JP2010217162A - 生体試料反応容器、生体試料充填装置、生体試料定量装置、及び生体試料反応方法 - Google Patents

生体試料反応容器、生体試料充填装置、生体試料定量装置、及び生体試料反応方法 Download PDF

Info

Publication number
JP2010217162A
JP2010217162A JP2009206590A JP2009206590A JP2010217162A JP 2010217162 A JP2010217162 A JP 2010217162A JP 2009206590 A JP2009206590 A JP 2009206590A JP 2009206590 A JP2009206590 A JP 2009206590A JP 2010217162 A JP2010217162 A JP 2010217162A
Authority
JP
Japan
Prior art keywords
liquid
reaction
biological sample
flow path
introducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009206590A
Other languages
English (en)
Inventor
富美男 ▲高▼城
Fumio Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2009206590A priority Critical patent/JP2010217162A/ja
Publication of JP2010217162A publication Critical patent/JP2010217162A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

【課題】微量な反応液で、限界希釈法による核酸の定量を効率よく行う。
【解決手段】液体の流れる方向に垂直な断面の面積が、下流に向かうに従って段階的に大きくなる第1の流路103と、第1の流路103内に反応液を導入するための第1の開口部105と、第1の流路103内に反応液と混和しない液体を導入するための第2の開口部106を備え、第1の流路103内に、反応液と混和しない液体によって分離された反応液の液塊を大きさを段階的に変えて形成する。
【選択図】図2

Description

本発明は、核酸増幅などを行うための生体試料反応容器、生体試料充填装置、生体試料定量装置、及び生体試料反応方法に関するものである。
ガラス基板等に微細流路が設けられたマイクロ流体チップを使用して、化学分析や化学合成、あるいはバイオ関連の分析などを行う方法が注目されている。マイクロ流体チップは、マイクロTotal Analytical System (マイクロTAS)や、Lab-on-a-chip等とも呼ばれ、従来の装置に比較して試料や試薬の必要量が少ない、反応時間が短い、廃棄物が少ないなどのメリットがあり、医療診断、環境や食品のオンサイト分析、医薬品や化学品などの生産等、広い分野での利用が期待されている。試薬の量が少なくてよいことから、検査のコストを下げることが可能となり、また、試料および試薬の量が少ないことにより、反応時間も大幅に短縮されて検査の効率化が図れる。特に、医療診断に使用する場合には、試料となる血液など検体を少なくすることができるため、患者の負担を軽減できるというメリットもある。
試料として用いるDNAやRNAなどの遺伝子を増幅する方法として、ポリメラーゼ連鎖反応(PCR)法がよく知られている。PCR法は、増幅の対象となるターゲットDNAと試薬を混合したものをチューブに入れ、サーマルサイクラーという温度制御装置で、例えば62℃、72℃、95℃の3段階の温度変化を数分の周期で繰り返し反応させるもので、ポリメラーゼという酵素の作用により温度サイクル1回あたり、約2倍にターゲットDNAだけを増幅することができる。
近年、Taqman(登録商標)プローブやSYBRGreen(登録商標)などの特殊な蛍光プローブを用いたリアルタイムPCRという方法が実用化され、増幅反応を行いながらDNAの定量ができるようになった。リアルタイムPCRは、測定の感度、信頼性が高いことから、研究用、臨床検査用に広く使われている。
しかし、リアルタイムPCR法によりDNAの定量を行う場合、一定の蛍光強度に到達した際のサイクル数と初期の標的核酸の量の関係を示す検量線をつくる必要がある。さらに、検体中に増幅反応を阻害する物質が存在する場合、測定結果が検量線からずれるため、信頼性が低くなる場合がある。
また、従来の装置では、PCRに必要な反応液の量は数十μlが標準的であり、また、1つの反応系では基本的に1つの遺伝子の測定しかできないという問題があった。蛍光プローブを複数入れてその色で区別することにより4種類程度の遺伝子を同時に測定する方法もあるが、それ以上の遺伝子を同時に測定するためには反応系の数を増やすしかなかった。検体から抽出されるDNAの量は一般に少量であり、また試薬も高価なため同時に多数の反応系を測定することは困難であった。
反応容器を小型化する方法も提案されているが、検体液の分注精度の低下や、1つの反応容器中に含まれる標的核酸の量が少なくなるといった理由により、定量ばらつきが大きくなるという問題があった。
また、標的核酸の量を測定する他の手段として限界希釈法が知られており、例えば特許文献1にも開示されている。限界希釈法では、検体液を段階的に希釈してPCRを行い、標的核酸の増幅が確認できなくなる濃度を調べることにより、初期の標的核酸濃度を推定する。また、1つの反応容器内に存在する標的核酸の平均値が1以下になるように検体液を希釈して複数の反応容器でPCRを行い、標的核酸が検出できた反応容器の割合を求め、ポアソン分布の式から濃度を推定する方法もある。
特開2001−269196号公報
しかし、限界希釈法では、濃度が未知の検体については何段階にも検体液を希釈して多数の増幅反応を行う必要があるので、コストも時間もかかってしまうという問題があった。
そこで、本発明の目的は、微量な反応液で、限界希釈法による核酸の定量を効率よく行うことが可能な、生体試料反応容器、生体試料充填装置、生体試料定量装置、及び生体試料反応方法を得ることである。
本発明に係る生体試料反応容器は、液体の流れる方向に垂直な断面の面積が、下流に向かうに従って段階的に大きくなる流路と、流路内に反応液を導入するための第1の開口部と、流路内に反応液と混和しない液体を導入するための第2の開口部と、を備えたものである。
これにより、流路内に、反応液と混和しない液体によって分離された反応液の液塊を複数形成できる。また、流路の断面の面積が段階的に大きくなるため、体積の異なる反応液の液塊を形成することができるので、限界希釈法による定量を効率よく行うことができる。さらに、比較的体積が大きい液塊を断面の大きい下流の流路に送液することで、形成される液塊の流路断面の直径に対する送液方向の長さが極端に長くなることを防止でき、反応液中のターゲット核酸の分布が均一になり、反応ばらつきを低減することができる。また、ピペット等による反応液の分注作業が必要ないため、ピペット等で定量することが難しい非常に少量の反応液での反応処理が可能となる。
本発明に係る生体試料充填装置は、液体の流れる方向に垂直な断面の面積が、下流に向かうに従って段階的に大きくなる流路と、流路内に反応液を導入するための第1の開口部と、流路内に反応液と混和しない液体を導入するための第2の開口部と、を備えた生体試料反応容器と、生体試料反応容器に、反応液を導入するための第1のポンプと、生体試料反応容器に、反応液と混和しない液体を導入するための第2のポンプと、を備えたものである。
これにより、第1のポンプ及び第2のポンプの少なくとも一方の送液速度を制御して、流路内に、反応液と混和しない液体によって分離された反応液の液塊を複数形成できる。また、流路の断面の面積が段階的に大きくなるため、体積の異なる反応液の液塊を形成することができるので、限界希釈法による定量を効率よく行うことができる。さらに、比較的体積が大きい液塊を断面の大きい下流の流路に送液することで、形成される液塊の流路断面の直径に対する送液方向の長さが極端に長くなることを防止でき、反応液中のターゲット核酸の分布が均一になり、反応ばらつきを低減することができる。また、ピペット等による反応液の分注作業が必要ないため、ピペット等で定量することが難しい非常に少量の反応液での反応処理が可能となる。
さらに、本発明に係る生体試料充填装置は、第1のポンプ及び第2のポンプの少なくとも一方の送液速度を制御するポンプ制御部を備えることが望ましい。
これにより、流路内に、任意の体積の液塊を正確に形成することができる。
本発明に係る生体試料定量装置は、液体の流れる方向に垂直な断面の面積が、下流に向かうに従って段階的に大きくなる流路と、流路内に反応液を導入するための第1の開口部と、流路内に反応液と混和しない液体を導入するための第2の開口部と、を備えた生体試料反応容器と、生体試料反応容器に、反応液を導入するための第1のポンプと、生体試料反応容器に、反応液と混和しない液体を導入するための第2のポンプと、生体試料反応を行うための生体試料反応部と、生体試料反応処理の結果を測定する検出部と、を備えたものである。
これにより、第1のポンプ及び第2のポンプの少なくとも一方の送液速度を制御して、流路内に、反応液と混和しない液体によって分離された反応液の液塊を複数形成できる。また、流路の断面の面積が段階的に大きくなるため、体積の異なる反応液の液塊を形成することができるので、反応容器ごと生体試料反応を行った後に結果を測定することにより、限界希釈法による定量を効率よく行うことができる。さらに、比較的体積が大きい液塊を断面の大きい下流の流路に送液することで、形成される液塊の流路断面の直径に対する送液方向の長さが極端に長くなることを防止でき、反応液中のターゲット核酸の分布が均一になり、反応ばらつきを低減することができる。また、ピペット等による反応液の分注作業が必要ないため、ピペット等で定量することが難しい非常に少量の反応液での反応処理が可能となる。
本発明に係る生体試料充填方法は、液体の流れる方向に垂直な断面の面積が、下流に向かうに従って段階的に大きくなる流路を有する生体試料反応容器に、反応液と反応液と混和しない液体を導入することにより、反応液と混和しない液体によって分離された反応液の液塊を複数形成し、反応液及び反応液と混和しない液体の少なくとも一方の導入速度を制御することにより、液塊の大きさを段階的に変えるものである。
これにより、反応容器内で生体試料反応を行った後に結果を測定することにより、限界希釈法による定量を効率よく行うことができる。さらに、比較的体積が大きい液塊を断面の大きい下流の流路に送液することで、形成される液塊の流路断面の直径に対する送液方向の長さが極端に長くなることを防止でき、反応液中のターゲット核酸の分布が均一になり、反応ばらつきを低減することができる。また、ピペット等による反応液の分注作業が必要ないため、ピペット等で定量することが難しい非常に少量の反応液での反応処理が可能となる。
本発明の実施の形態による、生体試料反応用チップを用いた生体試料定量装置の概略構成を示す模式図である。 図2(A)は、本発明の実施の形態による生体試料反応用チップの概略構成を示す斜視図、図2(B)は、図2(A)のB−B断面図である。 本発明の実施の形態による、反応液及びミネラルオイルを生体試料反応用チップに充填する様子を示す図である。 本発明の実施の形態による、反応液及びミネラルオイルを生体試料反応用チップに充填する様子を示す図である。 本発明による生体試料反応用チップの他の例を示す図である。
以下、本発明の実施の形態について図面を参照して説明する。
図1は、本発明の実施の形態による、生体試料反応用チップ(生体試料反応容器)10を用いた生体試料定量装置20の概略構成を示す模式図である。生体試料定量装置20は、シリンジポンプ(第1のポンプ、第2のポンプ)201,202、温度調節用のヒートブロック(生体試料反応部)203、光学検出機(検出部)204、反応液収容部205、バルブ206,207、ポンプ制御部208を備えている。
シリンジポンプ201,202は、ポンプ制御部208に接続されており、ポンプ毎に任意の送液速度で駆動することができる。
ヒートブロック203は、PCR処理(生体試料反応処理)を行う際、生体試料反応用チップ10を所定の温度に保つための装置であり、PCR処理の温度サイクルに合わせて設定温度と時間を制御することが可能な制御装置(図示せず)に接続されている。
光学検出機204は、CCDカメラ等を用いることができる。
反応液収容部205は、反応液等を充填した容器301,302を収納できるように構成されており、各々の容器301,302は、シリコンチューブ等を介してバルブ206,207、シリンジポンプ201,202に接続されている。
図2(A)は、本発明の実施例による生体試料反応用チップ10の概略構成を示す斜視図、図2(B)は、図2(A)のB−B断面図である。図に示すように、生体試料反応用チップ10は、透明基板101,102、第1の流路103、第2の流路104、第1の開口部105、第2の開口部106、第3の開口部107を備えている。
図2に示すように、生体試料反応用チップ10は、2枚の透明基板101,102を貼り合わせて構成されている。透明基板101,102それぞれに、流路103の一部となる溝が形成されており、透明基板101,102を貼り合わせることによって、立体的な流路103が形成される。また、透明基板101,102それぞれに、流路104の一部となる溝が形成されており、透明基板101,102を貼り合わせることによって、立体的な流路104が形成される。第2の流路104は、第1の流路103に直交している。なお、透明基板101,102は例えばポリカーボネートなどの自家蛍光の少ない透明樹脂を用いて、射出成型により形成することができる。なお、流路103,104は、透明基板101または透明基板102のどちらか一方の基板にのみ形成された溝から構成されていてもよい。
流路103は、送液方向(図中矢印Fの方向)に垂直な断面の形状が円形に形成されており、断面積が異なる3つの部分103a,103b,103cを有する。流路103a,103b,103cのそれぞれの断面の直径は、ここでは100μm、300μm、900μmであり、下流に向かうに従って断面積が大きく形成されている。なお、断面の形状は、楕円形など円形以外の形状であってもよい。流路103は、直線部分と折り返し部分を有しており、この折り返し部分で断面積が変化するが、各々の直線部分では変化しない。
第1の開口部105は、第2の流路104の上流端に連なっており、シリコンチューブ等を介してバルブ206及びシリンジポンプ201に接続されている。第2の開口部106は、第1の流路103の上流端に連なっており、シリコンチューブ等を介してバルブ207及びシリンジポンプ202に接続されている。第3の開口部107は、流路103の下流端に連なっており、流路103を液体が流れる際の空気の逃げ道となっている。
次に、生体試料反応用チップ10への反応液の充填方法について説明する。
反応液には、ターゲット核酸とPCR反応用の試薬が含まれる。試薬には、プライマー、ポリメラーゼ、及びヌクレオチド(dNTP)、蛍光色素のSYBRGreen(登録商標)が後述する生体試料反応に適した所定の濃度で含まれている。
ターゲット核酸は、例えば血液、尿、唾液、髄液のような生体サンプルから抽出したDNA、または抽出したRNAから逆転写したcDNAなどを用いることができる。
まず、図1に示すように、生体試料定量装置20の反応液収容部205に、反応液を充填した容器301と、ミネラルオイル(反応液と混和しない液体)を充填した容器302をセットする。次に、バルブ206を操作してシリンジポンプ201と容器301が繋がる状態にし、バルブ207を操作してシリンジポンプ202と容器302が繋がる状態にする。次に、シリンジポンプ201,202を駆動して、容器301内から反応液をシリンジポンプ201内に吸引すると共に、容器302内からとミネラルオイルをシリンジポンプ202内に吸引する。
次に、バルブ206を操作してシリンジポンプ201と第1の開口部105が繋がるようにし、バルブ207を操作してシリンジポンプ202と第2の開口部106が繋がるようにする。そして、シリンジポンプ201,202を駆動して、反応液を第1の開口部105から第1の流路103内へ供給すると共に、ミネラルオイルを第2の開口部106から第1の流路103内へ供給する。
図3は、反応液及びミネラルオイルを生体試料反応用チップ10に充填する様子を示す図である。ポンプ制御部208によってシリンジポンプ201,202の送液速度を制御することにより、図3に示すように、第1の流路103内に、ミネラルオイルで分離された反応液の液塊400を形成することができる。液塊400は、第1の流路103の内壁面の全周に接するように形成される。最初に、断面積が最も小さい流路103a内に形成された液塊400は送液方向に細長い形状であるが、第1の流路103の下流へ行くに従って流路103の断面積が段階的に大きくなるため、次第に液塊400の断面の直径に対する送液方向の長さの比が小さくなっていく。
液塊400の送液方向の長さと液塊400同士の間隔は、送液速度によって制御することができる。反応液の送液速度をx、ミネラルオイルの送液速度をyとして、反応液とミネラルオイルを同時に送液すると、送液速度比x/yに対応して、液塊400の送液方向の長さと液塊400同士の間隔が決定される。反応液とミネラルオイルの送液速度比を変化させることにより、液塊400の送液方向の長さと液塊400同士の間隔を制御することができる。
また、反応液とミネラルオイルのどちらか一方を一定速度で送液し、他方の送液の開始と休止を繰り返すようにしてもよい。他方の液体の送液の開始、休止のタイミングを変化させることにより、液塊400の送液方向の長さと液塊400同士の間隔を制御することができる。例えば、ミネラルオイルを一定速度で送液し、反応液の送液の開始、休止のタイミングを変化させる場合には、反応液の送液タイミングによって液塊400同士の間隔を制御することができる。また、反応液の送液速度によって液塊400の送液方向の長さを制御することができる。液塊400の送液方向の長さは、反応液の送液速度が速いほど長くなる。
本実施形態では、図4に示すように、第1の流路103の各領域103a,103b,103cそれぞれの領域に、送液方向に垂直な断面の直径に対する送液方向の長さの比がほぼ1:1である液塊群400a,400b,400cを形成する。シリンジポンプ201,202の送液速度を制御して、第1の流路103内で形成される液塊400の大きさをしだいに小さくしていくことにより、図4に示すように体積の異なる液塊群400a,400b,400cを形成することができる。液塊群400a,400b,400cそれぞれの体積は等しく、ここでは、液塊群400cに対し、液塊群400bに含まれる液塊の体積は1/10、液塊400aに含まれる液塊の体積は1/100に形成されている。
このように、第1の流路103内に体積が3種類の反応液の液塊400を多数形成することができるので、3種類の体積の複数の反応容器に反応液を充填するのと同等の作業を、シリンジポンプ201,202の操作のみで行うことができる。
なお、液塊400の送液方向に垂直な断面の直径と送液方向の長さの比は1:1であることが望ましい。断面の直径に対して極端に送液方向の長さが長くなると、反応液中のターゲット核酸の分布が不均一になりやすく、反応にばらつきが生じやすくなる。
以上の手順で生体試料反応用チップ10に反応液を供給したら、次にPCR処理(生体試料反応処理)を行う。第1の開口部105、第2の開口部106、及び第3の開口部107をシールし、生体試料定量装置20内でPCR処理を行う。生体試料反応用チップ10はヒートブロック203の上に設置されており、所定の温度を数分の周期で繰り返して反応させる。一般的には、まず、95℃で2本鎖DNAを解離させる工程を実行し、次に、プライマーを約62℃でアニーリングする工程を実行し、次に耐熱性のDNAポリメラーゼを使用して約72℃で相補鎖の複製を行う工程を含むサイクルを50回繰り返す。
なお、各々の液塊400の間に挟まれたミネラルオイルは、反応液の蒸発と液塊400間のコンタミネーションを防止する効果がある。
PCR処理の後、光学検出機204を用いて、第1の流路103内の個々の液塊400の蛍光強度を測定する。一定値以上の蛍光強度が観察された液塊400ではターゲット核酸の増幅処理が行われたことを示しており、すなわち反応液中に1つ以上のターゲット核酸が存在したことを示している。体積の異なる液塊群400a,400b,400cの中で、増幅の観察される液塊と増幅の観察されない液塊の両方が含まれる液塊群を選択し、その中で増幅の観察されない液塊400の数を計数することにより、ターゲット核酸が存在しなかった液塊400の割合を求める。
次に、上記の結果に基づいて反応液中のターゲット核酸の濃度を算出する。濃度の算出にはポアソン分布を利用する。
ポアソン分布によれば、確率pで発生する事象がn回の試行のうちx回だけ起こる確率は、
f(x)=e-μμx/x! ・・・(1)
となる。μは平均値であり、μ=npである。1つの反応容器内のターゲット核酸の数の平均値をμとすると、反応容器内のターゲット核酸がゼロになる確率は、式(1)から、
f(0)=e-μ ・・・(2)
となる。
f(0)は上記の計数結果から求められた、ターゲット核酸が存在しなかった液塊400の割合に当る。よって、式(2)よりμが求められ、シリンジポンプ201,202の駆動条件から各々の液塊の体積を求められるので、反応液中のターゲット核酸の濃度が算出できる。
以上のように、本実施形態によれば、シリンジポンプ201,202の送液速度を制御して、生体試料反応用チップ10の第1の流路103内に体積の異なる反応液の液塊群400a,400b,400cを形成し、生体試料反応用チップ10ごとPCR処理を行うため、限界希釈法による核酸の定量を効率よく行うことができる。本実施形態では、液塊群400b,400aの体積が、それぞれ液塊群400cの体積の1/10、1/100に設定されているため、反応液を10倍、100倍に希釈してPCR反応を行った場合に相当する測定ができる。このように、反応液の希釈の手間を省くことが出来る。また、液塊群の体積の組み合わせを任意に変更することにより、任意の希釈倍率に相当する反応系を得ることができる。また、液塊の数を増やすことにより統計的な信頼度を上げることができる。さらに、比較的体積の大きい液塊群400bおよび400cを第1の流路103の下流である103bおよび103cに形成することによって、形成される各液塊における流路断面の直径に対する送液方向の長さが極端に長くなることを防止できる。従って、反応液中のターゲット核酸の分布が均一になり、反応ばらつきを低減することができる。
また、ピペットによる反応液の分注作業が必要ないため、ピペットで定量することが難しい非常に少量の反応液での反応処理が可能となる。
また、第1の流路103の形状は、図1に示すものに限られず、図5に示すように断面積が異なる複数の領域を有するものであればよい。なお、断面積は、下流に行くに従って段階的に大きくなっていくことが望ましい。上流の方の断面積を大きくした場合、断面積の小さい領域に合わせた小さな液塊が、断面積の大きな流路内を流れていくことになり、流路内で、液塊の追い越しが起こる可能性がある。
10 生体試料反応用チップ、101,102 透明基板、103 第1の流路、104 第2の流路、105 第1の開口部、106 第2の開口部、107 第3の開口部、
20 生体試料定量装置、201,202 シリンジポンプ、203 ヒートブロック、204 光学検出機、205 反応液収容部、206,207 バルブ、208 ポンプ制御部、301,302 容器、400 液塊

Claims (5)

  1. 液体の流れる方向に垂直な断面の面積が、下流に向かうに従って段階的に大きくなる流路と、
    前記流路内に反応液を導入するための第1の開口部と、
    前記流路内に前記反応液と混和しない液体を導入するための第2の開口部と、を備えた生体試料反応容器。
  2. 液体の流れる方向に垂直な断面の面積が、下流に向かうに従って段階的に大きくなる流路と、
    前記流路内に反応液を導入するための第1の開口部と、
    前記流路内に前記反応液と混和しない液体を導入するための第2の開口部と、を備えた生体試料反応容器と、
    前記生体試料反応容器に、前記反応液を導入するための第1のポンプと、
    前記生体試料反応容器に、前記反応液と混和しない液体を導入するための第2のポンプと、を備えた生体試料充填装置。
  3. 前記第1のポンプ及び前記第2のポンプの少なくとも一方の送液速度を制御するポンプ制御部を備えたことを特徴とする請求項2に記載の生体試料充填装置。
  4. 液体の流れる方向に垂直な断面の面積が、下流に向かうに従って段階的に大きくなる流路と、
    前記流路内に反応液を導入するための第1の開口部と、
    前記流路内に前記反応液と混和しない液体を導入するための第2の開口部と、を備えた生体試料反応容器と、
    前記生体試料反応容器に、前記反応液を導入するための第1のポンプと、
    前記生体試料反応容器に、前記反応液と混和しない液体を導入するための第2のポンプと、
    生体試料反応を行うための生体試料反応部と、
    生体試料反応処理の結果を測定する検出部と、を備えた生体試料定量装置。
  5. 液体の流れる方向に垂直な断面の面積が、下流に向かうに従って段階的に大きくなる流路を有する生体試料反応容器に、反応液と前記反応液と混和しない液体を導入することにより、前記反応液と混和しない液体によって分離された前記反応液の液塊を複数形成し、前記反応液及び前記反応液と混和しない液体の少なくとも一方の導入速度を制御することにより、前記液塊の大きさを段階的に変える生体試料充填方法。
JP2009206590A 2009-09-08 2009-09-08 生体試料反応容器、生体試料充填装置、生体試料定量装置、及び生体試料反応方法 Withdrawn JP2010217162A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009206590A JP2010217162A (ja) 2009-09-08 2009-09-08 生体試料反応容器、生体試料充填装置、生体試料定量装置、及び生体試料反応方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009206590A JP2010217162A (ja) 2009-09-08 2009-09-08 生体試料反応容器、生体試料充填装置、生体試料定量装置、及び生体試料反応方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009063967A Division JP4706883B2 (ja) 2009-03-17 2009-03-17 生体試料定量方法

Publications (1)

Publication Number Publication Date
JP2010217162A true JP2010217162A (ja) 2010-09-30

Family

ID=42976157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009206590A Withdrawn JP2010217162A (ja) 2009-09-08 2009-09-08 生体試料反応容器、生体試料充填装置、生体試料定量装置、及び生体試料反応方法

Country Status (1)

Country Link
JP (1) JP2010217162A (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005123241A1 (en) * 2004-06-21 2005-12-29 Q Chip Limited Apparatus and method for performing photochemical reactions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005123241A1 (en) * 2004-06-21 2005-12-29 Q Chip Limited Apparatus and method for performing photochemical reactions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010068649; Wen-Chi Chao et al.: 'Control of Concentration and Volume Gradients in Microfluidic Droplet Arrays for Protein Crystalliza' Proceedings of the 26th Annual International Conference of the IEEE EMBS (San Francisco, CA, USA, Se , 2004, pp. 2623-2626 *

Similar Documents

Publication Publication Date Title
US10744506B2 (en) Device for generating droplets
Cao et al. Advances in digital polymerase chain reaction (dPCR) and its emerging biomedical applications
JP4665960B2 (ja) 生体試料反応用チップ、生体試料反応装置、および生体試料反応方法
JP6719636B2 (ja) Pcr反応容器およびpcr装置
US9776182B2 (en) Handling liquid samples
US20120196280A1 (en) Microfabricated device for metering an analyte
JP4453090B2 (ja) 生体試料反応用チップおよび生体試料反応方法
JP4556194B2 (ja) 生体試料反応方法
JP5298718B2 (ja) 生体試料反応用チップに反応液を充填する遠心装置
US20140272996A1 (en) Droplet generator with collection tube
US20110065591A1 (en) Biochip and target dna quantitative method
JP4706883B2 (ja) 生体試料定量方法
RU2725264C2 (ru) Система для проведения анализов текучих сред
Xu et al. Advances in droplet digital polymerase chain reaction on microfluidic chips
van Kooten et al. Purely electrical SARS-CoV-2 sensing based on single-molecule counting
JP5131538B2 (ja) 反応液充填方法
JP2009183244A (ja) 簡易な遺伝子増幅定量装置
JP2010217162A (ja) 生体試料反応容器、生体試料充填装置、生体試料定量装置、及び生体試料反応方法
JP2010063395A (ja) 生体試料反応用チップ及び生体試料反応方法
JP2009150754A (ja) 生体試料反応用チップ、生体試料反応装置、および生体試料反応方法
JP2010088317A (ja) 生体試料定量用チップ、生体試料定量用キット、及び生体試料定量方法
JP2011062197A (ja) 生体試料定量方法
JP2009171933A (ja) 生体試料反応用チップおよび生体試料反応方法
JP2009192398A (ja) 生体物質検出装置および生体物質検出方法
JP2009192291A (ja) 生体物質検出用チップおよび生体物質検出方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130425