JP2010212013A - Battery system, vehicle, and battery-loaded device - Google Patents

Battery system, vehicle, and battery-loaded device Download PDF

Info

Publication number
JP2010212013A
JP2010212013A JP2009055143A JP2009055143A JP2010212013A JP 2010212013 A JP2010212013 A JP 2010212013A JP 2009055143 A JP2009055143 A JP 2009055143A JP 2009055143 A JP2009055143 A JP 2009055143A JP 2010212013 A JP2010212013 A JP 2010212013A
Authority
JP
Japan
Prior art keywords
battery
discharge
ion secondary
lithium ion
discharge current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009055143A
Other languages
Japanese (ja)
Other versions
JP5347583B2 (en
Inventor
Yukimasa Nishide
行正 西出
Makoto Nakajima
誠 中嶋
Toshio Odagiri
俊雄 小田切
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009055143A priority Critical patent/JP5347583B2/en
Publication of JP2010212013A publication Critical patent/JP2010212013A/en
Priority to JP2013126603A priority patent/JP5737336B2/en
Application granted granted Critical
Publication of JP5347583B2 publication Critical patent/JP5347583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery system allowing a battery to discharge with a suitable discharge pattern, for example, to control progress of deterioration of the battery, as well as a vehicle and a battery-loaded device equipped with such a battery system. <P>SOLUTION: The battery system includes a lithium ion secondary battery having a power generating element and an electrolyte containing lithium salt, a discharge control means for controlling a discharge current DC from the lithium ion secondary battery, and a voltage detection means for detecting a battery voltage. The discharge control means has relation acquisition means S20, S30 for sequentially acquiring a relation between a lapsed time TD since the start of the discharge and the battery voltage in a series of discharge period JD during which the discharge current continues to flow, and controls an amount of the subsequent discharge current based on the already acquired relation between the lapsed time and the battery voltage in the series of the discharge period. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、発電要素及びリチウム塩を含有する電解液を有するリチウムイオン二次電池と、リチウムイオン二次電池の放電電流を制御する放電制御手段とを備える電池システムに関する。このような電池システムを搭載した車両及び電池搭載機器に関する。   The present invention relates to a battery system comprising a lithium ion secondary battery having an electrolytic solution containing a power generation element and a lithium salt, and discharge control means for controlling the discharge current of the lithium ion secondary battery. The present invention relates to a vehicle equipped with such a battery system and a battery-equipped device.

近年、ハイブリッド車やノート型パソコン、ビデオカムコーダなどのポータブル電子機器の駆動用電源に、リチウムイオン二次電池(以下、単に電池ともいう)が利用されている。
このような電池を比較的大きな放電電流で放電させると、この放電電流を流し続ける一連の放電期間において、電池電圧は、放電開始直後に瞬時に大きく減少し(第1段階)、その後、徐々に減少する(第2段階)という、2段階の電池電圧の減少形態を示す特性が知られている。
なお、このうち、第1段階は、例えば、電池を構成する部材同士の接触抵抗など、電池特性によらない、通電抵抗に対応していると考えられる。一方、第2段階は、電解液中のリチウム塩が、電池反応のために拡散している期間に対応していると考えられる。
In recent years, lithium ion secondary batteries (hereinafter also simply referred to as batteries) have been used as power sources for driving portable electronic devices such as hybrid vehicles, notebook computers, and video camcorders.
When such a battery is discharged with a relatively large discharge current, in a series of discharge periods in which the discharge current continues to flow, the battery voltage decreases greatly instantaneously immediately after the start of discharge (first stage), and then gradually There is known a characteristic indicating a two-stage battery voltage decrease mode of decreasing (second stage).
Of these, the first stage is considered to correspond to an energization resistance that does not depend on battery characteristics such as contact resistance between members constituting the battery. On the other hand, the second stage is considered to correspond to a period in which the lithium salt in the electrolyte solution is diffused due to the battery reaction.

ところで、電池の制御を行う技術として、放電時の電池電圧が下限電圧を下回ると出力制限を行う技術(特許文献1)が知られている。また、放電電流の二乗積算値から放電電流の制御を行う技術(特許文献2)も知られている。   By the way, as a technique for controlling the battery, there is known a technique (Patent Document 1) that performs output restriction when the battery voltage during discharge falls below a lower limit voltage. Further, a technique (Patent Document 2) that controls discharge current from a square integrated value of discharge current is also known.

特開平7−255133号公報JP 7-255133 A 特開2006−149181号公報JP 2006-149181 A

電池を、例えば10C以上の比較的大きな電流で放電(以下、ハイレート放電ともいう)させると、発電要素に含浸された電解液のリチウム塩濃度が、場所的に徐々に不均一になり、濃度分布が生じる。これにより、電解液のリチウム塩濃度が最適な濃度からずれるために、電池の内部抵抗が高くなる劣化現象(以下、ハイレート劣化ともいう)が生じることが判ってきた。
さらに、このハイレート劣化は、放電期間の第2段階(前述)のうち、この第2段階の開始からしばらく経過した後期において、放電電流が大きすぎるために、電池反応にリチウム塩の拡散が追いつかず、リチウム塩濃度の不均一が生じるからであると考えられる。
従って、このような現象が生じている場合には、電池反応においてキャリアとなるリチウム塩が減少するので、電池に化学的に蓄えられている電気エネルギで決まる電池電圧よりも、低い電池電圧にならざるを得ない。つまり、この第2段階の後期において電池電圧が加速度的に低下する現象が生じる。
When the battery is discharged with a relatively large current of, for example, 10 C or more (hereinafter also referred to as high-rate discharge), the lithium salt concentration of the electrolyte impregnated in the power generation element gradually becomes non-uniform locally, and the concentration distribution Occurs. As a result, it has been found that since the lithium salt concentration of the electrolytic solution deviates from the optimum concentration, a deterioration phenomenon (hereinafter also referred to as high-rate deterioration) in which the internal resistance of the battery increases.
Further, this high rate deterioration is caused by the fact that the discharge current is too large in the second stage of the discharge period (described above) after a while from the start of the second stage, so that the diffusion of the lithium salt cannot catch up with the battery reaction. This is thought to be due to the non-uniformity of the lithium salt concentration.
Therefore, when such a phenomenon occurs, the lithium salt serving as a carrier in the battery reaction decreases, so that the battery voltage becomes lower than the battery voltage determined by the electrical energy stored chemically in the battery. I must. That is, a phenomenon occurs in which the battery voltage is accelerated at a later stage of the second stage.

電池では、このようにハイレート放電によって、電解液のリチウム塩濃度が場所的に徐々に不均一になるなど、放電に伴う電池反応によって電池劣化を生じる。
しかしながら、前述の技術(特許文献1及び特許文献2)では、ハイレート劣化を含む電池劣化を、適切に抑制することができなかった。
In the battery, the high-rate discharge causes the battery deterioration due to the battery reaction accompanying the discharge, such as the lithium salt concentration of the electrolyte gradually becoming non-uniform locally.
However, in the above-described techniques (Patent Document 1 and Patent Document 2), battery deterioration including high-rate deterioration cannot be appropriately suppressed.

本発明は、かかる問題点に鑑みてなされたものであって、電池の劣化の進行を抑制するなど、電池に適合した放電パターンでの放電を行わせることができる電池システムを提供することを目的とする。また、このような電池システムを備える車両及び電池搭載機器を提供することを目的とする。   The present invention has been made in view of such a problem, and an object of the present invention is to provide a battery system capable of discharging with a discharge pattern suitable for a battery, such as suppressing the progress of deterioration of the battery. And Moreover, it aims at providing a vehicle provided with such a battery system, and a battery mounting apparatus.

本発明の一態様は、正極板と負極板との間にセパレータを介在させた発電要素、及び、上記発電要素に含浸され、リチウム塩を含有する電解液、を有するリチウムイオン二次電池と、上記リチウムイオン二次電池から放電される放電電流を制御する放電制御手段と、上記リチウムイオン二次電池の電池電圧を検知する電圧検知手段と、を備える電池システムであって、上記放電制御手段は、上記放電電流を流し続ける一連の放電期間における、放電開始からの経過時間と上記電池電圧との関係を逐次得る関係取得手段を有し、上記一連の放電期間内において、既に得られている上記経過時間と電池電圧との関係に基づき、以降の上記リチウムイオン二次電池の上記放電電流の大きさを制御する電池システムである。   One aspect of the present invention is a lithium ion secondary battery having a power generation element in which a separator is interposed between a positive electrode plate and a negative electrode plate, and an electrolyte solution impregnated in the power generation element and containing a lithium salt; A battery system comprising: a discharge control unit that controls a discharge current discharged from the lithium ion secondary battery; and a voltage detection unit that detects a battery voltage of the lithium ion secondary battery, wherein the discharge control unit includes: , Having a relationship acquisition means for sequentially obtaining the relationship between the elapsed time from the start of discharge and the battery voltage in a series of discharge periods in which the discharge current continues to flow, and already obtained in the series of discharge periods The battery system controls the magnitude of the discharge current of the subsequent lithium ion secondary battery based on the relationship between the elapsed time and the battery voltage.

前述したように、放電期間における電池電圧の低下の様子、即ち、放電開始からの経過時間と電池電圧との関係から、電池が劣化を生じる状態でハイレート放電を行っているかどうかを検知しうるなど、放電時の電池の駆動条件(放電電流の大きさの選択など)の適否を知ることができる。
これに対し、上述の電池システムでは、放電制御手段は、一連の放電期間において、経過時間と電池電圧との関係を逐次得る関係取得手段を有する。これにより、例えば、ハイレート放電を行っている電池における、前述の電池電圧の第2段階の後期における加速度的な低下現象を適切に捉えることができる。そして、これに応じて、以降の電池の放電電流を大きさを相対的に小さな値に制限するなど、適切な放電電流制御を行うことができる。
かくして、電池における、ハイレート劣化などの劣化の進行を適切に抑制するなど、電池に適合した放電パターンでの放電を行わせることができる。
As described above, it is possible to detect whether the battery voltage is decreasing during the discharge period, that is, whether the battery is performing high-rate discharge in a state where the battery is deteriorated from the relationship between the elapsed time from the start of discharge and the battery voltage. It is possible to know the suitability of the battery driving conditions during discharge (selection of the magnitude of the discharge current, etc.).
On the other hand, in the battery system described above, the discharge control means has a relationship acquisition means for sequentially obtaining the relationship between the elapsed time and the battery voltage in a series of discharge periods. Thereby, for example, in a battery that is performing high-rate discharge, it is possible to appropriately capture an acceleration decrease phenomenon in the second stage of the battery voltage described above. And according to this, appropriate discharge current control, such as restrict | limiting the magnitude | size of subsequent discharge current of a battery to a relatively small value, can be performed.
Thus, it is possible to cause discharge with a discharge pattern suitable for the battery, such as appropriately suppressing the progress of deterioration such as high-rate deterioration in the battery.

さらに、上述の電池システムであって、前記関係取得手段は、前記放電開始からの経過時間と前記電池電圧との関係として、前記経過時間の平方根に対する前記電池電圧の単位時間あたりの変化量である電圧変化速度の関係である、第1関係を逐次得る第1関係取得手段であり、前記放電制御手段は、上記第1関係のうち、前記一連の放電期間のうちの初期期間に得た、初期第1関係に倣う回帰直線と、上記初期期間以降に得た上記電圧変化速度と、を逐次比較して、上記初期期間以降に得た上記電圧変化速度が上記回帰直線から乖離したか否かを検知する乖離検知手段と、上記乖離を検知した場合に、以降の前記リチウムイオン二次電池を流れる前記放電電流の大きさを低下させる放電電流低下手段と、を有する電池システムとすると良い。   Further, in the battery system described above, the relationship acquisition unit is a change amount per unit time of the battery voltage with respect to a square root of the elapsed time as a relationship between the elapsed time from the start of discharge and the battery voltage. A first relationship acquisition unit that sequentially obtains a first relationship that is a relationship of voltage change rates, wherein the discharge control unit is an initial unit that is obtained in an initial period of the series of discharge periods of the first relationship. A regression line that follows the first relationship and the voltage change rate obtained after the initial period are sequentially compared to determine whether the voltage change rate obtained after the initial period deviates from the regression line. It is preferable that the battery system has a deviation detecting means for detecting and a discharge current reducing means for reducing the magnitude of the discharge current flowing through the lithium ion secondary battery thereafter when the deviation is detected.

ところで、前述した第2段階の状態にある電池では、放電開始からの経過時間の平方根と、電池電圧の単位時間あたりの変化量である電圧変化速度との間に直線関係があることが判ってきた。また、放電電流が大きい場合、例えばハイレート放電の場合には、この第2段階の後期において、この直線関係を示す回帰直線から、電圧変化速度が乖離する、即ち、電池電圧が第2段階において加速的に低下する現象が生じる場合があることも判ってきた。なお、このように乖離するときには、電池の発電要素において、電解液に含まれるリチウム塩の濃度が場所的に不均一になり、リチウム塩濃度の濃い部分や薄い部分が生じるために、電池の内部抵抗が高くなることも判ってきた。   By the way, in the battery in the state of the second stage described above, it has been found that there is a linear relationship between the square root of the elapsed time from the start of discharge and the voltage change rate, which is the amount of change per unit time of the battery voltage. It was. When the discharge current is large, for example, in the case of high-rate discharge, the voltage change rate deviates from the regression line indicating this linear relationship in the latter stage of the second stage, that is, the battery voltage is accelerated in the second stage. It has also been found that there is a case where a phenomenon of deterioration occurs. In this case, in the power generation element of the battery, the concentration of the lithium salt contained in the electrolyte is locally uneven, and a portion where the lithium salt concentration is high or thin is generated. It has also been found that resistance increases.

この知見を基づいて、上述の電池システムでは、関係取得手段を、経過時間の平方根と電圧変化速度との関係(第1関係)を逐次得る第1関係取得手段とし、放電制御手段は、上述の乖離検知手段と放電電流低下手段とを有する。このため、電圧変化速度が回帰直線から乖離する現象を適切に捉えることができる。そして、これに応じて、以降の放電電流の大きさを小さい値に制限する等の、電池に適切な放電電流の制御を行うことができる。これにより発電要素において、電解液のリチウム塩濃度に場所的な不均一が生じるのを抑制し、電池が劣化するのを抑制することができる。   Based on this knowledge, in the battery system described above, the relationship acquisition unit is a first relationship acquisition unit that sequentially obtains the relationship (first relationship) between the square root of the elapsed time and the voltage change rate, and the discharge control unit is configured as described above. It has a deviation detection means and a discharge current reduction means. For this reason, the phenomenon in which the voltage change rate deviates from the regression line can be properly captured. And according to this, control of the discharge current suitable for a battery, such as restrict | limiting the magnitude | size of subsequent discharge current to a small value, can be performed. Thereby, in a power generation element, it can suppress that a local nonuniformity arises in the lithium salt density | concentration of electrolyte solution, and can suppress that a battery deteriorates.

なお、初期期間とは、放電期間のうち前述した第2段階、即ち、第1段階を過ぎて電池電圧が徐々に減少している期間のうち、当初の期間を指し、例えば、放電開始から0.1〜0.5秒の期間が該当する。また、初期第1関係とは、初期期間における、経過時間の平方根と電圧変化速度との関係をいう。   The initial period refers to the initial period of the second stage of the discharge period, that is, the period in which the battery voltage is gradually decreasing after the first stage. A period of 1 to 0.5 seconds is applicable. The initial first relationship refers to the relationship between the square root of elapsed time and the voltage change rate in the initial period.

さらに、本発明の他の態様は、正極板と負極板との間にセパレータを介在させた発電要素、及び、上記発電要素に含浸され、リチウム塩を含有する電解液、を有するリチウムイオン二次電池と、上記リチウムイオン二次電池から放電される放電電流を制御する放電制御手段と、上記リチウムイオン二次電池の充電状態を検知する充電状態検知手段と、上記リチウムイオン二次電池の電池温度を検知する電池温度検知手段と、上記リチウムイオン二次電池から放電される放電電流の大きさを検知する放電電流検知手段と、を備える電池システムであって、上記放電制御手段は、上記放電電流を流し続ける一連の放電期間において、検知された上記充電状態、上記電池温度、及び上記放電電流の大きさを用いて、上記リチウムイオン二次電池に許容する、放電開始からの放電許容期間を得る放電許容期間取得手段と、上記一連の放電期間の長さが、上記放電許容期間以上となった場合に、以降の上記リチウムイオン二次電池を流れる上記放電電流の大きさを低下させる経過後放電電流低下手段と、を有する電池システムである。   Furthermore, another aspect of the present invention provides a lithium ion secondary having a power generation element in which a separator is interposed between a positive electrode plate and a negative electrode plate, and an electrolytic solution impregnated in the power generation element and containing a lithium salt. A battery, discharge control means for controlling a discharge current discharged from the lithium ion secondary battery, charge state detection means for detecting a charge state of the lithium ion secondary battery, and battery temperature of the lithium ion secondary battery A battery temperature detecting means for detecting the discharge current and a discharge current detecting means for detecting the magnitude of the discharge current discharged from the lithium ion secondary battery, wherein the discharge control means comprises the discharge current The lithium ion secondary battery is allowed to use the detected state of charge, the battery temperature, and the magnitude of the discharge current in a series of discharge periods in which the current continues to flow. The discharge allowable period acquisition means for obtaining the discharge allowable period from the start of discharge, and the length of the series of discharge periods is equal to or longer than the discharge allowable period, and then flows through the subsequent lithium ion secondary battery And a post-elapse discharge current reduction means for reducing the magnitude of the discharge current.

上述の電池システムでは、放電制御手段は、上述の放電許容期間取得手段と経過後放電電流低下手段とを有する。このため、一連の放電期間の長さ(放電開始からの経過時間)が放電許容期間以上となった場合には、以降の電池を流れる放電電流の大きさを低下させる。これにより、第2段階の後期において電池電圧が加速度的に低下するなどの現象を防止することができる。
かくして、電池における、ハイレート劣化などの劣化の進行を適切に抑制するなど、電池に適合した放電パターンでの放電を行わせることができる。
In the battery system described above, the discharge control means includes the discharge allowable period acquisition means and the discharge current reduction means after elapse. For this reason, when the length of a series of discharge periods (elapsed time from the start of discharge) becomes equal to or longer than the discharge allowable period, the magnitude of the discharge current flowing through the subsequent batteries is reduced. Thereby, it is possible to prevent a phenomenon such as a battery voltage acceleratingly decreasing in the latter stage of the second stage.
Thus, it is possible to cause discharge with a discharge pattern suitable for the battery, such as appropriately suppressing the progress of deterioration such as high-rate deterioration in the battery.

なお、放電許容期間とは、一連の放電期間において、放電開始から、経過後放電電流低下手段による放電電流の低下を行わせるまでの期間として予め定めた期間をいう。この放電許容期間は、充電状態、電池温度及び放電電流の大きさに応じて与えられる期間であり、例えば、充電状態、電池温度及び放電電流の大きさの3つの条件下で、予め得ておいた、前述の回帰直線から電圧変化速度が乖離するまでの時間を用いることができる。   The discharge allowable period refers to a predetermined period as a period from the start of discharge until the discharge current is reduced by the discharge current lowering means after a lapse of time in a series of discharge periods. This discharge allowable period is a period given according to the state of charge, battery temperature, and discharge current, and is obtained in advance under, for example, the three conditions of charge state, battery temperature, and discharge current. The time until the voltage change rate deviates from the above-described regression line can be used.

さらに、本発明の他の態様は、前述のいずれかの電池システムを備える車両である。   Furthermore, another aspect of the present invention is a vehicle including any one of the battery systems described above.

上述の車両は、前述のいずれかの電池システムを備えるので、電池電圧の時間変化、或いは、一連の放電期間の長さに応じて、適切な放電電流制御を行うことができる。従って、電池における、ハイレート劣化などの劣化の進行を適切に抑制するなど、電池に適合した放電パターンでの放電が可能な車両とすることができる。   Since the vehicle described above includes any one of the battery systems described above, appropriate discharge current control can be performed in accordance with the time change of the battery voltage or the length of a series of discharge periods. Therefore, a vehicle capable of discharging with a discharge pattern suitable for the battery, such as appropriately suppressing the progress of deterioration such as high rate deterioration in the battery, can be obtained.

なお、車両としては、その動力源の全部あるいは一部に電池による電気エネルギを使用している車両であれば良く、例えば、電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車、ハイブリッド鉄道車両、フォークリフト、電気車いす、電動アシスト自転車、電動スクータが挙げられる。   The vehicle may be a vehicle that uses electric energy from a battery for all or part of its power source. For example, an electric vehicle, a hybrid vehicle, a plug-in hybrid vehicle, a hybrid railway vehicle, a forklift, an electric Wheelchairs, electric assist bicycles, and electric scooters.

さらに、本発明の他の態様は、前述のいずれかの電池システムを備える電池搭載機器である。   Furthermore, the other aspect of this invention is a battery mounting apparatus provided with one of the battery systems mentioned above.

上述の電池搭載機器は、前述のいずれかの電池システムを備えるので、電池電圧の時間変化、或いは、一連の放電期間の長さに応じて、適切な放電電流制御を行うことができる。従って、電池における、ハイレート劣化などの劣化の進行を適切に抑制するなど、電池に適合した放電パターンでの放電が可能な電池搭載機器とすることができる。   Since the above-described battery-equipped device includes any one of the battery systems described above, appropriate discharge current control can be performed according to changes in the battery voltage over time or the length of a series of discharge periods. Therefore, a battery-equipped device capable of discharging with a discharge pattern suitable for the battery, such as appropriately suppressing the progress of deterioration such as high-rate deterioration in the battery, can be obtained.

なお、電池搭載機器としては、電池を搭載しこれをエネルギー源の少なくとも1つとして利用する機器であれば良く、例えば、パーソナルコンピュータ、携帯電話、電池駆動の電動工具、無停電電源装置など、電池で駆動される各種の家電製品、オフィス機器、産業機器が挙げられる。   The battery-equipped device may be any device equipped with a battery and using it as at least one of the energy sources. For example, a battery such as a personal computer, a mobile phone, a battery-driven electric tool, an uninterruptible power supply, Various household appliances, office equipment, and industrial equipment driven by

実施形態1,実施形態2にかかる車両の斜視図である。1 is a perspective view of a vehicle according to Embodiments 1 and 2. FIG. 実施形態1のリチウムイオン二次電池の斜視図である。1 is a perspective view of a lithium ion secondary battery according to Embodiment 1. FIG. 実施形態1のリチウムイオン二次電池の断面図(図2のA−A断面)である。It is sectional drawing (AA cross section of FIG. 2) of the lithium ion secondary battery of Embodiment 1. リチウムイオン二次電池の放電時間と、電池電圧との関係を示すグラフである。It is a graph which shows the relationship between the discharge time of a lithium ion secondary battery, and a battery voltage. リチウムイオン二次電池の平方根放電時間と、電圧変化速度との関係を示すグラフである。It is a graph which shows the relationship between the square root discharge time of a lithium ion secondary battery, and a voltage change rate. 実施形態1のフローチャートである。3 is a flowchart of the first embodiment. 実施形態1のフローチャートである。3 is a flowchart of the first embodiment. リチウムイオン二次電池の平方根放電時間と、電圧変化速度との関係を示すグラフである。It is a graph which shows the relationship between the square root discharge time of a lithium ion secondary battery, and a voltage change rate. 実施形態2のリチウムイオン二次電池の斜視図である。4 is a perspective view of a lithium ion secondary battery according to Embodiment 2. FIG. リチウムイオン二次電池の放電時間と、電池電圧との関係を示すグラフである。It is a graph which shows the relationship between the discharge time of a lithium ion secondary battery, and a battery voltage. リチウムイオン二次電池の平方根放電時間と、電池電圧との関係を示すグラフである。It is a graph which shows the relationship between the square root discharge time of a lithium ion secondary battery, and battery voltage. リチウムイオン二次電池の通電許容期間と、放電電流との関係を示すグラフである。It is a graph which shows the relationship between the energization allowable period of a lithium ion secondary battery, and discharge current. 実施形態2のフローチャートである。6 is a flowchart of Embodiment 2. 実施形態3のハンマードリルの斜視図である。It is a perspective view of the hammer drill of Embodiment 3.

(実施形態1)
次に、本発明の実施形態1について、図面を参照しつつ説明する。
まず、本実施形態1にかかる車両100について説明する。図1に車両100の斜視図を示す。
この車両100は、組電池120をなす複数の電池1,1、これら複数の電池1,1の各電池電圧VTを検知する電池監視装置122、及び、電池1,1の放電電流DCを制御する制御装置130を備える。また、これらの他に、エンジン150、フロントモータ141、リアモータ142、ケーブル160、第1インバータ171、第2インバータ172及び車体190を有するハイブリッド電気自動車である。また、本実施形態1にかかる電池システムM1は、電池1,1、電池監視装置122及び制御装置130からなる。
(Embodiment 1)
Next, Embodiment 1 of the present invention will be described with reference to the drawings.
First, the vehicle 100 according to the first embodiment will be described. FIG. 1 shows a perspective view of the vehicle 100.
The vehicle 100 controls a plurality of batteries 1 and 1 forming an assembled battery 120, a battery monitoring device 122 that detects each battery voltage VT of the plurality of batteries 1 and 1, and a discharge current DC of the batteries 1 and 1. A control device 130 is provided. In addition to these, the hybrid electric vehicle includes an engine 150, a front motor 141, a rear motor 142, a cable 160, a first inverter 171, a second inverter 172, and a vehicle body 190. The battery system M1 according to the first embodiment includes the batteries 1, 1, the battery monitoring device 122, and the control device 130.

車両100の制御装置130は、図示しないCPU、ROM及びRAMを有し、所定のプログラムによって作動するマイクロコンピュータを含んでいる。この制御装置130は、車両100の内部に搭載された、フロントモータ141、リアモータ142、エンジン150、第1インバータ171、第2インバータ172及び電池監視装置122とそれぞれ通信する。そして、この制御装置130は、フロントモータ141、リアモータ142、エンジン150、第1インバータ171及び第2インバータ172を制御する。また、この制御装置130は、電池1から放電される放電電流DCを制御する。   The control device 130 of the vehicle 100 has a CPU, ROM, and RAM (not shown) and includes a microcomputer that operates according to a predetermined program. The control device 130 communicates with a front motor 141, a rear motor 142, an engine 150, a first inverter 171, a second inverter 172, and a battery monitoring device 122 mounted inside the vehicle 100. The control device 130 controls the front motor 141, the rear motor 142, the engine 150, the first inverter 171 and the second inverter 172. Further, the control device 130 controls the discharge current DC discharged from the battery 1.

車両100の組電池120は、内部に複数の電池1,1を配置した電池部121と、電池監視装置122とを有する(図1参照)。このうち、電池監視装置122は、図示しないセンシング線を用いて各電池1,1の電池電圧VTを検知する。
また、電池部121は、バスバ(図示しない)とのボルト締結にて、互いに直列に接続されている複数の電池1,1を収容している。
The assembled battery 120 of the vehicle 100 includes a battery unit 121 in which a plurality of batteries 1 and 1 are arranged, and a battery monitoring device 122 (see FIG. 1). Among these, the battery monitoring apparatus 122 detects the battery voltage VT of each battery 1 and 1 using the sensing wire which is not illustrated.
Further, the battery unit 121 accommodates a plurality of batteries 1 and 1 connected in series with each other by bolt fastening with a bus bar (not shown).

複数の電池1,1は、正極板21、負極板22及びセパレータ23を含む発電要素20を有する捲回形のリチウムイオン二次電池である(図2参照)。なお、発電要素20は、矩形箱状の電池ケース10に収容されている。   The plurality of batteries 1 and 1 are wound lithium ion secondary batteries having a power generation element 20 including a positive electrode plate 21, a negative electrode plate 22, and a separator 23 (see FIG. 2). The power generation element 20 is housed in a rectangular box-shaped battery case 10.

この発電要素20は、帯状の正極板21及び負極板22が、ポリエチレンからなる帯状のセパレータ23を介して扁平形状に捲回されている(図2参照)。この発電要素20は、図3に示すように、図3中、左方に延出する正極板21の正極リード部21fと、図3中、右方に延出する負極板22の負極リード部22fとを有する。この正極リード部21fは、クランク状に屈曲した板状の正極集電部材71に接合されている(図2参照)。なお、この正極集電部材71の先端側(図2中、上方)に位置する正極端子部71Aが、電池ケース10から図2中、上方に突出している。また、負極リード部22fは、クランク状に屈曲した板状の負極集電部材72に接合されている(図2参照)。なお、この負極集電部材72の先端側(図2中、上方)に位置する負極端子部72Aが、電池ケース10から図2中、上方に突出している。   In the power generation element 20, a strip-like positive electrode plate 21 and a negative electrode plate 22 are wound in a flat shape via a strip-like separator 23 made of polyethylene (see FIG. 2). 3, the power generation element 20 includes a positive electrode lead portion 21f of a positive electrode plate 21 extending leftward in FIG. 3, and a negative electrode lead portion of a negative electrode plate 22 extending rightward in FIG. 22f. The positive electrode lead portion 21f is joined to a plate-shaped positive electrode current collecting member 71 bent in a crank shape (see FIG. 2). Note that a positive electrode terminal portion 71A located on the front end side (upward in FIG. 2) of the positive electrode current collecting member 71 protrudes upward from the battery case 10 in FIG. The negative electrode lead portion 22f is joined to a plate-shaped negative electrode current collecting member 72 bent in a crank shape (see FIG. 2). Note that a negative electrode terminal portion 72A located on the tip end side (upward in FIG. 2) of the negative electrode current collecting member 72 protrudes upward from the battery case 10 in FIG.

また、この発電要素20は、リチウム塩を含有する電解液30を含浸している。この電解液30は、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを、体積比でEC:EMC=3:7に調整した混合有機溶媒に、溶質としてLiPF6を添加した有機電解液である。 Further, the power generation element 20 is impregnated with an electrolytic solution 30 containing a lithium salt. This electrolytic solution 30 is an organic electrolytic solution in which LiPF 6 is added as a solute to a mixed organic solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) are adjusted to EC: EMC = 3: 7 by volume ratio. is there.

ところで、電池1を放電させると、放電時の放電電流を流し続ける一連の放電期間において、電池電圧VTは、放電開始直後に瞬時に大きく減少し(第1段階)、その後、徐々に減少する(第2段階)という、2段階の減少特性を示す。
図4に示す、電池1の電池電圧VTの経時変化を示すグラフを用いて、具体的に説明する。
電池電圧VTが当初電圧VLである電池1について、放電時間TD=0で放電を開始させる。すると、放電開始(TD=0)から時間0.1秒(TD=0.1)経過後には、電池電圧VTが、電圧VMにまで急激に低下する(第1段階)。
続くその後(TD>0.1)の電池1の電池電圧VTは、電圧VMを起点として、第1段階よりも緩やかに低下する(第2段階)。
By the way, when the battery 1 is discharged, in a series of discharge periods in which the discharge current at the time of discharging continues to flow, the battery voltage VT decreases greatly immediately after the start of discharge (first stage), and then gradually decreases ( This shows a two-stage reduction characteristic (second stage).
This will be specifically described with reference to a graph showing a change with time of the battery voltage VT of the battery 1 shown in FIG.
For the battery 1 whose battery voltage VT is the initial voltage VL, the discharge is started at the discharge time TD = 0. Then, after the time of 0.1 second (TD = 0.1) has elapsed from the start of discharge (TD = 0), the battery voltage VT rapidly decreases to the voltage VM (first stage).
Subsequently (TD> 0.1), the battery voltage VT of the battery 1 gradually decreases from the first stage starting from the voltage VM (second stage).

なお、この第2段階における放電時間TDと電池電圧VTとの関係として、横軸に放電時間TDの平方根である平方根放電時間TDHをとり、縦軸に電池電圧VTの単位時間(本実施形態1では1秒)あたりの変化量である電圧変化速度VVをとると、これらの間には、直線関係を有することが判ってきた。即ち、図5のグラフに示すように、横軸に放電時間TDの平方根をとると、電圧変化速度VVは直線的に低下する。   As the relationship between the discharge time TD and the battery voltage VT in the second stage, the horizontal axis represents the square root discharge time TDH, which is the square root of the discharge time TD, and the vertical axis represents the unit time of the battery voltage VT (this embodiment 1). It has been found that there is a linear relationship between the voltage change rate VV, which is the amount of change per second). That is, as shown in the graph of FIG. 5, when the square root of the discharge time TD is taken on the horizontal axis, the voltage change rate VV decreases linearly.

但し、第2段階の電池1を放電し続けると、第2段階の後期において、平方根放電時間TDHと電圧変化速度VVとの間には、直線関係がなくなる場合のあることも判ってきた。つまり、図5において破線で示すように、電池1の電圧変化速度VVは、平方根放電時間TDHがT2Hとなった以降、直線の延長(図5中、一点鎖線の直線)から乖離するように変化することがある。この場合、図4に破線で示すように、放電期間の後期に、電池電圧VTが加速的に低下していることに対応する。さらに、このような場合、電池1の発電要素20に含浸された電解液30のリチウム塩濃度が、場所的に徐々に不均一になり、濃度分布が生じることが判ってきた。なお、このようなリチウム塩の濃度分布は、電池1の内部抵抗を高くする原因の1つである。   However, it has been found that if the battery 1 in the second stage is continuously discharged, the linear relationship may be lost between the square root discharge time TDH and the voltage change rate VV in the latter stage of the second stage. That is, as indicated by the broken line in FIG. 5, the voltage change rate VV of the battery 1 changes so as to deviate from the extension of the straight line (the dashed line in FIG. 5) after the square root discharge time TDH reaches T2H. There are things to do. In this case, as shown by a broken line in FIG. 4, this corresponds to the battery voltage VT acceleratingly decreasing in the latter part of the discharge period. Furthermore, in such a case, it has been found that the concentration of the lithium salt of the electrolytic solution 30 impregnated in the power generation element 20 of the battery 1 gradually becomes non-uniform in location and a concentration distribution is generated. Such a concentration distribution of the lithium salt is one of the causes for increasing the internal resistance of the battery 1.

以上の知見を踏まえて、本実施形態1の電池システムM1における、電池1の制御について、図6,7のフローチャートを参照しつつ詳述する。   Based on the above knowledge, the control of the battery 1 in the battery system M1 of Embodiment 1 will be described in detail with reference to the flowcharts of FIGS.

まず、図6に示すメインルーチンにおいて、車両100の作動を開始(キーオン)する(ステップS1)と、車両100の制御装置130が起動する。続くステップS2では、電池1を車両100の走行等に伴って放電させるか否かを判別する。
ここで、NO、即ち電池1を放電させない場合、ステップS2を繰り返す。一方、YES、即ち電池1を放電させる場合には、電池1を放電させて、ステップS20の第1関係取得サブルーチンに進む。
First, in the main routine shown in FIG. 6, when the operation of the vehicle 100 is started (key-on) (step S1), the control device 130 of the vehicle 100 is activated. In the subsequent step S2, it is determined whether or not the battery 1 is discharged as the vehicle 100 travels.
If NO, that is, if the battery 1 is not discharged, step S2 is repeated. On the other hand, if YES, that is, if the battery 1 is discharged, the battery 1 is discharged, and the process proceeds to the first relationship acquisition subroutine of step S20.

ステップS20の第1関係取得サブルーチンについて、図7を参照しつつ説明する。
まず、ステップS21では、電池1の放電時間TD(即ち、放電開始からの経過時間)、及び、電池1の電池電圧VTの測定をそれぞれ行う。
続いて、ステップS22では、平方根放電時間TDHと電圧変化速度VVとの関係を示す第1関係Wを取得する。具体的には、ステップS21で測定した、放電時間TDから平方根放電時間TDHを、前回と今回得た電池電圧VTから電圧変化速度VVを、それぞれ算出する。そして、これら平方根放電時間TDHと電圧変化速度VVとを関係づけて記憶する。なお、この平方根放電時間TDHと電圧変化速度VVとの関係を第1関係W(横軸を平方根放電時間TDH、縦軸を電圧変化速度VVのグラフに表しうる関係)とする。このステップS22の後、メインルーチンに戻る。
The first relationship acquisition subroutine in step S20 will be described with reference to FIG.
First, in step S21, the discharge time TD (that is, the elapsed time from the start of discharge) of the battery 1 and the battery voltage VT of the battery 1 are measured.
Subsequently, in step S22, a first relationship W indicating the relationship between the square root discharge time TDH and the voltage change rate VV is acquired. Specifically, the square root discharge time TDH is calculated from the discharge time TD, and the voltage change rate VV is calculated from the battery voltage VT obtained last time and this time, respectively. The square root discharge time TDH and the voltage change rate VV are stored in relation to each other. The relationship between the square root discharge time TDH and the voltage change rate VV is a first relationship W (a relationship in which the horizontal axis can be expressed in a graph of the square root discharge time TDH and the vertical axis in the voltage change rate VV). After this step S22, the process returns to the main routine.

メインルーチンのステップS3では、電池1を引き続き放電させるか否かを判別する。
ここで、NO、即ち電池1を引き続き放電させない場合、ステップS11に進み、ここで電池1における一連の放電期間JDを終了させて、ステップS2に戻る。一方、YES、即ち引き続き放電させる場合には、ステップS4に進み、放電時間TDが、初期期間TFを過ぎたか否かを判別する。なお、初期期間TFとは、一連の放電期間JDにおける第2段階のうち、当初の期間に該当し、本実施形態1では、0.5秒間としている。
In step S3 of the main routine, it is determined whether or not the battery 1 is to be continuously discharged.
Here, if NO, that is, if the battery 1 is not continuously discharged, the process proceeds to step S11, where a series of discharge periods JD in the battery 1 is terminated, and the process returns to step S2. On the other hand, if YES, that is, if the discharge is continued, the process proceeds to step S4, where it is determined whether or not the discharge time TD has passed the initial period TF. The initial period TF corresponds to the initial period of the second stage in the series of discharge periods JD, and is 0.5 seconds in the first embodiment.

ここで、NO、即ち放電時間TDが初期期間TFを未だ過ぎていない場合には、ステップS20に戻り、第1関係取得サブルーチンを再度行う。このため、第1関係取得サブルーチンS20が、逐次(本実施形態1では、0.10秒毎)行われる。
一方、YES、即ち放電時間TDが初期期間TFを過ぎた場合には、ステップS5に進む。
If NO, that is, if the discharge time TD has not yet passed the initial period TF, the process returns to step S20 and the first relationship acquisition subroutine is performed again. For this reason, the first relationship acquisition subroutine S20 is sequentially performed (in the first embodiment, every 0.10 seconds).
On the other hand, if YES, that is, if the discharge time TD has passed the initial period TF, the process proceeds to step S5.

次いで、ステップS5では、初期期間TFにおいて取得した複数の第1関係W(平方根放電時間TDHと電圧変化速度VVとの関係)である初期第1関係WPを用いて、平方根放電時間TDHと電圧変化速度VVとの回帰直線LN1の式を算出する(LN1:VV=−a・TDH+b(a,bは定数))。なお、初期第1関係WPについて、横軸を平方根放電時間TDH、縦軸を電圧変化速度VVのグラフに表すと、図8のようになる。   Next, in step S5, the square root discharge time TDH and the voltage change are obtained using the initial first relation WP which is the plurality of first relations W (the relation between the square root discharge time TDH and the voltage change rate VV) acquired in the initial period TF. The equation of the regression line LN1 with the velocity VV is calculated (LN1: VV = −a · TDH + b (a and b are constants)). FIG. 8 shows the initial first relation WP as a graph of the square root discharge time TDH on the horizontal axis and the voltage change rate VV on the vertical axis.

上述のステップS6の後、前述した第1関係取得サブルーチンと同様の、第1関係取得サブルーチンS30に進む。
続いて、ステップS7では、電池1を引き続き放電させるか否かを判別する。
ここで、NO、即ち電池1を引き続き放電させない場合、ステップS11に進み、ここで電池1における一連の放電期間JDを終了させて、ステップS2に戻る。一方、YES、即ち引き続き放電させる場合には、ステップS7に進み、上述の第1関係取得サブルーチンS30で関係づけた、平方根放電時間TDHにおける電圧変化速度VV、即ち、平方根放電時間TDHと電圧変化速度VVとの間の関係である第1関係Wを用いて、電圧変化速度VVが回帰直線LN1から乖離したか否かを判別する。
なお、電圧変化速度VVが回帰直線LN1から乖離するとは、平方根放電時間TDHから回帰直線LN1を用いて得た回帰電圧変化速度VVKと、実際に得た電圧変化速度VVとの差が所定の判定値Kよりも大きくなった場合(|VVK−VV|>K)をいう。
After step S6 described above, the process proceeds to a first relationship acquisition subroutine S30 similar to the first relationship acquisition subroutine described above.
Subsequently, in step S7, it is determined whether or not the battery 1 is continuously discharged.
Here, if NO, that is, if the battery 1 is not continuously discharged, the process proceeds to step S11, where a series of discharge periods JD in the battery 1 is terminated, and the process returns to step S2. On the other hand, if YES, that is, if the discharge is continued, the process proceeds to step S7, and the voltage change rate VV in the square root discharge time TDH, that is, the square root discharge time TDH and the voltage change rate related in the first relationship acquisition subroutine S30 described above. It is determined whether or not the voltage change rate VV has deviated from the regression line LN1 using the first relationship W which is a relationship with VV.
Note that the voltage change rate VV deviates from the regression line LN1 is that the difference between the regression voltage change rate VVK obtained using the regression line LN1 from the square root discharge time TDH and the actually obtained voltage change rate VV is a predetermined determination. This is a case where the value is larger than the value K (| VVK−VV |> K).

ここで、NO、即ち第1関係Wが回帰直線LN1から乖離していない場合には、ステップS30に戻り、第1関係取得サブルーチンを再度行う。一方、YES、即ち第1関係Wが回帰直線LN1から乖離した場合には、ステップS8に進み、電池1の放電電流DCの大きさを小さく制限する。   If NO, that is, if the first relationship W is not deviated from the regression line LN1, the process returns to step S30, and the first relationship acquisition subroutine is performed again. On the other hand, if YES, that is, if the first relationship W deviates from the regression line LN1, the process proceeds to step S8, and the magnitude of the discharge current DC of the battery 1 is limited to be small.

次に、ステップS9では、電池1を引き続き放電させるか否かを判別する。
ここで、YES、即ち引き続き放電させる場合には、ステップS9を繰り返す。一方、NO、即ち電池1を引き続き放電させない場合、ステップS10に進み、放電電流DCの制限を解除し、一連の放電期間JDを終了させて(ステップS11)、ステップS2に戻る。
Next, in step S9, it is determined whether or not the battery 1 is continuously discharged.
Here, if YES, that is, if the discharge is continued, step S9 is repeated. On the other hand, if NO, that is, if the battery 1 is not continuously discharged, the process proceeds to step S10, the restriction of the discharge current DC is released, the series of discharge periods JD is terminated (step S11), and the process returns to step S2.

なお、本実施形態1の制御装置130が放電制御手段に、電池監視装置122が電圧検知手段に、放電時間TDが放電開始からの経過時間に、第1関係取得サブルーチンS20,S30が関係取得手段(第1関係取得手段)に、それぞれ対応する。また、ステップS7が乖離検知手段に、ステップS8が放電電流低下手段に、それぞれ対応する。   The first relationship acquisition subroutines S20 and S30 are the relationship acquisition means when the control device 130 of the first embodiment is the discharge control means, the battery monitoring device 122 is the voltage detection means, and the discharge time TD is the elapsed time from the start of discharge. This corresponds to (first relation acquisition means). Step S7 corresponds to the deviation detection means, and step S8 corresponds to the discharge current reduction means.

以上より、本実施形態1にかかる車両100の電池システムM1は、一連の放電期間JDにおいて、放電時間TDと電池電圧VTとの関係、具体的には、平方根放電時間TDHと電圧変化速度VVとの関係である第1関係Wを逐次得る関係取得手段S20,S30を有する。これにより、例えば、ハイレート放電を行っている電池1における、前述の電池電圧VTの第2段階の後期における加速度的な低下現象を適切に検出することができる。そして、これに応じて、この検出以降、電池1の放電電流DCを大きさを相対的に小さな値に制限するなど、適切な放電電流制御を行うことが可能となる。
かくして、電池1における、ハイレート劣化などの劣化の進行を適切に抑制するなど、電池1に適合した放電パターンでの放電を行わせることができる。
As described above, the battery system M1 of the vehicle 100 according to the first embodiment has the relationship between the discharge time TD and the battery voltage VT, specifically, the square root discharge time TDH and the voltage change rate VV in the series of discharge periods JD. The relationship acquisition means S20 and S30 which obtain the 1st relationship W which is these relationships sequentially are provided. Thereby, for example, in the battery 1 that is performing high-rate discharge, it is possible to appropriately detect an acceleration decrease phenomenon in the second stage of the battery voltage VT described above. Accordingly, after this detection, it is possible to perform appropriate discharge current control such as limiting the discharge current DC of the battery 1 to a relatively small value.
Thus, the battery 1 can be discharged with a discharge pattern suitable for the battery 1 such as appropriately suppressing the progress of deterioration such as high rate deterioration.

また、関係取得手段S20,S30は、平方根放電時間TDHと電圧変化速度VVとの関係である第1関係Wを逐次得る第1関係取得手段S20,S30であり、電池システムM1は、乖離検知手段S7と放電電流低下手段S8とを有する。このため、電圧変化速度VVが回帰直線LN1から乖離する現象を適切に捉えることができる。そして、電圧変化速度VVの乖離現象に応じて、電池1に適切な放電電流DCの制御を行うことができる。これにより電池1の発電要素20において、電解液30のリチウム塩濃度に場所的な不均一が生じるのを抑制し、電池1が劣化するのを抑制することができる。   The relationship acquisition means S20 and S30 are first relationship acquisition means S20 and S30 that sequentially obtain a first relationship W that is a relationship between the square root discharge time TDH and the voltage change rate VV. The battery system M1 is a divergence detection means. S7 and discharge current lowering means S8. For this reason, the phenomenon in which the voltage change rate VV deviates from the regression line LN1 can be properly captured. The discharge current DC appropriate for the battery 1 can be controlled in accordance with the divergence phenomenon of the voltage change rate VV. Thereby, in the power generation element 20 of the battery 1, it is possible to suppress the occurrence of local non-uniformity in the lithium salt concentration of the electrolytic solution 30 and to suppress the deterioration of the battery 1.

また、本実施形態1にかかる車両100は、電池システムM1を備えるので、電池電圧VTの時間変化(電圧変化速度VV)に応じて、適切な放電電流制御を行うことができる。従って、電池1における、ハイレート劣化などの劣化の進行を適切に抑制するなど、電池1に適合した放電パターンでの放電が可能な車両100とすることができる。   In addition, since the vehicle 100 according to the first embodiment includes the battery system M1, it is possible to perform appropriate discharge current control according to the time change (voltage change speed VV) of the battery voltage VT. Therefore, the vehicle 100 capable of discharging with a discharge pattern suitable for the battery 1 such as appropriately suppressing the progress of deterioration such as high rate deterioration in the battery 1 can be obtained.

(実施形態2)
次に、本発明の実施形態2にかかる車両200について、図1,3〜5,9〜13を参照しつつ説明する。
本実施形態2は、電池システムM2における制御装置130で、電池の充電状態、電池温度及び放電電流の大きさに応じて放電開始からの放電許容期間を得る点、及び、電池の電池温度を検知する熱電対を有する点で、実施形態1と異なる。
(Embodiment 2)
Next, a vehicle 200 according to the second embodiment of the present invention will be described with reference to FIGS.
In the second embodiment, the control device 130 in the battery system M2 detects the charge allowable period from the start of discharge according to the charge state of the battery, the battery temperature and the magnitude of the discharge current, and the battery temperature of the battery. The second embodiment is different from the first embodiment in that it has a thermocouple.

本実施形態2の電池2は、図9に示すように、前述の実施形態1の電池1に加えて、電池ケース10のうち、図9中、手前に面する第1主面10Fの中央付近に、熱電対40を配置している。なお、この熱電対40は絶縁テープTPで電池ケース10に固定されている。また、この熱電対40は、電池監視装置122に接続しており、電池監視装置122を通じて、制御装置130に電池温度TMの情報が送信される。   As shown in FIG. 9, the battery 2 according to the second embodiment includes, in addition to the battery 1 according to the first embodiment described above, the vicinity of the center of the first main surface 10 </ b> F facing the front in FIG. 9 in the battery case 10. Further, a thermocouple 40 is arranged. The thermocouple 40 is fixed to the battery case 10 with an insulating tape TP. The thermocouple 40 is connected to the battery monitoring device 122, and the battery temperature TM information is transmitted to the control device 130 through the battery monitoring device 122.

ところで、本実施形態2の制御装置130には、各電池温度TM毎で、各充電状態SC毎で、かつ、電池1の放電電流DCの大きさ毎に、通電許容期間TGをまとめたマップMPが記憶されている。なお、この通電許容期間TGは、電池2の一連の放電期間JDにおいて、放電開始から放電電流DCを小さく制限させるまでの猶予期間として、予め定めた期間をいう。また、本実施形態2では、この放電許容期間TGとして、充電状態SC、電池温度TM及び放電電流DCの大きさをそれぞれ定めた状態で、実施形態1に示したようにして、予め得ておいた、放電開始から、電圧変化速度VVが回帰直線から乖離するまでの時間を用いる。   By the way, the control device 130 according to the second embodiment has a map MP that summarizes the energization allowable period TG for each battery temperature TM, for each charge state SC, and for each magnitude of the discharge current DC of the battery 1. Is remembered. The energization allowable period TG is a predetermined period as a grace period from the start of discharge until the discharge current DC is limited to be small in a series of discharge periods JD of the battery 2. Further, in the second embodiment, as the discharge allowable period TG, the charge state SC, the battery temperature TM, and the magnitude of the discharge current DC are respectively determined in advance as shown in the first embodiment. The time from the start of discharge until the voltage change rate VV deviates from the regression line is used.

通電許容期間TGのマップMPの作成方法について、具体的に説明する。
まず、所定の電池温度TMVで、かつ、所定の充電状態SCVである電池2を用意し、所定の放電電流DCVを流す放電試験を行う。この試験により、前述した図4に示す、電池1の電池電圧VTの経時変化を得た。
この試験結果について、放電開始(放電時間TD=0)から時間T1(本実施形態2では0.1秒)経過時の電池電圧VT分だけシフトさせる。即ち、時間T1における電圧VMが0Vとなるように、グラフの縦軸を移動させる(図10参照)。
A method for creating the map MP of the energization allowable period TG will be specifically described.
First, a battery 2 having a predetermined battery temperature TMV and a predetermined charge state SCV is prepared, and a discharge test is performed in which a predetermined discharge current DCV is passed. By this test, the change with time of the battery voltage VT of the battery 1 shown in FIG. 4 was obtained.
The test result is shifted by the battery voltage VT when time T1 (0.1 second in the second embodiment) has elapsed from the start of discharge (discharge time TD = 0). That is, the vertical axis of the graph is moved so that the voltage VM at time T1 becomes 0 V (see FIG. 10).

次いで、図10に示すグラフの横軸を、放電時間TDから平方根放電時間TDHに変更して、平方根放電時間TDHにおける電池電圧VTを示すグラフにする(図11参照)。なお、時間T1は、平方根時間T1Hになる。
すると、平方根放電時間TDHと電池電圧VTとの関係は、直線関係を示すものの、放電の後期において曲線関係を示すことが判る。そこで、平方根第1時間T1H(√0.1)〜√0.5の範囲の平方根放電時間TDHにおける各電池電圧VTを用いて、直線の回帰直線LN2を決定する。
そして、この回帰直線LN2と、平方根放電時間TDHにおける電池電圧VTとを重ねる。これにより、平方根放電時間TDHにおける電池電圧VTが、回帰直線LN2から乖離する乖離平方根放電時間TDGが判る(図10参照)。この乖離平方根放電時間TDGを二乗した数値を、所定の電池温度TMV、所定の充電状態SCV及び所定の放電電流DCVの大きさにおける、上述の通電許容期間TGとする。
Next, the horizontal axis of the graph shown in FIG. 10 is changed from the discharge time TD to the square root discharge time TDH to make a graph showing the battery voltage VT at the square root discharge time TDH (see FIG. 11). The time T1 is the square root time T1H.
Then, although the relationship between the square root discharge time TDH and the battery voltage VT shows a linear relationship, it can be seen that a curve relationship is shown in the later stage of discharge. Therefore, a linear regression line LN2 is determined using each battery voltage VT in the square root discharge time TDH in the range of the first square root time T1H (√0.1) to √0.5.
Then, the regression line LN2 and the battery voltage VT at the square root discharge time TDH are overlapped. Thereby, the deviation square root discharge time TDG in which the battery voltage VT in the square root discharge time TDH deviates from the regression line LN2 is known (see FIG. 10). A numerical value obtained by squaring the deviation square root discharge time TDG is set as the above-described energization allowable period TG at a predetermined battery temperature TMV, a predetermined charge state SCV, and a predetermined discharge current DCV.

次に、所定の電池温度TMV、及び、所定の充電状態SCVである電池2について、放電電流DCの大きさを複数変えて、上述と同様の放電試験を行い、この条件での通電許容期間TGを得る。このようにして、所定の電池温度TMV、及び、所定の充電状態SCVにおける、通電許容期間TGと、放電電流DCの大きさとの関係を示すグラフが完成する(図12参照)。
さらに、電池温度TM及び充電状態SCをそれぞれ変えて、上述と同様の放電試験を行う。このようにして、各電池温度TM(−30〜60℃)、各充電状態SC(0〜100%)における、通電許容期間TGと、放電電流DCの大きさとの関係を示すグラフが複数完成する。従って、各電池温度TM、各充電状態SC及び放電電流DCの大きさによる、通電許容期間TGのマップMPができあがる。そこでこれを記憶しておく。
Next, with respect to the battery 2 in the predetermined battery temperature TMV and the predetermined charge state SCV, a discharge test similar to the above is performed by changing the magnitude of the discharge current DC, and the energization allowable period TG under these conditions is performed. Get. In this way, a graph showing the relationship between the energization allowable period TG and the magnitude of the discharge current DC at a predetermined battery temperature TMV and a predetermined charging state SCV is completed (see FIG. 12).
Further, the same discharge test as described above is performed while changing the battery temperature TM and the state of charge SC. In this manner, a plurality of graphs showing the relationship between the energization allowable period TG and the magnitude of the discharge current DC at each battery temperature TM (-30 to 60 ° C.) and each state of charge SC (0 to 100%) are completed. . Accordingly, a map MP of the energization allowable period TG is created according to the battery temperature TM, the charge state SC, and the magnitude of the discharge current DC. So remember this.

上述した通電許容期間TGのマップMPを収容する制御装置130が、本実施形態2の電池システムM2における、電池2の放電電流DCを制御する放電制御について、図13のフローチャートを参照しつつ詳述する。   The control device 130 that accommodates the map MP of the energization allowable period TG described above controls the discharge current DC of the battery 2 in the battery system M2 of Embodiment 2 in detail with reference to the flowchart of FIG. To do.

まず、車両200の作動を開始(キーオン)する(ステップS41)と、車両200の制御装置130が起動する。続くステップS42では、電池2を放電させるか否かを判別する。
ここで、NO、即ち電池2を放電させない場合、ステップS42を繰り返す。一方、YES、即ち電池2を放電させる場合には、ステップS43に進み、電池2の電池温度TM、充電状態SC及び放電電流DCの大きさをそれぞれ検知する。
First, when the operation of the vehicle 200 is started (key-on) (step S41), the control device 130 of the vehicle 200 is activated. In a succeeding step S42, it is determined whether or not the battery 2 is to be discharged.
If NO, that is, if the battery 2 is not discharged, step S42 is repeated. On the other hand, if YES, that is, if the battery 2 is to be discharged, the process proceeds to step S43, where the battery temperature TM, the charge state SC, and the magnitude of the discharge current DC of the battery 2 are detected.

具体的には、電池2の電池温度TMについては、前述の熱電対40を用いて検知する(図9参照)。また、電池2の充電状態SCについては、制御装置130に蓄積された充放電電流の積算値から算出する。また、放電電流DCの大きさは、制御装置130がインバータ171,172に指令する指令値から判る。   Specifically, the battery temperature TM of the battery 2 is detected using the above-described thermocouple 40 (see FIG. 9). Further, the charge state SC of the battery 2 is calculated from the integrated value of the charge / discharge current accumulated in the control device 130. The magnitude of the discharge current DC can be determined from the command value that the control device 130 commands the inverters 171 and 172.

続いて、ステップS44では、通電許容期間TGを取得する。具体的には、制御装置130に収容する通電許容期間TGのマップMPから、ステップS43で得た、電池2の電池温度TM、充電状態SC及び放電電流DCの大きさに全て合致する条件の通電許容期間TGを選択する。
その後、ステップS45に進み、電池2の放電を開始し、電池2の放電時間TDの測定を行う(ステップS46)。
Subsequently, in step S44, an energization allowable period TG is acquired. Specifically, energization under conditions that all match the battery temperature TM, charge state SC, and discharge current DC of the battery 2 obtained in step S43 from the map MP of the energization allowable period TG accommodated in the control device 130. The allowable period TG is selected.
Then, it progresses to step S45, the discharge of the battery 2 is started, and the discharge time TD of the battery 2 is measured (step S46).

次に、ステップS47では、電池2を引き続き放電させるか否かを判別する。
ここで、NO、即ち電池2を引き続き放電させない場合、ステップS52に進み、ここで電池2における一連の放電期間JDを終了させて、ステップS42に戻る。一方、YES、即ち引き続き放電させる場合には、ステップS48に進み、放電時間TDから通電許容期間TGを引いた差分が0以上になるか否かを判別する。
Next, in step S47, it is determined whether or not the battery 2 is to be continuously discharged.
Here, if NO, that is, if the battery 2 is not continuously discharged, the process proceeds to step S52, where a series of discharge periods JD in the battery 2 is terminated, and the process returns to step S42. On the other hand, if YES, that is, if the discharge is continued, the process proceeds to step S48, and it is determined whether or not the difference obtained by subtracting the energization allowable period TG from the discharge time TD is 0 or more.

ここで、NO、即ち放電時間TDから通電許容期間TGを引いた差分が負になる場合には、ステップS46に戻る。一方、YES、即ち放電時間TDから通電許容期間TGを引いた差分が0以上になる場合には、ステップS49に進み、電池2の放電電流DCの大きさを小さく制限する。   If NO, that is, if the difference obtained by subtracting the energization allowable period TG from the discharge time TD is negative, the process returns to step S46. On the other hand, if YES, that is, if the difference obtained by subtracting the energization allowable period TG from the discharge time TD is 0 or more, the process proceeds to step S49, and the magnitude of the discharge current DC of the battery 2 is limited to be small.

次に、ステップS50に進み、電池2を引き続き放電させるか否かを判別する。
ここで、YES、即ち引き続き放電させる場合、放電電流DCを制限した状態でステップS50を繰り返す。一方、NO、即ち電池2を引き続き放電させない場合には、ステップS51に進み、放電電流DCの制限を解除し、一連の放電期間JDを終了させて(ステップS52)、ステップS42に戻る。
Next, it progresses to step S50 and it is discriminate | determined whether the battery 2 is discharged continuously.
If YES, that is, if the discharge is continued, step S50 is repeated with the discharge current DC limited. On the other hand, if NO, that is, if the battery 2 is not continuously discharged, the process proceeds to step S51, the restriction of the discharge current DC is released, a series of discharge periods JD are terminated (step S52), and the process returns to step S42.

なお、本実施形態2の制御装置130が充電状態検知手段及び放電電流検知手段に、熱電対40が電池温度検知手段に、ステップS44が放電許容期間取得手段に、ステップS49が経過後放電電流低下手段に、それぞれ対応している。   Note that the control device 130 of the second embodiment is the charge state detection means and discharge current detection means, the thermocouple 40 is the battery temperature detection means, step S44 is the discharge allowable period acquisition means, and the discharge current decreases after step S49 has elapsed. It corresponds to each means.

以上より、本実施形態2にかかる車両200の電池システムM2は、上述の放電許容期間取得手段S44と経過後放電電流低下手段S49とを有する。このため、放電時間TDが放電許容期間TG以上になった場合(即ち、放電時間TDから放電許容期間TGを引いた差分が0以上)でも、例えば、図13に示すフローチャートのステップS49以降の電池2を流れる放電電流DCの大きさを低下させ、第2段階において電池電圧VTが加速度的に低下するなどの現象を防止することができる。
かくして、電池2における、ハイレート劣化などの劣化の進行を適切に抑制するなど、電池2に適合した放電パターンでの放電を行わせることができる。
As described above, the battery system M2 of the vehicle 200 according to the second embodiment includes the above-described discharge allowable period acquisition unit S44 and the post-elapse discharge current reduction unit S49. For this reason, even when the discharge time TD is equal to or longer than the allowable discharge period TG (that is, the difference obtained by subtracting the allowable discharge period TG from the discharge time TD is equal to or greater than 0), for example, the battery after step S49 in the flowchart shown in FIG. 2 can be reduced, and the battery voltage VT can be prevented from accelerating in the second stage.
Thus, the battery 2 can be discharged with a discharge pattern suitable for the battery 2 such as appropriately suppressing the progress of deterioration such as high-rate deterioration.

また、本実施形態2にかかる車両200は、電池システムM2を備えるので、一連の放電期間JDの長さ(放電時間TD)に応じて、適切な放電電流制御を行うことができる。従って、電池1における、ハイレート劣化などの劣化の進行を適切に抑制するなど、電池2に適合した放電パターンでの放電が可能な車両200とすることができる。   In addition, since the vehicle 200 according to the second embodiment includes the battery system M2, appropriate discharge current control can be performed according to the length of the series of discharge periods JD (discharge time TD). Therefore, the vehicle 200 can be discharged with a discharge pattern suitable for the battery 2 such as appropriately suppressing the progress of deterioration such as high-rate deterioration in the battery 1.

(実施形態3)
また、本実施形態3のハンマードリル300は、前述した電池システムM1,M2のいずれかを内蔵するバッテリパック310を搭載したものであり、図14に示すように、バッテリパック310、本体320を有する電池搭載機器である。なお、バッテリパック310はハンマードリル300の本体320のうちパック収容部321に脱着可能に収容されている。
(Embodiment 3)
Further, the hammer drill 300 of the third embodiment is equipped with a battery pack 310 incorporating either of the battery systems M1 and M2 described above, and has a battery pack 310 and a main body 320 as shown in FIG. It is a battery-equipped device. The battery pack 310 is detachably accommodated in the pack accommodation portion 321 of the main body 320 of the hammer drill 300.

また、本実施形態3にかかるハンマードリル300は、上述の電池システムM1,M2を備えるので、電池電圧VTの時間変化(電圧変化速度VV)、又は、一連の放電期間JDの長さ(放電時間TD)に応じて、適切な放電電流制御を行うことができる。従って、電池1又は電池2における、ハイレート劣化などの劣化の進行を適切に抑制するなど、電池1又は電池2に適合した放電パターンでの放電が可能なハンマードリル300とすることができる。   In addition, since the hammer drill 300 according to the third embodiment includes the battery systems M1 and M2, the time change (voltage change rate VV) of the battery voltage VT or the length of the series of discharge periods JD (discharge time). Depending on (TD), appropriate discharge current control can be performed. Therefore, the hammer drill 300 capable of discharging with a discharge pattern suitable for the battery 1 or the battery 2 such as appropriately suppressing the progress of deterioration such as high rate deterioration in the battery 1 or the battery 2 can be obtained.

以上において、本発明を実施形態1、実施形態2及び実施形態3に即して説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。   In the above, the present invention has been described with reference to the first embodiment, the second embodiment, and the third embodiment. However, the present invention is not limited to the above-described embodiment, and may be appropriately changed without departing from the gist thereof. Needless to say, this is applicable.

1,2 電池(リチウムイオン二次電池)
20 発電要素
21 正極板
22 負極板
23 セパレータ
30 電解液
40 熱電対(電池温度検知手段)
100,200 車両
122 電池監視装置(電圧検知手段)
130 制御装置(放電制御手段)
300 電池搭載機器
310 バッテリパック(電池システム)
DC 放電電流
JD 一連の放電期間
LN1,LN2 回帰直線
M1,M2 電池システム
SC 充電状態
TD 放電時間(経過時間)
TDH 平方根放電時間(経過時間の平方根)
TF 初期期間
TG 放電許容期間
TM 電池温度
VT 電池電圧
VV 電圧変化速度
W 第1関係
WP 初期第1関係
1, 2 batteries (lithium ion secondary batteries)
20 Power generation element 21 Positive electrode plate 22 Negative electrode plate 23 Separator 30 Electrolytic solution 40 Thermocouple (battery temperature detection means)
100, 200 Vehicle 122 Battery monitoring device (voltage detection means)
130 Control device (discharge control means)
300 Battery-equipped equipment 310 Battery pack (battery system)
DC discharge current JD A series of discharge periods LN1, LN2 regression line M1, M2 battery system SC charge state TD discharge time (elapsed time)
TDH square root discharge time (square root of elapsed time)
TF initial period TG discharge allowable period TM battery temperature VT battery voltage VV voltage change speed W first relation WP initial first relation

Claims (5)

正極板と負極板との間にセパレータを介在させた発電要素、及び、
上記発電要素に含浸され、リチウム塩を含有する電解液、を有する
リチウムイオン二次電池と、
上記リチウムイオン二次電池から放電される放電電流を制御する放電制御手段と、
上記リチウムイオン二次電池の電池電圧を検知する電圧検知手段と、を備える
電池システムであって、
上記放電制御手段は、
上記放電電流を流し続ける一連の放電期間における、放電開始からの経過時間と上記電池電圧との関係を逐次得る関係取得手段を有し、
上記一連の放電期間内において、既に得られている上記経過時間と電池電圧との関係に基づき、以降の上記リチウムイオン二次電池の上記放電電流の大きさを制御する
電池システム。
A power generation element having a separator interposed between the positive electrode plate and the negative electrode plate, and
A lithium ion secondary battery having an electrolyte solution impregnated in the power generation element and containing a lithium salt;
A discharge control means for controlling a discharge current discharged from the lithium ion secondary battery;
A voltage detection means for detecting a battery voltage of the lithium ion secondary battery, and a battery system comprising:
The discharge control means includes
In a series of discharge periods in which the discharge current continues to flow, it has relationship acquisition means for sequentially obtaining the relationship between the elapsed time from the start of discharge and the battery voltage,
A battery system that controls the magnitude of the discharge current of the subsequent lithium ion secondary battery based on the relationship between the elapsed time and the battery voltage that has already been obtained within the series of discharge periods.
請求項1に記載の電池システムであって、
前記関係取得手段は、
前記放電開始からの経過時間と前記電池電圧との関係として、前記経過時間の平方根に対する前記電池電圧の単位時間あたりの変化量である電圧変化速度の関係である、第1関係を逐次得る第1関係取得手段であり、
前記放電制御手段は、
上記第1関係のうち、前記一連の放電期間のうちの初期期間に得た、初期第1関係に倣う回帰直線と、上記初期期間以降に得た上記電圧変化速度と、を逐次比較して、上記初期期間以降に得た上記電圧変化速度が上記回帰直線から乖離したか否かを検知する乖離検知手段と、
上記乖離を検知した場合に、以降の前記リチウムイオン二次電池を流れる前記放電電流の大きさを低下させる放電電流低下手段と、を有する
電池システム。
The battery system according to claim 1,
The relationship acquisition means
As the relationship between the elapsed time from the start of the discharge and the battery voltage, a first relationship that is a relationship of a voltage change rate that is a change amount per unit time of the battery voltage with respect to a square root of the elapsed time is sequentially obtained. Relationship acquisition means,
The discharge control means includes
Of the first relationship, the regression line following the initial first relationship obtained in the initial period of the series of discharge periods and the voltage change rate obtained after the initial period are sequentially compared, Deviation detection means for detecting whether or not the voltage change rate obtained after the initial period has deviated from the regression line;
A battery system comprising: a discharge current reducing unit that reduces the magnitude of the discharge current flowing through the lithium ion secondary battery thereafter when the deviation is detected.
正極板と負極板との間にセパレータを介在させた発電要素、及び、
上記発電要素に含浸され、リチウム塩を含有する電解液、を有する
リチウムイオン二次電池と、
上記リチウムイオン二次電池から放電される放電電流を制御する放電制御手段と、
上記リチウムイオン二次電池の充電状態を検知する充電状態検知手段と、
上記リチウムイオン二次電池の電池温度を検知する電池温度検知手段と、
上記リチウムイオン二次電池から放電される放電電流の大きさを検知する放電電流検知手段と、を備える
電池システムであって、
上記放電制御手段は、
上記放電電流を流し続ける一連の放電期間において、
検知された上記充電状態、上記電池温度及び上記放電電流の大きさを用いて、上記リチウムイオン二次電池に許容する、放電開始からの放電許容期間を得る放電許容期間取得手段と、
上記一連の放電期間の長さが、上記放電許容期間以上となった場合に、以降の上記リチウムイオン二次電池を流れる上記放電電流の大きさを低下させる経過後放電電流低下手段と、を有する
電池システム。
A power generation element having a separator interposed between the positive electrode plate and the negative electrode plate, and
A lithium ion secondary battery having an electrolyte solution impregnated in the power generation element and containing a lithium salt;
A discharge control means for controlling a discharge current discharged from the lithium ion secondary battery;
Charging state detection means for detecting the charging state of the lithium ion secondary battery;
Battery temperature detecting means for detecting the battery temperature of the lithium ion secondary battery;
A discharge current detection means for detecting the magnitude of a discharge current discharged from the lithium ion secondary battery, and a battery system comprising:
The discharge control means includes
In a series of discharge periods in which the discharge current continues to flow,
A discharge permissible period obtaining means for obtaining a discharge permissible period from the start of discharge, which is permitted to the lithium ion secondary battery, using the detected state of charge, the battery temperature and the magnitude of the discharge current;
And a discharge current reducing means for reducing the magnitude of the discharge current flowing through the lithium ion secondary battery thereafter when the length of the series of discharge periods is equal to or longer than the discharge allowable period. Battery system.
請求項1〜請求項3のいずれか1項に記載の電池システムを備える車両。 A vehicle comprising the battery system according to any one of claims 1 to 3. 請求項1〜請求項3のいずれか1項に記載の電池システムを備える電池搭載機器。 A battery-equipped device comprising the battery system according to any one of claims 1 to 3.
JP2009055143A 2009-03-09 2009-03-09 Battery system, vehicle and battery-equipped equipment Active JP5347583B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009055143A JP5347583B2 (en) 2009-03-09 2009-03-09 Battery system, vehicle and battery-equipped equipment
JP2013126603A JP5737336B2 (en) 2009-03-09 2013-06-17 Battery system, vehicle and battery-equipped equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009055143A JP5347583B2 (en) 2009-03-09 2009-03-09 Battery system, vehicle and battery-equipped equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013126603A Division JP5737336B2 (en) 2009-03-09 2013-06-17 Battery system, vehicle and battery-equipped equipment

Publications (2)

Publication Number Publication Date
JP2010212013A true JP2010212013A (en) 2010-09-24
JP5347583B2 JP5347583B2 (en) 2013-11-20

Family

ID=42971974

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009055143A Active JP5347583B2 (en) 2009-03-09 2009-03-09 Battery system, vehicle and battery-equipped equipment
JP2013126603A Active JP5737336B2 (en) 2009-03-09 2013-06-17 Battery system, vehicle and battery-equipped equipment

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013126603A Active JP5737336B2 (en) 2009-03-09 2013-06-17 Battery system, vehicle and battery-equipped equipment

Country Status (1)

Country Link
JP (2) JP5347583B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101678A1 (en) * 2011-01-27 2012-08-02 トヨタ自動車株式会社 Control method and control device for electrical storage device
JP2016152704A (en) * 2015-02-18 2016-08-22 三菱電機株式会社 Charge/discharge control device for lithium ion battery and control method
JP2016527479A (en) * 2013-06-04 2016-09-08 ルノー エス.ア.エス. Method for estimating the health state of electrochemical cells for storing electrical energy
JP2017163673A (en) * 2016-03-08 2017-09-14 三洋電機株式会社 Electrical power system
JP2021069142A (en) * 2019-10-18 2021-04-30 マツダ株式会社 Deterioration determination device of lithium ion battery
US11474157B2 (en) 2019-01-28 2022-10-18 Toyota Jidosha Kabushiki Kaisha Method for evaluating secondary battery, device for evaluating secondary battery, and power supply system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006191A (en) * 2002-06-02 2004-01-08 Fuji Heavy Ind Ltd Battery pack system
JP2007203788A (en) * 2006-01-31 2007-08-16 Nippon Soken Inc Arithmetic unit for computing state quantitie of battery condition and supply voltage controller of vehicle
JP2007325363A (en) * 2006-05-30 2007-12-13 Auto Network Gijutsu Kenkyusho:Kk Voltage prediction device and power supply controller

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1173990A (en) * 1997-08-25 1999-03-16 Jurgen Otto Besenhard Nonaqueous electrolyte solution secondary battery
JP2001128377A (en) * 1999-10-29 2001-05-11 Sanyo Electric Co Ltd Method of discharging secondary battery
JP4158887B2 (en) * 2002-07-09 2008-10-01 ヤマハ発動機株式会社 Electric vehicle power supply device
JP2006166534A (en) * 2004-12-03 2006-06-22 Densei Lambda Kk Power supply

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006191A (en) * 2002-06-02 2004-01-08 Fuji Heavy Ind Ltd Battery pack system
JP2007203788A (en) * 2006-01-31 2007-08-16 Nippon Soken Inc Arithmetic unit for computing state quantitie of battery condition and supply voltage controller of vehicle
JP2007325363A (en) * 2006-05-30 2007-12-13 Auto Network Gijutsu Kenkyusho:Kk Voltage prediction device and power supply controller

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101678A1 (en) * 2011-01-27 2012-08-02 トヨタ自動車株式会社 Control method and control device for electrical storage device
CN103339788A (en) * 2011-01-27 2013-10-02 丰田自动车株式会社 Control method and control device for electrical storage device
JP5321757B2 (en) * 2011-01-27 2013-10-23 トヨタ自動車株式会社 Storage device control device and control method
US8854010B2 (en) 2011-01-27 2014-10-07 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for electric storage apparatus
CN103339788B (en) * 2011-01-27 2016-02-10 丰田自动车株式会社 The control device of electrical storage device and control method
JP2016527479A (en) * 2013-06-04 2016-09-08 ルノー エス.ア.エス. Method for estimating the health state of electrochemical cells for storing electrical energy
JP2016152704A (en) * 2015-02-18 2016-08-22 三菱電機株式会社 Charge/discharge control device for lithium ion battery and control method
JP2017163673A (en) * 2016-03-08 2017-09-14 三洋電機株式会社 Electrical power system
US11474157B2 (en) 2019-01-28 2022-10-18 Toyota Jidosha Kabushiki Kaisha Method for evaluating secondary battery, device for evaluating secondary battery, and power supply system
JP2021069142A (en) * 2019-10-18 2021-04-30 マツダ株式会社 Deterioration determination device of lithium ion battery
JP7352860B2 (en) 2019-10-18 2023-09-29 マツダ株式会社 Lithium-ion battery deterioration determination device

Also Published As

Publication number Publication date
JP2013233079A (en) 2013-11-14
JP5347583B2 (en) 2013-11-20
JP5737336B2 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
JP5737336B2 (en) Battery system, vehicle and battery-equipped equipment
JP5407893B2 (en) Secondary battery system and hybrid vehicle
CN102447140B (en) Lithium-ion battery controlling apparatus
EP1571747A1 (en) Battery charging method and apparatus using extrapolation of voltage curve
JP5035429B2 (en) Battery system, vehicle and battery-equipped equipment
JPWO2010079595A1 (en) Non-aqueous electrolyte type secondary battery system and vehicle
JP4527048B2 (en) Secondary battery control device and secondary battery input control method
JP4810417B2 (en) Remaining capacity calculation device for power storage device
JP2010218900A (en) Battery system and hybrid automobile
JP2010198759A (en) Battery system and vehicle
JP2018137220A (en) Fuel cell control device, control method thereof, and fuel cell vehicle
JP2009210477A (en) Estimation method of internal resistance of battery pack for electric vehicle
JP2009017752A (en) Battery control device
JP4954791B2 (en) Voltage prediction method for power storage devices
JP6729460B2 (en) In-vehicle battery charge controller
JP6674667B2 (en) Power storage element deterioration estimator, power storage device, power storage element input / output control device, and power storage element input / output control method
JP5673422B2 (en) Secondary battery charging system
JP6299963B2 (en) Secondary battery management device
JP2005335498A (en) Vehicle power source controlling device
JP2023047092A (en) Charging method for battery
JP2014192966A (en) Power supply unit
JP2012132758A (en) Deterioration determination device for power storage device and vehicle mounting the same
JP2009176602A (en) Battery system and automobile
JP6292379B2 (en) Secondary battery management device
CN110679032B (en) Method for operating an electrical energy storage system, device, electrical energy storage system and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R151 Written notification of patent or utility model registration

Ref document number: 5347583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151