JP2010214551A - Wear resistant tool member excellent in heat resistance and durability - Google Patents

Wear resistant tool member excellent in heat resistance and durability Download PDF

Info

Publication number
JP2010214551A
JP2010214551A JP2009065409A JP2009065409A JP2010214551A JP 2010214551 A JP2010214551 A JP 2010214551A JP 2009065409 A JP2009065409 A JP 2009065409A JP 2009065409 A JP2009065409 A JP 2009065409A JP 2010214551 A JP2010214551 A JP 2010214551A
Authority
JP
Japan
Prior art keywords
film
wear
cutting
tin hard
tool member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009065409A
Other languages
Japanese (ja)
Other versions
JP5287395B2 (en
Inventor
Kazuaki Senbokuya
和明 仙北屋
Hidemitsu Takaoka
秀充 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009065409A priority Critical patent/JP5287395B2/en
Publication of JP2010214551A publication Critical patent/JP2010214551A/en
Application granted granted Critical
Publication of JP5287395B2 publication Critical patent/JP5287395B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wear resistant tool member excellent in heat resistance and durability suitable for a cutting tool for free-cutting steel or the like. <P>SOLUTION: In the wear resistant tool member, a TiN hard film, a diamond-like carbon film containing Al, and an Al<SB>2</SB>O<SB>3</SB>film are formed in this order from a surface side of a tool base on the tool base. An Al content in the diamond-like carbon film containing Al is 5 to 30 atomic%. Preferably the diamond-like carbon film containing Al contains 5 to 15 atomic% Al at the interface with the TiN hard film, and 20 to 30 atomic% Al at the interface with the Al<SB>2</SB>O<SB>3</SB>film. The diamond-like carbon film containing Al preferably also has gradient composition where the Al content in the diamond-like carbon film containing Al gradually increases from a TiN hard film side toward an Al<SB>2</SB>O<SB>3</SB>film side. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、耐摩耗性工具部材に関し、特に、快削鋼等の長時間切削工具用部材として用いるに好適な、耐熱性、耐久性に優れる耐摩耗性工具部材に関するものである。   The present invention relates to a wear-resistant tool member, and more particularly to a wear-resistant tool member excellent in heat resistance and durability, which is suitable for use as a long-time cutting tool member such as free-cutting steel.

従来から、切削工具等の工具部材の耐摩耗性向上、潤滑性向上を図るために、工具基体にダイヤモンドライクカーボン(以下、DLCで示す)膜を形成することが知られている。
例えば、特許文献1においては、工具基体の上にTiN膜、TiCN膜、TiAlN膜を形成し、この上にDLC膜を単層で形成した工具部材が開示され、特許文献2においては、工具基体の上に、Si、Ge、SiC、SiO、Alのバッファ層を介して、DLC膜を交互に積層形成した耐摩耗性部材、摺動部材が開示されている。
Conventionally, it is known to form a diamond-like carbon (hereinafter referred to as DLC) film on a tool base in order to improve wear resistance and lubricity of a tool member such as a cutting tool.
For example, Patent Document 1 discloses a tool member in which a TiN film, a TiCN film, and a TiAlN film are formed on a tool base, and a DLC film is formed as a single layer thereon. In Patent Document 2, a tool base is disclosed. Further, there is disclosed a wear-resistant member and a sliding member in which DLC films are alternately laminated through Si, Ge, SiC, SiO 2 , and Al 2 O 3 buffer layers.

特許第3372493号明細書Japanese Patent No. 3372493 特許第3246513号明細書Japanese Patent No. 3246513

DLC膜は、摺動性、耐摩耗性に優れることから、各種の摺動部材、耐摩耗部材の保護膜として用いられており、切削工具等の工具部材の分野においては、その耐摩耗性、摺動性を向上させるための硬質皮膜として利用されている。
ところで、近年の切削加工技術の高性能化はめざましく、その一方で、切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と過酷な条件下で行われる傾向にあり、同時に、各種の被削材の切削加工に対応できるような切削工具の汎用化も求められているが、上記従来の摺動部材、耐摩耗性部材を切削工具として用いたような場合には、DLC膜の耐熱温度が450℃程度であることから、快削鋼等の長時間切削加工では、高熱負荷によりDLC膜の特性が失われ、摩耗が急激に進行するようになり、比較的短時間で使用寿命に至り、硬質皮膜としてのDLC膜の特性が十分に生かされていないのが現状である。
DLC film is excellent in slidability and wear resistance, so it is used as a protective film for various sliding members and wear-resistant members. In the field of tool members such as cutting tools, its wear resistance, It is used as a hard coating for improving slidability.
By the way, in recent years, the performance of cutting technology has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting, and accordingly, cutting is performed under more severe conditions. At the same time, there is a demand for general-purpose cutting tools that can handle various types of work materials. However, the conventional sliding members and wear-resistant members are used as cutting tools. In this case, since the heat resistance temperature of the DLC film is about 450 ° C., the characteristics of the DLC film are lost due to high heat load in long-time cutting such as free-cutting steel, and the wear proceeds rapidly. The present situation is that the service life is reached in a relatively short time, and the characteristics of the DLC film as a hard coating are not fully utilized.

そこで、本発明者等は、上述のような観点から、快削鋼等の被削材の長時間切削においても、耐摩耗性工具部材のより一層の耐摩耗性向上を図るべく、硬質皮膜であるDLC膜について鋭意研究を行った結果、以下の知見を得た。
まず、耐摩耗性工具部材における基本的な膜構成を、工具基体(例えば、炭化タングステン基超硬合金等)上に形成したTiN硬質膜、この上に形成したAl含有DLC膜、さらにこの上に形成したAl膜としたところ、Al含有DLC膜の耐熱温度は500〜550℃前後となるため、熱負荷に対してもある程度の耐用性(耐摩耗性)を示すようになったが、例えば、これを快削鋼の長時間切削に使用した場合には、切削加工時の高熱負荷によって、耐摩耗性も不十分であるばかりか、硬質膜の欠損等も生じやすくなるという問題が発生した。
Therefore, from the above viewpoint, the present inventors have used a hard coating to further improve the wear resistance of the wear-resistant tool member even in long-time cutting of a work material such as free-cutting steel. As a result of diligent research on a DLC film, the following findings were obtained.
First, the basic film structure of the wear-resistant tool member is composed of a TiN hard film formed on a tool base (for example, a tungsten carbide-based cemented carbide), an Al-containing DLC film formed thereon, and further thereon. When the formed Al 2 O 3 film was used, the heat-resistant temperature of the Al-containing DLC film was around 500 to 550 ° C., and thus some degree of durability (wear resistance) was exhibited even against heat loads. For example, when this is used for long-time cutting of free-cutting steel, there is a problem that not only the wear resistance is insufficient due to the high heat load during cutting, but also a hard film is likely to be broken. Occurred.

そこで、本発明者等は、さらに検討を進めたところ、上記工具基体/TiN硬質膜/Al含有DLC膜/Al膜からなる膜構造において、Al含有DLC膜におけるAl含有割合と、Al含有DLC膜内でのAl成分の組成分布を調整することによって、すぐれた耐熱性、耐久性および耐摩耗性を兼ね備え、快削鋼の長時間切削加工に使用した場合にも、その高熱負荷に耐え、十分な耐摩耗性を発揮する耐摩耗性工具部材が得られることを見出したのである。 Then, the present inventors further studied, and in the film structure composed of the above-mentioned tool base / TiN hard film / Al-containing DLC film / Al 2 O 3 film, the Al content ratio in the Al-containing DLC film and Al By adjusting the composition distribution of the Al component in the contained DLC film, it has excellent heat resistance, durability, and wear resistance, and even when used for long-time cutting of free-cutting steel, the high heat load It has been found that a wear-resistant tool member that can withstand and exhibit sufficient wear resistance can be obtained.

この発明は、上記知見に基づいてなされたものであって、
「(1) 工具基体上に、工具基体表面側から順に、膜厚0.5〜5μmのTiN硬質膜、膜厚0.2〜2μmのAl含有ダイヤモンドライクカーボン膜および膜厚0.2〜2μmのAl膜を形成した耐摩耗性工具部材において、
上記Al含有ダイヤモンドライクカーボン膜におけるAl含有割合は、5〜30原子%であって、かつ、該Al含有ダイヤモンドライクカーボン膜におけるAl含有割合は、TiN硬質膜側からAl膜側へ向かうにしたがって次第に増加する傾斜組成を有することを特徴とする潤滑性に優れる耐摩耗性工具部材。
(2) 上記Al含有ダイヤモンドライクカーボン膜におけるAl含有割合は、TiN硬質膜との界面部分では5〜15原子%、また、上記Al膜との界面部分では20〜30原子%であって、かつ、TiN硬質膜側からAl膜側へ向かうにしたがってAl含有割合が次第に増加する傾斜組成を有することを特徴とする前記(1)に記載の潤滑性に優れる耐摩耗性工具部材。」
を特徴とするものである。
This invention has been made based on the above findings,
“(1) A TiN hard film having a film thickness of 0.5 to 5 μm, an Al-containing diamond-like carbon film having a film thickness of 0.2 to 2 μm, and a film thickness of 0.2 to 2 μm in order from the tool substrate surface side on the tool substrate. In the wear-resistant tool member formed with the Al 2 O 3 film,
The Al content in the Al-containing diamond-like carbon film is 5 to 30 atomic%, and the Al content in the Al-containing diamond-like carbon film is from the TiN hard film side to the Al 2 O 3 film side. A wear-resistant tool member excellent in lubricity, characterized by having a graded composition that gradually increases according to the above.
(2) The Al content in the Al-containing diamond-like carbon film was 5 to 15 atomic% at the interface with the TiN hard film, and 20 to 30 atomic% at the interface with the Al 2 O 3 film. In addition, the wear-resistant tool having excellent lubricity as described in (1) above, which has a gradient composition in which the Al content gradually increases from the TiN hard film side to the Al 2 O 3 film side Element. "
It is characterized by.

つぎに、この発明の耐摩耗性工具部材の膜構成について、説明する。   Next, the film configuration of the wear-resistant tool member of the present invention will be described.

TiN硬質膜:
工具基体の表面に形成するTiN硬質膜は、それ自身の有する硬さにより、耐摩耗性工具部材の耐摩耗性向上に寄与すると同時に、Al含有DLC膜と工具基体間の密着接合性(耐剥離性)を確保する密着膜としての作用を有する。
TiN硬質膜は、例えば、図1に示される成膜装置において、スパッタリングターゲットとしてTiを使用し、Ar−N混合ガス(例えば、Ar流量:40sccm,N流量:40sccm)中、成膜圧力0.1Paの条件にて、スパッタリング法により成膜することができる。
ただ、TiN硬質膜の膜厚が0.5μm未満では、Al含有DLC膜と工具基体間の密着性確保が十分ではなく、一方、その膜厚が5μmあれば、快削鋼の長時間切削においても、Al含有DLC膜と工具基体間での剥離等を招くことなく安定して密着性を確保し得ることから、TiN硬質膜の膜厚は、0.5〜5μmと定めた。
TiN hard film:
The TiN hard film formed on the surface of the tool base contributes to improving the wear resistance of the wear-resistant tool member due to its own hardness, and at the same time, tight adhesion between the Al-containing DLC film and the tool base (peeling resistance) It has an action as an adhesion film that ensures the property.
The TiN hard film uses, for example, Ti as a sputtering target in the film forming apparatus shown in FIG. 1, and is formed in an Ar—N 2 mixed gas (for example, Ar flow rate: 40 sccm, N 2 flow rate: 40 sccm). The film can be formed by sputtering under the condition of 0.1 Pa.
However, if the thickness of the TiN hard film is less than 0.5 μm, the adhesion between the Al-containing DLC film and the tool substrate is not sufficiently ensured. On the other hand, if the film thickness is 5 μm, free cutting steel can be cut for a long time. In addition, since the adhesiveness can be secured stably without causing peeling between the Al-containing DLC film and the tool substrate, the thickness of the TiN hard film is determined to be 0.5 to 5 μm.

Al含有ダイヤモンドライクカーボン膜(Al含有DLC膜):
本発明では、TiN硬質膜上にAl含有DLC膜をスパッタリングで形成するが、例えば、図1に示される成膜装置において、スパッタリングターゲットとして金属Alおよびカーボンを使用し、Ar雰囲気中(例えば、Ar流量:80sccm)、成膜圧力0.1Pa、工具基体温度200℃の条件にて、スパッタリング法で成膜することができる。
成膜に際し、Al含有DLC膜中に含有されるAl量が所望のAl含有割合になるようにAlターゲットのパワーを調整し、膜厚方向に沿って(即ち、TiN硬質膜側からAl膜側へ向かうにしたがって)、次第にAl含有割合が増加する傾斜組成構造を有するAl含有DLC膜を形成する。
好ましくは、TiN硬質膜側ではAl含有割合が5〜15原子%であり、Al膜側へ向かうにしたがってAl含有割合が増加し、Al膜と接する界面領域ではAl含有割合が20〜30原子%であるAl濃度傾斜組成構造を有するAl含有DLC膜を形成する。
Al-containing diamond-like carbon film (Al-containing DLC film):
In the present invention, an Al-containing DLC film is formed on a TiN hard film by sputtering. For example, in the film forming apparatus shown in FIG. 1, metal Al and carbon are used as a sputtering target in an Ar atmosphere (for example, Ar The film can be formed by sputtering under the conditions of a flow rate of 80 sccm, a film forming pressure of 0.1 Pa, and a tool base temperature of 200 ° C.
During film formation, the power of the Al target is adjusted so that the amount of Al contained in the Al-containing DLC film becomes the desired Al content ratio, and along the film thickness direction (that is, from the TiN hard film side to the Al 2 O An Al-containing DLC film having a graded composition structure in which the Al content rate gradually increases toward the three film side) is formed.
Preferably, the Al content ratio is 5 to 15 atomic% on the TiN hard film side, the Al content ratio increases toward the Al 2 O 3 film side, and the Al content ratio is in the interface region in contact with the Al 2 O 3 film. An Al-containing DLC film having an Al concentration gradient composition structure in which is 20 to 30 atomic% is formed.

Al含有DLC膜の特性は、含有されるAlの割合によって影響を受け、Al含有割合が多いほど耐熱性は向上するが、その反面、下地膜のTiN硬質膜との密着性が低下する傾向がある。
具体的には、Al含有DLC膜のAl含有割合が5原子%未満であると、DLC膜がAlを含有したことによる耐熱性向上効果が少なく、特に、快削鋼の長時間切削等における高熱負荷に対して満足できる耐熱性を発揮することができず、その結果、耐摩耗性が不十分になり、一方、Al含有DLC膜のAl含有割合が30原子%を超えると、最表面のAl膜との密着性にはすぐれるものの、下地膜のTiN硬質膜との密着性が劣化し、Al含有DLC膜の剥離等が生じやすくなることから、Al含有DLC膜のAl含有割合は5〜30原子%と定めることが必要である。
The characteristics of the Al-containing DLC film are affected by the proportion of Al contained, and the heat resistance improves as the Al content increases, but on the other hand, the adhesion of the underlying film to the TiN hard film tends to decrease. is there.
Specifically, when the Al content of the Al-containing DLC film is less than 5 atomic%, the DLC film has little effect of improving heat resistance due to the inclusion of Al, and in particular, high heat in long-time cutting of free-cutting steel. As a result, it is not possible to exhibit satisfactory heat resistance with respect to the load, resulting in insufficient wear resistance. On the other hand, when the Al content of the Al-containing DLC film exceeds 30 atomic%, Al on the outermost surface Although the adhesiveness with the 2 O 3 film is excellent, the adhesiveness with the TiN hard film of the base film is deteriorated and the Al-containing DLC film is likely to be peeled off. Is required to be set at 5 to 30 atomic%.

さらに、本発明においては、Al含有によるDLC膜の特性変化を有効に利用するために、膜厚方向に沿って、Al膜側へ向かうにしたがって、次第にAl含有割合が増加する傾斜組成構造を有するAl含有DLC膜を形成した。
前記した如く、Al含有割合が5%以上であれば、耐熱性向上効果を期待できるとともに、また、Al含有割合が5〜15%を大きく上回らなければ、下地膜であるTiN硬質膜との密着強度を確保できることから、TiN硬質膜との界面を形成する領域のAl含有DLC膜中のAl含有割合を5〜15原子%とし、一方、快削鋼の長時間切削等による高熱負荷に対しての十分な耐熱性を付与し、さらに、最表面のAl膜との密着性を高めるため、Al膜との界面を形成する領域のAl含有DLC膜中のAl含有割合を20〜30原子%とする傾斜組成構造を有するAl含有DLC膜を形成することが望ましい。
Furthermore, in the present invention, in order to effectively use the change in characteristics of the DLC film due to the Al content, the graded composition in which the Al content rate gradually increases toward the Al 2 O 3 film side along the film thickness direction. An Al-containing DLC film having a structure was formed.
As described above, if the Al content ratio is 5% or more, the effect of improving the heat resistance can be expected, and if the Al content ratio does not greatly exceed 5 to 15%, it adheres to the TiN hard film as the base film. Since the strength can be secured, the Al content in the Al-containing DLC film in the region that forms the interface with the TiN hard film is set to 5 to 15 atomic%, while on the other hand, against high heat load due to long-time cutting of free-cutting steel In order to provide sufficient heat resistance, and to further improve the adhesion with the outermost Al 2 O 3 film, the Al content in the Al-containing DLC film in the region forming the interface with the Al 2 O 3 film is It is desirable to form an Al-containing DLC film having a gradient composition structure of 20 to 30 atomic%.

上記の傾斜組成構造を有するAl含有DLC膜は、例えば、図1に示される成膜装置において、スパッタリングターゲットとして金属Alおよびカーボンを使用し、Ar雰囲気中(例えば、Ar流量:80sccm)、成膜圧力0.1Pa、工具基体温度200℃の条件にて、Alターゲットのパワーを調整することにより、所望の量のAlが含有される、あるいは、膜厚方向に沿って(即ち、TiN硬質膜側からSiO膜側へ向かうにしたがって)、次第にAl含有割合が増加する傾斜組成構造を有するようなAl含有DLC膜を形成する。 The Al-containing DLC film having the above-described gradient composition structure is formed by using metal Al and carbon as a sputtering target in an Ar atmosphere (for example, Ar flow rate: 80 sccm) in the film forming apparatus shown in FIG. By adjusting the power of the Al target under conditions of a pressure of 0.1 Pa and a tool base temperature of 200 ° C., a desired amount of Al is contained, or along the film thickness direction (that is, the TiN hard film side) An Al-containing DLC film having a graded composition structure in which the Al content rate gradually increases from the SiO 2 film side to the SiO 2 film side is formed.

Al含有DLC膜の膜厚は、0.2μm未満では、長期の使用に亘って優れた耐熱性、耐久性、耐摩耗性を発揮することができず、一方、膜厚が2μmを超えると欠損、剥離を生じやすくなることから、Al含有DLC膜の膜厚は、0.2〜2μmと定めた。   If the film thickness of the Al-containing DLC film is less than 0.2 μm, excellent heat resistance, durability, and wear resistance cannot be exhibited over a long period of use. The film thickness of the Al-containing DLC film is determined to be 0.2 to 2 μm because peeling easily occurs.

Al膜:
Al含有DLC膜の上に形成されるAl膜は、耐熱性、耐摩耗性に優れ、高熱負荷条件におけるAl含有DLC膜の耐熱性をより一層向上させる。
Al膜の成膜は、基本的には、TiN硬質膜の成膜と同様であり、例えば、図1に示される成膜装置において、金属Alをスパッタリングターゲットとして用い、TiN硬質膜の上にAl含有DLC膜の形成された工具基体(図1では基板として示す)に対して、Ar−O雰囲気(Ar流量:40sccm,O流量:40sccm)中、成膜圧力0.1Pa、成膜温度室温にてスパッタリングにより成膜することができる。
ただ、Al膜の膜厚が0.2μm未満では、Al膜の有する優れた耐熱性、耐摩耗性を十分に発揮できず、一方、その膜厚が2μmを超えると、剥離等を生じやすくなることから、Al膜の膜厚は、0.2〜2μmと定めた。
Al 2 O 3 film:
The Al 2 O 3 film formed on the Al-containing DLC film is excellent in heat resistance and wear resistance, and further improves the heat resistance of the Al-containing DLC film under high heat load conditions.
The film formation of the Al 2 O 3 film is basically the same as the film formation of the TiN hard film. For example, in the film formation apparatus shown in FIG. 1, the metal Al is used as a sputtering target, and the TiN hard film is formed. With respect to a tool base (shown as a substrate in FIG. 1) on which an Al-containing DLC film is formed, in an Ar—O 2 atmosphere (Ar flow rate: 40 sccm, O 2 flow rate: 40 sccm), a film formation pressure of 0.1 Pa, Film formation can be performed by sputtering at room temperature.
However, it is less than the thickness of the Al 2 O 3 film is 0.2 [mu] m, excellent heat resistance possessed by the Al 2 O 3 film can not be sufficiently exhibited wear resistance. On the other hand, if the film thickness exceeds 2 [mu] m, The thickness of the Al 2 O 3 film was determined to be 0.2 to 2 μm because peeling and the like are likely to occur.

この発明の耐摩耗性工具部材は、TiN硬質膜が耐摩耗性を有し、また、Al膜が耐熱性と耐摩耗性を備え、さらに、Al含有DLC膜がAlを5〜30原子%含有し、望ましくは、Al含有DLC膜が、TiN硬質膜との界面部分では5〜15原子%Al、Al膜との界面部分では20〜30原子%Alを含有し、さらに、Al含有DLC膜中でAlが傾斜組成を有することから、Al含有DLC膜がTiN硬質膜およびAl膜の双方に対して優れた密着強度を有するともに優れた耐熱性を備えることから、この耐摩耗性工具部材を、例えば、快削鋼の長時間切削等の高熱負荷のかかる切削工具用部材として用いた場合には、長期の使用に亘って、優れた耐熱性、耐久性、耐摩耗性を発揮し、工具寿命の延命化を図ることが可能となる。 In the wear-resistant tool member of the present invention, the TiN hard film has wear resistance, the Al 2 O 3 film has heat resistance and wear resistance, and the Al-containing DLC film contains 5 to 30 Al. Preferably, the Al-containing DLC film contains 5 to 15 atomic% Al at the interface part with the TiN hard film, 20 to 30 atomic% Al at the interface part with the Al 2 O 3 film, Because Al has a gradient composition in the Al-containing DLC film, the Al-containing DLC film has excellent adhesion strength to both the TiN hard film and the Al 2 O 3 film and has excellent heat resistance. When this wear-resistant tool member is used as a member for a cutting tool that requires a high heat load such as long-time cutting of free-cutting steel, for example, excellent heat resistance, durability, Exhibits wear resistance and extends tool life Rukoto is possible.

本発明耐摩耗工具部材のTiN硬質膜、Al含有DLC膜およびAl膜を成膜するための、スパッタリング成膜装置の概略図を示す。1 is a schematic view of a sputtering film forming apparatus for forming a TiN hard film, an Al-containing DLC film, and an Al 2 O 3 film of the wear-resistant tool member of the present invention.

つぎに、この発明の耐摩耗性工具部材を実施例により具体的に説明する。
ここでは、快削鋼の長時間切削用のインサートとして用いた場合の例を示すが、本発明はこれに限定されるものではなく、エンドミル、ドリル等の各種の耐摩耗性工具部材に適用可能である。
Next, the wear-resistant tool member of the present invention will be specifically described with reference to examples.
Here, an example of using as an insert for free cutting steel for a long time is shown, but the present invention is not limited to this, and can be applied to various wear-resistant tool members such as end mills and drills. It is.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで96時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、研磨加工を施し、切刃すくい面を鏡面仕上げすることにより、いずれもWC基超硬合金からなり、かつISO規格・SPGN12308のインサート形状をもった超硬基体A−1〜A−10を製造した。 As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder, all having an average particle diameter of 1 to 3 μm, were prepared. The mixture is blended for 96 hours by a ball mill, dried by a ball mill, dried, and then pressed into a green compact at a pressure of 100 MPa. The green compact is vacuumed at 6 Pa at a temperature of 1400 ° C. for 1 hour. Sintered under holding conditions, polished, and finished with a mirror finish on the cutting edge rake surface, both of which are made of WC-based cemented carbide and have an ISO standard / SPGN12308 insert shape A- 1 to A-10 were produced.

(a)ついで、図1に示される成膜装置、即ち、成膜装置内に金属Tiターゲット、金属Alターゲット、カーボンターゲットをカソード電極として備えたスパッタリング装置を配置し、
(b)上記の超硬基体A−1〜A−10を、アセトン中で超音波洗浄し、乾燥した状態で、前記装置内に自転公転自在に支持装着し、
(c)ついで、装置内を真空排気して0.01Paの真空に保持しながら、ヒーターで装置内を300℃に加熱した後、Arガスを装置内に導入して0.5Paの圧力のAr雰囲気とし、この状態で前記回転テーブル上で自転しながら回転する前記超硬基体に−800Vのバイアス電圧を印加して前記超硬基体表面を20分間Arガスボンバード洗浄し、
(d)ついで、前記装置内の基板温度を300℃とした状態で、反応ガスとしてNとArを、N:40sccm、Ar:40sccmの割合で導入して、0.1Paの成膜圧力とし、Tiターゲットのカソード電極(蒸発源)には出力:12kW(周波数:40kHz)のスパッタ電力を印加し、一方上記超硬基体には、−100Vのバイアス電圧を印加した条件でグロー放電を発生させることにより、前記超硬基体の表面に表2に示される目標膜厚のTiN硬質膜を形成し、
(e)ついで、装置内の基板温度を200℃とした状態で、反応ガスとしてArを80sccmの割合で導入して、0.1Paの成膜圧力とし、カーボン源としてのカーボンターゲットには出力:12kW(周波数:40kHz)のスパッタ電力を、また、Al源としてのAlターゲットには、出力:0.3〜1.8kW(周波数:40kHz)の範囲内で、所望のAl含有割合に応じたスパッタ電力を印加し、さらに、上記超硬基体に、−100Vのバイアス電圧を印加した条件でグロー放電を発生させることにより、前記TiN硬質膜の表面に、表2に示される目標膜厚、目標組成のAl含有DLC膜を成膜し、
(f)ついで、前記装置内の基板温度を室温に下げた状態で、雰囲気ガスとしてArとOを、Ar流量:40sccm,O流量:40sccmの割合で導入して、0.1Paの成膜圧力とし、Alターゲットのカソード電極(蒸発源)には出力:12kW(周波数:40kHz)のスパッタ電力を印加し、一方上記超硬基体には、−100Vのバイアス電圧を印加した条件でグロー放電を発生させることにより、前記超硬基体の表面に表2に示される目標膜厚のAl膜を形成する。
以上、(a)〜(f)により、本発明耐摩耗工具部材としての本発明インサ−ト1〜10を製造した。
(A) Next, the film forming apparatus shown in FIG. 1, that is, a sputtering apparatus provided with a metal Ti target, a metal Al target, and a carbon target as a cathode electrode in the film forming apparatus,
(B) The above-mentioned carbide substrates A-1 to A-10 are ultrasonically washed in acetone and dried and supported and mounted in the apparatus so as to be able to rotate and revolve.
(C) Next, the inside of the apparatus was evacuated and kept at a pressure of 0.01 Pa, and the inside of the apparatus was heated to 300 ° C. with a heater, and then Ar gas was introduced into the apparatus and Ar at a pressure of 0.5 Pa was introduced. In this state, a bias voltage of −800 V was applied to the carbide substrate rotating while rotating on the turntable in this state, and the surface of the carbide substrate was cleaned with Ar gas bombardment for 20 minutes.
(D) Next, in a state where the substrate temperature in the apparatus is 300 ° C., N 2 and Ar are introduced as reaction gases at a ratio of N 2 : 40 sccm and Ar: 40 sccm, and a film forming pressure of 0.1 Pa is obtained. A sputtering power with an output of 12 kW (frequency: 40 kHz) is applied to the cathode electrode (evaporation source) of the Ti target, while glow discharge is generated on the carbide substrate under the condition that a bias voltage of −100 V is applied. By forming a TiN hard film having a target film thickness shown in Table 2 on the surface of the cemented carbide substrate,
(E) Next, Ar is introduced as a reactive gas at a rate of 80 sccm in a state where the substrate temperature in the apparatus is 200 ° C., and a film forming pressure of 0.1 Pa is set, and output to a carbon target as a carbon source: Sputtering power of 12 kW (frequency: 40 kHz) is applied to an Al target as an Al source, and the output is within a range of 0.3 to 1.8 kW (frequency: 40 kHz) according to a desired Al content ratio. The target film thickness and target composition shown in Table 2 are applied to the surface of the TiN hard film by applying electric power and generating glow discharge under the condition that a bias voltage of −100 V is applied to the cemented carbide substrate. An Al-containing DLC film of
(F) Next, in a state where the substrate temperature in the apparatus is lowered to room temperature, Ar and O 2 are introduced as atmospheric gases at a ratio of Ar flow rate: 40 sccm, O 2 flow rate: 40 sccm, and 0.1 Pa is achieved. Glow discharge is performed under the condition that the film pressure is set and a sputtering power of 12 kW (frequency: 40 kHz) is applied to the cathode electrode (evaporation source) of the Al target, while a bias voltage of −100 V is applied to the carbide substrate. As a result, the Al 2 O 3 film having the target film thickness shown in Table 2 is formed on the surface of the cemented carbide substrate.
As mentioned above, this invention insert 1-10 as this invention wear-resistant tool member was manufactured by (a)-(f).

比較のために、本発明インサ−トと同様なTiN硬質膜、Al膜を備えるものの、Al含有DLC膜のTiN硬質膜側のAl含有割合が5原子%未満のものを比較例インサート1、6、また、Al膜側のAl含有割合が30原子%を超えるものを比較例インサート2、7として製造した。
また、本発明インサ−トと同様なTiN硬質膜、Al膜を備え、かつ、Al含有DLC膜のAl含有割合は5〜30原子%であるが、膜中のAl含有割合が均一組成であって、傾斜組成構造を持たないものを比較例インサート3、4、8、9として製造した。
さらに、本発明インサ−トと同様なTiN硬質膜、傾斜組成構造を有するAl含有DLC膜を備えるものの、Al含有DLC膜の上にAl膜を形成しなかったものを比較例インサート5、10として製造した。
表3に、比較例インサート1〜10の膜構成を一覧にして示す。
For comparison, a TiN hard film and Al 2 O 3 film similar to the insert of the present invention are provided, but an Al-containing DLC film having an Al content ratio of less than 5 atomic% on the TiN hard film side is a comparative example insert. 1 and 6, and the Al 2 O 3 film side Al content ratio exceeding 30 atomic% were produced as Comparative Example Inserts 2 and 7.
Further, the same TiN hard film and Al 2 O 3 film as the insert of the present invention are provided, and the Al content ratio of the Al-containing DLC film is 5 to 30 atomic%, but the Al content ratio in the film is uniform. A composition having no gradient composition structure was manufactured as Comparative Example Inserts 3, 4, 8, and 9.
Further, a comparative example insert 5 having a TiN hard film similar to the insert of the present invention and an Al-containing DLC film having a graded composition structure but having no Al 2 O 3 film formed on the Al-containing DLC film. 10 was manufactured.
Table 3 shows a list of membrane configurations of Comparative Example Inserts 1-10.

この結果得られた本発明インサート1〜10および比較例インサート1〜10について、これを構成するAl含有DLC膜中のAl含有割合を、オージェ電子分光法にて測定した結果を表2、3に示した。
さらに、上記の各膜の膜厚を、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。
About this invention insert 1-10 obtained as a result and comparative example insert 1-10, the result of having measured the Al content rate in the Al content DLC film which comprises this by Auger electron spectroscopy is shown in Tables 2 and 3. Indicated.
Furthermore, when the film thickness of each of the above films was measured using a scanning electron microscope (longitudinal section measurement), all showed an average layer thickness (average value of 5-point measurement) substantially the same as the target layer thickness. It was.

つぎに、上記の本発明インサート1〜5および比較例インサート1〜5を工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SUM22の丸棒、
切削速度: 60 m/min.、
切り込み: 1.0 mm、
送り: 0.05 mm/rev.、
切削時間: 50 分、
の条件(切削条件Aという)での硫黄快削鋼の乾式連続切削加工試験、
上記の本発明インサート6〜10および比較例インサート6〜10を工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・S45Cの丸棒、
切削速度: 50 m/min.、
切り込み: 1.0 mm、
送り: 0.05 mm/rev.、
切削時間: 100 分、
の条件(切削条件Bという)での炭素鋼の乾式連続切削加工試験、
を行なった。
いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。
この測定結果を表4に示した。
Next, in the state where the present invention inserts 1 to 5 and the comparative example inserts 1 to 5 are screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / SUM22 round bar,
Cutting speed: 60 m / min. ,
Cutting depth: 1.0 mm,
Feed: 0.05 mm / rev. ,
Cutting time: 50 minutes,
Dry continuous cutting test of sulfur free cutting steel under the following conditions (referred to as cutting condition A),
In the state where the present invention inserts 6 to 10 and the comparative example inserts 6 to 10 are screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / S45C round bar,
Cutting speed: 50 m / min. ,
Cutting depth: 1.0 mm,
Feed: 0.05 mm / rev. ,
Cutting time: 100 minutes,
Dry continuous cutting test of carbon steel under the conditions (referred to as cutting condition B),
Was done.
In any cutting test, the flank wear width of the cutting edge was measured.
The measurement results are shown in Table 4.

Figure 2010214551
Figure 2010214551

Figure 2010214551
Figure 2010214551

Figure 2010214551
Figure 2010214551

Figure 2010214551
Figure 2010214551

表2〜4に示される結果から、この発明の耐摩耗性工具部材は、TiN硬質膜が耐摩耗性、また、Al膜が耐熱性と耐摩耗性を保持するとともに、Al含有DLC膜がAlを5〜30原子%含有し、望ましくは、Al含有DLC膜が、TiN硬質膜との界面部分では5〜15原子%Al、Al膜との界面部分では20〜30原子%Alを含有し、さらに、Al含有DLC膜中でAlが傾斜組成を有することから、Al含有DLC膜がTiN硬質膜およびAl膜の双方に対して優れた密着強度を有するとともに、優れた耐熱性を備え、その結果、この発明の耐摩耗性工具部材を、快削鋼の長時間切削等の高熱負荷のかかる切削工具用部材として用いた場合にも、長期の使用に亘って、優れた耐熱性、耐久性、耐摩耗性を発揮することがわかる。
これに対して、比較例の工具部材(比較例インサート1〜10)は、耐摩耗性が劣るものであり、また、被膜の剥離が生じたり、長時間切削に耐えることができず、耐摩耗性工具部材としては満足できる特性を備えるものであるといえないことは明らかである。
From the results shown in Tables 2 to 4, the wear-resistant tool member of the present invention is such that the TiN hard film retains wear resistance, and the Al 2 O 3 film retains heat resistance and wear resistance. The film contains 5 to 30 atom% of Al, and preferably the Al-containing DLC film is 5 to 15 atom% Al at the interface with the TiN hard film and 20 to 30 atoms at the interface with the Al 2 O 3 film. In addition, since Al has a gradient composition in the Al-containing DLC film, the Al-containing DLC film has excellent adhesion strength to both the TiN hard film and the Al 2 O 3 film, It has excellent heat resistance. As a result, even when the wear-resistant tool member of the present invention is used as a member for a cutting tool that requires a high heat load such as long-time cutting of free-cutting steel, it can be used over a long period of time. Excellent heat resistance, durability, wear resistance It can be seen that the exhibit.
On the other hand, the tool members of the comparative examples (comparative inserts 1 to 10) are inferior in wear resistance, and the coating peels off or cannot withstand long-time cutting. Obviously, it cannot be said that the tool member has satisfactory characteristics.

上述のように、この発明の耐摩耗性工具部材は、すぐれた耐熱性、耐久性とすぐれた耐摩耗性を備えるものであって、高熱負荷のかかる快削鋼の長時間切削等の切削工具用部材として好適であるばかりか、耐熱性、耐久性、耐摩耗性が要求される各種分野の耐摩耗性部材として適用可能である。   As described above, the wear-resistant tool member of the present invention has excellent heat resistance, durability and excellent wear resistance, and is a cutting tool for long-time cutting of free-cutting steel subjected to high heat load. In addition to being suitable as a member for use, it can be applied as a wear-resistant member in various fields where heat resistance, durability and wear resistance are required.

Claims (2)

工具基体上に、工具基体表面側から順に、膜厚0.5〜5μmのTiN硬質膜、膜厚0.2〜2μmのAl含有ダイヤモンドライクカーボン膜および膜厚0.2〜2μmのAl膜を形成した耐摩耗性工具部材において、
上記Al含有ダイヤモンドライクカーボン膜におけるAl含有割合は、5〜30原子%であって、かつ、該Al含有ダイヤモンドライクカーボン膜におけるAl含有割合は、TiN硬質膜側からAl膜側へ向かうにしたがって次第に増加する傾斜組成を有することを特徴とする潤滑性に優れる耐摩耗性工具部材。
A TiN hard film with a film thickness of 0.5 to 5 μm, an Al-containing diamond-like carbon film with a film thickness of 0.2 to 2 μm, and an Al 2 O film with a film thickness of 0.2 to 2 μm in order from the tool substrate surface side. In the wear-resistant tool member formed with three films,
The Al content in the Al-containing diamond-like carbon film is 5 to 30 atomic%, and the Al content in the Al-containing diamond-like carbon film is from the TiN hard film side to the Al 2 O 3 film side. A wear-resistant tool member excellent in lubricity, characterized by having a graded composition that gradually increases according to the above.
上記Al含有ダイヤモンドライクカーボン膜におけるAl含有割合は、TiN硬質膜との界面部分では5〜15原子%、また、上記Al膜との界面部分では20〜30原子%であって、かつ、TiN硬質膜側からAl膜側へ向かうにしたがってAl含有割合が次第に増加する傾斜組成を有することを特徴とする請求項1に記載の潤滑性に優れる耐摩耗性工具部材。 The Al content in the Al-containing diamond-like carbon film is 5 to 15 atomic% at the interface with the TiN hard film, 20 to 30 atomic% at the interface with the Al 2 O 3 film, and 2. The wear-resistant tool member having excellent lubricity according to claim 1, wherein the wear-resistant tool member has a gradient composition in which the Al content gradually increases from the TiN hard film side toward the Al 2 O 3 film side.
JP2009065409A 2009-03-18 2009-03-18 Wear-resistant tool material with excellent heat resistance and durability Expired - Fee Related JP5287395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009065409A JP5287395B2 (en) 2009-03-18 2009-03-18 Wear-resistant tool material with excellent heat resistance and durability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009065409A JP5287395B2 (en) 2009-03-18 2009-03-18 Wear-resistant tool material with excellent heat resistance and durability

Publications (2)

Publication Number Publication Date
JP2010214551A true JP2010214551A (en) 2010-09-30
JP5287395B2 JP5287395B2 (en) 2013-09-11

Family

ID=42973943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009065409A Expired - Fee Related JP5287395B2 (en) 2009-03-18 2009-03-18 Wear-resistant tool material with excellent heat resistance and durability

Country Status (1)

Country Link
JP (1) JP5287395B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105081378A (en) * 2015-08-10 2015-11-25 江苏塞维斯数控科技有限公司 Tool for numerical control high-pressure water jet cutting machine
CN110218971A (en) * 2019-07-02 2019-09-10 重庆文理学院 A kind of nano-multilayer film and preparation method thereof suitable for titanium alloy surface

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180030A (en) * 1993-12-24 1995-07-18 Toshiba Tungaloy Co Ltd Coated body for tool
JP3246513B2 (en) * 1991-09-04 2002-01-15 住友電気工業株式会社 Diamond-like carbon laminated film
JP3372493B2 (en) * 1998-12-09 2003-02-04 株式会社不二越 Tool member having hard carbon-based coating
JP2007247038A (en) * 2006-03-20 2007-09-27 Hitachi Ltd Hard carbon film
JP2008081522A (en) * 2006-09-26 2008-04-10 Hitachi Ltd Slide member
JP2010150641A (en) * 2008-12-26 2010-07-08 Hitachi Ltd Sliding member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3246513B2 (en) * 1991-09-04 2002-01-15 住友電気工業株式会社 Diamond-like carbon laminated film
JPH07180030A (en) * 1993-12-24 1995-07-18 Toshiba Tungaloy Co Ltd Coated body for tool
JP3372493B2 (en) * 1998-12-09 2003-02-04 株式会社不二越 Tool member having hard carbon-based coating
JP2007247038A (en) * 2006-03-20 2007-09-27 Hitachi Ltd Hard carbon film
JP2008081522A (en) * 2006-09-26 2008-04-10 Hitachi Ltd Slide member
JP2010150641A (en) * 2008-12-26 2010-07-08 Hitachi Ltd Sliding member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105081378A (en) * 2015-08-10 2015-11-25 江苏塞维斯数控科技有限公司 Tool for numerical control high-pressure water jet cutting machine
CN110218971A (en) * 2019-07-02 2019-09-10 重庆文理学院 A kind of nano-multilayer film and preparation method thereof suitable for titanium alloy surface

Also Published As

Publication number Publication date
JP5287395B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5488824B2 (en) Surface-coated cutting tool that exhibits excellent peeling resistance and excellent wear resistance due to high-speed cutting of hard difficult-to-cut materials
JP5234357B2 (en) Wear-resistant tool material with excellent lubricity
JP5287395B2 (en) Wear-resistant tool material with excellent heat resistance and durability
JP5995091B2 (en) Surface coated cutting tool with excellent adhesion strength and chipping resistance
JP2011152627A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy cutting
JP2011104737A (en) Surface coated cutting tool
JP4678589B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel
JP2006334740A (en) Surface coated cemented carbide cutting tool with hard coated layer exhibiting excellent abrasive resistance in high speed cutting of highly reactive cut material
JP2012139795A (en) Surface coated cutting tool with hard coating layer exhibiting superior resistance against peeling and chipping in high speed cutting of soft hard-to-cut material
JP2008105135A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance
JP4678582B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP6471546B2 (en) Surface coated cutting tool
JP2002187004A (en) End mill made of surface-coated cemented carbide excellent in wear resistance in high speed cutting
JP5569739B2 (en) Surface coated cutting tool with excellent chipping resistance
JP4645818B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP5239950B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to excellent hard coating layer in heavy cutting of highly welded work
JP2010284759A (en) Surface coated cutting tool
JP2008173750A (en) Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting
JP5476842B2 (en) A surface-coated cutting tool that exhibits excellent chipping and wear resistance with a high-speed heavy-cutting hard coating layer
JP2006001005A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel
JP2010207930A (en) Surface coated cutting tool
JP2009119550A (en) Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance
JP2007038341A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting superior chipping resistance under high speed heavy cutting of hard-to-cut material
JP4621975B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer
JP4645943B2 (en) Carbide broach made of surface-coated cemented carbide with excellent wear resistance due to lubricated amorphous carbon coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R150 Certificate of patent or registration of utility model

Ref document number: 5287395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees