JP5673422B2 - Secondary battery charging system - Google Patents

Secondary battery charging system Download PDF

Info

Publication number
JP5673422B2
JP5673422B2 JP2011170412A JP2011170412A JP5673422B2 JP 5673422 B2 JP5673422 B2 JP 5673422B2 JP 2011170412 A JP2011170412 A JP 2011170412A JP 2011170412 A JP2011170412 A JP 2011170412A JP 5673422 B2 JP5673422 B2 JP 5673422B2
Authority
JP
Japan
Prior art keywords
charging
current value
battery
external
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011170412A
Other languages
Japanese (ja)
Other versions
JP2013038832A (en
Inventor
誠 中嶋
誠 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011170412A priority Critical patent/JP5673422B2/en
Publication of JP2013038832A publication Critical patent/JP2013038832A/en
Application granted granted Critical
Publication of JP5673422B2 publication Critical patent/JP5673422B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

本発明は、車両に搭載される二次電池(以下、単に電池ともいう)の充電システムに関する。   The present invention relates to a charging system for a secondary battery (hereinafter also simply referred to as a battery) mounted on a vehicle.

近年、ハイブリッド自動車、電気自動車などの車両や、ノート型パソコン、ビデオカムコーダなどのポータブル電子機器の駆動用電源に、充放電可能な電池が利用されている。このような電池のうち、電気自動車やプラグインハイブリッド自動車等の車両に搭載された電池への充電としては、モータからの回生電力の充電や車載エンジンによる充電のほか、車両が使用された後、車両外の外部電源を用いた外部充電が挙げられる。
このような電池を充電する装置やシステムとして、例えば、特許文献1には、走行駆動用の電動機からの回生による充電ができるほか、非車載の充電器からも外部充電可能とする一方、電動機を駆動すべく、これに向けて放電可能とされるバッテリ(電池)とを備えた車両の電動式走行駆動装置が開示されている。この車両の電動式走行駆動装置は、バッテリが充電されるときの充電処理モードを記憶した充電処理記憶部と、電動機に対するバッテリの放電の履歴を記憶した放電処理記憶部とを備える。
また、特許文献2には、蓄電部(電池)のSOCを取得し、このSOCに基づいて蓄電部を所定の充電状態にするために必要な必要充電電力を演算する必要充電電力演算部と、充電電流決定部とを備える電力システムが開示されている。このうち、充電電流決定部は、必要充電電力演算部からの必要充電電力、及び、充電可能時間取得手段で予め取得する蓄電部の充電可能時間に基づいて充電電流を決定する。
In recent years, a chargeable / dischargeable battery has been used as a driving power source for vehicles such as hybrid vehicles and electric vehicles, and portable electronic devices such as notebook computers and video camcorders. Among such batteries, as charging to batteries mounted on vehicles such as electric vehicles and plug-in hybrid vehicles, in addition to charging regenerative power from motors and charging with in-vehicle engines, after vehicles are used, External charging using an external power source outside the vehicle can be mentioned.
As an apparatus or a system for charging such a battery, for example, Patent Document 1 discloses that an electric motor can be externally charged from a non-vehicle charger, in addition to being able to be charged by regeneration from an electric motor for driving driving. There is disclosed an electric traveling drive device for a vehicle that includes a battery (battery) that can be discharged to drive the vehicle. The electric travel drive device for a vehicle includes a charging process storage unit that stores a charging process mode when the battery is charged, and a discharge process storage unit that stores a history of battery discharge with respect to the electric motor.
Patent Document 2 discloses a required charging power calculation unit that calculates the necessary charging power necessary to acquire the SOC of the power storage unit (battery) and to set the power storage unit to a predetermined charging state based on the SOC. An electric power system including a charging current determination unit is disclosed. Among these, the charging current determination unit determines the charging current based on the required charging power from the required charging power calculation unit and the chargeable time of the power storage unit acquired in advance by the chargeable time acquisition unit.

特開2007−252061号公報JP 2007-252061 A 特開2009−22061号公報JP 2009-22061 A

特許文献1の充電処理記憶部では、具体的には、放電処理記憶部で記憶されたバッテリ(電池)の放電の履歴に基づいて得た、外部充電開始前におけるバッテリの蓄電量の多寡に対応してモードが選択される。また、特許文献2の電力システムでは、外部充電開始前の電池のSOCに基づいて充電電流を決定する。つまり、特許文献1,2に開示された技術では、外部充電を開始する時点での電池の状態(SOC)によって、外部充電における充電電流の大きさ(外部充電電流の値)を決めているに過ぎない。   Specifically, the charge processing storage unit of Patent Document 1 corresponds to the amount of charge stored in the battery before the start of external charging, obtained based on the discharge history of the battery (battery) stored in the discharge processing storage unit. Mode is selected. Moreover, in the electric power system of patent document 2, a charging current is determined based on SOC of the battery before the start of external charging. In other words, in the technologies disclosed in Patent Documents 1 and 2, the magnitude of the charging current (the value of the external charging current) in the external charging is determined by the state of the battery (SOC) at the time of starting the external charging. Not too much.

しかしながら、外部充電前の車両使用時における電池の使用状況(例えば、走行中の放電電流(又は充電電流)の大きさや充放電している時間の長さ等)に応じて、外部充電時の外部充電電流の大きさを適切な値とすると、電池の内部抵抗の劣化(上昇)を抑制しうるなど、電池の特性に影響を及ぼしうることが判ってきた。   However, depending on the usage status of the battery when using the vehicle before external charging (for example, the magnitude of the discharging current (or charging current) during driving or the length of time during which charging or discharging is performed) It has been found that if the magnitude of the charging current is set to an appropriate value, the battery characteristics can be affected, for example, deterioration (increase) in the internal resistance of the battery can be suppressed.

本発明は、かかる知見に基づいてなされたものであって、車両使用時における電池の使用状況に応じた外部充電の充電条件で充電し得る二次電池の充電システムを提供することを目的とする。   The present invention has been made based on such knowledge, and an object of the present invention is to provide a charging system for a secondary battery that can be charged under a charging condition of external charging in accordance with the usage status of the battery when the vehicle is used. .

本発明の一態様は、車両に搭載される二次電池の充電システムであって、二次電池と、上記二次電池を流れる電流の電流値を検知する電流検知装置と、上記車両外の外部電源を用いて上記二次電池に外部充電を行う充電装置と、前回の外部充電以降、新たな外部充電の開始までの期間において、上記電流検知装置で得た上記期間内の各時点での上記電流値を用いて、上記二次電池から放電させた総放電電気量をこの放電を行った総放電時間で除した平均放電電流値から、上記二次電池に上記外部電源以外の電源から充電した総充電電気量をこの充電を行った総充電時間で除した平均充電電流値を差し引いた、上記期間についての差引後平均放電電流値を取得する取得手段と、上記差引後平均放電電流値に基づいて、上記新たな外部充電における充電条件である外部充電の手法の使い分けまたは充電電流値を決定する決定手段と、を備える二次電池の充電システムである。 One aspect of the present invention is a charging system for a secondary battery mounted on a vehicle, the secondary battery, a current detection device that detects a current value of a current flowing through the secondary battery, and an external device outside the vehicle. A charging device that externally charges the secondary battery using a power source, and a period from the previous external charging to a start of a new external charging at each time point in the period obtained by the current detection device. Using the current value, the secondary battery was charged from a power source other than the external power source from the average discharge current value obtained by dividing the total amount of discharged electricity discharged from the secondary battery by the total discharge time during which this discharge was performed. An acquisition means for obtaining an average discharge current value after subtraction for the period obtained by subtracting an average charge current value obtained by dividing the total charge electricity amount by the total charge time for performing the charge, and based on the average discharge current value after subtraction In the new external charging Determining means for determining the proper use or charging current value of the external charging techniques is charged condition, a secondary battery charging system comprising a.

上述の電池の充電システムは、前回の外部充電以降、新たな外部充電を行うまでの期間についての差引後平均放電電流値を取得する取得手段と、差引後平均放電電流値に基づいて、電池への新たな外部充電における充電条件である外部充電の手法の使い分けまたは充電電流値を決定する決定手段とを備える。このため、このシステムによれば、車両使用時における電池の使用状況に応じた外部充電の充電条件で充電することができる。 The battery charging system described above is based on the acquisition means for acquiring the average discharge current value after subtraction for the period from the previous external charge until a new external charge is performed, and the battery based on the average discharge current value after subtraction. And determining means for determining the charging method for properly using the external charging method which is the charging condition in the new external charging. For this reason, according to this system, it can charge on the charge conditions of the external charge according to the use condition of the battery at the time of vehicle use.

なお、電池の外部充電の手法としては、例えば、一定の電流値で充電を行う定電流充電(CC充電)や、電池の電圧(端子間電圧)が所定の電圧となるまで一定の電流値で充電した後、上述の所定の電圧を保ちつつ電流値を徐々に低下させて充電を行う定電流−定電圧充電(CC−CV充電)が挙げられる。また、一定の電力となる電圧と電流で充電を行う定電力充電(CP充電)や、電池の電圧が所定の電圧となるまで一定の電力値となる電圧と電流で充電した後、上述の所定の電圧を保ちつつ電流値を徐々に低下させて充電を行う定電力−定電圧充電(CP−CV充電)が挙げられる。また、CC充電とCP充電とを組み合わせることもできる。
また、この電池の充電システムの手法において、決定手段で充電条件を決定する手法としては、電池に充電を開始する前に予め充電条件を決定してしまう手法や、電池に充電を行っている各時点で、その都度、充電条件(例えば、充電電流値)を決定する手法が挙げられる。
In addition, as a method of external charging of the battery, for example, constant current charging (CC charging) for charging at a constant current value or constant current value until the battery voltage (terminal voltage) becomes a predetermined voltage. Examples include constant current-constant voltage charging (CC-CV charging) in which charging is performed by gradually decreasing the current value while maintaining the above-described predetermined voltage after charging. In addition, constant power charging (CP charging) in which charging is performed with a voltage and current at a constant power, or charging with a voltage and current at a constant power value until the battery voltage reaches a predetermined voltage, and then the above-mentioned predetermined power. Constant power-constant voltage charging (CP-CV charging) in which charging is performed by gradually decreasing the current value while maintaining the voltage of the above. Also, CC charging and CP charging can be combined.
Further, in the battery charging system technique, as a technique for determining the charging condition by the determining means, a method of determining the charging condition in advance before starting charging the battery, or each charging the battery There is a method of determining a charging condition (for example, a charging current value) at each time.

また、電流検知装置としては、例えば、電流の大きさを検知する電流センサのほか、この電流センサを駆動する回路に加え、これらを制御し、電流センサの出力を取り込む取得部(例えば、マイクロコンピュータ)を含む装置が挙げられる。
また、充電装置としては、外部電源から供給された電力を電池に充電可能に制御して、電池に充電する装置であり、例えば、コンバータ、定電力−定電圧電源が挙げられる。
In addition to the current sensor for detecting the magnitude of the current, the current detection device includes, in addition to a circuit for driving the current sensor, an acquisition unit (for example, a microcomputer) that controls them and captures the output of the current sensor. ).
Moreover, as a charging device, it is an apparatus which controls the electric power supplied from the external power supply so that a battery can be charged, and charges a battery, for example, a converter and a constant power-constant voltage power supply are mentioned.

さらに、上述の二次電池の充電システムであって、前記決定手段は、前記新たな外部充電における充電条件のうち、前記外部充電により前記二次電池の電圧が上昇して充電上限電圧に達するまでの電圧上昇期間における充電条件を、上記外部充電の電流値が前記差引後平均放電電流値の0.2〜5.0倍の範囲内となる充電条件に決定する二次電池の充電システムとすると良い。   Furthermore, in the above-described secondary battery charging system, the determination unit is configured to increase the voltage of the secondary battery by the external charging and reach a charging upper limit voltage among the charging conditions in the new external charging. If the charging condition during the voltage increase period of the secondary battery is determined to be a charging condition in which the current value of the external charging is within a range of 0.2 to 5.0 times the average discharge current value after the subtraction, good.

本発明者らの研究によれば、上述の電圧上昇期間における充電条件を、外部充電の電流値が、差引後平均放電電流値の0.2〜5.0倍の範囲内の値となる充電条件として充電を繰り返した電池は、上述の範囲から外れた外部充電の電流値で充電を繰り返した電池に比して、電池抵抗の上昇を抑制できることが判ってきた。   According to the study by the present inventors, the charging condition during the voltage increase period described above is a charging in which the current value of external charging is a value within the range of 0.2 to 5.0 times the average discharge current value after subtraction. It has been found that a battery that is repeatedly charged as a condition can suppress an increase in battery resistance as compared with a battery that is repeatedly charged at an external charging current value outside the above range.

上述の電池の充電システムでは、決定手段は、電圧上昇期間における充電条件を、外部充電の電流値が差引後平均放電電流値の0.2〜5.0倍の範囲内となる充電条件に決定する。このため、この範囲外である差引後平均放電電流値の0.2倍未満の値、或いは、5.0倍を超える値で充電を繰り返す電池に比して、電池抵抗の上昇を抑制したシステムとなる。   In the battery charging system described above, the determining means determines the charging condition during the voltage increase period as a charging condition in which the current value of external charging is within a range of 0.2 to 5.0 times the average discharge current value after subtraction. To do. For this reason, a system that suppresses an increase in battery resistance as compared with a battery that repeats charging at a value less than 0.2 times the average discharge current value after subtraction that is outside this range, or a value greater than 5.0 times. It becomes.

なお、電圧上昇期間としては、例えば、外部充電をCC充電で行う場合、このCC充電により、電池の電圧(端子間電圧)が上昇して充電上限電圧に達するまでの全充電期間が該当する。また、例えば、外部充電をCC−CV充電で行う場合、充電期間のうち、先に行うCC充電により、電池の電圧が上昇して充電上限電圧に達するまでの期間が該当する。また、例えば、外部充電をCP充電で行う場合、このCP充電により、電圧の電圧が上昇して充電上限電圧に達するまでの全充電期間が該当する。また、例えば、外部充電をCP−CV充電で行う場合、充電期間のうち、先に行うCP充電により、電池の電圧が上昇して充電上限電圧に達するまでの期間が該当する。   For example, when external charging is performed by CC charging, the voltage increasing period corresponds to the entire charging period from when the battery voltage (inter-terminal voltage) increases to reach the charging upper limit voltage due to the CC charging. Further, for example, when external charging is performed by CC-CV charging, a period from the charging period to the time when the battery voltage rises and reaches the charging upper limit voltage due to the CC charging performed earlier corresponds. In addition, for example, when external charging is performed by CP charging, this CP charging corresponds to the entire charging period from when the voltage increases to the charging upper limit voltage. Further, for example, when external charging is performed by CP-CV charging, a period from the charging period to the time when the battery voltage rises and reaches the charging upper limit voltage due to the CP charging performed earlier corresponds.

実施形態及び変形形態にかかる車両の説明図である。It is explanatory drawing of the vehicle concerning embodiment and modification. 実施形態及び変形形態で用いる電池の斜視図である。It is a perspective view of the battery used by embodiment and a modification. 実施形態及び変形形態にかかり、電池の充電システムによる、前回の外部充電以降、新たな外部充電の開始までの期間における処理を示すフローチャートである。It is a flowchart which shows the process in the period after the last external charge by the battery charging system until the start of a new external charge concerning embodiment and modification. 実施形態にかかり、電池の充電システムによる外部充電の処理を示すフローチャートである。It is a flowchart which shows the process of the external charge by the battery charging system concerning embodiment. 実施形態及び変形形態における、前回の外部充電、新たな外部充電及び期間TMとの関係を示す説明図である。It is explanatory drawing which shows the relationship with last external charge, new external charge, and period TM in embodiment and modification. 実施形態及び変形形態にかかり、時刻t1にCP−CV充電を開始したと仮定した場合における、組電池の電圧及び充電電流値の時間変化を示すグラフである。It is a graph which shows the time change of the voltage and charging current value of an assembled battery when it assumes that CP-CV charge was started at the time t1 concerning embodiment and modification. 実施形態において、第1のケースで選択される充電条件によって得られる組電池の電圧及び充電電流値の変化を示すグラフである。In embodiment, it is a graph which shows the change of the voltage of a battery pack and the charging current value obtained by the charging conditions selected in the 1st case. 実施形態において、第2のケースで選択される充電条件により得られる電圧及び充電電流値の変化を示すグラフである。In embodiment, it is a graph which shows the change of the voltage obtained by the charging condition selected by the 2nd case, and a charging current value. 実施形態において、第3のケースで選択される充電条件により得られる電圧及び充電電流値の変化を示すグラフである。In embodiment, it is a graph which shows the change of the voltage obtained by the charging condition selected by the 3rd case, and a charging current value. 実施形態において、第4のケースで選択される充電条件により得られる電圧及び充電電流値の変化を示すグラフである。In embodiment, it is a graph which shows the change of the voltage obtained by the charging condition selected by the 4th case, and a charging current value. 実施形態において、第5のケースで選択される充電条件により得られる電圧及び充電電流値の変化を示すグラフである。In embodiment, it is a graph which shows the change of the voltage obtained by the charging condition selected by the 5th case, and a charging current value. 実施形態において、第6のケースで選択される充電条件により得られる電圧及び充電電流値の変化を示すグラフである。In embodiment, it is a graph which shows the change of the voltage obtained by the charging condition selected by the 6th case, and a charging current value. 実施形態にかかり、電池の充電システムによる外部充電の処理のフローチャートのうち、充電条件決定サブルーチンの処理を示すフローチャートである。It is a flowchart which shows the process of a charging condition determination subroutine among the flowcharts of the process of the external charge by the battery charging system concerning embodiment. 充放電試験に用いる充放電パターンを示すグラフである。It is a graph which shows the charging / discharging pattern used for a charging / discharging test. 電流値倍率と内部抵抗初期比との関係を示すグラフである。It is a graph which shows the relationship between a current value magnification and internal resistance initial ratio. 変形形態にかかり、電池の充電システムによる外部充電の処理を示すフローチャートである。It is a flowchart which shows the process of external charging by a battery charging system according to a modified embodiment.

(実施形態)
次に、本発明の実施形態について、図面を参照しつつ説明する。
まず、本実施形態にかかる車両100について説明する。図1に車両100の斜視図を示す。
この車両100は、組電池110をなす複数の電池1,1と、組電池110(電池1)を流れる電流の電流値Iを検知する電流センサ130と、車両100の外部に配置された外部電源XVを用いて組電池110(電池1)を充電するコンバータ140とを備えるプラグインハイブリッド電気自動車である。また、これらの他に、プラグインハイブリッド自動車制御装置(以下、PHV制御装置ともいう)120、エンジン150、ケーブル160、インバータ170、フロントモータ181、リアモータ182、車体190、及び、プラグ195Pを先端に配置したプラグ付ケーブル195を備える。なお、これらのうち、組電池110(電池1)、PHV制御装置120、電流センサ130、コンバータ140、ケーブル160及びプラグ付ケーブル195が、外部充電システムCS1をなしている。
(Embodiment)
Next, embodiments of the present invention will be described with reference to the drawings.
First, the vehicle 100 according to the present embodiment will be described. FIG. 1 shows a perspective view of the vehicle 100.
The vehicle 100 includes a plurality of batteries 1 and 1 forming an assembled battery 110, a current sensor 130 that detects a current value I of a current flowing through the assembled battery 110 (battery 1), and an external power source disposed outside the vehicle 100. A plug-in hybrid electric vehicle including a converter 140 that charges the assembled battery 110 (battery 1) using XV. In addition to these, a plug-in hybrid vehicle control device (hereinafter also referred to as a PHV control device) 120, an engine 150, a cable 160, an inverter 170, a front motor 181, a rear motor 182, a vehicle body 190, and a plug 195P are provided at the tip. A cable 195 with a plug is provided. Among these, the assembled battery 110 (battery 1), the PHV control device 120, the current sensor 130, the converter 140, the cable 160, and the cable with plug 195 constitute the external charging system CS1.

この車両100は、フロントモータ181及びリアモータ182を用いて走行することができるほか、エンジン150、フロントモータ181及びリアモータ182を併用して走行することができる。一方、停車中に、車両100の外部に設置した外部電源XVに、プラグ付ケーブル195のプラグ195Pを挿入し、外部充電システムCS1を用いて、組電池110中の複数の電池1,1に充電することができる。   The vehicle 100 can travel using the front motor 181 and the rear motor 182, and can travel using the engine 150, the front motor 181 and the rear motor 182 in combination. On the other hand, while the vehicle is stopped, the plug 195P of the cable with plug 195 is inserted into the external power source XV installed outside the vehicle 100, and the plurality of batteries 1 and 1 in the assembled battery 110 are charged using the external charging system CS1. can do.

車両100のPHV制御装置120は、CPU、ROM及びRAMを有し、所定のプログラムによって作動する図示しないマイクロコンピュータを含んでいる。そして、このPHV制御装置120は、電流センサ130、コンバータ140、エンジン150、インバータ170、フロントモータ181及びリアモータ182とそれぞれ通信可能となっており、各部の状況に応じて様々な制御を行う。例えば、車両100の走行状況に応じた、エンジン150の駆動力とフロントモータ181,リアモータ182の駆動力との組み合わせを制御したり、プラグ付ケーブル195及びコンバータ140を通じて、外部電源XVから組電池110(電池1)に充電する場合の充電制御を行う。   The PHV control device 120 of the vehicle 100 has a CPU, a ROM, and a RAM, and includes a microcomputer (not shown) that operates according to a predetermined program. The PHV control device 120 can communicate with the current sensor 130, the converter 140, the engine 150, the inverter 170, the front motor 181 and the rear motor 182, and performs various controls according to the status of each part. For example, the combination of the driving force of the engine 150 and the driving force of the front motor 181 and the rear motor 182 according to the traveling state of the vehicle 100 is controlled, or the assembled battery 110 is supplied from the external power source XV through the cable with plug 195 and the converter 140. Charge control when charging (battery 1) is performed.

また、組電池110には、組電池ケース110A中に100個の電池1,1が配置されている。この組電池110をなす電池1は、矩形箱形の電池ケース10内に、電極体20、図示しない電解液を備える捲回形のリチウムイオン二次電池である(図2参照)。なお、これら複数の電池1,1は、図示しないバスバとのボルト締結にて、互いに直列に接続されている。   In the assembled battery 110, 100 batteries 1 and 1 are arranged in an assembled battery case 110A. The battery 1 constituting the assembled battery 110 is a wound lithium ion secondary battery including an electrode body 20 and an electrolyte (not shown) in a rectangular box-shaped battery case 10 (see FIG. 2). The plurality of batteries 1 and 1 are connected in series with each other by bolt fastening with a bus bar (not shown).

電池1の電解液は、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合有機溶媒に、溶質としてLiPF6を添加し、リチウムイオンを1mol/lの濃度とした有機電解液である。また、電極体20は、帯状の正極板21及び負極板22が、ポリエチレンからなる帯状のセパレータ(図示しない)を介して扁平形状に捲回されてなる(図2参照)。 The electrolytic solution of the battery 1 is an organic electrolytic solution in which LiPF 6 is added as a solute to a mixed organic solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) so that lithium ions have a concentration of 1 mol / l. The electrode body 20 is formed by winding a belt-like positive electrode plate 21 and a negative electrode plate 22 into a flat shape via a belt-like separator (not shown) made of polyethylene (see FIG. 2).

正極板21は、アルミニウムからなる帯状のアルミ箔(図示しない)と、このアルミ箔の両面に配置した正極活物質層(図示しない)とを有している。このうち、正極活物質層には、正極活物質粒子、導電材及び結着材が含まれている。
また、負極板22は、銅製の帯状の銅箔(図示しない)と、この銅箔の両面に配置した負極活物質層(図示しない)とを有する。このうち、負極活物質層には、グラファイト及び結着材が含まれている。
The positive electrode plate 21 has a strip-shaped aluminum foil (not shown) made of aluminum, and a positive electrode active material layer (not shown) disposed on both surfaces of the aluminum foil. Among these, the positive electrode active material layer includes positive electrode active material particles, a conductive material, and a binder.
Moreover, the negative electrode plate 22 has copper strip-shaped copper foil (not shown) and the negative electrode active material layer (not shown) arrange | positioned on both surfaces of this copper foil. Among these, the negative electrode active material layer contains graphite and a binder.

また、公知の直流電流センサである電流センサ130は、電池1(組電池110)を流れる直流電流の大きさ(電流値I)を検知する。なお、この電流センサ130で検知した電流値Iは、PHV制御装置120に取り込まれる。   Moreover, the current sensor 130 which is a known DC current sensor detects the magnitude (current value I) of the DC current flowing through the battery 1 (the assembled battery 110). The current value I detected by the current sensor 130 is taken into the PHV control device 120.

また、公知の整流器からなるコンバータ140は、車両100の外部に配置された、100Vの商用電源からなる外部電源XVに、プラグ付ケーブル195を通じて接続される。そして、コンバータ140は、外部電源XVの電力を直流に変換して、電池1(組電池110)に充電する。なお、このコンバータ140は、PHV制御装置120によって、その出力電圧や出力電流、或いは、出力電圧が制御される。   In addition, a converter 140 including a known rectifier is connected to an external power source XV including a 100 V commercial power source disposed outside the vehicle 100 through a cable 195 with a plug. Converter 140 converts the electric power of external power supply XV into a direct current and charges battery 1 (assembled battery 110). The converter 140 is controlled by the PHV control device 120 for its output voltage, output current, or output voltage.

次に、前述した外部充電システムCS1を用いた外部充電について、図4のフローチャート(第2ルーチンR2)を参照しつつ説明する。この外部充電とは、車両100外の外部電源XVを用いて、電池1(組電池110)を車載したまま、コンバータ140を通じて電池1に充電を行う。なお、外部充電のうち、今回の新たな外部充電の手順について、図4のフローチャートを用いて、以下に説明する。
また、図3には、今回の新たな外部充電の前に行った前回の外部充電以降、今回の新たな外部充電の開始までの期間TM(図5参照)のうち、車両100が作動している期間に実行されるフローチャート(第1ルーチンR1)を示す。
Next, external charging using the above-described external charging system CS1 will be described with reference to the flowchart of FIG. 4 (second routine R2). With this external charging, the battery 1 is charged through the converter 140 while the battery 1 (the assembled battery 110) is mounted on the vehicle using the external power source XV outside the vehicle 100. Of the external charging, the new external charging procedure this time will be described below with reference to the flowchart of FIG.
Also, FIG. 3 shows that the vehicle 100 is in operation during a period TM (see FIG. 5) from the previous external charge performed before the new external charge to the start of the new external charge. 6 shows a flowchart (first routine R1) executed during a certain period.

まず、図3に示す第1ルーチンR1について説明する。なお、この第1ルーチンR1は、次述するステップS2〜S8を、サイクル時間TJ(本実施形態では0.1秒)周期で繰り返す。
ステップS1では、車両100の作動が開始(キーオン)されたか否かを判別する。ここで、NO、即ちキーオンされていない場合、ステップS1を繰り返す一方、YES、即ちキーオンされた場合には、ステップS2に進み、電流センサ130を用いて電池1(組電池110)の電流値Iを測定する。
First, the first routine R1 shown in FIG. 3 will be described. In addition, this 1st routine R1 repeats step S2-S8 mentioned below with cycle period TJ (0.1 second in this embodiment).
In step S1, it is determined whether or not the operation of the vehicle 100 is started (key-on). Here, if NO, that is, if the key is not turned on, step S1 is repeated. If YES, that is, if the key is turned on, the process proceeds to step S2, and the current value I of battery 1 (battery 110) is detected using current sensor 130. Measure.

ステップS3では、測定した電流値Iが、電池1(組電池110)の充電電流の値であるか否かを判定する。
ここでYES、即ち、電流値Iが充電電流の値である場合、ステップS4に進み、このタイミング(時刻)での総充電電気量QC及び総充電時間TCを取得する。このうち、総充電電気量QCは、前述した期間TM内に、外部電源XV以外の電源(例えば、回生電力を発生させるフロントモータ181,リアモータ182)から電池1(組電池110)に充電した充電電気量の総和である。また、総充電時間TCは、期間TM内に外部電源XV以外の電源で充電を行った総時間である。
一方、NO、即ち、電流値Iが充電電流の値ではない(つまり、電流値Iが電池1(組電池110)の放電電流の値、又は、電池1(組電池110)に電流が流れていない)場合には、ステップS5に進む。
In step S3, it is determined whether or not the measured current value I is the value of the charging current of the battery 1 (the assembled battery 110).
If YES, that is, if the current value I is the value of the charging current, the process proceeds to step S4, and the total charge electricity amount QC and the total charge time TC at this timing (time) are acquired. Of these, the total amount of charged electricity QC is the charge charged in the battery 1 (the assembled battery 110) from a power source other than the external power source XV (for example, the front motor 181 and the rear motor 182 that generate regenerative power) within the period TM described above. This is the total amount of electricity. The total charging time TC is the total time during which charging is performed with a power source other than the external power source XV within the period TM.
On the other hand, NO, that is, the current value I is not the value of the charging current (that is, the current value I is the value of the discharge current of the battery 1 (the assembled battery 110) or the current is flowing through the battery 1 (the assembled battery 110). If not, the process proceeds to step S5.

ステップS4では、現時点での総充電電気量QC及び総充電時間TCを得る。具体的には、前回の外部充電以降、RAM(図示しない)に記憶されている総充電電気量QCに、1回のサイクル時間TJの間(0.1秒間)に充電された充電電気量ΔQCを加算して、このタイミングにおける新たな総充電電気量QC(QC=QC+ΔQC)を得る。充電電気量ΔQCは、測定した電流値Iとサイクル時間TJ(=0.1秒)との積(=I×0.1)である。   In step S4, the current total charge amount QC and the total charge time TC are obtained. Specifically, since the last external charge, the total charge electricity amount QC stored in the RAM (not shown) is charged to the charge electricity amount ΔQC charged for one cycle time TJ (0.1 second). Are added to obtain a new total charge amount QC (QC = QC + ΔQC) at this timing. The amount of charge ΔQC is the product (= I × 0.1) of the measured current value I and the cycle time TJ (= 0.1 seconds).

また、前回の外部充電以降、RAMに記憶された総充電時間TCに、サイクル時間TJ(=0.1秒)を加算して、このタイミングにおける新たな総充電時間TCを得る(TC=TC+0.1)。この後、ステップS7に進み、それぞれ得られた総充電電気量QC及び総充電時間TCをRAMに記憶させる。   Also, after the previous external charging, the cycle time TJ (= 0.1 seconds) is added to the total charge time TC stored in the RAM to obtain a new total charge time TC at this timing (TC = TC + 0. 1). Thereafter, the process proceeds to step S7, and the obtained total charge electricity amount QC and the total charge time TC are stored in the RAM.

また、ステップS5では、測定した電流値Iが、電池1(組電池110)の放電電流の値であるか否かを判定する。
ここでYES、即ち、電流値Iが放電電流の値である場合、ステップS6に進み、このタイミング(時刻)での総放電電気量QD及び総放電時間TDを取得する。このうち、総放電電気量QDは、前述した期間TM内に電池1(組電池110)から放電させた放電電気量の総和である。また、総放電時間TDは、期間TM内に電池1(組電池110)の放電を行った総時間である。
一方、NO、即ち、電流値Iが放電電流の値ではない(つまり、電池1(組電池110)に電流が流れていない)場合には、ステップS8に進む。
In Step S5, it is determined whether or not the measured current value I is the value of the discharge current of the battery 1 (the assembled battery 110).
If YES, that is, if the current value I is the value of the discharge current, the process proceeds to step S6, and the total discharge electricity amount QD and the total discharge time TD at this timing (time) are acquired. Among these, the total amount of discharged electricity QD is the total amount of discharged electricity discharged from the battery 1 (the assembled battery 110) during the above-described period TM. The total discharge time TD is the total time during which the battery 1 (the assembled battery 110) is discharged within the period TM.
On the other hand, if NO, that is, if the current value I is not the value of the discharge current (that is, no current flows through the battery 1 (the assembled battery 110)), the process proceeds to step S8.

ステップS6では、現時点での総放電電気量QD及び総放電時間TDを得る。具体的には、前回の外部充電以降、RAMに記憶されている総放電電気量QDに、1回のサイクル時間TJの間(0.1秒間)に電池1(組電池110)から放電させた放電電気量ΔQDを加算して、このタイミングにおける新たな総放電電気量QDを得る(QD=QD+ΔQD)。放電電気量ΔQDは、測定した電流値Iとサイクル時間TJ(=0.1秒)との積(=I×0.1)である。   In step S6, the current total discharge quantity QD and total discharge time TD are obtained. Specifically, since the last external charge, the total amount of discharged electricity QD stored in the RAM was discharged from the battery 1 (the assembled battery 110) during one cycle time TJ (0.1 second). The discharge electric quantity ΔQD is added to obtain a new total discharge electric quantity QD at this timing (QD = QD + ΔQD). The discharge electric quantity ΔQD is the product (= I × 0.1) of the measured current value I and the cycle time TJ (= 0.1 seconds).

また、前回充電X1以降、RAMに記憶された総放電時間TDに、サイクル時間TJ(=0.1秒)を加算して、このタイミングにおける総放電時間TDを得る(TD=TD+0.1)。この後、ステップS7に進み、それぞれ得られた総放電電気量QD及び総放電時間TDをRAMに記憶させる。
なお、ステップS8では、車両100の作動を終了(キーオフ)したか否かを判定する。ここで、NOであれば、ステップS2に戻って、ステップS2〜S8を繰り返す一方、YESであれば、第1ルーチンR1を終了する。
Further, after the previous charge X1, the cycle time TJ (= 0.1 seconds) is added to the total discharge time TD stored in the RAM to obtain the total discharge time TD at this timing (TD = TD + 0.1). Thereafter, the process proceeds to step S7, and the obtained total discharge electricity amount QD and the total discharge time TD are stored in the RAM.
In step S8, it is determined whether or not the operation of the vehicle 100 is finished (key-off). Here, if NO, the process returns to step S2 and repeats steps S2 to S8, while if YES, the first routine R1 is terminated.

以上により、車両100のPHV制御装置120は、期間TM(前回の外部充電の後、次述する第2ルーチンR2に示す今回の新たな外部充電を迎えるまでの間)における、前述した総放電電気量QD、総放電時間TD、総充電電気量QC及び総充電時間TCを予め取得し、記憶している。   As described above, the PHV control device 120 of the vehicle 100 performs the above-described total discharge electricity in the period TM (after the previous external charging and until the new external charging shown in the second routine R2 described below is reached). The quantity QD, total discharge time TD, total charge electricity QC, and total charge time TC are acquired and stored in advance.

次いで、今回の新たな外部充電について、図4の第2ルーチンR2を参照しつつ説明する。
まず、ステップS11では、車両100のプラグ付ケーブル195のプラグ195Pが、外部電源XVに挿入されたか否かを判別する。ここで、NO、即ちプラグ195Pが外部電源XVに挿入されていない場合、ステップS11を繰り返す一方、YES、即ちプラグ195Pが外部電源XVに挿入された場合には、ステップS12に進む。
Next, this new external charging will be described with reference to the second routine R2 of FIG.
First, in step S11, it is determined whether or not the plug 195P of the cable with plug 195 of the vehicle 100 has been inserted into the external power source XV. If NO, that is, if the plug 195P is not inserted into the external power source XV, step S11 is repeated. If YES, ie, if the plug 195P is inserted into the external power source XV, the process proceeds to step S12.

ステップS12では、期間TMにおける、電池1(組電池110)の平均放電電流値ID及び平均充電電流値ICをそれぞれ取得する。このうち、平均放電電流値IDは、総放電電気量QDを総放電時間TDで除した値(ID=QD/TD)である。具体的には、RAMに記憶させた総放電電気量QD及び総放電時間TDを用いて、平均放電電流値IDを算出する。
また、平均充電電流値ICは、総充電電気量QCを総充電時間TCで除した値(IC=QC/TC)である。具体的には、RAMに記憶させた総充電電気量QC及び総充電時間TCを用いて、平均充電電流値ICを算出する。
In step S12, the average discharge current value ID and the average charge current value IC of the battery 1 (the assembled battery 110) in the period TM are acquired. Among these, the average discharge current value ID is a value (ID = QD / TD) obtained by dividing the total discharge quantity QD by the total discharge time TD. Specifically, the average discharge current value ID is calculated using the total discharge quantity QD and the total discharge time TD stored in the RAM.
The average charging current value IC is a value (IC = QC / TC) obtained by dividing the total charge electricity QC by the total charge time TC. Specifically, the average charge current value IC is calculated using the total charge amount QC and the total charge time TC stored in the RAM.

次いで、電池1(組電池110)についての差引後平均放電電流値IFを取得する(ステップS13)。具体的には、差引後平均放電電流値IFを、ステップS12でそれぞれ取得した、電池1(組電池110)の平均放電電流値IDから平均充電電流値ICを差し引いて得る(IF=ID−IC)。   Next, an average discharge current value IF after subtraction for the battery 1 (the assembled battery 110) is acquired (step S13). Specifically, the average discharge current value IF after subtraction is obtained by subtracting the average charge current value IC from the average discharge current value ID of the battery 1 (the assembled battery 110) obtained in step S12 (IF = ID-IC). ).

次いで、ステップS20の充電条件決定サブルーチンでは、上述した差引後平均放電電流値IFに基づいて、今回の新たな外部充電の充電条件である外部充電の手法の使い分けを決定する。具体的には、今回の新たな外部充電により、電池1(組電池110)の電圧V(t)が充電当初の充電開始時電圧VSから上昇して充電上限電圧VMに達するまでの電圧上昇期間TVにおいて、外部充電の電流値(充電電流値IX(t))が差引後平均放電電流値IFの0.2〜5.0倍の範囲内となるように充電条件を決定する。
なお、本実施形態では、電池1(組電池110)の外部充電の手法として、定電力−定電圧充電(CP−CV充電)を行うことを基本とする。但し、後半のCV充電に先立つ、電圧上昇期間TVでの外部充電において、充電電流値IX(t)を差引後平均放電電流値IFの0.2〜5.0倍の値の範囲内とするため、CP充電でなく定電流充電(CC充電)を行うこともある。即ち、電圧上昇期間TVにおける充電電流値IX(t)が、差引後平均放電電流値IFの0.2〜5.0倍の範囲内となる充電条件を、ステップS20の充電条件決定サブルーチンで決定し、これに基づいて外部充電を行う。
Next, in the charging condition determination subroutine in step S20, the use of the external charging method, which is the charging condition for the new external charging this time, is determined based on the above-described average discharge current value IF after subtraction. Specifically, the voltage increase period until the voltage V (t) of the battery 1 (the assembled battery 110) rises from the charging start voltage VS at the beginning of charging and reaches the charging upper limit voltage VM due to the new external charging this time. In the TV, the charging condition is determined so that the external charging current value (charging current value IX (t)) is in the range of 0.2 to 5.0 times the average discharge current value IF after subtraction.
In this embodiment, as a method of external charging of the battery 1 (the assembled battery 110), constant power-constant voltage charging (CP-CV charging) is basically performed. However, in the external charging in the voltage rising period TV prior to the latter half CV charging, the charging current value IX (t) is set within a range of 0.2 to 5.0 times the average discharge current value IF after subtraction. Therefore, constant current charging (CC charging) may be performed instead of CP charging. That is, the charging condition determining subroutine in step S20 determines a charging condition in which the charging current value IX (t) in the voltage rising period TV is within the range of 0.2 to 5.0 times the average discharge current value IF after subtraction. Based on this, external charging is performed.

まず、電池1(組電池110)をCP−CV充電で充電したときの、電池1(組電池110)の電圧V(t)及び充電電流値IX(t)の時間変化(充電時間の経過に伴う変化)のグラフを図6に示す。
第1時刻t1でCP充電を開始し、一定の電力Pで電池1(組電池110)に充電を行う。すると、電池1(組電池110)への充電が進むにつれて、電池1(組電池110)の電圧V(t)が充電開始時電圧VSから徐々に上昇すると共に、電力Pを一定とすべく充電電流値IX(t)は徐々に小さくなる。このCP充電において、充電上限電圧(目標電圧)VMに達する時刻tを第2時刻t2とすれば、第1時刻t1から第2時刻t2までの期間が電圧上昇期間TVに該当する(なお、VM=V(t2))。
また、この電圧上昇期間TVにおいて、充電電流値IX(t)は、第1電流値IP1(=IX(t1))から第2電流値IP2(=IX(t2))まで単調減少する。なお、第1電流値IP1と充電開始時電圧VSとの積、及び、第2電流値IP2と充電上限電圧VMとの積は、同じ電力Pである(VS・IP1=VM・IP2=P)。
First, when the battery 1 (the assembled battery 110) is charged by CP-CV charging, the voltage V (t) and the charging current value IX (t) of the battery 1 (the assembled battery 110) change with time (the charging time elapses). FIG. 6 shows a graph of the accompanying change.
CP charging is started at the first time t1, and the battery 1 (the assembled battery 110) is charged with a constant power P. Then, as the charging of the battery 1 (the assembled battery 110) proceeds, the voltage V (t) of the battery 1 (the assembled battery 110) gradually rises from the charging start voltage VS, and charging is performed to keep the power P constant. The current value IX (t) gradually decreases. In this CP charging, if the time t when the charging upper limit voltage (target voltage) VM is reached is the second time t2, the period from the first time t1 to the second time t2 corresponds to the voltage rising period TV (VM = V (t2)).
In this voltage rise period TV, the charging current value IX (t) monotonously decreases from the first current value IP1 (= IX (t1)) to the second current value IP2 (= IX (t2)). The product of the first current value IP1 and the charging start voltage VS and the product of the second current value IP2 and the charging upper limit voltage VM are the same power P (VS · IP1 = VM · IP2 = P). .

なお、本実施形態では、今回の新たな外部充電を開始する(第2ルーチンR2のステップS14)前に、充電条件決定サブルーチンS20において、上述した電圧上昇期間TVにおける充電電流値IX(t)が、差引後平均放電電流値IFの0.2〜5.0倍の範囲内になる充電条件に決定する。具体的には、CP充電で充電すると仮定した場合に、充電開始時電圧VS及び充電上限電圧VMによってそれぞれ決まる第1電流値IP1及び第2電流値IP2と、前述した差引後平均放電電流値IFを0.2〜5.0倍とした値との大小関係に基づいて、CV充電に先立つ充電における充電条件(具体的には、CP充電とCC充電の使い分け)を決定する。   In the present embodiment, the charging current value IX (t) in the voltage rising period TV described above is set in the charging condition determination subroutine S20 before starting the new external charging this time (step S14 of the second routine R2). The charging condition is determined to be in the range of 0.2 to 5.0 times the average discharge current value IF after subtraction. Specifically, assuming that charging is performed by CP charging, the first current value IP1 and the second current value IP2 respectively determined by the charging start voltage VS and the charging upper limit voltage VM, and the above-described average electric discharge current value IF after subtraction. Is determined based on a magnitude relationship with a value obtained by multiplying 0.2 to 5.0 times, specifically, charging conditions in charging prior to CV charging (specifically, separate use of CP charging and CC charging).

従って、もし、今回の新たな外部充電を開始するときの電池1(組電池110)の充電開始時電圧VSが同じである場合には、第1電流値IP1及び第2電流値IP2の値もまた同じになる。しかしながら、差引後平均放電電流値IFは、前述した期間TMにおける車両100の使用状況によって変化するため、第1電流値IP1及び第2電流値IP2が、差引後平均放電電流値IFの0.2〜5.0倍の範囲とどのような関係になるかは、差引後平均放電電流値IFの大きさによって異なる。
そこで、以下に、複数のケース(第1〜第6のケース)についてそれぞれ詳述する。
Therefore, if the charging start voltage VS of the battery 1 (the assembled battery 110) when starting the new external charging this time is the same, the values of the first current value IP1 and the second current value IP2 are also set. It will be the same again. However, since the average discharge current value IF after subtraction changes depending on the usage state of the vehicle 100 in the above-described period TM, the first current value IP1 and the second current value IP2 are 0.2 of the average discharge current value IF after subtraction. The relationship with the range of ˜5.0 times depends on the magnitude of the average discharge current value IF after subtraction.
Therefore, a plurality of cases (first to sixth cases) will be described in detail below.

(第1のケース)
まず、第1電流値IP1が差引後平均放電電流値IFの5.0倍以下の値(IP1≦5.0×IF)で、かつ、第2電流値IP2が差引後平均放電電流値IFの0.2倍以上の値(IP2≧0.2×IF)である場合について、図7を用いて説明する。
この場合には、図7のグラフに示すように、電圧上昇期間TVの全期間において、一定電力PのCP充電を行う。これにより、電圧上昇期間TVの全期間において、電池1(組電池110)を流れる充電電流値IX(t)は、差引後平均放電電流値IFの0.2〜5.0倍の範囲内に収まるからである。これにより、後に詳述するが、差引後平均放電電流値IFの0.2〜5.0倍の範囲から外れた値の充電電流値IX(t)で外部充電を行った電池に比して、電池1(組電池110)における電池抵抗の上昇を抑制できる。
(First case)
First, the first current value IP1 is a value equal to or less than 5.0 times the average discharge current value IF after subtraction (IP1 ≦ 5.0 × IF), and the second current value IP2 is the average discharge current value IF after subtraction. A case where the value is 0.2 times or more (IP2 ≧ 0.2 × IF) will be described with reference to FIG.
In this case, as shown in the graph of FIG. 7, CP charging with constant power P is performed during the entire voltage rising period TV. Thereby, in the whole period of voltage rising period TV, the charging current value IX (t) flowing through the battery 1 (the assembled battery 110) is within a range of 0.2 to 5.0 times the average discharge current value IF after subtraction. Because it fits. Thus, as will be described in detail later, as compared with a battery that has been externally charged with a charging current value IX (t) that is outside the range of 0.2 to 5.0 times the average discharge current value IF after subtraction. In addition, an increase in battery resistance in the battery 1 (the assembled battery 110) can be suppressed.

(第2のケース)
次に、第1電流値IP1が差引後平均放電電流値IFの5.0倍以下、0.2倍以上の範囲内(0.2×IF≦IP1≦5.0×IF)であるが、第2電流値IP2が差引後平均放電電流値IFの0.2倍より小さい値(IP2<0.2×IF)である場合について、図8を用いて説明する。この場合には、電池1(組電池110)を一定電力PのCP充電で充電すると、充電電流値IX(t)は、当初は、差引後平均放電電流値IFの0.2〜5.0倍の範囲内に収まる。しかし、その後、電池1(組電池110)の電圧V(t)が上昇すると、電圧V(t)が充電上限電圧VMに達する前に、充電電流値IX(t)が、上記の範囲を下回る(IX(t)<0.2×IF)ことになる(図8参照)。
そこで、この場合には、当初は、一定電力PでのCP充電で電池1(組電池110)を充電するが、充電電流値IX(t)が差引後平均放電電流値IFの0.2倍(IX(t)=0.2×IF)の大きさになった第3時刻t3で、定電流(=0.2×IF)による定電流充電(CC充電)に切り換える(図8中の実線部分)。このような充電条件で充電すれば、電圧上昇期間TVの全期間にわたり、充電電流値IX(t)を差引後平均放電電流値IFの0.2〜5.0倍の範囲内に収めることができる。これにより、差引後平均放電電流値IFの0.2〜5.0倍の範囲から外れた値の充電電流値IX(t)で外部充電を行った電池に比して、電池1(組電池110)における電池抵抗の上昇を抑制できる。
(Second case)
Next, the first current value IP1 is within the range of not more than 5.0 times the subtracted average discharge current value IF and not less than 0.2 times (0.2 × IF ≦ IP1 ≦ 5.0 × IF). The case where the second current value IP2 is a value smaller than 0.2 times the subtracted average discharge current value IF (IP2 <0.2 × IF) will be described with reference to FIG. In this case, when the battery 1 (the assembled battery 110) is charged by CP charging with the constant power P, the charging current value IX (t) is initially 0.2 to 5.0 of the average discharge current value IF after subtraction. Within the double range. However, when the voltage V (t) of the battery 1 (the assembled battery 110) increases thereafter, the charging current value IX (t) falls below the above range before the voltage V (t) reaches the charging upper limit voltage VM. (IX (t) <0.2 × IF) (see FIG. 8).
Therefore, in this case, initially, the battery 1 (the assembled battery 110) is charged by CP charging at a constant power P, but the charging current value IX (t) is 0.2 times the average discharge current value IF after subtraction. At the third time t3 when the magnitude of (IX (t) = 0.2 × IF) is reached, switching to constant current charging (CC charging) with constant current (= 0.2 × IF) (solid line in FIG. 8) portion). If charging is performed under such charging conditions, the charging current value IX (t) may fall within the range of 0.2 to 5.0 times the average discharge current value IF after subtraction over the entire voltage rising period TV. it can. Thereby, compared with the battery which externally charged with the charging current value IX (t) having a value outside the range of 0.2 to 5.0 times the average discharge current value IF after subtraction, the battery 1 (assembled battery) 110), an increase in battery resistance can be suppressed.

(第3のケース)
次に、第2電流値IP2に加え、第1電流値IP1も差引後平均放電電流値IFの0.2倍以下の値(IP2<IP1≦0.2×IF)である場合について、図9を用いて説明する。この場合には、一定電力PのCP充電で電池1(組電池110)を充電しようとすると、充電電流値IX(t)は、当初から、差引後平均放電電流値IFの0.2〜5.0倍の範囲から外れる(下回る)こととなる(図9参照)。
そこで、この場合には、当初から定電流(=0.2×IF)によるCC充電を行う(図9中の実線部分で示す第1CC充電)。このような充電条件で充電すれば、電圧上昇期間TVの全期間にわたり、充電電流値IX(t)を差引後平均放電電流値IFの0.2〜5.0倍の範囲内に収めることができる。これにより、この範囲から外れた値の充電電流値IX(t)で外部充電を行った電池に比して、電池1(組電池110)における電池抵抗の上昇を抑制できる。
(Third case)
Next, in addition to the second current value IP2, the first current value IP1 is 0.2 times or less the subtracted average discharge current value IF (IP2 <IP1 ≦ 0.2 × IF). Will be described. In this case, if the battery 1 (the assembled battery 110) is to be charged by CP charging with a constant power P, the charging current value IX (t) is 0.2 to 5 of the average discharge current value IF after subtraction from the beginning. It will be outside (below) 0 times the range (see FIG. 9).
Therefore, in this case, CC charging with a constant current (= 0.2 × IF) is performed from the beginning (first CC charging indicated by a solid line portion in FIG. 9). If charging is performed under such charging conditions, the charging current value IX (t) may fall within the range of 0.2 to 5.0 times the average discharge current value IF after subtraction over the entire voltage rising period TV. it can. Accordingly, an increase in battery resistance in battery 1 (assembled battery 110) can be suppressed as compared with a battery that is externally charged with a charging current value IX (t) that is outside this range.

(第4のケース)
次に、第1電流値IP1が差引後平均放電電流値IFの5.0倍より大きな値(IP1>5.0×IF)で、かつ、第2電流値IP2が差引後平均放電電流値IFの0.2倍より小さい値(IP2<0.2×IF)である場合について、図10を用いて説明する。この場合には、一定電力PのCP充電で電池1(組電池110)を充電しようとすると、充電電流値IX(t)は、充電当初、及び、充電終期において、差引後平均放電電流値IFの0.2〜5.0倍の範囲から外れることとなる(図10参照)。
そこで、この場合には、例えば、図10のグラフに示すように、当初から電圧V(t)が充電上限電圧VMになるまで、定電流(=5.0×IF)によるCC充電を行う(図10中の実線部分で示す第2CC充電)。このような充電条件で充電すれば、電圧上昇期間TVの全期間にわたり、充電電流値IX(t)を差引後平均放電電流値IFの0.2〜5.0倍の範囲内に収めることができる。これにより、この範囲から外れた値の充電電流値IX(t)で外部充電を行った電池に比して、電池1(組電池110)における電池抵抗の上昇を抑制できる。
(Fourth case)
Next, the first current value IP1 is a value larger than 5.0 times the subtracted average discharge current value IF (IP1> 5.0 × IF), and the second current value IP2 is the subtracted average discharge current value IF. A case where the value is smaller than 0.2 times (IP2 <0.2 × IF) will be described with reference to FIG. In this case, if the battery 1 (the assembled battery 110) is to be charged by CP charging with a constant power P, the charging current value IX (t) is the average discharge current value IF after subtraction at the beginning of charging and at the end of charging. This is outside the range of 0.2 to 5.0 times (see FIG. 10).
Therefore, in this case, for example, as shown in the graph of FIG. 10, CC charging with a constant current (= 5.0 × IF) is performed from the beginning until the voltage V (t) reaches the charging upper limit voltage VM ( 2nd CC charge shown with the continuous line part in FIG. 10). If charging is performed under such charging conditions, the charging current value IX (t) may fall within the range of 0.2 to 5.0 times the average discharge current value IF after subtraction over the entire voltage rising period TV. it can. Accordingly, an increase in battery resistance in battery 1 (assembled battery 110) can be suppressed as compared with a battery that is externally charged with a charging current value IX (t) that is outside this range.

なお、このケースでは、例えば、当初は定電流(=5.0×IF)によるCC充電を行い、電圧V(t)と充電電流値IX(t)との積が電力Pになった時刻以降、充電電流値IX(t)が差引後平均放電電流値IFの0.2〜5.0倍の値の範囲内で、一定電力PのCP充電を行う。さらに、充電電流値IX(t)が差引後平均放電電流値IFの0.2倍(IX(t)=0.2×IF)の大きさになった時刻以降、定電流(=0.2×IF)によるCC充電を行う手法をとることもできる(図10中の二点鎖線で示す充電手法)。   In this case, for example, CC charging is initially performed with a constant current (= 5.0 × IF), and after the time when the product of the voltage V (t) and the charging current value IX (t) becomes the power P. Then, CP charging with a constant power P is performed within a range where the charging current value IX (t) is 0.2 to 5.0 times the average discharge current value IF after subtraction. Furthermore, after the time when the charging current value IX (t) becomes 0.2 times the average discharge current value IF after subtraction (IX (t) = 0.2 × IF), the constant current (= 0.2 It is also possible to take a method of performing CC charging by (IF) (charging method indicated by a two-dot chain line in FIG. 10).

(第5のケース)
次に、第1電流値IP1が差引後平均放電電流値IFの5.0倍より大きな値(IP1>5.0×IF)であるが、第2電流値IP2が差引後平均放電電流値IFの0.2倍以上、5.0倍以下の範囲内(0.2×IF≦IP2≦5.0×IF)である場合について、図11を用いて説明する。この場合には、一定電力PのCP充電で電池1(組電池110)を充電しようとすると、充電電流値IX(t)は、充電当初において、差引後平均放電電流値IFの0.2〜5.0倍の範囲から外れる(上回る)こととなる(図11参照)。
そこで、この場合には、例えば、図11のグラフに示すように、当初から電圧V(t)が充電上限電圧VMになるまで、定電流(=5.0×IF)によるCC充電を行う(図11中の実線部分)。このような充電条件で充電すれば、電圧上昇期間TVの全期間にわたり、充電電流値IX(t)を差引後平均放電電流値IFの0.2〜5.0倍の範囲内に収めることができる。これにより、この範囲から外れた値の充電電流値IX(t)で外部充電を行った電池に比して、電池1(組電池110)における電池抵抗の上昇を抑制できる。
なお、このケースでは、例えば、当初は定電流(=5.0×IF)によるCC充電を行い、電圧V(t)と充電電流値IX(t)との積が電力Pになった時刻以降、一定電力PのCP充電を行う手法をとることもできる(図11中の二点鎖線で示す充電手法)。
(Fifth case)
Next, the first current value IP1 is a value (IP1> 5.0 × IF) larger than 5.0 times the average discharge current value IF after subtraction, but the second current value IP2 is the average discharge current value IF after subtraction. A case of 0.2 times to 5.0 times (0.2 × IF ≦ IP2 ≦ 5.0 × IF) will be described with reference to FIG. In this case, when the battery 1 (the assembled battery 110) is to be charged by CP charging with a constant power P, the charging current value IX (t) is 0.2 to the average discharge current value IF after subtraction at the beginning of charging. It will deviate (exceed) the range of 5.0 times (see FIG. 11).
Therefore, in this case, as shown in the graph of FIG. 11, for example, CC charging with constant current (= 5.0 × IF) is performed until the voltage V (t) reaches the charging upper limit voltage VM from the beginning ( Solid line portion in FIG. 11). If charging is performed under such charging conditions, the charging current value IX (t) may fall within the range of 0.2 to 5.0 times the average discharge current value IF after subtraction over the entire voltage rising period TV. it can. Accordingly, an increase in battery resistance in battery 1 (assembled battery 110) can be suppressed as compared with a battery that is externally charged with a charging current value IX (t) that is outside this range.
In this case, for example, CC charging is initially performed with a constant current (= 5.0 × IF), and after the time when the product of the voltage V (t) and the charging current value IX (t) becomes the power P. A method of performing CP charging with a constant power P can also be taken (charging method indicated by a two-dot chain line in FIG. 11).

(第6のケース)
次に、第1電流値IP1に加え、第2電流値IP2も差引後平均放電電流値IFの5.0倍より大きな値(IP1>IP2>5.0×IF)である場合について、図12を用いて説明する。この場合にも、一定電力PのCP充電で電池1(組電池110)を充電しようとすると、充電電流値IX(t)は、当初から、差引後平均放電電流値IFの0.2〜5.0倍の範囲から外れる(上回る)こととなる(図12参照)。
そこで、この場合にも、当初から電圧V(t)が充電上限電圧VMになるまで、定電流(=5.0×IF)によるCC充電を行う(図12中の実線部分)。このような充電条件で充電すれば、電圧上昇期間TVの全期間にわたり、充電電流値IX(t)を差引後平均放電電流値IFの0.2〜5.0倍の範囲内に収めることができる。これにより、この範囲から外れた値の充電電流値IX(t)で外部充電を行った電池に比して、電池1(組電池110)における電池抵抗の上昇を抑制できる。
(Sixth case)
Next, in addition to the first current value IP1, the second current value IP2 is a value larger than 5.0 times the average discharge current value IF after subtraction (IP1>IP2> 5.0 × IF). Will be described. Also in this case, if the battery 1 (the assembled battery 110) is charged by CP charging with the constant power P, the charging current value IX (t) is 0.2 to 5 of the average discharge current value IF after subtraction from the beginning. It will be outside (exceeding) the 0.times. Range (see FIG. 12).
Therefore, in this case as well, CC charging with a constant current (= 5.0 × IF) is performed from the beginning until the voltage V (t) reaches the charging upper limit voltage VM (solid line portion in FIG. 12). If charging is performed under such charging conditions, the charging current value IX (t) may fall within the range of 0.2 to 5.0 times the average discharge current value IF after subtraction over the entire voltage rising period TV. it can. Accordingly, an increase in battery resistance in battery 1 (assembled battery 110) can be suppressed as compared with a battery that is externally charged with a charging current value IX (t) that is outside this range.

本実施形態では、以上に示した第1〜第6のケースを踏まえて、ステップS20の充電条件決定サブルーチンについて、図13を用いて説明する。
具体的には、まず、ステップS21で、組電池110(電池1)の電圧V(t)のうち、充電開始時電圧VSを検知する。具体的には、図示しない電圧センサを用いて100個の電池1,1の総電圧を測定して、充電開始時電圧VSとする。
In the present embodiment, based on the first to sixth cases described above, the charging condition determination subroutine in step S20 will be described with reference to FIG.
Specifically, first, in step S21, the voltage VS at the start of charging is detected from the voltage V (t) of the assembled battery 110 (battery 1). Specifically, the total voltage of 100 batteries 1 and 1 is measured using a voltage sensor (not shown), and is set as a charging start voltage VS.

次いで、ステップS22では、前述した第1電流値IP1及び第2電流値IP2をそれぞれ算出する。なお、第1電流値IP1及び第2電流値IP2は、一定電力PのCP充電で充電する場合おける、充電開始時電圧VS及び充電上限電圧VMのときの充電電流値である。具体的には、第1電流値IP1はIP1=P/VSにより、第2電流値IP2はIP2=P/VMによりそれぞれ得る。   Next, in step S22, the first current value IP1 and the second current value IP2 described above are calculated. The first current value IP1 and the second current value IP2 are charging current values at the charging start voltage VS and the charging upper limit voltage VM when charging by CP charging with a constant power P. Specifically, the first current value IP1 is obtained from IP1 = P / VS, and the second current value IP2 is obtained from IP2 = P / VM.

ステップS23では、第1電流値IP1と、差引後平均放電電流値IFの0.2倍の値(0.2×IF)及び5.0倍の値(5.0×IF)との比較を行う。
ここで、第1電流値IP1が差引後平均放電電流値IFの0.2倍よりも小さい(IP1<0.2×IF)場合には、ステップS24に進み、電圧上昇期間TVの外部充電を、前述の第3のケース(図9参照)に示した定電流(=0.2×IF)によるCC充電(第1CC充電)に決定する。
第1電流値IP1及び差引後平均放電電流値IFが上述の関係にある場合には、第3のケースに示したように、この第3のケースとして示す第1CC充電で充電すれば、電圧上昇期間TVの全期間にわたり、組電池110(電池1)に流れる充電電流値IX(t)を差引後平均放電電流値IFの0.2〜5.0倍の範囲内に収めることができる。
このステップS24の後、第2ルーチンR2に戻る。
In step S23, the first current value IP1 is compared with a value 0.2 times the subtracted average discharge current value IF (0.2 × IF) and a value 5.0 times (5.0 × IF). Do.
Here, when the first current value IP1 is smaller than 0.2 times the subtracted average discharge current value IF (IP1 <0.2 × IF), the process proceeds to step S24, and external charging in the voltage rising period TV is performed. The CC charging (first CC charging) by the constant current (= 0.2 × IF) shown in the third case (see FIG. 9) is determined.
When the first current value IP1 and the average discharge current value IF after subtraction are in the above-described relationship, as shown in the third case, if charging is performed by the first CC charging shown as the third case, the voltage rises. Over the entire period TV, the charging current value IX (t) flowing through the assembled battery 110 (battery 1) can be within the range of 0.2 to 5.0 times the average discharge current value IF after subtraction.
After step S24, the process returns to the second routine R2.

一方、ステップS23において、第1電流値IP1が差引後平均放電電流値IFの5.0倍以下、0.2倍以上の範囲内(0.2×IF≦IP1≦5.0×IF)である場合には、ステップS25に進み、第2電流値IP2が差引後平均放電電流値IFの0.2倍(0.2×IF)以上であるか否かを判別する。
ここで、YES、即ち第2電流値IP2が差引後平均放電電流値IFの0.2倍以上の値(IP2≧0.2×IF)である場合、ステップS26に進み、電圧上昇期間TVの外部充電を、一定電力PのCP充電に決定する。
第2電流値IP2及び差引後平均放電電流値IFが上述の関係にある場合には、前述の第1のケース(図7参照)に示したように、CP充電で充電すれば、電圧上昇期間TVの全期間において、充電電流値IX(t)を差引後平均放電電流値IFの0.2〜5.0倍の範囲内に収めることができる。
このステップS26の後、第2ルーチンR2に戻る。
On the other hand, in step S23, the first current value IP1 is in the range of 5.0 times or less and 0.2 times or more of the average discharge current value IF after subtraction (0.2 × IF ≦ IP1 ≦ 5.0 × IF). If there is, the process proceeds to step S25, and it is determined whether or not the second current value IP2 is 0.2 times (0.2 × IF) or more of the average discharge current value IF after subtraction.
Here, if YES, that is, if the second current value IP2 is a value equal to or greater than 0.2 times the average discharge current value IF after subtraction (IP2 ≧ 0.2 × IF), the process proceeds to step S26, where the voltage rise period TV is External charging is determined as CP charging with constant power P.
When the second current value IP2 and the average discharge current value IF after subtraction are in the above-described relationship, as shown in the first case (see FIG. 7), if charging is performed by CP charging, the voltage rise period In the entire TV period, the charging current value IX (t) can be within a range of 0.2 to 5.0 times the average discharge current value IF after subtraction.
After step S26, the process returns to the second routine R2.

一方、ステップS25において、NO、即ち第2電流値IP2が差引後平均放電電流値IFの0.2倍よりも小さい値(IP2<0.2×IF)である場合には、ステップS27に進み、電圧上昇期間TVの外部充電を、前述の第2のケース(図8参照)に示すCP−CC充電に決定する。即ち、当初は、一定電力PのCP充電で組電池110に充電を行うが、充電電流値IX(t)が差引後平均放電電流値IFの0.2倍(IP(t)=0.2×IF)の大きさになった時刻(前述の第2時刻t2)以降、定電流(=0.2×IF)によるCC充電を行う充電に決定する。
第1電流値IP1、第2電流値IP2及び差引後平均放電電流値IFが上述の関係にある場合には、第2のケースに示すCP−CC充電で充電すれば、電圧上昇期間TVの全期間にわたり、充電電流値IX(t)を差引後平均放電電流値IFの0.2〜5.0倍の範囲内に収めることができる。
このステップS27の後、第2ルーチンR2に戻る。
On the other hand, if NO in step S25, that is, if the second current value IP2 is smaller than 0.2 times the average discharge current value IF after subtraction (IP2 <0.2 × IF), the process proceeds to step S27. The external charging during the voltage rising period TV is determined to be the CP-CC charging shown in the second case (see FIG. 8). That is, initially, the assembled battery 110 is charged by CP charging with a constant power P, but the charging current value IX (t) is 0.2 times the average discharge current value IF after subtraction (IP (t) = 0.2). After the time when the size of (× IF) is reached (the above-mentioned second time t2), the charging is determined to be performed by CC charging with a constant current (= 0.2 × IF).
When the first current value IP1, the second current value IP2, and the average discharge current value IF after subtraction are in the above-described relationship, if the charging is performed by CP-CC charging shown in the second case, Over the period, the charging current value IX (t) can be within a range of 0.2 to 5.0 times the average discharge current value IF after subtraction.
After step S27, the process returns to the second routine R2.

他方、ステップS23において、第1電流値IP1が差引後平均放電電流値IFの5.0倍よりも大きい(IP1>5.0×IF)場合には、ステップS28に進み、電圧上昇期間TVの外部充電を、前述の第4,5,6のケース(図10,11,12参照)に示した定電流(=5.0×IF)によるCC充電(第2CC充電)に決定する。
第4〜6のケースに示したように、第1電流値IP1及び差引後平均放電電流値IFが上述の関係にある場合には、第2電流値IP2と5.0×IF、及び、0.2×IFとの大小関係に拘わらず、第2CC充電で充電すれば、電圧上昇期間TVの全期間にわたり、充電電流値IX(t)を差引後平均放電電流値IFの0.2〜5.0倍の範囲内に収めることができる。
このステップS25の後、第2ルーチンR2に戻る。
On the other hand, when the first current value IP1 is larger than 5.0 times the average discharge current value IF after subtraction (IP1> 5.0 × IF) in step S23, the process proceeds to step S28, and the voltage increase period TV is set. External charging is determined to be CC charging (second CC charging) with a constant current (= 5.0 × IF) shown in the fourth, fifth, and sixth cases (see FIGS. 10, 11, and 12).
As shown in the fourth to sixth cases, when the first current value IP1 and the average discharge current value IF after subtraction are in the above relationship, the second current value IP2 and 5.0 × IF, and 0 Regardless of the magnitude relationship with 2 × IF, if charging is performed with the second CC charge, the charging current value IX (t) is subtracted from 0.2 to 5 of the average discharge current value IF after subtraction over the entire period of the voltage rising period TV. It can be within the range of .0 times.
After step S25, the process returns to the second routine R2.

なお、本実施形態では、第1電流値IP1がIP1<0.2×IFである第4〜6のケースの場合の外部充電の手法を、いずれも定電流(=5.0×IF)による第2CC充電とした。即ち、これらのケースでは、第2電流値IP2と5.0×IF及び0.2×IFとの大小関係に拘わらず、電圧上昇期間TVにおける外部充電の条件を、第2CC充電に決定した。しかしながら、第4〜6のケースで、互いに異なる外部充電の手法を採用しても良く、この場合には、第2電流値IP2と5.0×IF及び0.2×IFとの大小関係を特定した上で、これに基づいて電圧上昇期間TVにおける外部充電の充電条件である外部充電の手法の使い分けを決定すると良い。 In this embodiment, the external charging methods in the fourth to sixth cases where the first current value IP1 is IP1 <0.2 × IF are all based on a constant current (= 5.0 × IF). The second CC charge was assumed. That is, in these cases, regardless of the magnitude relationship between the second current value IP2 and 5.0 × IF and 0.2 × IF, the external charging condition during the voltage rising period TV is determined to be the second CC charging. However, in the fourth to sixth cases, different external charging methods may be employed. In this case, the magnitude relationship between the second current value IP2 and 5.0 × IF and 0.2 × IF is changed. Based on this specification, it is preferable to determine the appropriate use of the external charging method, which is the charging condition for external charging in the voltage rise period TV.

具体的には、第2電流値IP2が差引後平均放電電流値IFの0.2倍よりも小さい(IP2<0.2×IF)場合(第4のケースに相当)には、電圧上昇期間TVにおける外部充電を、例えば、図10中の二点鎖線で示すように、当初は、定電流(=5.0×IF)の充電を行うが、電圧V(t)が電力P/(5.0×IF)の大きさになった時刻以降、一定電力PによるCP充電を行い、さらに、充電電流値IX(t)がIX(t)=0.2×IFの大きさになった時刻以降、定電流(=0.2×IF)の充電を行う充電の手法に決定しても良い。また、第2電流値IP2が差引後平均放電電流値IFの5.0倍以下、0.2倍以上の範囲内(0.2×IF≦IP2≦5.0×IF)である場合(第5のケースに相当)にも、電圧上昇期間TVの外部充電を、例えば、図11中の二点鎖線で示すように、当初は、定電流(=5.0×IF)の充電を行うが、電圧V(t)が電力P/(5.0×IF)の大きさになった時刻以降、一定電力PによるCP充電を行う充電の手法に決定することもできる。   Specifically, when the second current value IP2 is smaller than 0.2 times the average discharge current value IF after subtraction (IP2 <0.2 × IF) (corresponding to the fourth case), the voltage rise period For example, as shown by a two-dot chain line in FIG. 10, external charging in the TV is initially charged with a constant current (= 5.0 × IF), but the voltage V (t) is the power P / (5 ... 0 × IF) and after that, CP charging is performed with a constant power P, and the charging current value IX (t) becomes IX (t) = 0.2 × IF. Thereafter, a charging method for charging with a constant current (= 0.2 × IF) may be determined. Further, when the second current value IP2 is within the range of 5.0 times or less and 0.2 times or more of the average discharge current value IF after subtraction (0.2 × IF ≦ IP2 ≦ 5.0 × IF) (first In this case, the external charging in the voltage rising period TV is initially charged with a constant current (= 5.0 × IF) as indicated by a two-dot chain line in FIG. Further, after the time when the voltage V (t) becomes the magnitude of the power P / (5.0 × IF), it is possible to determine the charging method for performing the CP charging with the constant power P.

さて、第2ルーチンR2のステップS14では、組電池110(電池1)に充電を行う。具体的には、組電池110(電池1)について、まず、電圧上昇期間TVの間、前述した充電条件決定サブルーチンS20で決定した、前述のCP充電、CP−CC充電、第1CC充電又は第2CC充電を行い、その後、CV充電を行う。   In step S14 of the second routine R2, the assembled battery 110 (battery 1) is charged. Specifically, for the assembled battery 110 (battery 1), first, during the voltage increase period TV, the above-described CP charging, CP-CC charging, first CC charging, or second CC determined in the charging condition determination subroutine S20 described above. Charge and then CV charge.

上述の充電後、ステップS15では、RAMに記憶した総放電電気量QD、総放電時間TD、総充電電気量QC及び総充電時間TCをリセットする。これにより、今回の新たな外部充電以降、次回の新たな外部充電までの期間における総放電電気量QD、総放電時間TD、総充電電気量QC及び総充電時間TCを、改めてRAMに記憶することができる。   After the above-described charging, in step S15, the total discharge electricity amount QD, the total discharge time TD, the total charge electricity amount QC, and the total charge time TC stored in the RAM are reset. Thereby, the total discharge electricity amount QD, the total discharge time TD, the total charge electricity amount QC, and the total charge time TC in the period from the new external charge to the next new external charge are newly stored in the RAM. Can do.

なお、本実施形態では、ステップS13を実行するPHV制御装置120が取得手段に、充電条件決定サブルーチンS20を実行するPHV制御装置120が決定手段に、PHV制御装置120及びコンバータ140が充電装置に、それぞれ対応する。   In the present embodiment, the PHV control device 120 that executes step S13 is used as the acquisition unit, the PHV control device 120 that executes the charging condition determination subroutine S20 is used as the determination unit, and the PHV control device 120 and the converter 140 are used as the charging device. Each corresponds.

ところで、本発明者らは、車載した電池1(組電池110)について、外部充電の手法を変えて、電池1の特性(内部抵抗の変化)を調査した。
まず、製造して間もない新品(初期)の100個の電池1,1を、図示しないバスバを用いて直列接続しつつ組電池ケース110Aに収容し、前述した車両100に用いる組電池110とした。そして、この組電池110の総+電極及び総−電極を、図示しない外部電源装置に接続して、組電池110の内部抵抗を測定した。
具体的には、SOC60%にした組電池110について、外部電源装置を用いて、30Cの定電流放電を行い、放電開始から10秒経過時点の電圧を測定した。そして、定電流放電による電圧変化分を、定電流放電の電流値(30C)で除して、組電池110の内部抵抗の値を算出した。なお、このときの内部抵抗の値を、組電池110の「初期内部抵抗値R0」とする。
By the way, the present inventors investigated the characteristics (change in internal resistance) of the battery 1 by changing the external charging method for the battery 1 (the assembled battery 110) mounted on the vehicle.
First, 100 new (initial) batteries 1 and 1 that have just been manufactured are accommodated in an assembled battery case 110A while being connected in series using a bus bar (not shown). did. Then, the total + electrode and the total − electrode of the assembled battery 110 were connected to an external power supply device (not shown), and the internal resistance of the assembled battery 110 was measured.
Specifically, the assembled battery 110 with SOC 60% was subjected to a constant current discharge of 30 C using an external power supply, and the voltage at the time when 10 seconds had elapsed from the start of discharge was measured. Then, the value of the internal resistance of the battery pack 110 was calculated by dividing the voltage change due to the constant current discharge by the current value (30C) of the constant current discharge. Note that the value of the internal resistance at this time is the “initial internal resistance value R0” of the battery pack 110.

次いで、組電池110について、充放電試験と外部充電とを交互に繰り返した(以下、実施例1という)。
このうち、充放電試験は、図示しない充放電装置を用いて、組電池110について充放電を行った。具体的には、図14に示すような、連続420秒間の充放電パターンを実行するよう、充放電装置を制御した(図14中に示す充放電パターンの縦軸は組電池110の電流値Iであり、+側が充電電流を、−側が放電電流を表している)。この充放電パターンは、最大約70Aのパルス放電と最大約40Aのパルス充電とを交互に繰り返すパターンである。この充放電パターンにおける差引後平均放電電流値IFに相当するテスト値IFTを予め求めておく。
また、外部充電は、外部電源装置を用いて、充電上限電圧VMまで、一定の充電電流値ITのCC充電で組電池110を充電した。なお、この充電電流値ITは、上述した充放電試験におけるテスト値IFTの大きさと等しくしている(IT=IFT)。つまり、充電電流値ITを、テスト値IFTで割った電流値倍率IJ(=IT/IFT)は1.0である。
Next, for the assembled battery 110, the charge / discharge test and the external charge were repeated alternately (hereinafter referred to as Example 1).
Among these, the charging / discharging test performed charging / discharging about the assembled battery 110 using the charging / discharging apparatus which is not illustrated. Specifically, the charging / discharging device was controlled so as to execute a charging / discharging pattern for 420 seconds continuously as shown in FIG. 14 (the vertical axis of the charging / discharging pattern shown in FIG. 14 represents the current value I of the battery pack 110). Where the + side represents the charging current and the-side represents the discharging current). This charge / discharge pattern is a pattern in which pulse discharge of about 70 A at maximum and pulse charge of about 40 A at maximum are alternately repeated. A test value IFT corresponding to an average discharge current value IF after subtraction in this charge / discharge pattern is obtained in advance.
In the external charging, the assembled battery 110 was charged by CC charging at a constant charging current value IT up to the charging upper limit voltage VM using an external power supply device. The charging current value IT is equal to the test value IFT in the charge / discharge test described above (IT = IFT). That is, the current value magnification IJ (= IT / IFT) obtained by dividing the charging current value IT by the test value IFT is 1.0.

上述した充放電試験及び外部充電を交互に100回繰り返した後、組電池110の内部抵抗の値を、上述した手法と同様にして、再度測定した。なお、このときの内部抵抗の値を、組電池110の「試験後内部抵抗値R1」とする。
そして、この組電池110について、試験の前後間の内部抵抗初期比HRを算出した。具体的には、内部抵抗初期比HRは、試験後内部抵抗値R1を初期内部抵抗値R0で除して得る(HR=R1/R0)。
After the charge / discharge test and external charge described above were alternately repeated 100 times, the value of the internal resistance of the assembled battery 110 was measured again in the same manner as described above. The value of the internal resistance at this time is defined as “post-test internal resistance value R1” of the assembled battery 110.
And about this assembled battery 110, internal resistance initial stage ratio HR before and behind a test was computed. Specifically, the internal resistance initial ratio HR is obtained by dividing the internal resistance value R1 after the test by the initial internal resistance value R0 (HR = R1 / R0).

また、本発明者らは、新たな組電池110を複数用意し、これらの組電池110についても、充放電試験及び外部充電を交互に繰り返し、試験の前後間の内部抵抗初期比HRを算出した。
但し、充電電流値ITの大きさを変更して、組電池110に外部充電を行った点で上述の実施例1とは異なる。
具体的には、充電電流値ITをテスト値IFTの0.12倍の値にして、充放電試験及び外部充電を交互に100回繰り返した(比較例1)。また、充電電流値ITをテストIFTの0.2倍の値にして、充放電試験及び外部充電を交互に繰り返した(実施例2)。同様にして、充電電流値ITをテストIFTの0.32倍の値(実施例3)、3.0倍の値(実施例4)、5.0倍の値(実施例5)及び8.0倍の値(比較例2)にして、充放電試験及び外部充電を交互に繰り返した。つまり、実施例2、実施例3、実施例4、実施例5、比較例1及び比較例2の電流値倍率IJ(=IT/IFT)はそれぞれ、0.2、0.32、3.0、5.0、0.12及び8.0である。
そして、各実施例2〜5及び比較例1,2を行った各組電池110について、充放電試験を行い、試験の前後間の内部抵抗初期比HRをそれぞれ算出した。
In addition, the present inventors prepared a plurality of new assembled batteries 110, and for these assembled batteries 110, the charge / discharge test and the external charge were alternately repeated, and the internal resistance initial ratio HR before and after the test was calculated. .
However, it differs from the above-mentioned Example 1 in that the magnitude of the charging current value IT is changed and the assembled battery 110 is externally charged.
Specifically, the charge current value IT was set to 0.12 times the test value IFT, and the charge / discharge test and the external charge were alternately repeated 100 times (Comparative Example 1). Further, the charge current value IT was set to 0.2 times the test IFT, and the charge / discharge test and the external charge were alternately repeated (Example 2). Similarly, the charging current value IT is 0.32 times the value of the test IFT (Example 3), 3.0 times the value (Example 4), 5.0 times the value (Example 5), and 8. The charge / discharge test and external charging were alternately repeated with the value 0 times (Comparative Example 2). That is, the current value magnifications IJ (= IT / IFT) of Example 2, Example 3, Example 4, Example 5, Comparative Example 1 and Comparative Example 2 are 0.2, 0.32, and 3.0, respectively. , 5.0, 0.12 and 8.0.
And each charge / discharge test was done about each assembled battery 110 which performed each Example 2-5 and Comparative Examples 1 and 2, and internal resistance initial stage ratio HR before and behind a test was computed, respectively.

図15に、実施例1〜5及び比較例1,2の各組電池110における、電流値倍率IJ及び内部抵抗初期比HRの関係を示す。
図15によれば、電流値倍率IJを0.2〜5.0の範囲内とした場合、各内部抵抗初期比HRは、電流値倍率IJをIJ<0.2、または、IJ>5.0とした場合の内部抵抗初期比HRに比べて小さいことが判る。
このことを踏まえると、外部充電の際に、その充電条件を、充電電流値IX(t)が差引後平均放電電流値IFの0.2〜5.0倍の範囲内の値となる充電条件として、組電池110の外部充電を繰り返した場合には、この範囲から外れた充電電流値IX(t)で外部充電を繰り返した組電池110に比して、電池抵抗の上昇を抑制できることが判る。
FIG. 15 shows the relationship between the current value magnification IJ and the internal resistance initial ratio HR in each of the assembled batteries 110 of Examples 1 to 5 and Comparative Examples 1 and 2.
According to FIG. 15, when the current value magnification IJ is in the range of 0.2 to 5.0, each internal resistance initial ratio HR is equal to IJ <0.2 or IJ> 5. It can be seen that it is smaller than the internal resistance initial ratio HR when 0 is set.
In view of this, in the case of external charging, the charging condition is such that the charging current value IX (t) is a value within the range of 0.2 to 5.0 times the average discharge current value IF after subtraction. As can be seen, when external charging of the assembled battery 110 is repeated, an increase in battery resistance can be suppressed as compared to the assembled battery 110 in which external charging is repeated at a charging current value IX (t) outside this range. .

以上より、本実施形態にかかる外部充電システムCS1は、前回の外部充電以降、新たな外部充電を行うまでの期間TMについての差引後平均放電電流値IFを取得する取得手段(ステップS13を実行するPHV制御装置120)と、この差引後平均放電電流値IFに基づいて、電池1への新たな外部充電における充電条件を決定する決定手段(充電条件決定サブルーチンS20を実行するPHV制御装置120)とを備える。これにより、差引後平均放電電流値IFに基づき、車両100の使用時における電池1(組電池110)の使用状況に応じた外部充電における充電条件を適切に設定し、電池1(組電池110)を充電することができる。   As described above, the external charging system CS1 according to the present embodiment executes the acquisition unit (step S13) that acquires the average discharge current value IF after subtraction for the period TM until the new external charging is performed after the previous external charging. PHV control device 120), and determination means for determining a charging condition in the new external charging of the battery 1 based on the average discharge current value IF after subtraction (PHV control device 120 executing the charging condition determining subroutine S20) Is provided. Thereby, based on the average discharge current value IF after subtraction, the charging condition in the external charging according to the usage state of the battery 1 (assembled battery 110) when the vehicle 100 is used is appropriately set, and the battery 1 (assembled battery 110). Can be charged.

また、外部充電システムCS1では、決定手段(充電条件決定サブルーチンS20を実行するPHV制御装置120)は、電圧上昇期間TVにおける充電条件を、外部充電の充電電流値IX(t)が差引後平均放電電流値IFの0.2〜5.0倍の値の範囲内となる充電条件に決定する。このため、このシステムによれば、この範囲外である差引後平均放電電流値IFの0.2倍未満の値、或いは、5.0倍を超える値で充電を繰り返す電池に比して、電池抵抗の上昇を抑制することができる。   In the external charging system CS1, the determining means (PHV control device 120 that executes the charging condition determining subroutine S20) determines the charging conditions in the voltage rising period TV, and the average discharge after the charging current value IX (t) of external charging is subtracted. The charging condition is determined within the range of 0.2 to 5.0 times the current value IF. For this reason, according to this system, compared with a battery that repeats charging with a value less than 0.2 times the average discharge current value IF after subtraction, or a value more than 5.0 times, which is outside this range, the battery An increase in resistance can be suppressed.

(変形形態)
次に、本発明の変形形態について、図面を参照しつつ説明する。
なお、本変形形態にかかる外部充電システムCS2は、組電池110(電池1)に充電を行っているときに、その都度、充電条件(充電電流値)を決定する点で、上述した実施形態とは異なる。
そこで、実施形態と異なる点を中心に説明し、実施形態と同様の部分の説明は省略または簡略化する。なお、実施形態と同様の部分については同様の作用効果を生じる。また、同内容のものには同番号を付して説明する。
(Deformation)
Next, modifications of the present invention will be described with reference to the drawings.
It should be noted that the external charging system CS2 according to the present modified embodiment is different from the above-described embodiment in that the charging condition (charging current value) is determined each time the assembled battery 110 (battery 1) is charged. Is different.
Therefore, the differences from the embodiment will be mainly described, and the description of the same parts as the embodiment will be omitted or simplified. In addition, the same effect is produced about the part similar to embodiment. In addition, the same contents are described with the same numbers.

本変形形態にかかる外部充電システムCS2は、実施形態の外部充電システムCS1と同様、組電池110(電池1)、PHV制御装置220、電流センサ130、コンバータ140、ケーブル160及びプラグ付ケーブル195で構成されている(図1参照)。   Similar to the external charging system CS1 of the embodiment, the external charging system CS2 according to the present modified embodiment includes a battery pack 110 (battery 1), a PHV control device 220, a current sensor 130, a converter 140, a cable 160, and a cable 195 with a plug. (See FIG. 1).

この外部充電システムCS2を用いた外部充電について、図16のフローチャート(第3ルーチンR3)を参照しつつ説明する。なお、本変形形態では、実施形態と同様、電池1(組電池110)の外部充電の手法として、定電力−定電圧充電(CP−CV充電)を行うことを基本とする。但し、後半のCV充電に先立つ、電圧上昇期間TVでの外部充電において、充電電流値IX(t)を差引後平均放電電流値IFの0.2〜5.0倍の値の範囲内とするため、サイクル時間TJ(本変形形態では0.1秒)毎に、充電電流値IX(t)を決定する点で、充電の前に、予め充電条件である外部充電の手法の使い分けを決定する実施形態とは異なる。 External charging using the external charging system CS2 will be described with reference to the flowchart (third routine R3) of FIG. Note that, in the present modification, as in the embodiment, constant power-constant voltage charging (CP-CV charging) is basically performed as a method for external charging of the battery 1 (the assembled battery 110). However, in the external charging in the voltage rising period TV prior to the latter half CV charging, the charging current value IX (t) is set within a range of 0.2 to 5.0 times the average discharge current value IF after subtraction. Therefore, in order to determine the charging current value IX (t) every cycle time TJ (0.1 seconds in this modification), the use of the external charging method, which is the charging condition , is determined in advance before charging. Different from the embodiment.

まず、ステップS11〜S13については、前述した実施形態の第2ルーチンR2と同様に行う。
次いで、ステップS31では、図示しない電圧センサを用いて組電池110(電池1)の電圧V(t)を検知する。
First, steps S11 to S13 are performed in the same manner as the second routine R2 of the above-described embodiment.
Next, in step S31, the voltage V (t) of the assembled battery 110 (battery 1) is detected using a voltage sensor (not shown).

続いて、測定した電圧V(t)が充電上限電圧VMに到達したか否かを判別する。
ここで、NO、即ち電圧V(t)が充電上限電圧VMに到達していない場合、ステップS33に進む。一方、YES、即ち電圧V(t)が充電上限電圧VMに到達した場合には、ステップS39に進み、更にCV充電で組電池110(電池1)を充電する。
Subsequently, it is determined whether or not the measured voltage V (t) has reached the charging upper limit voltage VM.
If NO, that is, if the voltage V (t) has not reached the charging upper limit voltage VM, the process proceeds to step S33. On the other hand, if YES, that is, if the voltage V (t) reaches the charging upper limit voltage VM, the process proceeds to step S39, and the assembled battery 110 (battery 1) is further charged by CV charging.

また、ステップS33では、測定した電圧V(t)から、一定電力PのCP充電を行うとした場合に流す仮充電電流値IY(t)を算出する。具体的には、仮充電電流値IY(t)は、電力PをステップS31で測定した電圧V(t)で割った商である(IY(t)=P/V(t))。   In step S33, a temporary charging current value IY (t) to be flowed when CP charging with a constant power P is performed is calculated from the measured voltage V (t). Specifically, the temporary charging current value IY (t) is a quotient obtained by dividing the power P by the voltage V (t) measured in step S31 (IY (t) = P / V (t)).

続いて、ステップS34では、算出した仮充電電流値IY(t)と、差引後平均放電電流値IFの0.2倍の値(0.2×IF)及び5.0倍の値(5.0×IF)との比較を行う。
ここで、仮充電電流値IY(t)が差引後平均放電電流値IFの0.2倍よりも小さい(IY(t)<0.2×IF)場合には、ステップS35に進み、0.2×IFを充電電流値IX(t)に決定する(IX(t)=0.2×IF)。
このステップS35の後、ステップS38に進む。
Subsequently, in step S34, the calculated temporary charging current value IY (t), a value 0.2 times the subtracted average discharge current value IF (0.2 × IF), and a value 5.0 times (5. 0 × IF).
Here, if the temporary charging current value IY (t) is smaller than 0.2 times the subtracted average discharge current value IF (IY (t) <0.2 × IF), the process proceeds to step S35. 2 × IF is determined as a charging current value IX (t) (IX (t) = 0.2 × IF).
After step S35, the process proceeds to step S38.

一方、仮充電電流値IY(t)が差引後平均放電電流値IFの5.0倍以下、0.2倍以上の範囲内(0.2×IF≦IY(t)≦5.0×IF)である場合には、ステップS36に進み、仮充電電流値IY(t)を充電電流値IX(t)に決定する(IX(t)=IY(t))。
このステップS36の後、ステップS38に進む。
On the other hand, the temporary charging current value IY (t) is within the range of 5.0 times or less and 0.2 times or more of the average discharge current value IF after subtraction (0.2 × IF ≦ IY (t) ≦ 5.0 × IF). In step S36, the temporary charging current value IY (t) is determined as the charging current value IX (t) (IX (t) = IY (t)).
After step S36, the process proceeds to step S38.

他方、仮充電電流値IY(t)が差引後平均放電電流値IFの5.0倍よりも大きい(IY(t)>5.0×IF)場合、ステップS37に進み、5.0×IFを充電電流値IX(t)に決定する(IX(t)=5.0×IF)。
このステップS37の後、ステップS38に進む。
On the other hand, when the temporary charging current value IY (t) is larger than 5.0 times the average discharge current value IF after subtraction (IY (t)> 5.0 × IF), the process proceeds to step S37, where 5.0 × IF Is determined as a charging current value IX (t) (IX (t) = 5.0 × IF).
After step S37, the process proceeds to step S38.

かくして、ステップS35〜S37のいずれの場合でも、今回のサイクル時間TJの間、組電池110(電池1)に流れる充電電流値IX(t)を差引後平均放電電流値IFの0.2〜5.0倍の範囲内に収めることができる。   Thus, in any case of steps S35 to S37, during the current cycle time TJ, the charging current value IX (t) flowing through the assembled battery 110 (battery 1) is subtracted from 0.2 to 5 of the average discharge current value IF after subtraction. It can be within the range of .0 times.

ステップS38では、今回のサイクル時間TJの間、上述したステップS35、S36又はS37で決定した充電電流値IX(t)で、組電池110(電池1)に充電を行い、ステップS31に戻って、組電池110(電池1)の電圧V(t)を再度測定する。   In step S38, during the current cycle time TJ, the assembled battery 110 (battery 1) is charged with the charging current value IX (t) determined in step S35, S36 or S37 described above, and the process returns to step S31. The voltage V (t) of the assembled battery 110 (battery 1) is measured again.

また、ステップS39のCV充電の後には、前述の実施形態と同様、ステップS15を実行して、第3ルーチンR3を終了する。   Further, after the CV charging in step S39, step S15 is executed as in the above-described embodiment, and the third routine R3 is terminated.

なお、本変形形態では、ステップS13を実行するPHV制御装置220が取得手段に、ステップS35,S36,S37を実行するPHV制御装置220が決定手段に、それぞれ対応する。   In this modification, the PHV control device 220 that executes step S13 corresponds to an acquisition unit, and the PHV control device 220 that executes steps S35, S36, and S37 corresponds to a determination unit.

以上より、本変形形態にかかる外部充電システムCS2は、前回の外部充電以降、新たな外部充電を行うまでの期間TMについての差引後平均放電電流値IFを取得する取得手段(ステップS13を実行するPHV制御装置220)と、この差引後平均放電電流値IFに基づいて、電池1への新たな外部充電における充電条件(充電電流値IX(t))を決定する決定手段(ステップS35,S36,S37を実行するPHV制御装置220)とを備える。これにより、差引後平均放電電流値IFに基づき、車両100の使用時における電池1(組電池110)の使用状況に応じた外部充電における充電条件を適切に設定し、電池1(組電池110)を充電することができる。   As described above, the external charging system CS2 according to the present modification obtains the subtracted average discharge current value IF for the period TM from the previous external charging until the new external charging is performed (executes step S13). PHV control device 220) and determination means for determining a charging condition (charging current value IX (t)) in the new external charging of battery 1 based on this average discharge current value IF after subtraction (steps S35, S36, PHV control device 220) that executes S37. Thereby, based on the average discharge current value IF after subtraction, the charging condition in the external charging according to the usage state of the battery 1 (assembled battery 110) when the vehicle 100 is used is appropriately set, and the battery 1 (assembled battery 110). Can be charged.

また、外部充電システムCS2では、決定手段(ステップS35,S36,S37を実行するPHV制御装置220)は、電圧上昇期間TVにおける充電条件を、外部充電の充電電流値IX(t)が差引後平均放電電流値IFの0.2〜5.0倍の値の範囲内となる充電条件に決定する。このため、このシステムによれば、この範囲外である差引後平均放電電流値IFの0.2倍未満の値、或いは、5.0倍を超える値で充電を繰り返す電池に比して、電池抵抗の上昇を抑制することができる。   In the external charging system CS2, the determining means (PHV control device 220 that executes steps S35, S36, and S37) determines the charging conditions during the voltage rising period TV, and the average after the charging current value IX (t) of external charging is subtracted. The charging condition is determined to be in the range of 0.2 to 5.0 times the discharge current value IF. For this reason, according to this system, compared with a battery that repeats charging with a value less than 0.2 times the average discharge current value IF after subtraction, or a value more than 5.0 times, which is outside this range, the battery An increase in resistance can be suppressed.

以上において、本発明を実施形態及び変形形態に即して説明したが、本発明は上記実施形態等に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態では、電池1(組電池110)の外部充電の手法として、CP−CV充電を行うことを基本とした。しかし、例えば、一定の電流値で充電を行うCC充電や、電池の電圧(端子間電圧)が所定の電圧となるまで一定の電流値で充電した後、上述の所定の電圧を保ちつつ電流値を徐々に低下させて充電を行うCC−CV充電を行っても良い。この場合も、充電電流値IX(t)が(0.2×IF)〜(5.0×IF)の範囲内となるようにすれば良い。
なお、CC充電の具体例として、充電開始に先立って、仮充電電流値IZを設定し、この仮充電電流値IZが0.2×IF≦IZ≦5.0×IFのときには、そのままこの仮充電電流値IZを充電電流値IX(t)とする(IX(t)=IZ)。一方、IZ<0.2×IFのときには、IX(t)=0.2×IFとする。他方、IZ>5.0×IFのときには、IX(t)=5.0×IFとするものが挙げられる。
In the above, the present invention has been described with reference to the embodiments and modifications. However, the present invention is not limited to the above-described embodiments and the like, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof. Yes.
For example, in the embodiment, as a method of external charging of the battery 1 (the assembled battery 110), CP-CV charging is basically performed. However, for example, CC charging for charging at a constant current value, or after charging at a constant current value until the battery voltage (voltage between terminals) reaches a predetermined voltage, the current value is maintained while maintaining the above-mentioned predetermined voltage. Alternatively, CC-CV charging may be performed in which charging is performed by gradually decreasing the voltage. In this case as well, the charging current value IX (t) may be set within the range of (0.2 × IF) to (5.0 × IF).
As a specific example of CC charging, a temporary charging current value IZ is set prior to the start of charging. When this temporary charging current value IZ is 0.2 × IF ≦ IZ ≦ 5.0 × IF, The charging current value IZ is set as a charging current value IX (t) (IX (t) = IZ). On the other hand, when IZ <0.2 × IF, IX (t) = 0.2 × IF. On the other hand, when IZ> 5.0 × IF, there may be mentioned IX (t) = 5.0 × IF.

1 電池(二次電池)
100 車両
120,220 プラグインハイブリッド自動車制御装置(取得手段,決定手段)
130 電流センサ(電流検知装置)
140 コンバータ(充電装置)
150 エンジン(外部電源以外の電源)
181 フロントモータ(外部電源以外の電源)
182 リアモータ(外部電源以外の電源)
CS1,CS2 外部充電システム(二次電池の充電システム)
I 電流値
IC 平均充電電流値
ID 平均放電電流値
IF 差引後平均放電電流値
IX(t) 充電電流値(外部充電の電流値)
QC 総充電電気量
QD 総放電電気量
TC 総充電時間
TD 総放電時間
TM 期間
TV 電圧上昇期間(期間)
V(t) 電圧
VM 充電上限電圧
XV 外部電源
1 battery (secondary battery)
100 Vehicle 120, 220 Plug-in hybrid vehicle control device (acquisition means, determination means)
130 Current sensor (current detector)
140 Converter (charging device)
150 engine (power supply other than external power supply)
181 Front motor (Power supply other than external power supply)
182 Rear motor (power supply other than external power supply)
CS1, CS2 External charging system (charging system for secondary battery)
I Current value IC Average charging current value ID Average discharging current value IF Average subtracting discharge current value IX (t) Charging current value (current value of external charging)
QC Total charge electricity QD Total discharge electricity TC Total charge time TD Total discharge time TM Period TV Voltage rise period (period)
V (t) Voltage VM Charge upper limit voltage XV External power supply

Claims (2)

車両に搭載される二次電池の充電システムであって、
二次電池と、
上記二次電池を流れる電流の電流値を検知する電流検知装置と、
上記車両外の外部電源を用いて上記二次電池に外部充電を行う充電装置と、
前回の外部充電以降、新たな外部充電の開始までの期間において、
上記電流検知装置で得た上記期間内の各時点での上記電流値を用いて、
上記二次電池から放電させた総放電電気量をこの放電を行った総放電時間で除した平均放電電流値から、上記二次電池に上記外部電源以外の電源から充電した総充電電気量をこの充電を行った総充電時間で除した平均充電電流値を差し引いた、
上記期間についての差引後平均放電電流値を取得する取得手段と、
上記差引後平均放電電流値に基づいて、上記新たな外部充電における充電条件である外部充電の手法の使い分けまたは充電電流値を決定する決定手段と、を備える
二次電池の充電システム。
A charging system for a secondary battery mounted on a vehicle,
A secondary battery,
A current detection device for detecting a current value of a current flowing through the secondary battery;
A charging device for externally charging the secondary battery using an external power source outside the vehicle;
In the period from the last external charge to the start of a new external charge,
Using the current value at each time point in the period obtained by the current detection device,
From the average discharge current value obtained by dividing the total amount of discharged electricity discharged from the secondary battery by the total discharge time during which this discharge was performed, the total amount of charged electricity charged to the secondary battery from a power source other than the external power source is calculated as follows. Subtract the average charging current value divided by the total charging time when charging,
Acquisition means for acquiring an average discharge current value after subtraction for the period;
A charging system for a secondary battery, comprising: an external charging method that is a charging condition in the new external charging, or a determination unit that determines a charging current value based on the average discharge current value after subtraction.
請求項1に記載の二次電池の充電システムであって、
前記決定手段は、
前記新たな外部充電における充電条件のうち、前記外部充電により前記二次電池の電圧が上昇して充電上限電圧に達するまでの電圧上昇期間における充電条件を、上記外部充電の電流値が前記差引後平均放電電流値の0.2〜5.0倍の範囲内となる充電条件に決定する
二次電池の充電システム。
A rechargeable battery charging system according to claim 1,
The determining means includes
Among the charging conditions in the new external charging, the charging conditions in the voltage increase period from when the voltage of the secondary battery increases due to the external charging to reach the charging upper limit voltage, the current value of the external charging after the subtraction A charging system for a secondary battery, which is determined to have a charging condition within a range of 0.2 to 5.0 times the average discharge current value.
JP2011170412A 2011-08-03 2011-08-03 Secondary battery charging system Active JP5673422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011170412A JP5673422B2 (en) 2011-08-03 2011-08-03 Secondary battery charging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011170412A JP5673422B2 (en) 2011-08-03 2011-08-03 Secondary battery charging system

Publications (2)

Publication Number Publication Date
JP2013038832A JP2013038832A (en) 2013-02-21
JP5673422B2 true JP5673422B2 (en) 2015-02-18

Family

ID=47887921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011170412A Active JP5673422B2 (en) 2011-08-03 2011-08-03 Secondary battery charging system

Country Status (1)

Country Link
JP (1) JP5673422B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6024684B2 (en) * 2014-02-21 2016-11-16 トヨタ自動車株式会社 Power storage system
JP2015171180A (en) * 2014-03-05 2015-09-28 トヨタ自動車株式会社 vehicle
KR102082381B1 (en) 2016-11-24 2020-02-27 주식회사 엘지화학 Battery charge control algorithm

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304516A (en) * 2005-04-21 2006-11-02 Nissan Motor Co Ltd Device and method for controlling battery charge
JP2007252061A (en) * 2006-03-15 2007-09-27 Yamaha Motor Electronics Co Ltd Electric run drive device of vehicle, and charger for vehicle
JP2009060725A (en) * 2007-08-31 2009-03-19 Toyota Motor Corp Vehicle and vehicle control method
JP5353339B2 (en) * 2009-03-17 2013-11-27 トヨタ自動車株式会社 Battery system and hybrid vehicle

Also Published As

Publication number Publication date
JP2013038832A (en) 2013-02-21

Similar Documents

Publication Publication Date Title
JP5407893B2 (en) Secondary battery system and hybrid vehicle
US8907674B2 (en) System and method for determining degradation of rechargeable lithium ion battery
CN108819731B (en) Charge rate estimation method and vehicle-mounted battery system
US8390253B2 (en) Battery control system and vehicle
JP5862836B2 (en) Battery system
JP6500789B2 (en) Control system of secondary battery
JP2007323999A (en) Battery control device of automobile
JP5741348B2 (en) Secondary battery system and vehicle
JP2010218900A (en) Battery system and hybrid automobile
JP2010049882A (en) Vehicle
JPWO2012042585A1 (en) Battery control system
JP2008151745A (en) Residual capacity computing device for charge accumulating device
JP5737336B2 (en) Battery system, vehicle and battery-equipped equipment
JP2012104239A (en) Lithium ion battery electricity storage amount estimation method, lithium ion battery electricity storage amount estimation program, lithium ion battery electricity storage amount correction method, and lithium ion battery electricity storage amount correction program
JP2018155706A (en) Device for estimating degradation state of secondary battery, battery system having the same, and electric vehicle
CN104977538A (en) Battery control device
JP5673422B2 (en) Secondary battery charging system
JP5446461B2 (en) Secondary battery charging method and charging system, vehicle, and charging equipment
JP5737138B2 (en) Battery control device and battery control method
JP2012050281A (en) Battery charging system of electric vehicle
JP2010161856A (en) Charge controller for on-board battery charger
JP6699533B2 (en) Battery system
JP2018182866A (en) Battery system and electrical powered vehicle
JP6747333B2 (en) Secondary battery system
JP2010063279A (en) Method of charging secondary battery, secondary battery system and vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R151 Written notification of patent or utility model registration

Ref document number: 5673422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151