JP2010218849A - Anode for lithium-ion secondary battery, lithium-ion secondary battery using it, collector used for anode of lithium-ion secondary battery, and manufacturing method of anode for lithium-ion secondary battery - Google Patents

Anode for lithium-ion secondary battery, lithium-ion secondary battery using it, collector used for anode of lithium-ion secondary battery, and manufacturing method of anode for lithium-ion secondary battery Download PDF

Info

Publication number
JP2010218849A
JP2010218849A JP2009063471A JP2009063471A JP2010218849A JP 2010218849 A JP2010218849 A JP 2010218849A JP 2009063471 A JP2009063471 A JP 2009063471A JP 2009063471 A JP2009063471 A JP 2009063471A JP 2010218849 A JP2010218849 A JP 2010218849A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
ion secondary
electrode active
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009063471A
Other languages
Japanese (ja)
Inventor
Takeshi Nishimura
健 西村
Michihiro Shimada
道宏 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2009063471A priority Critical patent/JP2010218849A/en
Publication of JP2010218849A publication Critical patent/JP2010218849A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anode for a lithium-ion secondary battery realizing high capacity and long life. <P>SOLUTION: The anode for the lithium-ion secondary battery has an anode active material layer and lattice-like barrier ribs made of a conductive substance on a metal foil, the anode active material layer contains an anode active material and a conductive auxiliary combined by a binder, and is surrounded by the above barrier ribs. A height of the barrier rib is ≥6 μm, and a width of an opening of the rib is 10 to 100 μm. Further, a unit lattice of the barrier ribs takes on either a polygonal shape of a tetragon or hexagon, or a circular form. As the anode active material, silicon or the like is used. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、リチウムイオン二次電池用の負極などに関するものであり、特に、高容量かつ長寿命のリチウムイオン二次電池用の負極に関する。   The present invention relates to a negative electrode for a lithium ion secondary battery, and more particularly to a negative electrode for a lithium ion secondary battery having a high capacity and a long life.

従来、負極活物質としてグラファイトを用いたリチウムイオン二次電池が実用化されている。また、負極活物質と、カーボンブラック等の導電助剤と、樹脂の結着剤とを混練してスラリーを作製し、銅箔上に塗布・乾燥して、負極を形成することが行われている。   Conventionally, lithium ion secondary batteries using graphite as a negative electrode active material have been put into practical use. Also, a negative electrode is formed by kneading a negative electrode active material, a conductive aid such as carbon black, and a resin binder to form a slurry, and applying and drying on a copper foil. Yes.

一方、高容量化を目指し、負極活物質として金属、特にシリコン系合金を用いるリチウムイオン二次電池用の負極が開発されている。リチウムイオンを吸蔵して合金化したシリコンは、吸蔵前のシリコンに対して約4倍まで膨張するため、シリコン系合金を負極活物質として用いた負極は、充放電サイクル時に膨張と収縮を繰り返す。   On the other hand, with the aim of increasing the capacity, negative electrodes for lithium ion secondary batteries using metals, particularly silicon alloys, as negative electrode active materials have been developed. Since silicon alloyed by occlusion of lithium ions expands to about 4 times that of silicon before occlusion, a negative electrode using a silicon-based alloy as a negative electrode active material repeats expansion and contraction during a charge / discharge cycle.

そこで、シリコン系活物質の表面にカーボンナノファイバを成長させ、その弾性作用により負極活物質粒子の膨張と収縮による歪みを緩和し、サイクル特性を向上させるという非水電解液二次電池用負極が開示されている(例えば、特許文献1を参照)。   Therefore, a negative electrode for a non-aqueous electrolyte secondary battery that grows carbon nanofibers on the surface of a silicon-based active material, relieves strain due to expansion and contraction of the negative electrode active material particles by its elastic action, and improves cycle characteristics. It is disclosed (see, for example, Patent Document 1).

特開2006−244984号公報JP 2006-244984 A

しかしながら、負極活物質と導電助剤と結着剤とのスラリーを塗布・乾燥して、負極を形成する従来の負極は、負極活物質と集電体とを樹脂の結着剤で結着しており、樹脂の結合力が弱い。そのため、充放電時に負極に亀裂が発生し、負極活物質の微粉化と剥離、負極活物質間の導電性の低下などにより、サイクル特性が悪く、二次電池の寿命が短いという問題点があった。   However, a conventional negative electrode that forms a negative electrode by applying and drying a slurry of a negative electrode active material, a conductive additive, and a binder, binds the negative electrode active material and the current collector with a resin binder. The bonding strength of the resin is weak. As a result, cracks occur in the negative electrode during charge / discharge, resulting in poor cycle characteristics due to pulverization and delamination of the negative electrode active material, reduced conductivity between the negative electrode active materials, and short life of the secondary battery. It was.

また、特許文献1に記載の発明は、負極活物質と集電体とを樹脂で結着するものであり、サイクル特性の劣化は十分には防げなかった。また、カーボンナノファイバの形成工程があるため、生産性が悪かった。   In addition, the invention described in Patent Document 1 binds the negative electrode active material and the current collector with a resin, and the cycle characteristics cannot be sufficiently prevented from being deteriorated. In addition, the productivity was poor due to the formation process of carbon nanofibers.

本発明は、前述した問題点に鑑みてなされたもので、その目的とすることは、高容量と長寿命を実現するリチウムイオン二次電池用の負極を得ることである。   The present invention has been made in view of the above-described problems, and an object of the present invention is to obtain a negative electrode for a lithium ion secondary battery that realizes a high capacity and a long life.

前述した目的を達成するために第1の発明は、金属箔上に、負極活物質層と、導電性物質製の格子状の隔壁とを有し、前記負極活物質層は、結着剤で結合された負極活物質と導電助剤とを含み、前記負極活物質層の少なくとも一部分が前記隔壁に取り囲まれていることを特徴とするリチウムイオン二次電池用の負極である。   In order to achieve the above-described object, the first invention has a negative electrode active material layer and a grid-like partition made of a conductive material on a metal foil, and the negative electrode active material layer is made of a binder. A negative electrode for a lithium ion secondary battery comprising a bonded negative electrode active material and a conductive additive, wherein at least a part of the negative electrode active material layer is surrounded by the partition.

ここで、「前記負極活物質層の少なくとも一部分が、前記隔壁に取り囲まれている」とは、負極活物質層の厚さが隔壁の高さより低く、負極活物質層の全てが隔壁に取り囲まれている場合だけでなく、負極活物質層の厚さが隔壁の高さより高く、負極活物質層が隔壁の上面を覆っており、負極活物質層の一部が隔壁に取り囲まれている場合も含まれる。   Here, “at least a part of the negative electrode active material layer is surrounded by the partition wall” means that the thickness of the negative electrode active material layer is lower than the height of the partition wall, and the entire negative electrode active material layer is surrounded by the partition wall. In addition to the case where the thickness of the negative electrode active material layer is higher than the height of the partition wall, the negative electrode active material layer covers the top surface of the partition wall, and a part of the negative electrode active material layer is surrounded by the partition wall included.

また、前記隔壁の高さは6μm以上であり、前記隔壁の開口部の幅が10μm〜100μmであり、前記隔壁の単位格子の開口率が30%〜90%であることが好ましく、前記隔壁の単位格子が、四角形や六角形などの多角形状、または円形であることが好ましい。   Preferably, the height of the partition wall is 6 μm or more, the width of the opening of the partition wall is 10 μm to 100 μm, and the aperture ratio of the unit cell of the partition wall is 30% to 90%. The unit cell is preferably a polygonal shape such as a quadrangle or a hexagon, or a circle.

第2の発明は、前記リチウムイオン二次電池用の負極を用いたリチウムイオン二次電池である。   A second invention is a lithium ion secondary battery using the negative electrode for the lithium ion secondary battery.

第3の発明は、金属箔と、前記金属箔上の導電性物質製の格子状の隔壁と、を具備するリチウムイオン二次電池用の負極に用いられる集電体である。   3rd invention is a collector used for the negative electrode for lithium ion secondary batteries which comprises metal foil and the grid | lattice-like partition made from an electroconductive substance on the said metal foil.

第4の発明は、金属箔にレジスト層を設ける工程と、前記レジスト層をパターニングする工程と、前記レジスト層間に導電性物質を充填する工程と、前記レジスト層を除去する工程と、負極活物質を含むスラリーを導電性物質製の格子状の隔壁を有する集電体に塗布・乾燥する工程と、を具備することを特徴とするリチウムイオン二次電池用の負極の製造方法である。   A fourth invention includes a step of providing a resist layer on a metal foil, a step of patterning the resist layer, a step of filling a conductive material between the resist layers, a step of removing the resist layer, and a negative electrode active material And a step of applying and drying a slurry containing a conductive material on a current collector having a grid-like partition made of a conductive material, and a method for producing a negative electrode for a lithium ion secondary battery.

第5の発明は、金属箔にレジスト層を設ける工程と、前記レジスト層をパターニングする工程と、前記金属箔をエッチングする工程と、前記レジスト層を除去する工程と、負極活物質を含むスラリーを導電性物質製の格子状の隔壁を有する集電体に塗布・乾燥する工程と、を具備することを特徴とするリチウムイオン二次電池用の負極の製造方法である。   The fifth invention includes a step of providing a resist layer on a metal foil, a step of patterning the resist layer, a step of etching the metal foil, a step of removing the resist layer, and a slurry containing a negative electrode active material. A method of producing a negative electrode for a lithium ion secondary battery, comprising: applying and drying a current collector having a grid-like partition made of a conductive substance.

本発明により、高容量と長寿命を実現するリチウムイオン二次電池用の負極を得ることができる。   According to the present invention, a negative electrode for a lithium ion secondary battery that achieves a high capacity and a long life can be obtained.

(a)第1の実施の形態に係るリチウムイオン二次電池用の負極1の斜視図、(b)負極1の平面図。(A) The perspective view of the negative electrode 1 for lithium ion secondary batteries which concerns on 1st Embodiment, (b) The top view of the negative electrode 1. FIG. 第1の実施の形態に係る隔壁の変形例を示す図。The figure which shows the modification of the partition which concerns on 1st Embodiment. 第1の実施の形態に係る負極の変形例を示す図。The figure which shows the modification of the negative electrode which concerns on 1st Embodiment. 第1の実施の形態に係る負極1の製造方法を示す図。The figure which shows the manufacturing method of the negative electrode 1 which concerns on 1st Embodiment. 図4(a)の続きの図。FIG. 5 is a continuation of FIG. 図4(b)の続きの図。FIG. 5 is a continuation of FIG. 図4(c)の続きの図。FIG. 5 is a continuation of FIG. 図4(d)の続きの図。FIG. 5 is a continuation of FIG. 図4(e)の続きの図。FIG. 5 is a continuation of FIG. 混練機19を示す図。The figure which shows the kneading machine 19. FIG. コーター25を示す図。The figure which shows the coater 25. FIG. 第1の実施の形態に係る負極1の他の製造方法を示す図。The figure which shows the other manufacturing method of the negative electrode 1 which concerns on 1st Embodiment. 図7(a)の続きの図。FIG. 8 is a continuation of FIG. 図7(b)の続きの図。FIG. 8B is a continuation of FIG. 図7(c)の続きの図。FIG. 8 is a continuation of FIG. 図7(d)の続きの図。FIG. 8 is a continuation of FIG. 第2の実施の形態に係るリチウムイオン二次電池用の負極37の製造方法を示す図。The figure which shows the manufacturing method of the negative electrode 37 for lithium ion secondary batteries which concerns on 2nd Embodiment. 図8(a)の続きの図。FIG. 9 is a continuation of FIG. 図8(b)の続きの図。FIG. 9B is a continuation of FIG. 図8(c)の続きの図。FIG. 9 is a continuation of FIG. 図8(d)の続きの図。FIG. 9 is a continuation of FIG. 第2の実施の形態に係る負極の変形例を示す図。The figure which shows the modification of the negative electrode which concerns on 2nd Embodiment.

以下図面に基づいて、本発明の実施形態を詳細に説明する。なお、各図は各構成要素を模式的に示したもので、実際の縮尺を表すものではない。
第1の実施形態に係る負極1について説明する。図1は、負極1を示す図である。図1(a)に示すように、負極1は、金属箔3の上に、格子状の隔壁5を有し、隔壁5で囲まれた領域に負極活物質層7を有する。また、図1(b)に示すように、隔壁5は、四角形の格子状であり、隔壁5に囲まれた金属箔3の表面に負極活物質層7が形成されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Each drawing schematically shows each component, and does not represent an actual scale.
The negative electrode 1 according to the first embodiment will be described. FIG. 1 is a diagram showing a negative electrode 1. As shown in FIG. 1A, the negative electrode 1 has a grid-like partition wall 5 on a metal foil 3, and a negative electrode active material layer 7 in a region surrounded by the partition wall 5. Further, as shown in FIG. 1B, the partition walls 5 have a rectangular lattice shape, and the negative electrode active material layer 7 is formed on the surface of the metal foil 3 surrounded by the partition walls 5.

金属箔3は、銅、ニッケル、ステンレスからなる群より選ばれた少なくとも1種の金属からなる箔である。それぞれを単独で用いてもよいし、それぞれの合金でもよい。厚さは4μm〜35μmが好ましく、特に8μm〜18μmがより好ましい。   The metal foil 3 is a foil made of at least one metal selected from the group consisting of copper, nickel, and stainless steel. Each may be used alone or may be an alloy of each. The thickness is preferably 4 μm to 35 μm, and more preferably 8 μm to 18 μm.

隔壁5は、金属箔3の表面に形成された、導電性物質で形成された隔壁である。隔壁5を形成する導電性物質としては、銅、ニッケル、スズ、亜鉛、銀などが挙げられる。隔壁5の高さは6μm以上であり、隔壁5の開口部の幅が10μm〜100μmであり、隔壁5の単位格子の開口率が30〜90%である。単位格子とは、隔壁5の周期的な構造の繰返し単位である。開口率とは、単位格子中の隔壁5で囲まれた領域の面積の割合であり、図1(b)では、負極活物質層7の面積を金属箔3の面積で割った値のことである。   The partition wall 5 is a partition wall formed on the surface of the metal foil 3 and made of a conductive material. Examples of the conductive material that forms the partition wall 5 include copper, nickel, tin, zinc, and silver. The height of the partition wall 5 is 6 μm or more, the width of the opening of the partition wall 5 is 10 μm to 100 μm, and the aperture ratio of the unit cell of the partition wall 5 is 30 to 90%. The unit cell is a repeating unit having a periodic structure of the partition wall 5. The aperture ratio is the ratio of the area of the region surrounded by the partition walls 5 in the unit cell, and is a value obtained by dividing the area of the negative electrode active material layer 7 by the area of the metal foil 3 in FIG. is there.

隔壁5の高さが6μm以上であれば、負極活物質層7の厚さを確保でき、高容量を達成できる。また、隔壁5の開口部の幅が10μmから100μmであることで、負極活物質層7にクラックが生じるとしても、負極活物質が集電体より剥離するほどには、クラックが成長しない。また、隔壁5の単位格子の開口率を30〜90%にすることで、隔壁5に十分な強度を維持する厚みを確保できる。   If the height of the partition wall 5 is 6 μm or more, the thickness of the negative electrode active material layer 7 can be secured, and a high capacity can be achieved. Moreover, even if a crack occurs in the negative electrode active material layer 7 because the width of the opening of the partition wall 5 is 10 μm to 100 μm, the crack does not grow to such an extent that the negative electrode active material is separated from the current collector. Moreover, the thickness which maintains sufficient intensity | strength for the partition 5 is securable by making the aperture ratio of the unit cell of the partition 5 into 30 to 90%.

図1においては、隔壁5は正方形を単位としているが、図2(a)に示すような、六角形を単位とする隔壁9や、図2(b)に示すような、円を単位とする隔壁11を用いてもよい。   In FIG. 1, the partition walls 5 are in square units, but the partition walls 9 are in units of hexagons as shown in FIG. 2 (a), and circles are in units as shown in FIG. 2 (b). A partition wall 11 may be used.

負極活物質層7は、負極活物質と導電助剤と結着剤を含むスラリーを塗布・乾燥して形成される。負極活物質層7の厚さは、片面で5μm〜30μmであり、好ましくは10μm〜25μmである。また、図1においては、図3(a)に示すように、負極1の負極活物質層7の厚さは隔壁5の高さより薄く描いているが、図3(b)に示す負極12のように、負極活物質層7が隔壁5より厚く、負極12の表面に隔壁5が露出せずに、負極活物質層7が隔壁5を覆っていてもよい。   The negative electrode active material layer 7 is formed by applying and drying a slurry containing a negative electrode active material, a conductive additive, and a binder. The thickness of the negative electrode active material layer 7 is 5 μm to 30 μm on one side, preferably 10 μm to 25 μm. Further, in FIG. 1, as shown in FIG. 3A, the thickness of the negative electrode active material layer 7 of the negative electrode 1 is drawn to be thinner than the height of the partition wall 5, but the negative electrode 12 shown in FIG. As described above, the negative electrode active material layer 7 may be thicker than the partition 5, and the negative electrode active material layer 7 may cover the partition 5 without exposing the partition 5 on the surface of the negative electrode 12.

なお、金属箔3の両面に隔壁5を設け、両面に負極活物質層7を形成してもよい。両面に負極活物質層7を有する負極は、片面に負極活物質層7を有する負極よりも単位面積当たりの負極活物質の量が多くなり、さらなる高容量化が可能である。   In addition, the partition wall 5 may be provided on both surfaces of the metal foil 3, and the negative electrode active material layer 7 may be formed on both surfaces. The negative electrode having the negative electrode active material layer 7 on both sides has a larger amount of the negative electrode active material per unit area than the negative electrode having the negative electrode active material layer 7 on one side, and can further increase the capacity.

負極活物質として、シリコン、スズ、アンチモン、アルミニウム、鉛、ヒ素からなる群より選ばれた少なくとも1種の物質を用いることができる。それぞれを単独で用いてもよいし、それぞれの合金や酸化物でもよい。具体的には一酸化シリコン、チタンシリサイド、リンドープシリコン、スズ鉄合金、スズコバルト合金、アンチモンスズ合金、スズ銀合金、インジウムアンチモン合金などを用いることができる。   As the negative electrode active material, at least one substance selected from the group consisting of silicon, tin, antimony, aluminum, lead, and arsenic can be used. Each of these may be used alone, or an alloy or oxide of each may be used. Specifically, silicon monoxide, titanium silicide, phosphorus-doped silicon, tin iron alloy, tin cobalt alloy, antimony tin alloy, tin silver alloy, indium antimony alloy, or the like can be used.

また、負極活物質としては、粒子状の負極活物質を用いることができる。粒子状の負極活物質は、一次粒子の平均粒径は、0.01μm〜5μmであることが好ましい。粒子状の負極活物質の平均粒径が0.01μm以上であれば、負極活物質の製造がより容易であり、平均粒径が5μm以内であれば、スラリーがより均一に混練され、均質な電極が得られる。   Moreover, a particulate negative electrode active material can be used as the negative electrode active material. In the particulate negative electrode active material, the average primary particle size is preferably 0.01 μm to 5 μm. If the average particle diameter of the particulate negative electrode active material is 0.01 μm or more, the production of the negative electrode active material is easier, and if the average particle diameter is within 5 μm, the slurry is kneaded more uniformly and homogeneously. An electrode is obtained.

微粒子は通常は凝集して存在しているので、負極活物質の平均粒径は、ここでは一次粒子の平均粒径を指す。粒子の計測は、電子顕微鏡(SEM)の画像情報と動的光散乱光度計(DLS)の体積基準メディアン径を併用する。平均粒径は、SEM画像によりあらかじめ粒子形状を確認し、画像解析(例えば、旭化成エンジニアリング製A像くん)で粒径を求めたり、粒子を溶媒に分散してDLS(例えば、大塚電子製DLS−8000)により測定したりすることが可能である。微粒子が十分に分散しており、凝集していなければ、SEMとDLSでほぼ同じ測定結果が得られる。また、負極活物質の形状が、アセチレンブラックのような高度に発達したストラクチャー形状である場合にも、ここでは一次粒径で平均粒径を定義し、SEM写真の画像解析で平均粒径を求めることができる。   Since the fine particles are usually present in an aggregated state, the average particle size of the negative electrode active material here refers to the average particle size of the primary particles. For particle measurement, image information of an electron microscope (SEM) and a volume-based median diameter of a dynamic light scattering photometer (DLS) are used in combination. The average particle size is confirmed in advance by the SEM image, and the particle size is obtained by image analysis (for example, A image-kun manufactured by Asahi Kasei Engineering) or dispersed in a solvent to obtain DLS (for example, DLS- manufactured by Otsuka Electronics). 8000). If the fine particles are sufficiently dispersed and not agglomerated, almost the same measurement results can be obtained with SEM and DLS. Even when the shape of the negative electrode active material is a highly developed structure such as acetylene black, here, the average particle size is defined by the primary particle size, and the average particle size is obtained by image analysis of the SEM photograph. be able to.

なお、負極活物質の表面を、導電性材料により被覆してもよい。また、導電性材料で被覆した負極活物質を造粒して、造粒体として負極活物質を用いてもよい。造粒体の直径は0.2μmから10μmであることが好ましい。負極活物質の表面を被覆する導電性材料としては、炭素、銅、スズ、亜鉛、ニッケル、銀、またはこれらの合金などが挙げられる。   Note that the surface of the negative electrode active material may be coated with a conductive material. Alternatively, the negative electrode active material coated with a conductive material may be granulated, and the negative electrode active material may be used as the granulated body. The diameter of the granulated body is preferably 0.2 μm to 10 μm. Examples of the conductive material that covers the surface of the negative electrode active material include carbon, copper, tin, zinc, nickel, silver, and alloys thereof.

負極活物質への導電性材料の被覆は、CVD法、液相法、焼成法を用いて行うことができる。また、ボールミルなどを用いたメカニカルアロイング法により被覆することもできる。これらの方法によれば、負極活物質の粒子の表面の少なくとも一部に導電性材料を被覆することができる。   The negative electrode active material can be coated with a conductive material by a CVD method, a liquid phase method, or a baking method. Moreover, it can also coat | cover by the mechanical alloying method using a ball mill etc. According to these methods, the conductive material can be coated on at least a part of the surface of the particles of the negative electrode active material.

造粒体の作製は、乾式と湿式の一般的な造粒方法を用いることができるが、例えば、乾式では圧縮とせん断力をかけるメカニカルアロイング法や、気流中で粉体同士を高速で衝突させるハイブリダイゼーション法がある。さらに、湿式では無電解めっき法やスプレードライ法を単独あるいは組み合わせて用いることができる。例えば、負極活物質にカーボン系の導電性材料を乾式で被覆させて複合体とし、さらに、導電性材料や結着剤を水に分散させてサスペンションとして所定のサイズとなるようにスプレードライ法により造粒する方法がある。また、負極活物質を硫酸銅溶液に分散させた後、水素化ホウ素ナトリウムなどの還元剤を用いて負極活物質の表面に銅を析出させて導電性材料の被覆を形成する方法などがある。また、負極活物質をポリビニルアルコール水溶液(PVA水溶液)に分散した後、不活性雰囲気下でPVAを焼成し、炭素で被覆させる方法もある。   For granulation production, dry and wet general granulation methods can be used.For example, dry type is a mechanical alloying method in which compression and shear force are applied, and powders collide at high speed in an air current. There is a hybridization method. Furthermore, in the wet process, an electroless plating method or a spray drying method can be used alone or in combination. For example, a negative electrode active material is coated with a carbon-based conductive material in a dry manner to form a composite, and further, a conductive material or a binder is dispersed in water to form a suspension to a predetermined size by a spray dry method. There is a method of granulation. In addition, there is a method in which a negative electrode active material is dispersed in a copper sulfate solution and then copper is deposited on the surface of the negative electrode active material using a reducing agent such as sodium borohydride to form a conductive material coating. There is also a method in which after the negative electrode active material is dispersed in a polyvinyl alcohol aqueous solution (PVA aqueous solution), PVA is fired in an inert atmosphere and coated with carbon.

導電助剤は、炭素、銅、スズ、亜鉛、ニッケル、銀からなる群より選ばれた少なくとも1種の導電性物質からなる粉末である。炭素、銅、スズ、亜鉛、ニッケル、銀の単体の粉末でもよいし、それぞれの合金の粉末でもよい。例えば、ファーネスブラックやアセチレンブラックなどの一般的なカーボンブラックを使用できる。また、導電助剤はこれらの導電性物質のナノワイヤーでもよく、カーボンファイバー、カーボンナノチューブ、銅ナノワイヤー、ニッケルナノワイヤーなどを用いることができる。   The conductive assistant is a powder made of at least one conductive material selected from the group consisting of carbon, copper, tin, zinc, nickel, and silver. A single powder of carbon, copper, tin, zinc, nickel, or silver may be used, or a powder of each alloy may be used. For example, general carbon black such as furnace black and acetylene black can be used. In addition, the conductive assistant may be nanowires of these conductive substances, and carbon fibers, carbon nanotubes, copper nanowires, nickel nanowires, and the like can be used.

結着剤は、樹脂結着剤を用いることができる。樹脂の結着剤としては、ポリフッ化ビニリデン(PVdF)、スチレンブタジエンゴム(SBR)などのフッ素樹脂やゴム系材料を用いることができる。   As the binder, a resin binder can be used. As the resin binder, a fluororesin such as polyvinylidene fluoride (PVdF), styrene butadiene rubber (SBR), or a rubber-based material can be used.

次に、図4を用いて、負極1の製造方法を説明する。図4(a)に示すように、金属箔3を用意する。その後、図4(b)に示すように、金属箔3の上に、レジスト層13を形成するためにレジストを塗布したり、ドライフィルムレジスト(DFR)を貼付したりする。レジスト層13は、露光などによりパターニング可能な一般的なレジストであり、ネガ型でもポジ型でもよい。レジスト層13は、隔壁5の高さよりも厚くなるように塗布する。   Next, the manufacturing method of the negative electrode 1 is demonstrated using FIG. As shown in FIG. 4A, a metal foil 3 is prepared. Thereafter, as shown in FIG. 4B, a resist is applied or a dry film resist (DFR) is stuck on the metal foil 3 in order to form the resist layer 13. The resist layer 13 is a general resist that can be patterned by exposure or the like, and may be a negative type or a positive type. The resist layer 13 is applied so as to be thicker than the height of the partition wall 5.

図4(c)に示すように、フォトリソグラフィー法などを用いてレジスト層13をパターニングし、レジスト層15を得る。例えば、レジスト層13にポジ型レジストを用いる場合には、除去する箇所を露光して溶媒に溶解させる。また、レジスト層13にネガ型レジストを用いる場合には、レジスト層15となる箇所を露光し、露光しなかった箇所を溶媒に溶解する。レジスト層15は、将来、負極活物質層7が形成するパターンと同様のパターンを有する。   As shown in FIG. 4C, the resist layer 13 is patterned using a photolithography method or the like to obtain a resist layer 15. For example, when a positive resist is used for the resist layer 13, the portion to be removed is exposed and dissolved in a solvent. Moreover, when using a negative resist for the resist layer 13, the part used as the resist layer 15 is exposed, and the part which was not exposed is melt | dissolved in a solvent. The resist layer 15 has a pattern similar to the pattern that the negative electrode active material layer 7 will form in the future.

その後、図4(d)に示すように、金属箔3上のレジスト層15の間をパターンめっきにより導電性物質を充填し、隔壁5を形成する。または、導電性金属ペーストを塗布・焼結し、隔壁5を形成する。導電性物質の充填は、例えば、銅のめっき、銅微粒子ペーストの焼結、ニッケルのめっき、ニッケル微粒子ペーストの焼結、銀のめっき、銀微粒子ペーストの焼結を用いることができる。   Thereafter, as shown in FIG. 4D, the space between the resist layers 15 on the metal foil 3 is filled with a conductive material by pattern plating, and the partition walls 5 are formed. Alternatively, the partition walls 5 are formed by applying and sintering a conductive metal paste. For example, copper plating, copper fine particle paste sintering, nickel plating, nickel fine particle paste sintering, silver plating, and silver fine particle paste sintering can be used for filling the conductive material.

その後、図4(e)に示すように、レジスト層15を除去し、金属箔3の上に隔壁5を有する集電体17を得る。   Thereafter, as shown in FIG. 4 (e), the resist layer 15 is removed to obtain a current collector 17 having a partition wall 5 on the metal foil 3.

その後、図4(f)に示すように、集電体17の表面に、負極活物質と導電助剤とを含むスラリーを塗布・乾燥し、負極活物質層7を形成する。   Thereafter, as shown in FIG. 4 (f), a slurry containing a negative electrode active material and a conductive additive is applied to the surface of the current collector 17 and dried to form the negative electrode active material layer 7.

図4(f)での、スラリーの塗布・乾燥は、次のように行われる。図5に示すように、混練機19にスラリー原料23を加えて混練し、スラリー21を形成する。スラリー原料23は、負極活物質、導電助剤、結着剤、増粘剤、溶媒などである。   The application / drying of the slurry in FIG. 4 (f) is performed as follows. As shown in FIG. 5, the slurry raw material 23 is added to the kneader 19 and kneaded to form the slurry 21. The slurry raw material 23 is a negative electrode active material, a conductive additive, a binder, a thickener, a solvent, and the like.

スラリー21中の固形分において、負極活物質は25〜90重量%、導電助剤は5〜70重量%、結着剤は1〜10重量%を含む。例えば、負極活物質5を60重量%、導電助剤7は33重量%、結着剤9は2重量%、増粘剤は5重量%である。   In the solid content in the slurry 21, the negative electrode active material contains 25 to 90% by weight, the conductive auxiliary agent contains 5 to 70% by weight, and the binder contains 1 to 10% by weight. For example, the negative electrode active material 5 is 60% by weight, the conductive additive 7 is 33% by weight, the binder 9 is 2% by weight, and the thickener is 5% by weight.

混練機19は、スラリーの調製に用いられる一般的な混練機を用いることができ、ニーダー、撹拌機、分散機、混合機などと呼ばれるスラリーを調製可能な装置を用いてもよい。また、増粘剤としてはカルボキシメチルセルロースなどを用いることができる。また、溶媒としては水を用いることができる。   As the kneading machine 19, a general kneading machine used for the preparation of a slurry can be used, and an apparatus capable of preparing a slurry called a kneader, a stirrer, a disperser, a mixer or the like may be used. Moreover, carboxymethylcellulose etc. can be used as a thickener. Moreover, water can be used as a solvent.

次に、図6に示すように、コーター25を用いて、金属箔3の片面に、スラリー21をコーティングし、乾燥する。乾燥後のスラリー21の厚さは5μm〜100μmであることが好ましい。   Next, as shown in FIG. 6, the slurry 21 is coated on one side of the metal foil 3 using a coater 25 and dried. The thickness of the slurry 21 after drying is preferably 5 μm to 100 μm.

コーター25は、スラリーを集電体に塗布可能な一般的な塗工装置を用いることができ、例えばロールコーターやドクターブレードによるコーターである。   The coater 25 can use a general coating apparatus that can apply slurry to a current collector, and is, for example, a coater using a roll coater or a doctor blade.

次に、本発明の負極1を用いた、リチウムイオン二次電池の製造方法を説明する。   Next, a method for producing a lithium ion secondary battery using the negative electrode 1 of the present invention will be described.

まず、正極活物質、導電助剤、結着剤、増粘剤及び溶媒を混合して正極活物質の組成物を準備する。前記正極活物質の組成物をアルミ箔などの金属集電体上に直接塗布・乾燥して、正極を準備する。なお、前記正極活物質の組成物を別途の支持体上にキャスティングした後、その支持体から剥離して得たフィルムを金属集電体上にラミネーションして正極を製造することも可能である。   First, a positive electrode active material, a conductive additive, a binder, a thickener, and a solvent are mixed to prepare a positive electrode active material composition. The composition of the positive electrode active material is directly applied on a metal current collector such as an aluminum foil and dried to prepare a positive electrode. It is also possible to manufacture a positive electrode by casting the composition of the positive electrode active material on a separate support, and then laminating the film obtained by peeling from the support on a metal current collector.

前記正極活物質としては、リチウム含有の金属酸化物であって、一般的に使われるものであればいずれも使用可能であり、例えばLiCoO,LiMn2x,LiNi1−xMn2x(x=1,2),Ni1−x−yCoMn(0≦x≦0.5,0≦y≦0.5)などを挙げることができ、さらに具体的には、LiMn,LiCoO,LiNiO,LiFeO,V,TiS及びMoSなどリチウムの酸化還元が可能な化合物である。 As the positive electrode active material, any lithium-containing metal oxide that is generally used can be used. For example, LiCoO 2 , LiMn x O 2x , LiNi 1-x Mn x O 2x (X = 1, 2), Ni 1-xy Co x Mn y O 2 (0 ≦ x ≦ 0.5, 0 ≦ y ≦ 0.5), etc., more specifically, LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , LiFeO 2 , V 2 O 5 , TiS, and MoS are compounds capable of oxidation and reduction of lithium.

導電助剤としては、カーボンブラックを使用し、結着剤としては、フッ化ビニリデン/ヘキサフルオロプロピレンコポリマー、ポリフッ化ビニリデン(PVdF)、ポリアクリロニトリル、ポリメチルメタクリレート、ポリテトラフルオロエチレン(PTFE)及びその混合物、スチレンブタジエンゴム系ポリマーを使用し、溶媒としては、N−メチルピロリドン(NMP)、アセトン、水などを使用する。このとき、正極活物質、導電助剤、結着剤、増粘剤及び溶媒の含量は、リチウムイオン二次電池で通常的に使用するレベルである。   Carbon black is used as a conductive additive, and vinylidene fluoride / hexafluoropropylene copolymer, polyvinylidene fluoride (PVdF), polyacrylonitrile, polymethyl methacrylate, polytetrafluoroethylene (PTFE) and the like are used as a binder. A mixture and a styrene butadiene rubber-based polymer are used, and N-methylpyrrolidone (NMP), acetone, water and the like are used as a solvent. At this time, the contents of the positive electrode active material, the conductive additive, the binder, the thickener, and the solvent are at levels normally used in lithium ion secondary batteries.

セパレータとしては、正極と負極の電子伝導を絶縁する機能を有し、リチウムイオン二次電池で通常的に使われるものであればいずれも使用可能である。特に、電解質のイオン移動に対して低抵抗であり、かつ、電池の高容量の観点から厚みは20μm程度と薄いものが好ましい。代表的なセパレータは、ポリプロピレン(PP)/ポリエチレン(PE)/ポリプロピレン(PP)微多孔膜の3層ラミネート膜となっており、PPとPEは熱可塑性の樹脂でそれぞれ約170℃、約130℃の融点となるように重合度などが材料設計されている。電池内部の温度が130℃を超えるとPE膜が溶融し、微孔が目詰まりしてリチウムイオンが透過できなくなり、電池反応を停止することができる。   Any separator can be used as long as it has a function of insulating electronic conduction between the positive electrode and the negative electrode and is usually used in a lithium ion secondary battery. In particular, it is preferable to have a thin resistance of about 20 μm from the viewpoint of low resistance to ion migration of the electrolyte and high battery capacity. A typical separator is a three-layer laminate film of polypropylene (PP) / polyethylene (PE) / polypropylene (PP) microporous film, and PP and PE are thermoplastic resins of about 170 ° C. and about 130 ° C., respectively. The degree of polymerization and the like are designed so that the melting point becomes. When the temperature inside the battery exceeds 130 ° C., the PE film melts, the micropores are clogged and lithium ions cannot permeate, and the battery reaction can be stopped.

電解液としては、炭酸プロピレン、炭酸エチレン、炭酸ジエチル、炭酸エチルメチル、炭酸メチルプロピル、炭酸ブチレン、ベンゾニトリル、アセトニトリル、テトラヒドロフラン、2−メチルテトラヒドロフラン、γ−ブチロラクトン、ジオキソラン、4−メチルオキソラン、N,N−ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、ジオキサン、1,2−ジメトキシエタン、スルホラン、ジクロロエタン、クロロベンゼン、ニトロベンゼン、炭酸ジメチル、炭酸メチルエチル、炭酸ジエチル、炭酸メチルプロピル、炭酸メチルイソプロピル、炭酸エチルプロピル、炭酸ジプロピル、炭酸ジブチル、ジエチレングリコールまたはジメチルエーテルなどの溶媒またはそれらの混合溶媒にLiPF,LiBF,LiSbF,LiAsF,LiClO,LiCFSO,Li(CFSON,LiCSO,LiAlO,LiAlCl,LiN(C2x+1SO)(C2y+1SO)(ただし、x,yは自然数),LiCl,LiIなどのリチウム塩からなる電解質のうち一つまたはそれらを二つ以上混合したものを溶解して使用できる。 Examples of the electrolyte include propylene carbonate, ethylene carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butylene carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, dioxolane, 4-methyloxolane, N , N-dimethylformamide, dimethylacetamide, dimethyl sulfoxide, dioxane, 1,2-dimethoxyethane, sulfolane, dichloroethane, chlorobenzene, nitrobenzene, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl propyl carbonate , dipropyl carbonate, LiPF 6 dibutyl carbonate, in a solvent or a mixed solvent thereof and the like diethylene glycol or dimethyl ether, LiBF 4, L SbF 6, LiAsF 6, LiClO 4 , LiCF 3 SO 3, Li (CF 3 SO 2) 2 N, LiC 4 F 9 SO 3, LiAlO 4, LiAlCl 4, LiN (C x F 2x + 1 SO 2) (C y F 2y + 1 SO 2 ) (where x and y are natural numbers), one of electrolytes composed of lithium salts such as LiCl and LiI, or a mixture of two or more thereof can be dissolved and used.

前述したような正極と負極との間にセパレータを配置して、電池構造体を形成する。このような電池構造体を巻くか、または折って円筒形の電池ケースや角形の電池ケースに入れた後、電解液を注入すれば、リチウムイオン二次電池が完成する。   A separator is disposed between the positive electrode and the negative electrode as described above to form a battery structure. When such a battery structure is wound or folded and placed in a cylindrical battery case or a rectangular battery case, an electrolyte is injected to complete a lithium ion secondary battery.

また、前記電池構造体をバイセル構造で積層した後、それを有機電解液に含浸させ、得られた結果物をポーチに入れて密封すれば、リチウムイオンポリマー電池が完成する。   Further, after the battery structure is laminated in a bicell structure, it is impregnated with an organic electrolyte, and the resultant product is put in a pouch and sealed to complete a lithium ion polymer battery.

次に、図7を用いて、第1の実施形態に係る負極1の他の製造方法を説明する。まず、図7(a)に示すように、金属箔3を用意する。その後、図7(b)に示すように、パターンされたレジスト層27を塗布する。この塗布は、例えば、スクリーン印刷法でレジスト層27を形成することで行われる。   Next, another method for manufacturing the negative electrode 1 according to the first embodiment will be described with reference to FIGS. First, as shown in FIG. 7A, a metal foil 3 is prepared. Thereafter, as shown in FIG. 7B, a patterned resist layer 27 is applied. This application is performed, for example, by forming the resist layer 27 by a screen printing method.

その後は、図7(c)〜図7(e)において、図4(d)〜図4(f)で説明した方法と同様の方法で隔壁5と負極活物質層7とを形成し、負極1を形成する。   Thereafter, in FIG. 7C to FIG. 7E, the partition wall 5 and the negative electrode active material layer 7 are formed by the same method as that described in FIG. 4D to FIG. 1 is formed.

第1の実施形態によれば、負極活物質にシリコン系合金を用いているため、炭素を負極活物質として用いる場合に比べて、高容量化が可能である。   According to the first embodiment, since a silicon-based alloy is used as the negative electrode active material, the capacity can be increased as compared with the case where carbon is used as the negative electrode active material.

また、第1の実施形態によれば、負極活物質層が隔壁に取り囲まれているため、充放電時に負極活物質が膨張と収縮を繰り返して、負極に微細なクラックが発生しても、クラックが伝播して大きくなることがない。そのため、負極活物質は、集電体から剥離しにくく、長寿命のリチウムイオン二次電池用の負極が得られる。   Further, according to the first embodiment, since the negative electrode active material layer is surrounded by the partition walls, even if the negative electrode active material repeatedly expands and contracts during charge and discharge, and a fine crack occurs in the negative electrode, Will not propagate and grow. Therefore, the negative electrode active material is difficult to peel from the current collector, and a negative electrode for a long-life lithium ion secondary battery is obtained.

また、第1の実施形態によれば、真空系を必要とせず、バッチ処理ではなく連続処理で負極を製造できるため、生産性に優れる。   In addition, according to the first embodiment, a vacuum system is not required, and the negative electrode can be manufactured not by batch processing but by continuous processing. Therefore, productivity is excellent.

次に、第2の実施形態について説明する。
図8は、第2の実施形態にかかる、負極37の製造方法を示す図である。以下の実施形態で第1の実施形態と同一の様態を果たす要素には同一の番号を付し、重複した説明は避ける。
Next, a second embodiment will be described.
FIG. 8 is a diagram illustrating a method for manufacturing the negative electrode 37 according to the second embodiment. In the following embodiment, the same number is attached | subjected to the element which fulfill | performs the same aspect as 1st Embodiment, and the overlapping description is avoided.

図8(e)に示すように、負極37は、金属箔29に隔壁33とを有し、隔壁33の間に形成された空孔32に負極活物質層7が形成されている。   As shown in FIG. 8E, the negative electrode 37 has a metal foil 29 and a partition wall 33, and the negative electrode active material layer 7 is formed in a hole 32 formed between the partition walls 33.

金属箔29は、金属箔3と同様の材料を用いることができ、18μm〜140μm程度の厚さである。金属箔29は、エッチング後の空孔32がある箇所も、金属箔3と同等の厚さを備えなくてはならないため、金属箔29の厚さは、金属箔3よりも厚いことが好ましい。   The metal foil 29 can use the same material as the metal foil 3, and has a thickness of about 18 μm to 140 μm. Since the metal foil 29 must also have a thickness equivalent to that of the metal foil 3 at the location where the etched holes 32 are present, the thickness of the metal foil 29 is preferably thicker than that of the metal foil 3.

隔壁33は、金属箔29の中でレジスト層31によりエッチングされずに残った箇所であり、当然に金属箔29と同じ材料である。隔壁33の高さは、空孔32の深さに等しく、6μm以上であることが好ましく、空孔32の幅が10μm〜100μmであり、隔壁33の単位格子の開口率が30〜90%であることが好ましい。   The partition wall 33 is a portion that remains in the metal foil 29 without being etched by the resist layer 31, and is naturally the same material as the metal foil 29. The height of the partition wall 33 is equal to the depth of the hole 32 and is preferably 6 μm or more, the width of the hole 32 is 10 μm to 100 μm, and the aperture ratio of the unit cell of the partition wall 33 is 30 to 90%. Preferably there is.

次に、図8を用いて、負極37の製造方法を説明する。図8(a)に示すように、金属箔29を用意する。その後、図8(b)に示すように、金属箔29の上に、レジストを塗布、あるいはドライフィルムレジスト(DFR)を貼付する。レジストは、レジスト層13やレジスト層27と同じ材料を用いることができる。レジストをパターニングし、レジスト層31を得る。パターニングされたレジスト層31の形成方法は、図4(b)〜図4(c)に示した、フォトリソグラフィー法を用いてもよいし、図7(b)に示した、スクリーン印刷法を用いてもよい。レジスト層31は、四角形や六角形、円形などにパターニングされる。   Next, the manufacturing method of the negative electrode 37 is demonstrated using FIG. As shown in FIG. 8A, a metal foil 29 is prepared. Thereafter, as shown in FIG. 8B, a resist is applied or a dry film resist (DFR) is pasted on the metal foil 29. As the resist, the same material as the resist layer 13 and the resist layer 27 can be used. The resist is patterned to obtain a resist layer 31. As a method for forming the patterned resist layer 31, the photolithography method shown in FIGS. 4B to 4C may be used, or the screen printing method shown in FIG. 7B may be used. May be. The resist layer 31 is patterned into a square, hexagon, circle, or the like.

レジスト層31は、隔壁33が形成される箇所に形成される。その後、図8(c)に示すように、金属箔29をエッチングし、空孔32を形成する。また、エッチングされずに残った箇所が隔壁33となる。エッチングは一般的なウェットエッチングやドライエッチングにより行われる。金属箔が銅の場合には、エッチング液として塩化第二鉄溶液や塩化第二銅溶液、アルカリエッチャントなどがある。   The resist layer 31 is formed at a location where the partition wall 33 is formed. Thereafter, as shown in FIG. 8C, the metal foil 29 is etched to form holes 32. Further, the portion remaining without being etched becomes the partition wall 33. Etching is performed by general wet etching or dry etching. When the metal foil is copper, there are ferric chloride solution, cupric chloride solution, alkali etchant and the like as an etching solution.

その後、図8(d)に示すように、レジスト層31を除去し、金属箔29に空孔32と隔壁33とを有する集電体35を得る。   Thereafter, as shown in FIG. 8D, the resist layer 31 is removed, and a current collector 35 having holes 32 and partition walls 33 in the metal foil 29 is obtained.

その後、図8(e)に示すように、集電体35の表面に、負極活物質と導電助剤とを含むスラリーを塗布・乾燥し、空孔32に負極活物質と導電助剤とを充填し、負極活物質層7を形成する。   Thereafter, as shown in FIG. 8 (e), a slurry containing the negative electrode active material and the conductive auxiliary is applied to the surface of the current collector 35 and dried, and the negative electrode active material and the conductive auxiliary are placed in the holes 32. The negative electrode active material layer 7 is formed by filling.

なお、図9(a)に示す負極39のように、金属箔29よりさらに厚い金属箔41を用いて、集電体の両面に隔壁33を設け、負極活物質層7を充填してもよい。負極39は、負極37よりも単位面積当たりの負極活物質量が多くなり、さらに高容量化が可能である。   9A, a metal foil 41 thicker than the metal foil 29 may be used to provide partition walls 33 on both sides of the current collector and fill the negative electrode active material layer 7. . The negative electrode 39 has a larger amount of negative electrode active material per unit area than the negative electrode 37, and can further increase the capacity.

また、図9(b)に示す負極43のように、負極活物質層7が隔壁33の上面を覆っていてもよい。   Moreover, the negative electrode active material layer 7 may cover the upper surface of the partition 33 like the negative electrode 43 shown in FIG.

第2の実施形態によれば、第1の実施形態が奏する効果に加えて、導電性物質をレジスト層間に充填するという工程が無いため、さらに量産性に優れる。   According to the second embodiment, in addition to the effect of the first embodiment, there is no step of filling the conductive material between the resist layers, so that the mass productivity is further improved.

以上、添付図面を参照しながら、本発明にかかるリチウムイオン二次電池用の負極などの好適な実施形態について説明したが、本発明は係る例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例または修正例に想到しえることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although suitable embodiment, such as a negative electrode for lithium ion secondary batteries concerning this invention, was described, referring an accompanying drawing, this invention is not limited to the example which concerns. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the technical idea disclosed in the present application, and these are naturally within the technical scope of the present invention. Understood.

1………負極
3………金属箔
5………隔壁
7………負極活物質層
9、11………隔壁
12………負極
13、15………レジスト層
17………集電体
19………混練機
21………スラリー
23………スラリー原料
25………コーター
27………レジスト層
29………金属箔
31………レジスト層
32………空孔
33………隔壁
35………集電体
37………負極
39………負極
41………金属箔
43………負極
DESCRIPTION OF SYMBOLS 1 ......... Negative electrode 3 ......... Metal foil 5 ......... Partition wall 7 ......... Negative electrode active material layer 9, 11 ...... Partition wall 12 ......... Negative electrode 13, 15 ......... Resist layer 17 ......... Current collection Body 19 ......... Kneading machine 21 ......... Slurry 23 ......... Slurry raw material 25 ......... Coater 27 ...... Resist layer 29 ......... Metal foil 31 ......... Resist layer 32 ...... Hole 33 ... ... Bullet 35 ......... Current collector 37 ......... Negative electrode 39 ......... Negative electrode 41 ......... Metal foil 43 ......... Negative electrode

Claims (9)

金属箔上に、負極活物質層と、導電性物質製の格子状の隔壁とを有し、
前記負極活物質層は、結着剤で結合された負極活物質と導電助剤とを含み、
前記負極活物質層の少なくとも一部分が、前記隔壁に取り囲まれていることを特徴とするリチウムイオン二次電池用の負極。
On the metal foil, it has a negative electrode active material layer and a grid-like partition made of a conductive material,
The negative electrode active material layer includes a negative electrode active material bonded with a binder and a conductive additive,
A negative electrode for a lithium ion secondary battery, wherein at least a part of the negative electrode active material layer is surrounded by the partition wall.
前記隔壁の高さは6μm以上であり、前記隔壁の開口部の幅が10μm〜100μmであり、前記隔壁の単位格子の開口率が30%〜90%であることを特徴とする請求項1に記載のリチウムイオン二次電池用の負極。   The height of the partition wall is 6 μm or more, the width of the opening of the partition wall is 10 μm to 100 μm, and the aperture ratio of the unit cell of the partition wall is 30% to 90%. The negative electrode for lithium ion secondary batteries as described. 前記隔壁の単位格子が、四角形や六角形などの多角形状、または円形であることを特徴とする請求項1に記載のリチウムイオン二次電池用の負極。   2. The negative electrode for a lithium ion secondary battery according to claim 1, wherein a unit cell of the partition wall is a polygonal shape such as a quadrangle or a hexagon, or a circle. 前記負極活物質が、シリコン、スズ、アンチモン、アルミニウム、鉛およびヒ素からなる群より選ばれた少なくとも1種の物質またはそれらの合金を含む物質であることを特徴とする請求項1に記載のリチウムイオン二次電池用の負極。   2. The lithium according to claim 1, wherein the negative electrode active material is at least one material selected from the group consisting of silicon, tin, antimony, aluminum, lead and arsenic, or a material containing an alloy thereof. Negative electrode for ion secondary battery. 請求項1から請求項4のいずれか1項に記載のリチウムイオン二次電池用の負極を用いたリチウムイオン二次電池。   The lithium ion secondary battery using the negative electrode for lithium ion secondary batteries of any one of Claims 1-4. 金属箔と、前記金属箔上の導電性物質製の格子状の隔壁と、を具備するリチウムイオン二次電池用の負極に用いられる集電体。   The collector used for the negative electrode for lithium ion secondary batteries which comprises metal foil and the grid | lattice-like partition made from an electroconductive substance on the said metal foil. 金属箔にレジスト層を設ける工程と、
前記レジスト層をパターニングする工程と、
前記レジスト層間に導電性物質を充填する工程と、
前記レジスト層を除去する工程と、
負極活物質を含むスラリーを導電性物質製の格子状の隔壁を有する集電体に塗布・乾燥する工程と、
を具備することを特徴とするリチウムイオン二次電池用の負極の製造方法。
Providing a resist layer on the metal foil;
Patterning the resist layer;
Filling a conductive material between the resist layers;
Removing the resist layer;
Applying and drying a slurry containing a negative electrode active material on a current collector having a grid-like partition made of a conductive material;
The manufacturing method of the negative electrode for lithium ion secondary batteries characterized by comprising.
金属箔にパターニングされたレジスト層を設ける工程と、
前記レジスト層間に導電性物質を充填する工程と、
前記レジスト層を除去する工程と、
負極活物質を含むスラリーを導電性物質製の格子状の隔壁を有する集電体に塗布・乾燥する工程と、
を具備することを特徴とするリチウムイオン二次電池用の負極の製造方法。
Providing a patterned resist layer on the metal foil;
Filling a conductive material between the resist layers;
Removing the resist layer;
Applying and drying a slurry containing a negative electrode active material on a current collector having a grid-like partition made of a conductive material;
The manufacturing method of the negative electrode for lithium ion secondary batteries characterized by comprising.
金属箔にレジスト層を設ける工程と、
前記レジスト層をパターニングする工程と、
前記金属箔をエッチングする工程と、
前記レジスト層を除去する工程と、
負極活物質を含むスラリーを導電性物質製の格子状の隔壁を有する集電体に塗布・乾燥する工程と、
を具備することを特徴とするリチウムイオン二次電池用の負極の製造方法。
Providing a resist layer on the metal foil;
Patterning the resist layer;
Etching the metal foil;
Removing the resist layer;
Applying and drying a slurry containing a negative electrode active material on a current collector having a grid-like partition made of a conductive material;
The manufacturing method of the negative electrode for lithium ion secondary batteries characterized by comprising.
JP2009063471A 2009-03-16 2009-03-16 Anode for lithium-ion secondary battery, lithium-ion secondary battery using it, collector used for anode of lithium-ion secondary battery, and manufacturing method of anode for lithium-ion secondary battery Pending JP2010218849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009063471A JP2010218849A (en) 2009-03-16 2009-03-16 Anode for lithium-ion secondary battery, lithium-ion secondary battery using it, collector used for anode of lithium-ion secondary battery, and manufacturing method of anode for lithium-ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009063471A JP2010218849A (en) 2009-03-16 2009-03-16 Anode for lithium-ion secondary battery, lithium-ion secondary battery using it, collector used for anode of lithium-ion secondary battery, and manufacturing method of anode for lithium-ion secondary battery

Publications (1)

Publication Number Publication Date
JP2010218849A true JP2010218849A (en) 2010-09-30

Family

ID=42977456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009063471A Pending JP2010218849A (en) 2009-03-16 2009-03-16 Anode for lithium-ion secondary battery, lithium-ion secondary battery using it, collector used for anode of lithium-ion secondary battery, and manufacturing method of anode for lithium-ion secondary battery

Country Status (1)

Country Link
JP (1) JP2010218849A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101147410B1 (en) 2010-07-16 2012-05-23 넥스콘 테크놀러지 주식회사 Method for fabricating electrode
JP2013120692A (en) * 2011-12-07 2013-06-17 Toyota Industries Corp Electrode, electricity storage device, secondary batty, and vehicle
WO2013161733A1 (en) * 2012-04-24 2013-10-31 昭和電工株式会社 Negative electrode active material for a lithium secondary battery and method for manufacturing same
WO2014196843A1 (en) * 2013-06-07 2014-12-11 주식회사 제낙스 Electrode, method for manufacturing same, and battery using same
KR101742609B1 (en) 2014-11-18 2017-06-01 에스케이이노베이션 주식회사 Electrode for a lithium secondary battery and lithium secondary battery comprising the same
KR101876402B1 (en) * 2012-01-20 2018-07-09 에스케이이노베이션 주식회사 manufacturing method of electrode plate for secondary battery and manufacturing device using its manufacturing method
KR20180082965A (en) * 2017-01-11 2018-07-19 주식회사 엘지화학 Metal foil having step barrier and electrode using thereof
US10693128B2 (en) 2015-09-11 2020-06-23 Kabushiki Kaisha Toshiba Electrode for nonaqueous electrolyte battery, nonaqueous electrolyte battery including the same, and battery pack
CN114843455A (en) * 2022-06-01 2022-08-02 湖北亿纬动力有限公司 Lithium ion battery negative plate, preparation method thereof and lithium ion battery
KR102559632B1 (en) * 2022-12-29 2023-07-27 율촌화학 주식회사 Window type cell pouch film for thin battery on which electrode active materials can be applied and method for preparing the same, thin battery using the same and manufacturing method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48102237A (en) * 1972-04-13 1973-12-22
JPS56120074A (en) * 1980-02-26 1981-09-21 Toshiba Corp Electrode collector for solid electrolyte battery
JPH01302667A (en) * 1988-05-27 1989-12-06 Seiko Electronic Components Ltd Flat plate type battery
JPH06236758A (en) * 1992-12-14 1994-08-23 Nippondenso Co Ltd Positive electrode for nonaqueous electrolytic battery
JPH097584A (en) * 1995-06-16 1997-01-10 Mitsubishi Materials Corp Hydrogen absorbing alloy film compound unit
JP2000192260A (en) * 1998-12-25 2000-07-11 Toyo Aluminium Kk Production of metallic foil laminated body for etching and etched metallic foil
JP2000243403A (en) * 1999-02-19 2000-09-08 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2001216956A (en) * 2000-02-02 2001-08-10 Toyota Motor Corp Method for manufacturing electrode for battery and capacitor
JP2003297369A (en) * 2002-04-04 2003-10-17 Sony Corp Battery
JP2006156351A (en) * 2004-11-25 2006-06-15 Korea Electronics Telecommun Anode for lithium metal polymer secondary battery made of anode current collector with surface patterning
JP2007095670A (en) * 2005-08-29 2007-04-12 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous elelctrolyte secondary battery
JP2009283452A (en) * 2008-04-23 2009-12-03 Nissan Motor Co Ltd Electrode for lithium ion secondary battery and battery using this

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48102237A (en) * 1972-04-13 1973-12-22
JPS56120074A (en) * 1980-02-26 1981-09-21 Toshiba Corp Electrode collector for solid electrolyte battery
JPH01302667A (en) * 1988-05-27 1989-12-06 Seiko Electronic Components Ltd Flat plate type battery
JPH06236758A (en) * 1992-12-14 1994-08-23 Nippondenso Co Ltd Positive electrode for nonaqueous electrolytic battery
JPH097584A (en) * 1995-06-16 1997-01-10 Mitsubishi Materials Corp Hydrogen absorbing alloy film compound unit
JP2000192260A (en) * 1998-12-25 2000-07-11 Toyo Aluminium Kk Production of metallic foil laminated body for etching and etched metallic foil
JP2000243403A (en) * 1999-02-19 2000-09-08 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2001216956A (en) * 2000-02-02 2001-08-10 Toyota Motor Corp Method for manufacturing electrode for battery and capacitor
JP2003297369A (en) * 2002-04-04 2003-10-17 Sony Corp Battery
JP2006156351A (en) * 2004-11-25 2006-06-15 Korea Electronics Telecommun Anode for lithium metal polymer secondary battery made of anode current collector with surface patterning
JP2007095670A (en) * 2005-08-29 2007-04-12 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous elelctrolyte secondary battery
JP2009283452A (en) * 2008-04-23 2009-12-03 Nissan Motor Co Ltd Electrode for lithium ion secondary battery and battery using this

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101147410B1 (en) 2010-07-16 2012-05-23 넥스콘 테크놀러지 주식회사 Method for fabricating electrode
JP2013120692A (en) * 2011-12-07 2013-06-17 Toyota Industries Corp Electrode, electricity storage device, secondary batty, and vehicle
KR101876402B1 (en) * 2012-01-20 2018-07-09 에스케이이노베이션 주식회사 manufacturing method of electrode plate for secondary battery and manufacturing device using its manufacturing method
WO2013161733A1 (en) * 2012-04-24 2013-10-31 昭和電工株式会社 Negative electrode active material for a lithium secondary battery and method for manufacturing same
JP2013229111A (en) * 2012-04-24 2013-11-07 Showa Denko Kk Negative electrode active material for lithium secondary battery and manufacturing method therefor
CN104054197A (en) * 2012-04-24 2014-09-17 昭和电工株式会社 Negative electrode active material for lithium secondary battery and method for manufacturing same
JP2016519841A (en) * 2013-06-07 2016-07-07 ジェナックス インコーポレイテッド Electrode, manufacturing method thereof, and battery using the same
KR101582376B1 (en) 2013-06-07 2016-01-04 주식회사 제낙스 Electrode, method of fabricating the same and battery using the same
KR20140143660A (en) * 2013-06-07 2014-12-17 주식회사 제낙스 Electrode, method of fabricating the same and battery using the same
WO2014196843A1 (en) * 2013-06-07 2014-12-11 주식회사 제낙스 Electrode, method for manufacturing same, and battery using same
US10396364B2 (en) 2013-06-07 2019-08-27 Jenax Inc. Electrode, method of fabricating the same, and battery using the same
KR101742609B1 (en) 2014-11-18 2017-06-01 에스케이이노베이션 주식회사 Electrode for a lithium secondary battery and lithium secondary battery comprising the same
US10693128B2 (en) 2015-09-11 2020-06-23 Kabushiki Kaisha Toshiba Electrode for nonaqueous electrolyte battery, nonaqueous electrolyte battery including the same, and battery pack
KR20180082965A (en) * 2017-01-11 2018-07-19 주식회사 엘지화학 Metal foil having step barrier and electrode using thereof
KR102364157B1 (en) 2017-01-11 2022-02-21 주식회사 엘지에너지솔루션 Metal foil having step barrier and electrode using thereof
CN114843455A (en) * 2022-06-01 2022-08-02 湖北亿纬动力有限公司 Lithium ion battery negative plate, preparation method thereof and lithium ion battery
CN114843455B (en) * 2022-06-01 2024-03-15 湖北亿纬动力有限公司 Lithium ion battery negative electrode sheet, preparation method thereof and lithium ion battery
KR102559632B1 (en) * 2022-12-29 2023-07-27 율촌화학 주식회사 Window type cell pouch film for thin battery on which electrode active materials can be applied and method for preparing the same, thin battery using the same and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5479775B2 (en) Negative electrode for lithium ion secondary battery and method for producing the same
JP2010218849A (en) Anode for lithium-ion secondary battery, lithium-ion secondary battery using it, collector used for anode of lithium-ion secondary battery, and manufacturing method of anode for lithium-ion secondary battery
JP5809897B2 (en) Porous silicon particles, production method thereof, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5174792B2 (en) Negative electrode active material, negative electrode, and lithium secondary battery
JP5156406B2 (en) Positive electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP6258641B2 (en) Non-aqueous electrolyte secondary battery
JP5313479B2 (en) Non-aqueous electrolyte battery
JP5448555B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the same, slurry for preparing negative electrode for lithium ion secondary battery, and method for producing negative electrode for lithium ion secondary battery
WO2015045385A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing negative electrode for nonaqueous electrolyte secondary batteries
WO2012014998A1 (en) Lithium secondary battery
WO2011114724A1 (en) Negative electrode material, non-aqueous electrolyte secondary battery, and process for production of negative electrode material
JP2010218848A (en) Anode for lithium-ion secondary battery, lithium-ion secondary battery using it, manufacturing method of anode for lithium-ion secondary battery, and slurry used for manufacturing
JP2007080827A (en) Anode and lithium cell adopting above
JP2012174569A (en) Preparation method of slurry for forming positive electrode mixture layer, and method of manufacturing nonaqueous electrolyte secondary battery
JP2007141527A (en) Electrode and nonaqueous secondary battery using it
JP2005123047A (en) Lithium secondary battery and manufacturing method thereof
JP4988169B2 (en) Lithium secondary battery
JP7102831B2 (en) Positive electrode and lithium ion secondary battery
KR101207723B1 (en) Current collector for non-aqueous electrolyte secondary battery, electrode, non-aqueous electrolyte secondary battery, and method for producing the same
KR20200109764A (en) An electrode and secondary battery comprising the same
JP5851801B2 (en) Lithium secondary battery
JP2006253157A (en) Lithium secondary battery and manufacturing method thereof
KR20060050195A (en) Process of preparing coatings for positive electrode materials for lithium secondary batteries and positive electrodes for lithium secondary batteries
JP2016170945A (en) Nonaqueous secondary battery
JP2021103656A (en) All-solid battery and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20131108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131129

RD15 Notification of revocation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7435

Effective date: 20140127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140729