JP2006253157A - Lithium secondary battery and manufacturing method thereof - Google Patents

Lithium secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP2006253157A
JP2006253157A JP2006132429A JP2006132429A JP2006253157A JP 2006253157 A JP2006253157 A JP 2006253157A JP 2006132429 A JP2006132429 A JP 2006132429A JP 2006132429 A JP2006132429 A JP 2006132429A JP 2006253157 A JP2006253157 A JP 2006253157A
Authority
JP
Japan
Prior art keywords
positive electrode
coating film
secondary battery
lithium secondary
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006132429A
Other languages
Japanese (ja)
Other versions
JP4502332B2 (en
Inventor
Naoto Akaha
尚登 赤羽
Shuichi Wada
秀一 和田
Hiroyuki Toshiro
博行 戸城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2006132429A priority Critical patent/JP4502332B2/en
Publication of JP2006253157A publication Critical patent/JP2006253157A/en
Application granted granted Critical
Publication of JP4502332B2 publication Critical patent/JP4502332B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-capacity lithium secondary battery in which the reduction in battery capacity is small during large current discharge, and the reduction of the battery capacity is small even if charging and discharging are repeated. <P>SOLUTION: In relation to a lithium secondary battery having an oval rolled electrode body 6 composed by spirally rolling a sheet-shaped positive electrode 1 and a sheet-shaped negative electrode 2 by interposing a separator 3, the sheet-shaped positive electrode is configured to form a coating film containing a positive electrode active material, a binder and an electron conduction auxiliary agent on at least one surface of a positive electrode collector body; the binder of the sheet-shaped positive electrode is configured to include acrylonitrile-butadiene-based rubber, and a polyvinylidene-fluoride-based polymer containing vinylidene fluoride as a main component monomer; the content in the coating film thereof is set not smaller than 0.2 % by mass and not greater than 2 % by mass; the content in the coating film of the electron conduction auxiliary agent for the sheet-shaped positive electrode is set to 1 to 25 times as much as that of the acrylonitrile-butadiene system rubber of the binder, and thus this lithium secondary battery is composed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、リチウム二次電池に関するものであり、さらに詳しくは、大電流放電でも電池容量の減少が少なく、かつ充放電を繰り返しても電池容量の減少が少ない、高容量のリチウム二次電池に関するものである。   The present invention relates to a lithium secondary battery, and more particularly, to a high-capacity lithium secondary battery in which the battery capacity decreases little even with a large current discharge and the battery capacity decreases little even after repeated charge and discharge. Is.

一般に、正極活物質にバインダーや溶剤などを加えて、分散、攪拌して調製した塗料を導電性基体上に塗布し、乾燥して正極活物質などを含有する塗膜を形成したシート状の正極と、同様に負極活物質にバインダーや溶剤などを加えて、分散、攪拌して調製した塗料を導電性基体上に塗布し、乾燥して負極活物質などを含有する塗膜を形成したシート状の負極とをセパレータを介して対向させた積層電極体を、有機電解液と共に、電池ケース内に封入して作製したリチウム二次電池は、単位容量当たりのエネルギー密度や単位重量あたりのエネルギー密度が高いという特徴を有している。   In general, a sheet-like positive electrode in which a coating material containing a positive electrode active material is formed by applying a paint prepared by adding a binder or a solvent to the positive electrode active material, dispersing and stirring the mixture on a conductive substrate, and drying it. In the same manner, a coating material containing a negative electrode active material is formed by applying a paint prepared by adding a binder, a solvent, etc. to the negative electrode active material, and dispersing and stirring the mixture on a conductive substrate and drying it. A lithium secondary battery produced by enclosing a laminated electrode body facing the negative electrode of the electrode with a separator together with an organic electrolyte in a battery case has an energy density per unit capacity or energy density per unit weight. It has the feature of being high.

そして、上記シート状の正極やシート状の負極などのシート状の電極に使用するバインダーとしては、主成分モノマーとしてのビニリデンフルオライドを含むポリビニリデンフルオライド(PVdF)系ポリマーが、有機電解液に対して溶解しにくいので電池作動中に電極塗膜構造が壊れることがなく、かつ繊維状構造を有していて活物質に対する絶縁被覆作用による電池の内部抵抗の上昇を抑制できることから、これまで好適なものとして使用されてきた。   And as a binder used for sheet-like electrodes, such as the said sheet-like positive electrode and a sheet-like negative electrode, the polyvinylidene fluoride (PVdF) type polymer containing the vinylidene fluoride as a main component monomer is an organic electrolyte solution. On the other hand, since it is difficult to dissolve, the electrode coating film structure does not break during battery operation, and it has a fibrous structure and can suppress the increase in the internal resistance of the battery due to the insulating coating action on the active material, so it has been suitable so far Have been used as

しかしながら、上記ポリビニリデンフルオライド系ポリマーは、フッ素樹脂の一種であることから、導電性基体として一般に用いられている金属箔に対する接着力が弱く、そのため、バインダーとしてポリビニリデンフルオライド系ポリマーを用いて形成した電極塗膜は導電性基体との接着力が弱く、充放電を繰り返すうちに電極塗膜と導電性基体との間の電気的接合が劣化して電池容量が減少するという問題があった。そこで、導電性基体への接着力を高める目的で、ポリビニリデンフルオライドポリマーを多量に使用すると、そのポリビニリデンフルオライドポリマーによる活物質への絶縁被覆作用により電池の内部抵抗が上昇し、しかも活物質の充填量が減少して高容量が得られないという問題があった。   However, since the polyvinylidene fluoride-based polymer is a kind of fluororesin, its adhesive strength to a metal foil generally used as a conductive substrate is weak. Therefore, a polyvinylidene fluoride-based polymer is used as a binder. The formed electrode coating film has a weak adhesive force with the conductive substrate, and there was a problem that the battery capacity was reduced due to deterioration of the electrical connection between the electrode coating film and the conductive substrate during repeated charging and discharging. . Therefore, when a large amount of polyvinylidene fluoride polymer is used for the purpose of increasing the adhesive strength to the conductive substrate, the internal resistance of the battery increases due to the insulating coating action on the active material by the polyvinylidene fluoride polymer, and the active resistance is increased. There has been a problem that the filling amount of the substance is reduced and a high capacity cannot be obtained.

これに対して、比較的少量でも接着力が得られるものとして、アクリロニトリル−ブタジエンゴム(NBR)をバインダーとして用いることが提案されている。   On the other hand, it has been proposed that acrylonitrile-butadiene rubber (NBR) is used as a binder as an adhesive that can be obtained even in a relatively small amount.

しかしながら、アクリロニトリル−ブタジエンゴムは、活物質粒子への絶縁被覆作用が強く、また、有機電解液中での膨潤が大きいために塗膜に緩みが生じて、電池の内部抵抗が上昇し、特に大電流放電時の電池容量が減少するという問題があった。   However, acrylonitrile-butadiene rubber has a strong insulating coating action on the active material particles, and since the swelling in the organic electrolyte is large, the coating film is loosened and the internal resistance of the battery is increased. There was a problem that the battery capacity at the time of current discharge decreased.

そこで、バインダーとして、活物質に対する絶縁被覆作用の少ないポリビニリデンフルオライド系ポリマーのようなフッ素系ポリマーと、接着性に優れたアクリロニトリル−ブタジエンゴムまたは水素化アクリロニトリル−ブタジエンゴム(H−NBR)とを併用することによって、電池のエネルギー密度とサイクル特性を改善することが提案されている。   Therefore, as a binder, a fluorine-based polymer such as a polyvinylidene fluoride-based polymer having a small insulating coating action on an active material, and acrylonitrile-butadiene rubber or hydrogenated acrylonitrile-butadiene rubber (H-NBR) excellent in adhesiveness. It has been proposed to improve the energy density and cycle characteristics of the battery by using in combination.

しかしながら、上記の場合も、充分なサイクル特性を得られる程度に接着力を高めるためには、塗膜中のバインダーの含率が2%以上必要であり、また、アクリロニトリル−ブタジエンゴムや水素化アクリロニトリル−ブタジエンゴムなどの活物質粒子に対する絶縁被覆作用を充分に抑制することができず、従って、大電流放電時の電池容量の減少を充分に抑制することができなかった。   However, also in the above case, in order to increase the adhesive strength to the extent that sufficient cycle characteristics can be obtained, the binder content in the coating film needs to be 2% or more, and acrylonitrile-butadiene rubber or hydrogenated acrylonitrile is required. -Insulating coating action on active material particles such as butadiene rubber could not be sufficiently suppressed, and accordingly, a decrease in battery capacity during large current discharge could not be sufficiently suppressed.

また、正極活物質としては、リチウム遷移金属複合酸化物が用いられているが、その正極活物質自身の導電性が低いため、正極活物質と結着剤のみで正極塗膜を形成した場合は塗膜の電気抵抗が大きくなり、そのため、所望の放電容量が得られないという問題があった。そこで、電子伝導助剤として、電気伝導性の良好な粒子状材料を同時に添加して放電容量を高めることが検討されている。   In addition, lithium transition metal composite oxide is used as the positive electrode active material. However, since the positive electrode active material itself has low conductivity, when the positive electrode coating film is formed only with the positive electrode active material and the binder. There was a problem that the electric resistance of the coating film was increased, so that a desired discharge capacity could not be obtained. Therefore, it has been studied to simultaneously add a particulate material having good electrical conductivity as an electron conduction aid to increase the discharge capacity.

この電子伝導助剤としては、材料単体の電子伝導性の高さ、あるいは、塗膜を構成したときに複数粒子がチェーン状に電子伝導網を構成することが重要とされ、例えば、前者の例としては金属微粒子が好適なものとされ、後者の例としてはカーボン系粉末が好適なものとされている。   As this electron conduction auxiliary agent, it is important that the electron conductivity of the material alone or a plurality of particles form a chain-shaped electron conduction network when the coating film is formed. For example, metal fine particles are preferable, and as an example of the latter, carbon-based powder is preferable.

しかしながら、金属微粒子の場合、塗膜を構成したときに複数粒子がチェーン状に電子伝導網を構成するためには絶縁物であるバインダーの障壁を破ることが必要であり、そのために比較的多量に添加することが余儀なくされ、その結果、正極活物質の充填量が低下して、高容量化を達成できないという問題があった。これに対して、カーボン粉末は、上記塗膜を構成したときに複数粒子がチェーン状に電子伝導網を構成する能力を有することから、バインダーの障壁の影響を受けにくいが、比較的単位体積当たりの質量(見掛け比重)が小さいために、体積ロスを生じ、また、塗膜の機械的強度の低下を防ぐためにバインダーの含率も増やさなければならないため、この場合も、活物質の充填率が低下して高容量化を達成できないという問題があった。   However, in the case of metal fine particles, it is necessary to break the barrier of the binder, which is an insulator, in order for a plurality of particles to form an electron conduction network in the form of a chain when a coating film is formed. As a result, there is a problem in that the amount of filling of the positive electrode active material is reduced and high capacity cannot be achieved. In contrast, carbon powder has the ability to form an electron conduction network in the form of a chain when the above coating film is formed, so it is not easily affected by the barrier of the binder. Since the mass (apparent specific gravity) is small, volume loss occurs, and the binder content must be increased to prevent a decrease in the mechanical strength of the coating film. There was a problem that the capacity could not be increased by lowering.

そこで、カーボンブラックを酸素遮断雰囲気下において1800〜3000℃で焼成し、元の粒子径をほぼ保持したまま粒子内で結晶成長を生じさせ、黒鉛化構造に極めて近い構造を持たせることで、見掛け比重を増加させて体積を減少させ、それによって、正極活物質の充填量の増加を図ることが提案されている。   Thus, carbon black is baked at 1800 to 3000 ° C. in an oxygen-blocking atmosphere, crystal growth is caused in the particles while maintaining the original particle diameter, and the structure is very close to the graphitized structure. It has been proposed to reduce the volume by increasing the specific gravity, thereby increasing the filling amount of the positive electrode active material.

しかしながら、この場合も、塗膜の電気抵抗を一定値以下に確保したまま正極活物質の充填量を高めようとしてもバインダーや電子伝導助剤の含率を充分に減らすことができず、充分な解決策には至っていない。   However, in this case as well, even if it is attempted to increase the filling amount of the positive electrode active material while keeping the electric resistance of the coating film below a certain value, the content of the binder and the electron conduction auxiliary agent cannot be sufficiently reduced, and sufficient No solution has been reached.

特開昭58−48360号公報JP 58-48360 A 特開平9−63590号公報Japanese Patent Laid-Open No. 9-63590 特開2001−297771号公報JP 2001-277771 A

本発明は、上記のような従来のリチウム二次電池における問題点を解決し、大電流放電でも電池容量の減少が少なく、かつ、充放電を繰り返しても電池容量の減少が少ない、高容量のリチウム二次電池を提供することを目的とする。   The present invention solves the problems in the conventional lithium secondary battery as described above, and the decrease in battery capacity is small even with large current discharge, and the decrease in battery capacity is small even after repeated charge and discharge. An object is to provide a lithium secondary battery.

本発明は、上記課題を解決するために種々検討を行った結果なされたものであり、シート状の正極とシート状の負極とをセパレータを介して渦巻状に巻回してなる長円形の巻回電極体を有するリチウム二次電池において、上記シート状の正極を正極集電体の少なくとも一方の面に少なくとも正極活物質とバインダーと電子伝導助剤を含有する塗膜を形成したもので構成するとともに、上記シート状の正極のバインダーを、アクリロニトリル−ブタジエン系ゴムと、主成分モノマーとしてのビニリデンフルオライドを含むポリビニリデンフルオライド系ポリマーとを含んで構成し、かつ、その塗膜中の含率を0.2質量%以上2質量%未満とし、上記シート状の正極の電子伝導助剤の塗膜中の含率を、上記バインダーのアクリロニトリル−ブタジエン系ゴムの含率の1〜25倍とすることによって、大電流放電でも電池容量の減少が少なく、かつ、充放電を繰り返しても電池容量の減少が少ない、高容量のリチウム二次電池を提供して、前記課題を解決したものである。   The present invention has been made as a result of various studies to solve the above-mentioned problems, and is an oval winding formed by winding a sheet-like positive electrode and a sheet-like negative electrode in a spiral shape via a separator. In the lithium secondary battery having an electrode body, the sheet-like positive electrode is formed by forming a coating film containing at least a positive electrode active material, a binder, and an electron conduction assistant on at least one surface of the positive electrode current collector. The sheet-like positive electrode binder comprises acrylonitrile-butadiene rubber and a polyvinylidene fluoride-based polymer containing vinylidene fluoride as a main component monomer, and the content in the coating film is 0.2% by mass or more and less than 2% by mass, and the content of the sheet-like positive electrode in the electron conduction aid in the coating film is acrylonitrile-butane as the binder. A high-capacity lithium secondary battery in which the content of the ene-based rubber is 1 to 25 times less, even when the current is discharged, the battery capacity is less decreased, and the battery capacity is less decreased even after repeated charging and discharging. Provided to solve the above problems.

すなわち、本発明のシート状の正極の塗膜におけるバインダーは、アクリロニトリル−ブタジエン系ゴムとポリビニリデンフルオライド系ポリマーとで構成されるが、前者のアクリロニトリル−ブタジエン系ゴムは、カーボン粉末や金属微粒子などの電子伝導助剤との親和性が良好であって、正極塗膜形成用塗料の調製工程において、比較的溶剤の少ない状態で強力に混練すると、ゴム粘性による練り込みで強いずり応力が生じ、混練前の電子伝導助剤や正極活物質などの固体粒子間の空隙を減少させることができる。特に、単位体積あたりの質量(見掛け比重)が小さい材料が含まれていても、上記空隙を大幅に減少させることができる。   That is, the binder in the coating film of the sheet-like positive electrode of the present invention is composed of acrylonitrile-butadiene-based rubber and polyvinylidene fluoride-based polymer, but the former acrylonitrile-butadiene-based rubber is carbon powder, metal fine particles, etc. In the process of preparing the coating film for forming a positive electrode coating film, when strongly kneading with a relatively little solvent, a strong shear stress is generated by kneading due to rubber viscosity, Gaps between solid particles such as an electron conduction aid and a positive electrode active material before kneading can be reduced. In particular, even when a material having a small mass per unit volume (apparent specific gravity) is included, the voids can be greatly reduced.

従って、このような正極塗膜形成用塗料を正極集電体に塗布し乾燥して形成された塗膜は、高密度であり、体積ロスを生じることがない。さらに、塗膜のバインダーの含率が少なくても、機械的強度を充分に確保することができる。   Therefore, a coating film formed by applying such a coating material for forming a positive electrode coating film to a positive electrode current collector and drying it has a high density and does not cause a volume loss. Furthermore, even when the binder content of the coating film is small, sufficient mechanical strength can be ensured.

しかも、アクリロニトリル−ブタジエン系ゴムは、カーボンなどの固体粒子を強力に混練しながら添加すると、その体積の数十倍に及ぶ固体を取り込み複合体を形成する。そして、この混合物は、取り込んだ固体が電子伝導性を有すると、電気抵抗が低下する。従って、正極の塗膜中に含まれたアクリロニトリル−ブタジエン系ゴムは、活物質を被覆して接着性を向上させながら、むしろ柔軟な電子伝導網を形成するのに有益に働くので、このような正極を有するリチウム二次電池は、充放電を繰り返したときに、正極塗膜と正極集電体との間の電気的接合が劣化して電池容量が減少するのを抑制することができる。   In addition, when acrylonitrile-butadiene rubber is added while strongly kneading solid particles such as carbon, it takes in solids several tens of times its volume to form a composite. And this mixture will reduce electrical resistance, if the taken-in solid has electronic conductivity. Therefore, the acrylonitrile-butadiene rubber contained in the coating film of the positive electrode works beneficially to form a flexible electronic conduction network while coating the active material to improve the adhesion, but rather to form a flexible electronic conduction network. A lithium secondary battery having a positive electrode can suppress a decrease in battery capacity due to deterioration of electrical bonding between the positive electrode coating film and the positive electrode current collector when charging and discharging are repeated.

本発明によれば、大電流放電での電池容量の減少が少なく、かつ充放電を繰り返しても電池容量の減少が少ない、高容量のリチウム二次電池を得ることができる。   According to the present invention, it is possible to obtain a high-capacity lithium secondary battery that has a small decrease in battery capacity due to a large current discharge and a small decrease in battery capacity even after repeated charge and discharge.

本発明において、バインダーの構成成分として用いるアクリロニトリル−ブタジエン系ゴムとしては、例えば、アクリロニトリル−ブタジエンゴム、水素化アクリロニトリル−ブタジエンゴムなどが好適に用いられる。   In the present invention, as the acrylonitrile-butadiene rubber used as a constituent component of the binder, for example, acrylonitrile-butadiene rubber, hydrogenated acrylonitrile-butadiene rubber and the like are preferably used.

本発明において、バインダーの構成成分として用いるポリビニリデンフルオライド系ポリマーとしては、主成分モノマーであるビニリデンフルオライドを80質量%以上含有する含フッ素モノマー群の重合体が好ましい。   In the present invention, the polyvinylidene fluoride-based polymer used as a constituent component of the binder is preferably a polymer of a fluorine-containing monomer group containing 80% by mass or more of vinylidene fluoride as a main component monomer.

上記の主成分モノマーであるビニリデンフルオライドを80質量%以上含有する含フッ素系モノマー群としては、ビニリデンフルオライド単独、または、ビニリデンフルオライドと他のモノマーの少なくとも一種との混合物が挙げられる。この他のモノマーとしては、例えば、ビニルフルオライド、トリフルオロエチレン、トリフルオロクロロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレン、フルオロアルキルビニルエーテルなどが挙げられる。   Examples of the fluorine-containing monomer group containing 80% by mass or more of vinylidene fluoride as the main component monomer include vinylidene fluoride alone or a mixture of vinylidene fluoride and at least one other monomer. Examples of the other monomer include vinyl fluoride, trifluoroethylene, trifluorochloroethylene, tetrafluoroethylene, hexafluoropropylene, and fluoroalkyl vinyl ether.

そして、正極の塗膜中にこのポリビニリデンフルオライド系ポリマーを含ませることによって、有機電解液中に長時間浸されても、塗膜の接着構造に緩みが生じにくく、安定した電池特性を維持することができる。   By including this polyvinylidene fluoride polymer in the coating film of the positive electrode, even if it is immersed in the organic electrolyte for a long time, the adhesion structure of the coating film is not easily loosened, and stable battery characteristics are maintained. can do.

本発明において、バインダーは正極の塗膜中における含率は、0.2質量%以上2質量%未満であることが必要であり、0.3質量%以上1.8質量%以下であることが好ましい。バインダーの正極塗膜中の含率が0.2質量%より少ない場合は、塗膜の機械的強度が不足して、充放電を繰り返すうちに塗膜が正極集電体から剥離して電池容量が低下し、また、バインダーの正極塗膜中の含率が2質量%以上になると、塗膜中の正極活物質の充填率が減少して高容量のリチウム二次電池が得られなくなる。   In the present invention, the content of the binder in the coating film of the positive electrode needs to be 0.2% by mass or more and less than 2% by mass, and is 0.3% by mass or more and 1.8% by mass or less. preferable. When the content of the binder in the positive electrode coating film is less than 0.2% by mass, the mechanical strength of the coating film is insufficient, and the coating film peels off from the positive electrode current collector and repeats charging / discharging. When the content of the binder in the positive electrode coating film is 2% by mass or more, the filling rate of the positive electrode active material in the coating film decreases, and a high-capacity lithium secondary battery cannot be obtained.

本発明において、アクリロニトリル−ブタジエン系ゴムとポリビニリデンフルオライド系ポリマーとの混合比率としては、アクリロニトリル−ブタジエン系ゴムがバインダー全量中の3質量%以上95質量%以下であることが好ましい。アクリロニトリル−ブタジエン系ゴムの比率が上記範囲より少ない場合は、充放電を繰り返すうちに正極塗膜と正極集電体との間の電気的接合が劣化して電池容量が減少するおそれがあり、アクリロニトリル−ブタジエン系ゴムの比率が上記範囲より多い場合は、耐有機電解液性が低下して電池の内部抵抗が増加するおそれがある。   In the present invention, the mixing ratio of the acrylonitrile-butadiene rubber and the polyvinylidene fluoride polymer is preferably 3% by mass or more and 95% by mass or less based on the total amount of the acrylonitrile-butadiene rubber. When the ratio of acrylonitrile-butadiene rubber is less than the above range, there is a risk that the electrical connection between the positive electrode coating film and the positive electrode current collector deteriorates during repeated charging and discharging, and the battery capacity may be reduced. -When the ratio of the butadiene-based rubber is larger than the above range, the resistance to organic electrolytic solution is lowered and the internal resistance of the battery may be increased.

本発明において、電子伝導助剤としては、例えば、鱗片状黒鉛、カーボンブラック、金属粒子などを使用することができる。これらの電子伝導助剤は、前述したように、アクリロニトリル−ブタジエン系ゴムと練りこむことによって塗膜中に電子伝導網を形成することができるが、そのためには、電子伝導助剤の塗膜中の含率は、上記バインダーのアクリロニトリル−ブタジエン系ゴムの含率の1〜25倍であることが必要である。電子伝導助剤の含率が上記範囲より少ない場合は、正極活物質を被覆するアクリロニトリル−ブタジエン系ゴムの絶縁性が増し、電池の内部抵抗が上昇し、また、電子伝導助剤の含率が上記範囲より多い場合は、接着性が低下して、充放電を繰り返すうちに正極塗膜と正極集電体との間の電気的接合が劣化して電池容量が減少してしまう。   In the present invention, as the electron conduction aid, for example, scaly graphite, carbon black, metal particles, and the like can be used. As described above, these electron conduction aids can form an electron conduction network in the coating film by kneading with acrylonitrile-butadiene rubber, and for that purpose, in the coating film of the electron conduction aid. The content of is required to be 1 to 25 times the content of the acrylonitrile-butadiene rubber of the binder. When the content of the electron conduction aid is less than the above range, the insulation of the acrylonitrile-butadiene rubber covering the positive electrode active material is increased, the internal resistance of the battery is increased, and the content of the electron conduction aid is increased. When the amount is more than the above range, the adhesiveness is lowered, and the electrical connection between the positive electrode coating film and the positive electrode current collector is deteriorated while repeating the charge and discharge, and the battery capacity is reduced.

上記電子伝導助剤は正極の塗膜中において0.1質量%以上5質量%以下であることが好ましい。電子伝導助剤の正極塗膜中の含率が上記範囲より少ない場合は、電池の内部抵抗を充分に低下させることができず、上記範囲より多い場合は、塗膜中の正極活物質の充填率が減少して高容量のリチウム二次電池が得られにくくなる。   The electron conduction aid is preferably 0.1% by mass or more and 5% by mass or less in the coating film of the positive electrode. When the content of the electron conduction assistant in the positive electrode coating film is less than the above range, the internal resistance of the battery cannot be sufficiently reduced. When the content is higher than the above range, the positive electrode active material is filled in the coating film. The rate decreases and it becomes difficult to obtain a high-capacity lithium secondary battery.

正極塗膜中の正極活物質の充填率をできるだけ高めるためには、塗膜中の電子伝導助剤の含率を少なくする方が好ましい。この場合、少量でも電池の内部抵抗の上昇を抑制できるようにするために、前記のように、塗膜を構成したときに複数粒子がチェーン状に電子伝導網を構成する性質が強いカーボンブラックの方が金属微粒子より好ましい。   In order to increase the filling ratio of the positive electrode active material in the positive electrode coating film as much as possible, it is preferable to reduce the content of the electron conduction assistant in the coating film. In this case, in order to be able to suppress the increase in the internal resistance of the battery even with a small amount, as described above, when the coating film is formed, carbon black has a strong property of forming an electron conduction network in a chain shape. Is more preferable than metal fine particles.

このカーボンブラックとしては、例えば、アセチレンブラック、ファーネスブラック、サーマルブラックなどを好適に用いることができる。   As this carbon black, for example, acetylene black, furnace black, thermal black and the like can be suitably used.

本発明において、正極活物質としては、例えば、リチウムニッケル酸化物、リチウムコバルト酸化物、リチウムマンガン酸化物(これらは、通常、LiNiO、LiCoO、LiMnで表されるが、LiとNiとの比、LiとCoとの比、LiとMnとの比は化学量論組成からずれている場合が多い。ただし、そのように多少のずれがあっても正極活物質としての使用には問題がない)などのリチウム含有複合金属酸化物が単独でまたは2種以上の混合物として、あるいはそれらの固溶体として用いられる。 In the present invention, as the positive electrode active material, for example, lithium nickel oxide, lithium cobalt oxide, lithium manganese oxide (these are usually represented by LiNiO 2 , LiCoO 2 , LiMn 2 O 4 , Li and The ratio of Ni, the ratio of Li and Co, and the ratio of Li and Mn often deviate from the stoichiometric composition, but even if there is such a slight deviation, it can be used as a positive electrode active material. Are used alone or as a mixture of two or more thereof or as a solid solution thereof.

正極は、例えば、上記正極活物質を含み、電子伝導助剤を含み、さらにバインダーを含む正極塗膜形成用塗料を導電性基体としての機能を兼ねる正極集電体の片面または両面に塗布し、乾燥して、正極集電体の少なくとも一方の面に少なくとも正極活物質と電子伝導助剤とバインダーを含有する塗膜を形成し、必要に応じて、加圧して圧縮する工程を経由することによって作製される。   The positive electrode includes, for example, the positive electrode active material, the electron conductive auxiliary agent, and a positive electrode coating film-forming coating material further containing a binder applied to one or both surfaces of the positive electrode current collector that also functions as a conductive substrate, By drying, forming a coating film containing at least a positive electrode active material, an electron conduction auxiliary agent, and a binder on at least one surface of the positive electrode current collector, and passing through a process of pressing and compressing as necessary. Produced.

上記塗料の調製にあたっては、バインダーと電子伝導助剤と溶剤とを混合して電子伝導性ペースト状物を得る第一の工程と、この電子伝導性ペースト状物に正極活物質を混合する第二の工程を経て正極塗膜形成用塗料を調製することが好ましい。これは、このような工程を経て正極塗膜形成用塗料を調製すると、前記第一の工程で、アクリロニトリル−ブタジエンゴムと電子伝導助剤との混練で効率よく固体粒子間空隙を減少させることができるので、この塗料を正極集電体の少なくとも一方の面に塗布し、乾燥して塗膜を形成すると、得られる塗膜は高密度になり、高容量化を達成しやすいからである。   In the preparation of the coating material, a first step of mixing a binder, an electron conduction auxiliary agent and a solvent to obtain an electron conductive paste-like material, and a second step of mixing a positive electrode active material into the electron conductive paste-like material. It is preferable to prepare a coating film for forming a positive electrode coating film through these steps. This is because when the paint for forming a positive electrode coating film is prepared through such a process, the voids between the solid particles can be efficiently reduced by kneading the acrylonitrile-butadiene rubber and the electron conduction aid in the first process. Therefore, when this coating material is applied to at least one surface of the positive electrode current collector and dried to form a coating film, the resulting coating film has a high density and it is easy to achieve high capacity.

本発明におけるシート状の正極の塗膜を形成するための塗料の溶剤としては、アクリロニトリル−ブタジエン系ゴムとビニリデンフルオライド系ポリマーともに溶解させるような溶剤であることが好ましい。そのような溶剤としては、例えば、N−メチルピロリドン、ジメチルアセトアミド、ジメチルアセトアミド、テトラヒドロフランなどを単独または2種以上混合して用いることができる。   As a solvent for the coating material for forming the sheet-like positive electrode coating film in the present invention, a solvent capable of dissolving both acrylonitrile-butadiene rubber and vinylidene fluoride polymer is preferable. As such a solvent, for example, N-methylpyrrolidone, dimethylacetamide, dimethylacetamide, tetrahydrofuran and the like can be used alone or in admixture of two or more.

本発明において、シート状の正極は、前記のように、上記正極塗膜形成用塗料を正極集電体の少なくとも一方の面に塗布し、乾燥して上記塗料中の溶媒を蒸去して正極塗膜を形成し、必要に応じて、上記塗膜を加圧して圧縮する工程を経由することによって作製される。   In the present invention, as described above, the sheet-like positive electrode is formed by applying the positive electrode coating film-forming coating material to at least one surface of the positive electrode current collector and drying to evaporate the solvent in the coating material. It is produced by forming a coating film and, if necessary, going through a step of pressurizing and compressing the coating film.

また、本発明において、負極活物質としては、例えば、リチウム金属またはリチウム含有化合物が用いられるが、そのリチウム含有化合物としてはリチウム合金とそれ以外のものもある。上記リチウム合金としては、例えば、リチウム−アルミニウム、リチウム−鉛、リチウム−ビスマス、リチウム−インジウム、リチウム−ガリウム、リチウム−インジウム−ガリウムなどのリチウムと他の金属との合金が挙げられる。リチウム合金以外のリチウム含有化合物としては、例えば、乱層構造を有する炭素材料、黒鉛などが挙げられる。これらは製造時にはリチウムを含んでいないものもあるが、負極活物質として作用するときには、化学的手段、電気化学的手段によりリチウムを含有した状態になる。   In the present invention, as the negative electrode active material, for example, lithium metal or a lithium-containing compound is used, and examples of the lithium-containing compound include a lithium alloy and other materials. Examples of the lithium alloy include alloys of lithium and other metals such as lithium-aluminum, lithium-lead, lithium-bismuth, lithium-indium, lithium-gallium, and lithium-indium-gallium. Examples of the lithium-containing compound other than the lithium alloy include a carbon material having a turbulent layer structure and graphite. Some of these do not contain lithium at the time of production, but when acting as a negative electrode active material, they are in a state containing lithium by chemical means or electrochemical means.

負極は、例えば、上記負極活物質に、バインダーと溶剤を加え、混合して負極塗膜形成用塗料を調製し、その塗料を導電性基体としての機能を兼ねる負極集電体の少なくとも一方の面に塗布し、乾燥して、塗料中の溶剤を蒸去して負極塗膜を形成し、必要に応じて、上記塗膜を加圧して圧縮する工程を経由することによって作製される。   For example, the negative electrode is prepared by adding a binder and a solvent to the negative electrode active material and mixing them to prepare a negative electrode film-forming coating material, and at least one surface of the negative electrode current collector that also functions as a conductive substrate. It is prepared by applying to the substrate, drying, evaporating the solvent in the paint to form a negative electrode coating film, and pressing and compressing the coating film as necessary.

本発明において、上記正極塗膜形成用の塗料を正極集電体に塗布する際の塗布方法や負極塗膜形成用の塗料を負極集電体に塗布する際の塗布方法としては、例えば、押出しコーター、リバースローラー、ドクターブレード、アプリケーターなどをはじめ、各種の塗布方法を採用することができる。   In the present invention, the coating method for applying the positive electrode coating film-forming paint to the positive electrode current collector and the coating method for applying the negative electrode film-forming coating material to the negative electrode current collector include, for example, extrusion. Various coating methods such as a coater, reverse roller, doctor blade, applicator and the like can be adopted.

上記負極のバインダーとしては、例えば、ポリビニリデンフルオライド(ポリフッ化ビニリデン)、ポリテトラフルオロエチレン、カルボキシメチルセルロース、エチルセルロースなどを用いることができる。   Examples of the negative electrode binder that can be used include polyvinylidene fluoride (polyvinylidene fluoride), polytetrafluoroethylene, carboxymethylcellulose, and ethylcellulose.

本発明において、正極集電体や負極集電体としては、例えば、アルミニウム、ステンレス鋼、チタン、銅などの金属性導電材料を網、パンチドメタル、フォームメタルや板状に加工した箔などが用いられる。   In the present invention, as the positive electrode current collector and the negative electrode current collector, for example, a metal conductive material such as aluminum, stainless steel, titanium, copper or the like is processed into a net, a punched metal, a foam metal, a plate, or the like. Used.

電解液としては、例えば、1,2−ジメトキシエタン、1,2−ジエトキシエタン、プロピレンカーボネート、エチレンカーボネート、γ−ブチロラクトン、テトラヒドロフラン、1,3−ジオキソラン、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートなどの単独または2種以上の混合溶媒に、例えば、LiCFSO、LiCSO、LiClO、LiPF、LiBFなどの電解質を単独または2種以上溶解させて調製した有機電解液が用いられる。 Examples of the electrolyte include 1,2-dimethoxyethane, 1,2-diethoxyethane, propylene carbonate, ethylene carbonate, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate. An organic electrolyte prepared by dissolving, for example, an electrolyte such as LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiClO 4 , LiPF 6 , LiBF 4 , alone or in a mixture of two or more of Is used.

セパレータとしては、例えば、厚さ10〜50μmで、開孔率30〜70%の微多孔性ポリエチレンフィルムまたは微多孔性ポリエチレンフィルムなどが好適に用いられる。   As the separator, for example, a microporous polyethylene film or a microporous polyethylene film having a thickness of 10 to 50 μm and an open area ratio of 30 to 70% is preferably used.

電池は、例えば、上記のようにして作製されるシート状の正極とシート状の負極との間にセパレータを介在させて渦巻状に巻回作製した渦巻状電極体を、ニッケルメッキを施した鉄やステンレス鋼製の電池ケース内に挿入し、電解液を注入し、封口する工程を経て作製される。また、上記電池には、通常、電池内部に発生したガスをある一定圧力まで上昇した段階で電池外部に排出して、電池の高圧下での破裂を防止するための防爆機構が取り入れられる。   For example, a battery is a nickel-plated iron electrode obtained by winding a spiral electrode body wound in a spiral manner with a separator interposed between a sheet-like positive electrode and a sheet-like negative electrode produced as described above. It is manufactured through a process of inserting into a battery case made of or stainless steel, injecting an electrolyte, and sealing. The battery usually incorporates an explosion-proof mechanism that discharges gas generated inside the battery to a certain pressure to the outside of the battery to prevent the battery from bursting under high pressure.

次に、実施例を挙げて本発明をより具体的に説明する。ただし、本発明はそれらの実施例のみに限定されるものではない。なお、以下の実施例などにおいて、濃度を示す%は、特にその基準を付記しないかぎり、質量%である。   Next, the present invention will be described more specifically with reference to examples. However, this invention is not limited only to those Examples. In the following examples and the like,% indicating concentration is mass% unless otherwise noted.

実施例1
(1)正極の作製
まず、リチウムコバルト酸化物と、電子伝導助剤としての鱗片状黒鉛、バインダーを構成するアクリロニトリル−ブタジエン系ゴムとしての水素化アクリロニトリル−ブタジエンゴムと、ポリビニリデンフルオライド系ポリマーとしてのポリビニリデンフルオライドを用い、それらと溶剤としてのN−メチルピロリドンを下記の組成で含む正極塗膜形成用塗料を調製した。正極塗膜形成用塗料の組成:
リチウムニッケル酸化物 98質量部
〔日本化学工業製セルシードC−10(商品名)〕
アセチレンブラック 1質量部
〔昭和電工製デンカブラック(商品名)〕
水素化アクリロニトリル−ブタジエンゴム 0.2質量部(固形分)
〔日本ゼオン製BM720H(商品名) 8%N−メチルピロリドン溶液〕
ポリビニリデンフルオライド 0.8質量部
〔呉羽化学製KFポリマー(商品名)〕
N−メチルピロリドン 25質量部
〔上記日本ゼオン製BM720H(前出)の溶剤分も含む〕
Example 1
(1) Production of positive electrode First, as lithium cobalt oxide, scaly graphite as an electron conduction assistant, hydrogenated acrylonitrile-butadiene rubber as acrylonitrile-butadiene rubber constituting the binder, and polyvinylidene fluoride polymer A coating material for forming a positive electrode coating film was prepared using these polyvinylidene fluorides and N-methylpyrrolidone as a solvent in the following composition. Composition of positive electrode coating composition:
98 parts by mass of lithium nickel oxide [Nippon Chemical Industry Cell Seed C-10 (trade name)]
1 part by weight of acetylene black [Denka Black (trade name) manufactured by Showa Denko]
Hydrogenated acrylonitrile-butadiene rubber 0.2 parts by mass (solid content)
[Nippon Zeon BM720H (trade name) 8% N-methylpyrrolidone solution]
Polyvinylidene fluoride 0.8 parts by mass [KF Polymer (trade name) manufactured by Kureha Chemical]
25 parts by mass of N-methylpyrrolidone [including the solvent content of BM720H (supra) made by Nippon Zeon]

上記塗料の調製は次に示すように行った。まず、N−メチルピロリドンにポリビニリデンフルオライドを溶解して濃度が12%のポリビニリデンフルオライド溶液を調製した。次に、このポリビニリデンフルオライド溶液に水素化アクリロニトリル−ブタジエンゴム溶液(前出の日本ゼオン製BM720H)とアセチレンブラックとを加えて混合する第一の工程を経て電子伝導性ペースト状物を調製した。次に、この電子伝導性ペースト状物に正極活物質と残りのN−メチルピロリドンとを加えて混合する第二の工程を経て正極塗膜形成用塗料を調製した。   The coating material was prepared as follows. First, polyvinylidene fluoride was dissolved in N-methylpyrrolidone to prepare a polyvinylidene fluoride solution having a concentration of 12%. Next, a hydrogenated acrylonitrile-butadiene rubber solution (BM720H manufactured by Nippon Zeon Co., Ltd.) and acetylene black were added to the polyvinylidene fluoride solution and mixed to prepare an electron conductive paste. . Next, a positive electrode coating film-forming coating material was prepared through a second step of adding and mixing the positive electrode active material and the remaining N-methylpyrrolidone to the electron conductive paste.

上記のようにして得られた正極塗膜形成用塗料を厚さ20μmのアルミニウムからなる正極集電体の一方の面にアプリケーターを用いて塗布し、110℃で乾燥して塗膜を形成した。同様に、正極集電体の裏面側にも上記塗料を塗布し、110℃で8時間真空乾燥して正極単位面積あたり正極活物質質量(片面)21.0mg/cm2 の塗膜を形成した。そして、この塗膜の形成後の電極体をロールプレスして圧縮し、片面の塗膜厚みが58μmで、全厚が136μmの両面塗布型のシート状の正極を得た。 The coating material for forming a positive electrode coating film obtained as described above was applied to one surface of a positive electrode current collector made of aluminum having a thickness of 20 μm using an applicator, and dried at 110 ° C. to form a coating film. Similarly, the above-mentioned paint was applied to the back side of the positive electrode current collector, and vacuum dried at 110 ° C. for 8 hours to form a coating film having a positive electrode active material mass (single side) of 21.0 mg / cm 2 per unit area of the positive electrode. . Then, the electrode body after the formation of the coating film was roll-pressed and compressed to obtain a double-coated sheet-type positive electrode having a coating thickness of 58 μm on one side and a total thickness of 136 μm.

(2)負極の作製
まず、負極活物質として2800℃で合成した人造黒鉛(平均粒子径10μm)を用い、バインダーとして正極塗膜形成用塗料に用いたものと同様のポリビニリデンフルオライドを用い、それらを下記の割合で含む負極塗膜形成用塗料を調製した。
負極塗膜形成用塗料の組成:
人造黒鉛 95質量部
ポリビニリデンフルオライド 5質量部
N−メチルピロリドン 65.3質量部
(2) Production of negative electrode First, artificial graphite (average particle diameter 10 μm) synthesized at 2800 ° C. was used as the negative electrode active material, and the same polyvinylidene fluoride as that used for the positive electrode coating film-forming paint was used as the binder. A coating material for forming a negative electrode coating film containing them in the following ratio was prepared.
Composition of coating for forming negative electrode coating film:
Artificial graphite 95 parts by weight Polyvinylidene fluoride 5 parts by weight N-methylpyrrolidone 65.3 parts by weight

上記塗料の調製は次に示すように行った。まず、ポリビニリデンフルオライドをN−メチルピロリドンに溶解して濃度12%のポリビニリデンフルオライド溶液を調製した。次に、この溶液に負極活物質の人造黒鉛を加え、さらに上記溶液を調製した際の残りのN−メチルピロリドンを加えて混合することによって負極塗膜形成用塗料を調製した。   The coating material was prepared as follows. First, polyvinylidene fluoride was dissolved in N-methylpyrrolidone to prepare a polyvinylidene fluoride solution having a concentration of 12%. Next, the negative electrode active material artificial graphite was added to this solution, and the remaining N-methylpyrrolidone from the above solution was added and mixed to prepare a negative electrode coating film-forming coating material.

そして、得られた塗料を厚さ10μmの銅箔からなる負極集電体の一方の面にアプリケーターを用いて塗布し、110℃に設定したホットプレート上で20分間乾燥して負極塗膜を形成した。同様に、負極集電体の裏面側にも上記塗料を塗布し、110℃に設定したホットプレート上で20分間乾燥した後、100℃で8時間真空乾燥して負極単位面積あたり負極活物質質量(正極に対向する部分の片面)9.6mg/cm2 の負極塗膜を形成した。そして、この塗膜形成後の電極体をロールプレスして圧縮し、片面の塗膜厚みが58μmで、全厚が126μmの両面塗布型のシート状の負極を得た。 Then, the obtained paint was applied to one surface of a negative electrode current collector made of copper foil having a thickness of 10 μm using an applicator and dried on a hot plate set at 110 ° C. for 20 minutes to form a negative electrode coating film. did. Similarly, the above-mentioned paint is applied to the back side of the negative electrode current collector, dried on a hot plate set at 110 ° C. for 20 minutes, and then vacuum dried at 100 ° C. for 8 hours to obtain the negative electrode active material mass per unit area of the negative electrode (One surface of the portion facing the positive electrode) A negative electrode coating film of 9.6 mg / cm 2 was formed. And the electrode body after this coating film formation was roll-pressed and compressed, and the double-sided coating type sheet-like negative electrode whose one side coating film thickness is 58 micrometers and whose total thickness is 126 micrometers was obtained.

(3)電池の作製
厚み15μmで開孔率50%の微多孔性ポリエチレンフィルムからなるシート状のセパレータを上記シート状の正極とシート状の負極との間に介在させ、渦巻状に巻回して長円形巻回電極体を作製した。そして、この長円形巻回電極体を肉厚0.3mm、外径が開口部で4mm×34mm、深さ48mmのアルミニウム製の角形電池ケースに挿入し、正極端子、負極端子にリード線を溶接した後、エチレンカーボネートとエチルメチルカーボネートとの混合溶媒(体積比で1:1)に1mol/LのLiPFを溶解して調製した有機電解液を注入し、封口して角形のリチウム二次電池を作製した。
(3) Production of battery A sheet-like separator made of a microporous polyethylene film having a thickness of 15 μm and a porosity of 50% is interposed between the sheet-like positive electrode and the sheet-like negative electrode, and wound in a spiral shape. An oval wound electrode body was produced. Then, this oval wound electrode body is inserted into an aluminum rectangular battery case having a wall thickness of 0.3 mm, an outer diameter of 4 mm × 34 mm, and a depth of 48 mm, and a lead wire is welded to the positive terminal and the negative terminal. Then, an organic electrolyte prepared by dissolving 1 mol / L LiPF 6 in a mixed solvent of ethylene carbonate and ethyl methyl carbonate (1: 1 by volume) was injected, sealed, and rectangular lithium secondary battery Was made.

この図1に示す電池について説明すると、シート状の正極1とシート状の負極2とはセパレータ3を介して渦巻状に巻回され、長円形巻回電極体6として、角形の電池ケース4に上記電解液(図示せず)と共に収容されている。ただし、図1では、煩雑化を避けるため、シート状の正極1やシート状の負極2の作製にあたって使用した正極集電体や負極集電体などの電極集電体や、前記の有機電解液などは図示していない。また、長円形巻回電極体の内周側の部分は断面にしていない。   The battery shown in FIG. 1 will be described. The sheet-like positive electrode 1 and the sheet-like negative electrode 2 are wound in a spiral shape via a separator 3, and are formed into a rectangular battery case 4 as an oval wound electrode body 6. It is accommodated together with the electrolytic solution (not shown). However, in FIG. 1, in order to avoid complication, an electrode current collector such as a positive electrode current collector and a negative electrode current collector used in the production of the sheet-like positive electrode 1 and the sheet-like negative electrode 2, and the organic electrolyte solution described above Etc. are not shown. Further, the inner peripheral side portion of the oval wound electrode body is not cross-sectional.

電池ケース4はアルミニウム製で、電池の外装ケースであり、この電池ケース4は正極端子を兼ねている。そして、電池ケース4の底部にはポリテトラフルオロエチレンシートからなる缶底絶縁体5が配置され、前記正極1、負極2およびセパレータ3からなる長円巻回電極体6からは正極1および負極2のそれぞれ一端に接続された正極リード体7と負極リード体8が引き出されている。また、電池ケース4の開口部を封口するアルミニウム製の蓋板9にはポリプロピレン製の絶縁パッキング10を介してステンレス鋼製の端子11が取り付けられ、この端子11には絶縁体12を介してステンレス鋼製のリード体13が取り付けられている。   The battery case 4 is made of aluminum and is an outer case of the battery. The battery case 4 also serves as a positive electrode terminal. A can bottom insulator 5 made of a polytetrafluoroethylene sheet is disposed at the bottom of the battery case 4, and the positive electrode 1 and the negative electrode 2 are formed from the oval wound electrode body 6 made of the positive electrode 1, the negative electrode 2 and the separator 3. The positive electrode lead body 7 and the negative electrode lead body 8 connected to one end of each are drawn out. A stainless steel terminal 11 is attached to the aluminum lid plate 9 that seals the opening of the battery case 4 via an insulating packing 10 made of polypropylene, and the terminal 11 is made of stainless steel via an insulator 12. A steel lead body 13 is attached.

そして、この蓋板9は上記電池ケース4の開口部に挿入され、両者の接合部を溶接することによって、電池ケース4の開口部が封口され、電池内部が密閉されている。   And this cover plate 9 is inserted in the opening part of the said battery case 4, and the opening part of the battery case 4 is sealed by welding the junction part of both, and the inside of a battery is sealed.

この実施例1の電池では、正極リード体7を蓋板9に直接溶接することによって電池ケース4と蓋板9とが正極端子として機能し、負極リード体8をリード体13に溶接し、そのリード体13を介して負極リード体8と端子11とを導通させることによって端子11が負極端子として機能するようになっているが、電池ケース4の材質などによっては、その正負が逆になる場合もある。   In the battery of Example 1, the battery case 4 and the cover plate 9 function as a positive electrode terminal by directly welding the positive electrode lead body 7 to the lid plate 9, and the negative electrode lead body 8 is welded to the lead body 13, The terminal 11 functions as a negative electrode terminal by conducting the negative electrode lead body 8 and the terminal 11 through the lead body 13. However, depending on the material of the battery case 4, the sign may be reversed. There is also.

図2は上記実施例1の電池を一部分解して模式的に示す斜視図であり、この図2は上記図1に示す実施例1の電池が角形電池であることを示すことを目的として図示されているものであって、この図2では電池を概略的に示しており、電池の構成部材のうち、特定のものしか図示していない。   FIG. 2 is a perspective view schematically showing a part of the battery of the first embodiment. FIG. 2 is shown for the purpose of showing that the battery of the first embodiment shown in FIG. 1 is a square battery. FIG. 2 schematically shows the battery, and only specific members of the battery constituent members are shown.

実施例2
実施例1の正極塗膜形成用塗料組成中、リチウムニッケル酸化物98質量部を97.5質量部に変え、水素化アクリロニトリル−ブタジエンゴム0.2質量部を0.3質量部に変え、ポリビニリデンフルオライド0.8質量部を1.2重量部に変え、ロールプレス後の正極の片面の塗膜厚みを59μmにし、全厚を138μmにした以外は、実施例1と同様に角形のリチウム二次電池を作製した。
Example 2
In the coating composition for forming a positive electrode coating film of Example 1, 98 parts by mass of lithium nickel oxide was changed to 97.5 parts by mass, 0.2 parts by mass of hydrogenated acrylonitrile-butadiene rubber was changed to 0.3 parts by mass, Square lithium as in Example 1 except that 0.8 parts by weight of vinylidene fluoride was changed to 1.2 parts by weight, the thickness of the coating film on one side of the positive electrode after roll pressing was 59 μm, and the total thickness was 138 μm. A secondary battery was produced.

実施例3
実施例1の正極塗膜形成用塗料組成中、リチウムニッケル酸化物98質量部を98.6質量部に変え、ポリビニリデンフルオライド0.8質量部を0.2質量部に変え、ロールプレス後の正極の片面の塗膜厚みを57μmにし、全厚を134μmにした以外は、実施例1と同様に角形のリチウム二次電池を作製した。
Example 3
In the coating composition for forming a positive electrode coating film of Example 1, 98 parts by mass of lithium nickel oxide was changed to 98.6 parts by mass, 0.8 parts by mass of polyvinylidene fluoride was changed to 0.2 parts by mass, and after roll press A rectangular lithium secondary battery was produced in the same manner as in Example 1 except that the coating thickness on one side of the positive electrode was 57 μm and the total thickness was 134 μm.

実施例4
実施例1の正極塗膜形成用塗料組成中、水素化アクリロニトリル−ブタジエンゴム0.2質量部を0.8質量部に変え、ポリビニリデンフルオライド0.8質量部を0.2質量部に変え、ロールプレス後の正極の片面の塗膜厚みを58μmにし、全厚を136μmにした以外は、実施例1と同様に角形のリチウム二次電池を作製した。
Example 4
In the coating composition for forming a positive electrode coating film of Example 1, 0.2 parts by mass of hydrogenated acrylonitrile-butadiene rubber was changed to 0.8 parts by mass, and 0.8 parts by mass of polyvinylidene fluoride was changed to 0.2 parts by mass. A rectangular lithium secondary battery was produced in the same manner as in Example 1 except that the thickness of the coating film on one side of the positive electrode after roll pressing was 58 μm and the total thickness was 136 μm.

実施例5
実施例1の正極塗膜形成用塗料組成中、リチウムニッケル酸化物98質量部を97量部に変え、アセチレンブラック1質量部を2質量部に変え、ロールプレス後の正極の片面の塗膜厚みを59μmにし、全厚を138μmにした以外は、実施例1と同様に角形のリチウム二次電池を作製した。
Example 5
In the coating composition for forming a positive electrode coating film of Example 1, 98 parts by mass of lithium nickel oxide was changed to 97 parts by mass, 1 part by mass of acetylene black was changed to 2 parts by mass, and the coating film thickness on one side of the positive electrode after the roll press. A square lithium secondary battery was fabricated in the same manner as in Example 1 except that the thickness was 59 μm and the total thickness was 138 μm.

実施例6
実施例1の正極塗膜形成用塗料組成中、リチウムニッケル酸化物98質量部を97質量部に変え、アセチレンブラック1質量部を鱗片状黒鉛〔ロンザ社製のKS−15(商品名)〕2質量部に変え、水素化アクリロニトリル−ブタジエンゴム0.2質量部を0.1質量部に変え、ポリビニリデンフルオライド0.8質量部を0.9質量部に変え、ロールプレス後の正極の片面の塗膜厚みを58μmにし、全厚を136μmにした以外は、実施例1と同様に角形のリチウム二次電池を作製した。
Example 6
In the coating composition for forming a positive electrode coating film of Example 1, 98 parts by mass of lithium nickel oxide was changed to 97 parts by mass, and 1 part by mass of acetylene black was scaled graphite [KS-15 (trade name) manufactured by Lonza Corporation] 2 Change to 0.2 parts by weight, change 0.2 parts by weight of hydrogenated acrylonitrile-butadiene rubber to 0.1 parts by weight, change 0.8 parts by weight of polyvinylidene fluoride to 0.9 parts by weight, one side of positive electrode after roll press A square lithium secondary battery was produced in the same manner as in Example 1 except that the coating thickness was set to 58 μm and the total thickness was set to 136 μm.

実施例7
実施例1において、正極塗膜形成用塗料の調製に際し、ポリビニリデンフルオライド溶液と水素化アクリロニトリル−ブタジエンゴム溶液とアセチレンブラックとを加えて混練する第一の工程を経て電子伝導性ペースト状物を作製し、この電子伝導性ペースト状物に正極活物質と残りのN−メチルピロリドンを混合する第二の工程を経て正極塗膜形成用塗料を調製したのに代えて、ポリビニリデンフルオライド溶液と水素化アクリロニトリル−ブタジエンゴム溶液とアセチレンブラックと正極活物質とを一括混合し、さらに残りのN−メチルピロリドンを混合して正極塗膜形成用塗料を調製し、ロールプレス後の正極の片面の塗膜厚みを60μmにし、全厚を140μmにした以外は、実施例1と同様に角形のリチウム二次電池を作製した。
Example 7
In Example 1, when preparing a coating material for forming a positive electrode coating film, an electronically conductive paste-like material is obtained through a first step of adding and kneading a polyvinylidene fluoride solution, a hydrogenated acrylonitrile-butadiene rubber solution, and acetylene black. Instead of preparing and coating a coating material for forming a positive electrode coating film through a second step of mixing the positive electrode active material and the remaining N-methylpyrrolidone with this electron conductive paste, a polyvinylidene fluoride solution and A hydrogenated acrylonitrile-butadiene rubber solution, acetylene black, and a positive electrode active material are mixed together, and the remaining N-methylpyrrolidone is further mixed to prepare a coating material for forming a positive electrode coating film. A square lithium secondary battery was produced in the same manner as in Example 1 except that the film thickness was 60 μm and the total thickness was 140 μm.

比較例1
実施例1の正極塗膜形成用塗料組成中、水素化アクリロニトリル−ブタジエンゴム0.2質量部を1質量部に変え、ポリビニリデンフルオライド0.8質量部を0質量部に変え、ロールプレス後の正極の片面の塗膜厚みを58μmにし、全厚を136μmにした以外は、実施例1と同様に角形のリチウム二次電池を作製した。
Comparative Example 1
In the coating composition for forming a positive electrode coating film of Example 1, 0.2 parts by mass of hydrogenated acrylonitrile-butadiene rubber was changed to 1 part by mass, 0.8 parts by mass of polyvinylidene fluoride was changed to 0 parts by mass, and after roll press A rectangular lithium secondary battery was fabricated in the same manner as in Example 1 except that the thickness of the coating film on one side of the positive electrode was 58 μm and the total thickness was 136 μm.

比較例2
実施例1の正極塗膜形成用塗料組成中、水素化アクリロニトリル−ブタジエンゴム0.2質量部を0質量部に、ポリビニリデンフルオライド0.8質量部を1質量部に変え、ロールプレス後の正極の片面の塗膜厚みを63μmにし、全厚を146μmにした以外は、実施例1と同様に角形のリチウム二次電池を作製した。
Comparative Example 2
In the coating composition for forming a positive electrode coating film of Example 1, 0.2 parts by mass of hydrogenated acrylonitrile-butadiene rubber was changed to 0 parts by mass, and 0.8 parts by mass of polyvinylidene fluoride was changed to 1 part by mass. A rectangular lithium secondary battery was produced in the same manner as in Example 1 except that the coating thickness on one side of the positive electrode was 63 μm and the total thickness was 146 μm.

比較例3
実施例1の正極塗膜形成用塗料組成中、リチウムニッケル酸化物98質量部を99.2量部に変え、水素化アクリロニトリル−ブタジエンゴム0.2質量部を0.09質量部に変え、ポリビニリデンフルオライド0.8質量部を0.09質量部に変え、ロールプレス後の正極の片面の塗膜厚みを59μmにし、全厚を136μmにした以外は、実施例1と同様に角形のリチウム二次電池を作製した。
Comparative Example 3
In the coating composition for forming a positive electrode coating film of Example 1, 98 parts by weight of lithium nickel oxide was changed to 99.2 parts by weight, 0.2 parts by weight of hydrogenated acrylonitrile-butadiene rubber was changed to 0.09 parts by weight, Square lithium as in Example 1 except that 0.8 parts by weight of vinylidene fluoride was changed to 0.09 parts by weight, the coating thickness on one side of the positive electrode after roll pressing was 59 μm, and the total thickness was 136 μm. A secondary battery was produced.

比較例4
実施例1の正極塗膜形成用塗料組成中、リチウムニッケル酸化物98質量部を97量部に変え、アセチレンブラック0.2質量部を1質量部に変え、ポリビニリデンフルオライド0.8質量部を1 質量部に変え、ロールプレス後の正極の片面の塗膜厚みを59μmにし、全厚を138μmにした以外は、実施例1と同様に角形のリチウム二次電池を作製した。
Comparative Example 4
In the coating composition for forming the positive electrode coating film of Example 1, 98 parts by mass of lithium nickel oxide was changed to 97 parts by mass, 0.2 parts by mass of acetylene black was changed to 1 part by mass, and 0.8 parts by mass of polyvinylidene fluoride. Was changed to 1 part by mass, a square lithium secondary battery was prepared in the same manner as in Example 1 except that the thickness of the coating film on one side of the positive electrode after roll pressing was 59 μm and the total thickness was 138 μm.

比較例5
実施例1の正極塗膜形成用塗料組成中、リチウムニッケル酸化物98質量部を97質量部に変え、アセチレンブラック1質量部を2質量部に変え、水素化アクリロニトリル−ブタジエンゴム0.2質量部を0.07質量部に変え、ポリビニリデンフルオライド0.8質量部を0.93質量部に変え、ロールプレス後の正極の片面の塗膜厚みを60μmにし、全厚を140μmにした以外は、実施例1と同様に角形のリチウム二次電池を作製した。
Comparative Example 5
In the coating composition for forming a positive electrode coating film of Example 1, 98 parts by mass of lithium nickel oxide was changed to 97 parts by mass, 1 part by mass of acetylene black was changed to 2 parts by mass, and 0.2 parts by mass of hydrogenated acrylonitrile-butadiene rubber. Is changed to 0.07 parts by mass, 0.8 parts by mass of polyvinylidene fluoride is changed to 0.93 parts by mass, the coating thickness on one side of the positive electrode after roll pressing is 60 μm, and the total thickness is 140 μm. A rectangular lithium secondary battery was produced in the same manner as in Example 1.

上記のようにして作製した実施例1〜7および比較例1〜5の電池について、電池容量を測定し、かつ負荷特性およびサイクル特性を調べた。上記電池容量の測定にあたっては、充放電電流をCで表示した場合、800mАを1Cとし充電は1Cの電流制限回路を設けて4.2Vの定電圧で行い、放電は1Cの電流制限回路を設けて電池の電極間電圧が3Vに低下するまで行って放電容量を測定し、それを電池容量とした。そして、負荷特性を求めるにあたっては、充放電電流を0.2Cと2Cに変えて上記条件下で充放電して放電容量を測定し、それらの放電容量から負荷特性を下記の式から求めた。その結果を前記電池容量とともに表1に示す。   Regarding the batteries of Examples 1 to 7 and Comparative Examples 1 to 5 produced as described above, the battery capacity was measured, and the load characteristics and the cycle characteristics were examined. In the measurement of the battery capacity, when the charge / discharge current is expressed in C, 800 m is set to 1C, charging is performed at a constant voltage of 4.2V with a current limiting circuit of 1C, and discharging is provided with a current limiting circuit of 1C. The discharge capacity was measured until the voltage between the electrodes of the battery dropped to 3 V, and this was taken as the battery capacity. And when calculating | requiring load characteristics, charging / discharging current was changed into 0.2C and 2C, charging / discharging was carried out on the said conditions, discharge capacity was measured, and load characteristics were calculated | required from the following formula from those discharge capacities. The results are shown in Table 1 together with the battery capacity.

2C放電容量
負荷特性=──────────
0.2C放電容量
2C discharge capacity load characteristics = ──────────
0.2C discharge capacity

また、サイクル特性は、上記1Cの充放電を繰り返した時の電池容量の変化を調べ、初回(1回目)の放電容量に対する100回目、200回目、300回目、400回目および500回目の放電容量の保持率を容量保持率として下記の式(ただし、nは回数)から求め、その結果で評価するものとした。それらの容量保持率(%)を表2と図3に示す。
n回目の放電容量
容量保持率(%)=─────────── ×100
初回の放電容量
In addition, the cycle characteristics are examined for the change in battery capacity when the charge / discharge of 1C is repeated, and the discharge capacity of the 100th, 200th, 300th, 400th and 500th discharge capacities with respect to the first (first) discharge capacity. The retention rate was determined as the capacity retention rate from the following formula (where n is the number of times), and the result was evaluated. Their capacity retention rates (%) are shown in Table 2 and FIG.
nth discharge capacity capacity retention rate (%) = ─────────── × 100
Initial discharge capacity

なお、図3においては、実施例2と実施例4と実施例5は特性が変わらないので同じ記号で示し、実施例6と実施例7も特性がほとんど変わらないので同じ記号で示し、比較例4と比較例5も特性がほとんど変わらないので同じ記号で示している。   In FIG. 3, the characteristics of Example 2, Example 4 and Example 5 are the same because the characteristics do not change, and the characteristics of Examples 6 and 7 are also the same because the characteristics are almost the same. Since the characteristics of 4 and Comparative Example 5 are almost the same, the same symbols are used.

Figure 2006253157
Figure 2006253157

Figure 2006253157
Figure 2006253157

表1に示すように、実施例1〜7の電池は、電池容量が大きく、高容量であるとともに、比較例1〜5の電池に比べて、負荷特性が優れており、大電流放電での電池容量の減少が少なかった。   As shown in Table 1, the batteries of Examples 1 to 7 have a large battery capacity and high capacity, and are superior in load characteristics as compared with the batteries of Comparative Examples 1 to 5, with large current discharge. There was little decrease in battery capacity.

また、表2や図3に示すように、実施例1〜7の電池は、比較例1〜5の電池に比べて、特に充放電の繰り返し回数が多くなったときの容量保持率が高く、充放電を繰り返しても電池容量の減少が少なく、サイクル特性が優れていた。   Moreover, as shown in Table 2 and FIG. 3, the batteries of Examples 1 to 7 have a high capacity retention rate when the number of charge / discharge cycles is increased, compared with the batteries of Comparative Examples 1 to 5, Even after repeated charge and discharge, the battery capacity decreased little and the cycle characteristics were excellent.

すなわち、シート状の正極のバインダーとして、アクリロニトリル−ブタジエン系ゴムとしての水素化アクリロニトリル−ブタジエンゴムと、主成分モノマーとしてのビニリデンフルオライドを含むポリビニリデンフルオライド系ポリマーとしてのポリビニリデンフルオライドを用い、かつ、その塗膜中のバインダーの含率を0.2質量%以上2質量%未満とし、電子伝導助剤のアセチレンブラックの塗膜中の含率を上記アクリロニトリル−ブタジエン系ゴムの含率の1〜25倍の範囲内とした本発明の実施例1〜7のリチウム二次電池は、大電流放電での電池容量の減少が少なく、かつ、充放電を繰り返しても電池容量の減少が少なく、しかも高容量であった。   That is, as a binder for the sheet-like positive electrode, using hydrogenated acrylonitrile-butadiene rubber as acrylonitrile-butadiene rubber and polyvinylidene fluoride as polyvinylidene fluoride-based polymer including vinylidene fluoride as a main component monomer, And the content rate of the binder in the coating film shall be 0.2 mass% or more and less than 2 mass%, and the content rate in the coating film of acetylene black of an electronic conduction auxiliary agent is 1 of the content rate of the said acrylonitrile-butadiene type rubber. The lithium secondary batteries of Examples 1 to 7 of the present invention within a range of ˜25 times have a small decrease in battery capacity due to a large current discharge, and a small decrease in battery capacity even after repeated charge and discharge. Moreover, the capacity was high.

これに対して、バインダーとしてポリビニリデンフルオライドを用いずアクリロニトリル−ブタジエン系ゴムのみを用いた比較例1の電池は、実施例1〜7の電池に比べて、負荷特性が悪く、大電流放電での電池容量の減少が大きく、また、バインダーとしてアクリロニトリル−ブタジエン系ゴムを用いずポリビニリデンフルオライドのみを用いた比較例2の電池は、実施例1〜7の電池に比べて、サイクル特性が悪く、充放電の繰り返しによる電池容量の減少が大きいことを示していた。そして、バインダー量が0.18質量%であって本発明で規定する0.2質量%以上2質量%未満よりバインダー量が少ない比較例3の電池は、実施例1〜7の電池に比べて、電池容量が少なく、負荷特性が悪く、サイクル特性も悪かった。また、バインダー量が2質量%であって本発明で規定する0.2質量%以上2質量%未満よりバインダーが多い比較例4の電池は、実施例1〜7の電池に比べて、容量が小さく、アセチレンブラックの含率が上記アクリロニトリル−ブタジエン系ゴムの含率の約28.6倍であって本発明で規定する1〜25倍よりアセチレンブラックの含率が多い比較例5の電池は、実施例1〜7の電池に比べて、特にサイクル特性が悪かった。   On the other hand, the battery of Comparative Example 1 using only acrylonitrile-butadiene rubber without using polyvinylidene fluoride as a binder has poor load characteristics compared to the batteries of Examples 1 to 7, and has a large current discharge. The battery capacity of the battery of Comparative Example 2 using only polyvinylidene fluoride without using acrylonitrile-butadiene rubber as the binder was poor in cycle characteristics as compared with the batteries of Examples 1-7. It was shown that the battery capacity was greatly reduced by repeated charging and discharging. And the battery of the comparative example 3 whose amount of binders is 0.18 mass% and has less binder amount than 0.2 mass% or more and less than 2 mass% prescribed | regulated by this invention is compared with the battery of Examples 1-7. The battery capacity was low, the load characteristics were poor, and the cycle characteristics were also poor. Further, the battery of Comparative Example 4 having a binder amount of 2% by mass and having more binder than 0.2% by mass to less than 2% by mass as defined in the present invention has a capacity as compared with the batteries of Examples 1 to 7. The battery of Comparative Example 5 is small and the content of acetylene black is about 28.6 times the content of the acrylonitrile-butadiene rubber and the content of acetylene black is more than 1 to 25 times defined in the present invention. Compared with the batteries of Examples 1 to 7, the cycle characteristics were particularly bad.

本発明のリチウム二次電池の一例を模式的に示す図で、(a)はその平面図、(b)はその部分断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows typically an example of the lithium secondary battery of this invention, (a) is the top view, (b) is the fragmentary sectional view. 図1に示すリチウム二次電池を一部分解した状態で模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing the lithium secondary battery shown in FIG. 1 in a partially exploded state. 実施例1〜7の電池および比較例1〜5の電池の充放電の繰り返し回数の増加に伴う容量保持率の変化を示す図である。It is a figure which shows the change of the capacity | capacitance retention rate with the increase in the repetition frequency of charging / discharging of the battery of Examples 1-7 and the battery of Comparative Examples 1-5.

符号の説明Explanation of symbols

1 正極
2 負極
3 セパレータ
4 電池ケース
5 缶底絶縁体
6 長円形巻回電極体
7 正極リード体
8 負極リード体
9 蓋板
10 絶縁環状パッキング
11 端子
12 絶縁体
13 リード体
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Battery case 5 Can bottom insulator 6 Oval winding electrode body 7 Positive electrode lead body 8 Negative electrode lead body 9 Cover plate 10 Insulating annular packing 11 Terminal 12 Insulator 13 Lead body

Claims (8)

シート状の正極とシート状の負極とをセパレータを介して渦巻状に巻回してなる長円形の巻回電極体を有するリチウム二次電池であって、上記シート状の正極が正極集電体の少なくとも一方の面に少なくとも正極活物質とバインダーと電子伝導助剤とを含有する塗膜を形成したものからなり、上記シート状の正極のバインダーが、アクリロニトリル−ブタジエン系ゴムと、主成分モノマーとしてのビニリデンフルオライドを含むポリビニリデンフルオライド系ポリマーとを含み、かつ、塗膜中の含率が0.2質量%以上2質量%未満であり、上記シート状の正極の電子伝導助剤の塗膜中の含率が、上記バインダーのアクリロニトリル−ブタジエン系ゴムの含率の1〜25倍であることを特徴とするリチウム二次電池。   A lithium secondary battery having an oval wound electrode body in which a sheet-like positive electrode and a sheet-like negative electrode are spirally wound via a separator, wherein the sheet-like positive electrode is a positive electrode current collector It is formed by forming a coating film containing at least a positive electrode active material, a binder, and an electron conduction auxiliary agent on at least one surface, and the binder of the sheet-like positive electrode includes acrylonitrile-butadiene rubber and a main component monomer. A coating film of an electron conduction assistant for the sheet-like positive electrode, comprising a polyvinylidene fluoride-based polymer containing vinylidene fluoride and having a content in the coating film of 0.2% by mass or more and less than 2% by mass. A lithium secondary battery characterized in that the content is 1 to 25 times the content of acrylonitrile-butadiene rubber as the binder. シート状の正極の電子伝導助剤が、鱗片状黒鉛、カーボンブラックおよび金属粒子から選ばれる少なくとも1種であることを特徴とする請求項1に記載のリチウム二次電池。   2. The lithium secondary battery according to claim 1, wherein the electron conduction assistant of the sheet-like positive electrode is at least one selected from flaky graphite, carbon black, and metal particles. シート状の正極の電子伝導助剤が、カーボンブラックを含むことを特徴とする請求項1または2に記載のリチウム二次電池。   The lithium secondary battery according to claim 1 or 2, wherein the sheet-like positive electrode electron conduction assistant contains carbon black. 正極の塗膜中における電子伝導助剤の含率が、0.1質量%以上5質量%以下であることを特徴とする請求項1〜3のいずれかに記載のリチウム二次電池。   The lithium secondary battery according to any one of claims 1 to 3, wherein the content of the electron conduction assistant in the coating film of the positive electrode is 0.1% by mass or more and 5% by mass or less. アクリロニトリル−ブタジエン系ゴムが水素化アクリロニトリル−ブタジエンゴムであり、正極の塗膜中におけるその含率が、0.1質量%以上0.8質量%以下であることを特徴とする請求項1〜4のいずれかに記載のリチウム二次電池。   The acrylonitrile-butadiene rubber is a hydrogenated acrylonitrile-butadiene rubber, and the content of the acrylonitrile-butadiene rubber in the coating film of the positive electrode is 0.1% by mass or more and 0.8% by mass or less. A lithium secondary battery according to any one of the above. 角形であることを特徴とする請求項1〜5のいずれかに記載のリチウム二次電池。   The lithium secondary battery according to any one of claims 1 to 5, wherein the lithium secondary battery is rectangular. 請求項1〜6のいずれかに記載のリチウム二次電池を製造するに当たり、
バインダーと電子伝導助剤とを溶剤の存在下で混合して電子伝導性ペースト状物を得る第一の工程と、この電子伝導性ペースト状物に正極活物質を加えて混合する第二の工程とを経由して正極塗膜形成用塗料を調製し、この正極塗膜形成用塗料を正極集電体の少なくとも一方の面に塗布し、乾燥して、シート状の正極の塗膜を形成することを特徴とするリチウム二次電池の製造方法。
In manufacturing the lithium secondary battery according to any one of claims 1 to 6,
The first step of mixing the binder and the electron conduction aid in the presence of a solvent to obtain an electron conductive paste, and the second step of adding a positive electrode active material to the electron conductive paste and mixing. To prepare a coating film for forming a positive electrode coating film, apply the coating composition for forming a positive electrode coating film on at least one surface of the positive electrode current collector, and dry the coating film to form a sheet-like positive electrode coating film A method for producing a lithium secondary battery.
リチウム二次電池が角形であることを特徴とする請求項7に記載のリチウム二次電池の製造方法。   The method for producing a lithium secondary battery according to claim 7, wherein the lithium secondary battery is rectangular.
JP2006132429A 2006-05-11 2006-05-11 Manufacturing method of sheet-like positive electrode Expired - Fee Related JP4502332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006132429A JP4502332B2 (en) 2006-05-11 2006-05-11 Manufacturing method of sheet-like positive electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006132429A JP4502332B2 (en) 2006-05-11 2006-05-11 Manufacturing method of sheet-like positive electrode

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003357267A Division JP4502311B2 (en) 2003-10-17 2003-10-17 Method for manufacturing lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2006253157A true JP2006253157A (en) 2006-09-21
JP4502332B2 JP4502332B2 (en) 2010-07-14

Family

ID=37093356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006132429A Expired - Fee Related JP4502332B2 (en) 2006-05-11 2006-05-11 Manufacturing method of sheet-like positive electrode

Country Status (1)

Country Link
JP (1) JP4502332B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014255A1 (en) * 2010-07-29 2012-02-02 三菱重工業株式会社 Lithium ion secondary battery
JP2012089312A (en) * 2010-10-18 2012-05-10 Hitachi Maxell Energy Ltd Lithium ion secondary battery and thickening inhibitor for lithium ion secondary battery
JP2016015327A (en) * 2007-05-10 2016-01-28 日立マクセル株式会社 Electrochemical element and manufacturing the same
WO2017033600A1 (en) * 2015-08-27 2017-03-02 日本ゼオン株式会社 Binder composition for all-solid-state batteries
JP2018530113A (en) * 2016-03-24 2018-10-11 エルジー・ケム・リミテッド Composition for forming positive electrode of secondary battery, and positive electrode for secondary battery and secondary battery produced using the same
EP3340255B1 (en) 2015-09-25 2020-02-12 LG Chem, Ltd. Carbon black dispersion solution and manufacturing method thereof
CN113224388A (en) * 2021-04-23 2021-08-06 合肥国轩高科动力能源有限公司 Large-surface rubber coating equipment for square battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002039518A1 (en) * 2000-11-13 2002-05-16 Zeon Corporation Slurry composition for secondary cell positive electrode, secondary cell positive electrode and secondary cell
JP2003132877A (en) * 2001-10-23 2003-05-09 Sony Corp Positive electrode method for manufacturing the same and solid electrolyte battery
JP2003163006A (en) * 2001-09-14 2003-06-06 Matsushita Electric Ind Co Ltd Nonaqueous secondary battery and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002039518A1 (en) * 2000-11-13 2002-05-16 Zeon Corporation Slurry composition for secondary cell positive electrode, secondary cell positive electrode and secondary cell
JP2003163006A (en) * 2001-09-14 2003-06-06 Matsushita Electric Ind Co Ltd Nonaqueous secondary battery and its manufacturing method
JP2003132877A (en) * 2001-10-23 2003-05-09 Sony Corp Positive electrode method for manufacturing the same and solid electrolyte battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016015327A (en) * 2007-05-10 2016-01-28 日立マクセル株式会社 Electrochemical element and manufacturing the same
WO2012014255A1 (en) * 2010-07-29 2012-02-02 三菱重工業株式会社 Lithium ion secondary battery
JPWO2012014255A1 (en) * 2010-07-29 2013-09-09 三菱重工業株式会社 Lithium ion secondary battery
JP2012089312A (en) * 2010-10-18 2012-05-10 Hitachi Maxell Energy Ltd Lithium ion secondary battery and thickening inhibitor for lithium ion secondary battery
WO2017033600A1 (en) * 2015-08-27 2017-03-02 日本ゼオン株式会社 Binder composition for all-solid-state batteries
EP3340255B1 (en) 2015-09-25 2020-02-12 LG Chem, Ltd. Carbon black dispersion solution and manufacturing method thereof
JP2018530113A (en) * 2016-03-24 2018-10-11 エルジー・ケム・リミテッド Composition for forming positive electrode of secondary battery, and positive electrode for secondary battery and secondary battery produced using the same
US10741829B2 (en) 2016-03-24 2020-08-11 Lg Chem, Ltd. Composition for forming positive electrode of secondary battery, positive electrode for secondary battery and secondary battery manufactured using the same
CN113224388A (en) * 2021-04-23 2021-08-06 合肥国轩高科动力能源有限公司 Large-surface rubber coating equipment for square battery
CN113224388B (en) * 2021-04-23 2022-02-18 合肥国轩高科动力能源有限公司 Large-surface rubber coating equipment for square battery

Also Published As

Publication number Publication date
JP4502332B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP4502311B2 (en) Method for manufacturing lithium secondary battery
JP4743752B2 (en) Lithium ion secondary battery
JP5220273B2 (en) Electrode and non-aqueous secondary battery using the same
JP4222519B2 (en) Lithium ion secondary battery and equipment using the same
JP2012174569A (en) Preparation method of slurry for forming positive electrode mixture layer, and method of manufacturing nonaqueous electrolyte secondary battery
JP2008198596A (en) Positive electrode for lithium secondary battery, its manufacturing method, and lithium secondary battery
JP2009048876A (en) Nonaqueous secondary battery
JP6805374B2 (en) Electrodes for lithium-ion secondary batteries, their manufacturing methods, and lithium-ion secondary batteries
JP4988169B2 (en) Lithium secondary battery
JP4502332B2 (en) Manufacturing method of sheet-like positive electrode
JP2007265731A (en) Lithium ion secondary battery
JP6656370B2 (en) Lithium ion secondary battery and battery pack
JPH1173943A (en) Nonaqueous electrolyte secondary battery
JPH1145720A (en) Lithium secondary battery
JPH113710A (en) Lithium secondary battery
JP2019164965A (en) Lithium ion secondary battery
JP7003775B2 (en) Lithium ion secondary battery
KR101001567B1 (en) Lithium ion secondary battery
JPH10106540A (en) Lithium secondary battery
JP4069988B2 (en) Lithium ion secondary battery
JP2001273895A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP2004158362A (en) Organic electrolyte liquid battery
JP2009272120A (en) Negative electrode material, negative electrode for lithium ion secondary battery, and lithium-ion secondary battery
JP2021096901A (en) Lithium ion secondary battery
JPH10255760A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100416

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees