first bias magnetic field.
第1の検出部、第2の検出部をそれぞれ構成する磁気抵抗素子をフルブリッジ回路になるように構成した請求項1記載の電流センサ。 The current sensor according to claim 1, wherein the magnetoresistive elements respectively constituting the first detection unit and the second detection unit are configured as a full bridge circuit. 第1、第2のバイアス磁界の強さを、検出する最大の電流で発生する信号磁界の強さの2.5倍以上とした請求項1記載の電流センサ。 2. The current sensor according to claim 1, wherein the strength of the first and second bias magnetic fields is 2.5 times or more of the strength of the signal magnetic field generated at the maximum current to be detected. 第1の検出部と第2の検出部を互いに導体の反対側に位置させるようにした請求項1記載の電流センサ。 The current sensor according to claim 1, wherein the first detection unit and the second detection unit are positioned on opposite sides of the conductor. 基板にCoPtからなる磁石を薄膜で形成することにより第1、第2のバイアス磁界を印加するようにした請求項1記載の電流センサ。 The current sensor according to claim 1, wherein the first and second bias magnetic fields are applied by forming a magnet made of CoPt as a thin film on the substrate.
JP2009089910A 2009-04-02 2009-04-02 Current sensor Pending JP2010243232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009089910A JP2010243232A (en) 2009-04-02 2009-04-02 Current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009089910A JP2010243232A (en) 2009-04-02 2009-04-02 Current sensor

Publications (1)

Publication Number Publication Date
JP2010243232A true JP2010243232A (en) 2010-10-28

Family

ID=43096407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009089910A Pending JP2010243232A (en) 2009-04-02 2009-04-02 Current sensor

Country Status (1)

Country Link
JP (1) JP2010243232A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104297548A (en) * 2013-07-16 2015-01-21 横河电机株式会社 Current sensor
JP2016537629A (en) * 2013-11-15 2016-12-01 エプコス アクチエンゲゼルシャフトEpcos Ag Apparatus, arrangement and method for measuring current intensity in a primary conductor through which current flows
JP2018072299A (en) * 2016-11-04 2018-05-10 日立金属株式会社 Current sensor
CN115902345A (en) * 2022-10-18 2023-04-04 苏州纳芯微电子股份有限公司 Current detection module, electric equipment and current detection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054036U (en) * 1991-07-05 1993-01-22 株式会社村田製作所 Current detector
JPH05264701A (en) * 1992-01-23 1993-10-12 Fujitsu Ltd Magnetic sensor
JPH10506193A (en) * 1994-09-26 1998-06-16 ルスト アントリープステヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Device for detecting a current conductor and measuring the current flowing through the current conductor
JP2005003477A (en) * 2003-06-11 2005-01-06 Matsushita Electric Ind Co Ltd Magnetic sensor
JP2008122083A (en) * 2006-11-08 2008-05-29 Hamamatsu Koden Kk Current sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054036U (en) * 1991-07-05 1993-01-22 株式会社村田製作所 Current detector
JPH05264701A (en) * 1992-01-23 1993-10-12 Fujitsu Ltd Magnetic sensor
JPH10506193A (en) * 1994-09-26 1998-06-16 ルスト アントリープステヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Device for detecting a current conductor and measuring the current flowing through the current conductor
JP2005003477A (en) * 2003-06-11 2005-01-06 Matsushita Electric Ind Co Ltd Magnetic sensor
JP2008122083A (en) * 2006-11-08 2008-05-29 Hamamatsu Koden Kk Current sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104297548A (en) * 2013-07-16 2015-01-21 横河电机株式会社 Current sensor
CN104297548B (en) * 2013-07-16 2017-07-04 横河电机株式会社 Current sensor
JP2016537629A (en) * 2013-11-15 2016-12-01 エプコス アクチエンゲゼルシャフトEpcos Ag Apparatus, arrangement and method for measuring current intensity in a primary conductor through which current flows
US10018656B2 (en) 2013-11-15 2018-07-10 Epcos Ag Device, arrangement, and method for measuring a current intensity in a primary conductor through which current flows
JP2018072299A (en) * 2016-11-04 2018-05-10 日立金属株式会社 Current sensor
CN115902345A (en) * 2022-10-18 2023-04-04 苏州纳芯微电子股份有限公司 Current detection module, electric equipment and current detection method

Similar Documents

Publication Publication Date Title
JP5489145B1 (en) Current sensor
US8193805B2 (en) Magnetic sensor
WO2017082011A1 (en) Magnetic sensor
US10877107B2 (en) Magnetic field sensing device and magnetic field sensing apparatus
KR100846078B1 (en) Azimuth meter
JP5899012B2 (en) Magnetic sensor
JP6928782B2 (en) Magnetic position detector
US20150309129A1 (en) Magnetic sensor and production method therefor
JP2008216230A (en) Current sensor
JP2017173123A (en) Magnetic sensor and manufacturing method thereof
JP2013044641A (en) Magnetic sensor
JP2015190780A (en) Current sensor and circuit board
JP2017072375A (en) Magnetic sensor
JP6852906B2 (en) TMR High Sensitivity Single Chip Bush Pull Bridge Magnetic Field Sensor
JP2015219227A (en) Magnetic sensor
US11249116B2 (en) Magnetic sensor and current sensor
WO2013190950A1 (en) Magnetic sensor
WO2011074488A1 (en) Magnetic sensor
JP2010243232A (en) Current sensor
WO2017077871A1 (en) Magnetic sensor
WO2018092580A1 (en) Current sensor
JP2005069744A (en) Magnetic detection element
WO2015125699A1 (en) Magnetic sensor
JP2011043338A (en) Current sensor
JP2015169530A (en) magnetic sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120330

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131217