JP2018182866A - Battery system and electrical powered vehicle - Google Patents

Battery system and electrical powered vehicle Download PDF

Info

Publication number
JP2018182866A
JP2018182866A JP2017077770A JP2017077770A JP2018182866A JP 2018182866 A JP2018182866 A JP 2018182866A JP 2017077770 A JP2017077770 A JP 2017077770A JP 2017077770 A JP2017077770 A JP 2017077770A JP 2018182866 A JP2018182866 A JP 2018182866A
Authority
JP
Japan
Prior art keywords
charging
constant
battery
power
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017077770A
Other languages
Japanese (ja)
Inventor
雅大 井上
Masahiro Inoue
雅大 井上
英司 遠藤
Eiji Endo
英司 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2017077770A priority Critical patent/JP2018182866A/en
Publication of JP2018182866A publication Critical patent/JP2018182866A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

PROBLEM TO BE SOLVED: To provide a battery system and an electrical powered vehicle capable of improving charging efficiency and charging capacity.SOLUTION: A battery system includes: a secondary battery 210; an auxiliary power storage device 220; a control device that performs input/output control of the secondary battery and the auxiliary power storage device; a secondary battery charge/discharge control section for charging the secondary battery with constant current constant voltage charging or constant power constant voltage charging system; and an auxiliary storage charge/discharge control section for charging a surplus power, which is a difference between a predetermined electric power at the time of shifting to the constant voltage charging and a required power required for the constant voltage charging, when charging from constant current or constant power charging to constant voltage charging is performed during charging by the secondary battery charge/discharge control section.SELECTED DRAWING: Figure 2

Description

本発明は電池システム及び電動車両に関する。   The present invention relates to a battery system and an electric vehicle.

近年、電気自動車やプラグインハイブリッド自動車等の電動車両が多数実用化されている。電動車両に搭載されている駆動用のバッテリは、充電可能なリチウムイオン二次電池が用いられている。また、リチウムイオン二次電池は家庭用電源、各種AV機器、パソコン、携帯端末などの種々の分野で使用されている。   In recent years, a large number of electrically powered vehicles such as electric vehicles and plug-in hybrid vehicles have been put to practical use. A rechargeable lithium ion secondary battery is used as a drive battery mounted on an electric vehicle. Further, lithium ion secondary batteries are used in various fields such as home power supplies, various AV devices, personal computers, portable terminals and the like.

このような二次電池の充電方法として、定電流(定電力)充電をしたのち定電圧充電に切り替えて充電をする定電流(定電力)定電圧充電が知られている。また、このような充電方法において、できるだけ充電率を上げる工夫がなされており、例えば、電池の劣化に応じて閾値電圧を決定し、決定した閾値電圧を用いて定電圧充電をすることで、劣化をした場合であっても、目標電圧まで充電を可能にする提案がされている(例えば、特許文献1を参照)。   As such a secondary battery charging method, constant current (constant power) constant voltage charging is known in which constant current (constant power) charging is performed and then switching to constant voltage charging is performed. Moreover, in such a charging method, a device is devised to increase the charging rate as much as possible. For example, the threshold voltage is determined according to the deterioration of the battery, and the constant voltage charging is performed using the determined threshold voltage. It is proposed to enable charging up to a target voltage even in the case of (1) (see, for example, Patent Document 1).

しかしながら、二次電池を定電流(定電力)定電圧充電する場合、特に、劣化時、低温時、又は大電流通電時などにおいては定電圧充電に費やす時間が充電時間の大きな割合を占め、全体として時間がかかるという問題がある。   However, when the secondary battery is charged with constant current (constant power) constant voltage, the time spent for constant voltage charging occupies a large proportion of the charging time, especially at the time of deterioration, low temperature, or large current conduction. There is a problem that it takes time.

一方で充電容量をできるだけ大きくしたいという要望があるが、充電容量が大きくなれば、充電時間はそれだけ増大する。そこで、充放電可能な主電池と、主電池に充電可能に接続した補助電池とを備えた車両が提案されている(例えば、特許文献2参照)。これは、主電池の残量が所定値以下となった場合には、補助電池から主電池へ充電するようにしたものである。   On the other hand, there is a demand for increasing the charge capacity as much as possible, but if the charge capacity is increased, the charge time will be increased accordingly. Therefore, a vehicle provided with a chargeable / dischargeable main battery and an auxiliary battery connected to the main battery in a chargeable manner has been proposed (see, for example, Patent Document 2). This is designed to charge the main battery from the auxiliary battery when the remaining amount of the main battery becomes less than a predetermined value.

国際公開第2012/043744号International Publication No. 2012/043744 特開2015−106983号公報JP, 2015-106983, A

上述した補助電池は、充電容量の拡大という一面もあるが、上述した技術では、主電池と補助電池とを並列にしてそれぞれ充電するか、又は、直列に接続して一方から他方に充電するなどの方法がとられるだけであり、充電時間の短縮を図るという工夫をしたものではない。   The above-mentioned auxiliary battery has one aspect of expanding the charge capacity, but in the above-mentioned technology, the main battery and the auxiliary battery are charged in parallel and respectively charged, or connected in series and charged from one to the other, etc. However, the method is not designed to shorten the charging time.

そこで、本発明は、上記従来技術の問題点を解決することにあり、充電効率、充電容量の向上を図ることができる電池システム及び電動車両を提供することを課題とする。   Then, this invention solves the problem of the said prior art, and makes it a subject to provide the battery system and electric vehicle which can aim at improvement of charge efficiency and charge capacity.

前記課題を解決する本発明は、二次電池と、補助蓄電装置と、前記二次電池及び前記補助蓄電装置の入出力制御を行う制御装置と、前記二次電池に対して定電流定電圧充電又は定電力定電圧充電方式で充電を行う二次電池充放電制御部と、前記二次電池充放電制御部による充電中に定電流又は定電力充電から定電圧充電に移行した際に、前記定電圧充電に移行した時点の所定電力と、前記定電圧充電に必要な必要電力との差である余剰電力を前記補助蓄電装置に蓄電する補助蓄電充放電制御部と、を具備することを特徴とする電池システムにある。   The present invention for solving the above problems is a secondary battery, an auxiliary power storage device, a control device for performing input / output control of the secondary battery and the auxiliary power storage device, constant current constant voltage charging of the secondary battery Or the secondary battery charge / discharge control unit performing charging in a constant power constant voltage charge system, and the constant current or constant power charge transition to constant voltage charge during charging by the secondary battery charge / discharge control unit; The auxiliary charge / discharge control unit is configured to store surplus power, which is a difference between a predetermined power at the time of shifting to voltage charging and a necessary power necessary for the constant voltage charging, in the auxiliary power storage device. Battery system.

かかる本発明では、定電流定電圧充電又は定電力定電圧充電における定電圧充電時の余剰電力を補助蓄電装置に蓄電できるので、充電時間を変更することなく、充電容量の向上を図ることができる。   In the present invention, since the surplus power during constant voltage charging in constant current constant voltage charging or constant power constant voltage charging can be stored in the auxiliary power storage device, charging capacity can be improved without changing the charging time. .

ここで、前記補助蓄電装置は、キャパシタであることが好ましい。これによれば、比較的簡便に補助蓄電装置を設けることができ、蓄電した電力を種々の用途に用いることができる。   Here, the auxiliary power storage device is preferably a capacitor. According to this, the auxiliary power storage device can be provided relatively easily, and the stored power can be used for various applications.

また、本発明の他の態様は、上記態様の電池システムを具備することを特徴とする電動車両にある。これによれば、定電流定電圧充電又は定電力定電圧充電における定電圧充電時の余剰電力を補助蓄電装置に蓄電できるので、充電時間を変更することなく、充電容量の向上を図ることができる電動車両が実現できる。   Another aspect of the present invention is an electric vehicle including the battery system of the above aspect. According to this, since the surplus power during constant voltage charging in constant current constant voltage charging or constant power constant voltage charging can be stored in the auxiliary power storage device, the charging capacity can be improved without changing the charging time. An electric vehicle can be realized.

本発明の電池システムによれば、二次電池充放電制御部による充電中に定電流又は定電力充電から定電圧充電に移行した際に、定電圧充電に移行した時点の所定電力と、前記定電圧充電に必要な必要電力との差である余剰電力を補助蓄電装置に蓄電する補助蓄電充放電制御部を具備するので、定電流定電圧充電又は定電力定電圧充電における定電圧充電時の余剰電力を補助蓄電装置に蓄電でき、充電時間を変更することなく、充電容量の向上を図ることができるという優れた効果を奏する。   According to the battery system of the present invention, when transitioning from constant current or constant power charging to constant voltage charging during charging by the secondary battery charge / discharge control unit, the predetermined power at the point of transition to constant voltage charging, and Since the auxiliary storage charge / discharge control unit stores in the auxiliary storage device the surplus power which is the difference between the required power required for voltage charging and the auxiliary power storage device, surplus during constant voltage charging in constant current constant voltage charging or constant power constant voltage charging The power can be stored in the auxiliary power storage device, and the charge capacity can be improved without changing the charging time.

本実施形態にかかる制御装置を有するPHEVの構成を示す模式図である。It is a schematic diagram which shows the structure of PHEV which has a control apparatus concerning this embodiment. 本実施形態にかかる二次電池の劣化状態推定装置を含む制御部の構成を示すブロック図である。It is a block diagram showing composition of a control part containing a degradation state estimating device of a rechargeable battery concerning this embodiment. 定電力定電圧での低充電時の電力及び電力量と時間との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between electric power and electric energy at the time of low charge in constant power constant voltage, and time. 本実施形態の充電中の簡易イメージ図である。It is a simple image figure during charge of this embodiment. 本実施形態にかかるマップを説明するためのグラフである。It is a graph for demonstrating the map concerning this embodiment. 本実施形態にかかるマップを説明するためのグラフである。It is a graph for demonstrating the map concerning this embodiment. 本実施形態にかかる二次電池の劣化状態推定装置による劣化状態の推定のフローの一例を示す図である。It is a figure which shows an example of the flow of estimation of the degradation state by the degradation state estimation apparatus of the secondary battery concerning this embodiment.

以下、本発明の一実施形態について図面を参照して詳細に説明する。なお以下の実施形態は、二次電池及びその管理装置を車両に搭載した例について説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In the following embodiments, an example in which a secondary battery and its management device are mounted on a vehicle will be described.

まず、二次電池が搭載された車両の一例について説明する。図1に示すように、本実施形態に係る車両1は、電動車両の一種であるプラグインハイブリッド電気自動車(PHEV)であり、エンジン2の他、二次電池である駆動用バッテリ3及び補助蓄電装置10を備えている。駆動用バッテリ3は、複数のバッテリーセルが直並列に接続されてなるバッテリユニットであり、各バッテリーセルは、例えば、リチウムイオン二次電池からなる。また、補助蓄電装置10は、リチウムイオン二次電池、鉛蓄電池などの二次電池、キャパシタなどである。キャパシタは、静電容量により電荷(電気エネルギー)を蓄えたり、放 出したりする装置のことであり、具体的には、プラスチックフィルムコンデンサ、セラミックコンデンサ、マイカコンデンサ、電解コンデンサ、電気二重層コンデンサ、可変コンデンサ、紙コンデンサ、オイルコンデンサ、真空コンデンサ、ガス封入コンデンサ等を例示することができるが、必ずしもこれらに限定されることはない。   First, an example of a vehicle equipped with a secondary battery will be described. As shown in FIG. 1, a vehicle 1 according to the present embodiment is a plug-in hybrid electric vehicle (PHEV), which is a type of electric vehicle, and in addition to an engine 2, a drive battery 3 and auxiliary storage, which are secondary batteries. An apparatus 10 is provided. The driving battery 3 is a battery unit in which a plurality of battery cells are connected in series and in parallel, and each battery cell is made of, for example, a lithium ion secondary battery. The auxiliary power storage device 10 is a lithium ion secondary battery, a secondary battery such as a lead storage battery, a capacitor, or the like. A capacitor is a device that stores or releases charge (electrical energy) by electrostatic capacity. Specifically, a plastic film capacitor, a ceramic capacitor, a mica capacitor, an electrolytic capacitor, an electric double layer capacitor, a variable Although a condenser, a paper condenser, an oil condenser, a vacuum condenser, a gas-filled condenser etc. can be illustrated, it is not necessarily limited to these.

なお、補助蓄電装置10は、駆動用バッテリ3と並列に接続して、駆動用バッテリ3と同様に使用するほか、駆動用バッテリ3が故障して電力供給ができない場合や一時的に電圧が低下した場合などの緊急時に使用するようにしてもよく、用途は特に限定されるものではない。   The auxiliary power storage device 10 is connected in parallel to the drive battery 3 and used in the same manner as the drive battery 3. In addition, when the drive battery 3 breaks down and power can not be supplied, the voltage drops temporarily. It may be used at the time of emergency such as when it is used, and the application is not particularly limited.

この駆動用バッテリ3及び補助蓄電装置10は、後述する制御部100を含むコントロールユニット4を介して走行用モータ5及びジェネレータ6に電気的に接続されている。走行用モータ5及びジェネレータ6は、図示は省略するが駆動伝達機構を介して駆動輪7に連結されている。   The driving battery 3 and the auxiliary power storage device 10 are electrically connected to the traveling motor 5 and the generator 6 via a control unit 4 including a control unit 100 described later. The traveling motor 5 and the generator 6 are connected to the drive wheel 7 via a drive transmission mechanism, although not shown.

そして、PHEV1は、例えば、駆動用バッテリ3からの電力供給により動作する走行用モータ5の駆動力によって走行するEV走行モード、駆動用バッテリ3とエンジン2によって駆動されるジェネレータ6で発電される電力によって動作する走行用モータ5の駆動力によって走行するシリーズ走行モード、エンジン2の駆動力で走行するパラレル走行モードなどの走行モードを有している。   The PHEV 1 is, for example, an EV travel mode that travels by the driving force of the traveling motor 5 operated by the power supply from the driving battery 3, and the electric power generated by the generator 6 driven by the driving battery 3 and the engine 2 There is a traveling mode such as a series traveling mode in which the vehicle travels by the driving force of the traveling motor 5 operated by the above, and a parallel traveling mode in which the vehicle travels with the driving force of the engine 2.

本実施形態におけるPHEV1では、駆動用バッテリ3及び補助蓄電装置10に蓄えられた電力は、コントロールユニット4のインバータ8で直流から交流に変換されて走行用モータ5に流入し、これにより走行用モータ5が駆動される(放電)。また、PHEV1の減速時の回生発電電力は、コントロールユニット4のインバータ8で交流から直流に変換されて駆動用バッテリ3に流入し、駆動用バッテリ3に充電される。さらに、コントロールユニット4には、車載充電器(OBC)9が搭載され、車載充電器9は、図示しない外部充電装置からの電力により駆動用バッテリ3及び補助蓄電装置10に充電を行う。   In the PHEV 1 in the present embodiment, the electric power stored in the driving battery 3 and the auxiliary power storage device 10 is converted from direct current to alternating current by the inverter 8 of the control unit 4 and flows into the traveling motor 5. 5 is driven (discharge). Further, regenerative power generated during deceleration of the PHEV 1 is converted from alternating current to direct current by the inverter 8 of the control unit 4 and flows into the driving battery 3 to charge the driving battery 3. Furthermore, an on-vehicle charger (OBC) 9 is mounted on the control unit 4, and the on-vehicle charger 9 charges the driving battery 3 and the auxiliary power storage device 10 with power from an external charging device (not shown).

さらに、本実施形態にかかるPHEV1のコントロールユニット4には、制御部100が設けられている。なお、主として、駆動用バッテリ3、車載充電器9及び制御部100により、電池システムを構成している。なお、本実施形態では、PHEV1を例示したが、電気自動車(EV)であってもよいことはいうまでもない。   Furthermore, a control unit 100 is provided in the control unit 4 of the PHEV 1 according to the present embodiment. A battery system is mainly configured by the driving battery 3, the on-vehicle charger 9, and the control unit 100. In addition, although PHEV1 was illustrated in this embodiment, it can not be overemphasized that an electric vehicle (EV) may be sufficient.

ここで、本発明の劣化状態推定装置を含む電池システムの一例を図2に示す。なお、以下、電動車両に搭載した場合を例として説明するが、電動車両以外の用途であっても同様である。   Here, an example of a battery system including the degradation state estimation device of the present invention is shown in FIG. Although the case where it mounts in an electric vehicle is explained to an example below, it is the same, even if it is applications other than an electric vehicle.

電池システム101は、駆動用バッテリ3を一例とする組電池210と、補助蓄電装置220と、車載充電器9を一例とする充放電制御部230と、制御部100とを具備する。   The battery system 101 includes a battery pack 210 whose drive battery 3 is an example, an auxiliary power storage device 220, a charge / discharge control unit 230 whose example is an on-vehicle charger 9, and a control unit 100.

ここで、制御部100は、図2に示すように、組電池210及び補助蓄電装置220の充電率等の充電状態を検出する充電状態検出部110と、充放電制御部230を介しての組電池210及び補助蓄電装置220の充電制御などを行う電池管理ユニット(BMU)120とを具備する。   Here, as shown in FIG. 2, control unit 100 includes charge state detection unit 110 for detecting a charge state such as a charge rate of assembled battery 210 and auxiliary power storage device 220, and a set via charge / discharge control unit 230. The battery management unit (BMU) 120 performs charge control of the battery 210 and the auxiliary power storage device 220, and the like.

充電状態検出部110は、本実施形態では、組電池210及び補助蓄電装置220の充放電制御部230による充放電中の電流及び電圧を検出する電流電圧検出部111と、組電池210及び補助蓄電装置220の温度を検出する電池温度検出部112と、組電池210及び補助蓄電装置220の充電率(SOC:State of charge)を検出するSOC検出部113と、を備えている。なお、SOC検出部113は、組電池210及び補助蓄電装置220の電圧を検出する電圧検出手段に単純に置き換えてもよい。   In this embodiment, the charge state detection unit 110 detects a current and a voltage during charging and discharging by the charge and discharge control unit 230 of the assembled battery 210 and the auxiliary power storage device 220, and the assembled battery 210 and the auxiliary storage. A battery temperature detection unit 112 that detects the temperature of the device 220, and an SOC detection unit 113 that detects a state of charge (SOC) of the battery pack 210 and the auxiliary power storage device 220 are provided. SOC detection unit 113 may be simply replaced with a voltage detection unit that detects the voltage of assembled battery 210 and auxiliary power storage device 220.

電池管理ユニット120は、充電状態検出部110により検出された組電池210及び補助蓄電装置220の温度やSOCなどや、別途格納されている劣化率(SOH:State of health)などに基づいて、充電する際の電流や電圧及び充電終了条件を制御する。   Battery management unit 120 charges based on the temperature, SOC, etc. of battery assembly 210 and auxiliary power storage device 220 detected by charge state detection unit 110, the degradation rate (SOH: State of health) stored separately, etc. Control the current, voltage, and charge termination conditions.

充放電制御部230は、組電池210及び補助蓄電装置220の充放電を制御するが、組電池充放電制御部231と、補助蓄電装置充放電制御部232とを具備する。   The charge and discharge control unit 230 controls charge and discharge of the battery pack 210 and the auxiliary power storage device 220, and includes a battery pack charge and discharge control unit 231 and an auxiliary power storage device charge and discharge control unit 232.

組電池充放電制御部231による組電池210への充電は、規定電力(または規定電流)で規定電圧まで充電する定電力(CP)(または定電流(CC))充電後、規定電圧を維持するように電力(または電流)を低下させていく定電圧(CV))充電が行われる。これを定電力(または定電流)定電圧充電、あるいはCP(またはCC)CV充電という。なお、定電流(または定電力)充電から定電圧充電への移行は、組電池210の仕様上の上限電圧に到達した時点で行われる。   The charging of the battery pack 210 by the battery pack charge / discharge control unit 231 maintains the specified voltage after constant power (CP) (or constant current (CC)) charging that charges to the specified voltage with the specified power (or specified current). Thus, constant voltage (CV) charging is performed to lower the power (or current). This is called constant power (or constant current) constant voltage charging, or CP (or CC) CV charging. The transition from constant current (or constant power) charging to constant voltage charging is performed when the upper limit voltage on the specification of the battery pack 210 is reached.

ここで、定電流又は定電力充電の間は、充電設備からの最大電流又は最大電力により充電されることになるが、定電圧充電に移行すると、電流又は電力が低下する。すなわち、定電圧充電に移行した時点の所定電力と、定電圧充電に必要な必要電力との差が余剰電力となる。   Here, during constant current or constant power charging, charging is performed with the maximum current or maximum power from the charging facility, but when constant voltage charging is shifted, the current or power decreases. That is, the difference between the predetermined power at the time of transition to constant voltage charging and the required power required for constant voltage charging is surplus power.

補助蓄電装置充放電制御部232は、組電池充放電制御部231による組電池210への充電が定電圧充電に移行した際に、上記余剰電力を使用して補助蓄電装置220の充電を行うように制御する。   The auxiliary power storage device charge / discharge control unit 232 charges the auxiliary power storage device 220 using the surplus power when charging of the battery pack 210 by the battery pack charge / discharge control unit 231 shifts to constant voltage charging. Control.

以上説明した組電池充放電制御部231による組電池210への充電と、補助蓄電装置充放電制御部232による補助蓄電装置220への充電とを概念的に図示したのが図3である。   FIG. 3 conceptually illustrates charging of the battery pack 210 by the battery pack charge / discharge control unit 231 and charging of the auxiliary power storage device 220 by the auxiliary power storage device charge / discharge control unit 232 described above.

図3は、組電池充放電制御部231による組電池210への定電力定電圧充電を模式的に示しており、定電力充電時(CP)には、電力が一定で、充電された電力量が一定割合で上昇する。そして、電圧が上限電圧に達した時点で、定電圧充電(CV)に移行し、この期間では電力が大きく低下する。ここで、定電圧に移行した際の所定電力はP0であり、これ以降の電力はP1(t)で表される曲線に沿って低下し、定電圧充電により組電池210に充電された電力量は曲線P1(t)の下側の領域W1で表される。この期間においては、組電池充放電制御部231は、外部電源の供給電力はP0のうち、P1(t)を組電池210に供給することになる。   FIG. 3 schematically shows constant-power constant-voltage charging of the assembled battery 210 by the assembled battery charge / discharge control unit 231, and at the time of constant-power charging (CP), the amount of charged electric power is constant. Rises at a constant rate. Then, when the voltage reaches the upper limit voltage, it shifts to constant voltage charging (CV), and in this period, the power is greatly reduced. Here, the predetermined power at the time of transition to the constant voltage is P0, and the subsequent power decreases along the curve represented by P1 (t), and the amount of power charged in the assembled battery 210 by constant voltage charging Is represented by the area W1 under the curve P1 (t). In this period, the assembled battery charge / discharge control unit 231 supplies the assembled battery 210 with P1 (t) of the power supplied from the external power supply among P0.

一方、補助蓄電装置充放電制御部232は、所定電力P0からP1(t)を引いた余剰電力P2(t)(=P0−P1(t))を補助蓄電装置220へ供給し、充電する。そして、この期間に補助蓄電装置220へ充電される電力量は曲線P1(t)の上側の領域W2で表される。   On the other hand, auxiliary power storage device charge / discharge control unit 232 supplies surplus power P2 (t) (= P0−P1 (t)) obtained by subtracting P1 (t) from predetermined power P0 to auxiliary power storage device 220 for charging. The amount of power charged to auxiliary storage device 220 during this period is represented by region W2 on the upper side of curve P1 (t).

図3の例の場合、定電圧充電期間において組電池210へ充電された電力量W1は7Whであり、補助蓄電装置220へ充電された電力量W2は11Whとなる。
すなわち、本実施形態では、充電時間を変更することなく、W2=11Whが補助蓄電装置220に充電されたことになる。
In the case of the example of FIG. 3, the electric energy W1 charged to the assembled battery 210 in the constant voltage charging period is 7 Wh, and the electric energy W2 charged to the auxiliary power storage device 220 is 11 Wh.
That is, in the present embodiment, W2 = 11 Wh is charged in the auxiliary power storage device 220 without changing the charging time.

図4は、組電池充放電制御部231による組電池210への定電力定電圧充電と、補助蓄電装置充放電制御部232による補助蓄電装置220への充電とを別に模式的に示したものである。
メインバッテリである組電池210に対しての定電流(定電力)定電圧充電は通常の充電であるが、補助蓄電装置220への充電は、組電池210への充電が定電圧充電に移行した時点以降行われる。
FIG. 4 is a schematic diagram separately showing constant-power constant-voltage charging of the battery pack 210 by the battery pack charge / discharge control unit 231 and charging of the auxiliary power storage device 220 by the auxiliary power storage device charge / discharge control unit 232. is there.
The constant current (constant power) constant voltage charging of the assembled battery 210 which is the main battery is a normal charging, but the charging of the auxiliary power storage device 220 is shifted to the constant voltage charging of the charging of the assembled battery 210 It takes place after the point.

図5には、新品の組電池210への0℃における定電力定電圧充電のグラフの一例を示す。また、図6には、劣化した組電池210への25℃における定電力定電圧充電のグラフを示す。何れの場合にも、組電池210への定電圧充電期間に、補助蓄電装置220への充電が効率的に行われ、定電圧充電期間における組電池210への充電容量(電力量)W1より、補助蓄電装置220への充電容量(電力量)W2の方が大きいことがわかった。   FIG. 5 shows an example of a graph of constant power constant voltage charging at 0 ° C. to a new assembled battery 210. Further, FIG. 6 shows a graph of constant power constant voltage charging of the deteriorated battery pack 210 at 25 ° C. In any case, the auxiliary storage device 220 is efficiently charged during the constant voltage charging period for the assembled battery 210, and according to the charging capacity (electric energy) W1 for the assembled battery 210 during the constant voltage charging period, It was found that the charge capacity (electric energy) W2 to the auxiliary power storage device 220 is larger.

図7には、具体的な実施形態のフローの一例を示し、劣化状態の推定を行う手順を説明する。
図7に示すように、まず、組電池充放電制御部231により定電流(定電力)定電圧充電が開始すると(ステップS1)、時間、温度、電流、電圧の取得を開始する。これは上述したように、電流電圧検出部111及び電池温度検出部112が実施する(ステップS2)。
FIG. 7 shows an example of the flow of the specific embodiment, and the procedure for estimating the deterioration state will be described.
As shown in FIG. 7, first, when constant current (constant power) constant voltage charging is started by the assembled battery charge / discharge control unit 231 (step S1), acquisition of time, temperature, current, and voltage is started. As described above, this is performed by the current / voltage detection unit 111 and the battery temperature detection unit 112 (step S2).

ここで、電池の仕様上の上限電圧に達すると(ステップS3)、定電流(定電力)充電を終了し、定電圧充電を開始する(ステップS4)。
そして、組電池210への定電圧充電開始から、平行して、補助蓄電装置充放電制御部232により、補助蓄電装置220への充電が開始される(ステップS5)。
その後、組電池210の充電は、充電終了条件に到達すると(ステップS6)、定電圧充電を終了するが、同時に補助蓄電装置への充電も終了する(ステップS7)。
Here, when the upper limit voltage on the specifications of the battery is reached (step S3), the constant current (constant power) charging is ended, and the constant voltage charging is started (step S4).
Then, in parallel with the start of constant-voltage charging of the assembled battery 210, charging of the auxiliary power storage device 220 is started by the auxiliary power storage device charge / discharge control unit 232 (step S5).
Thereafter, when charging of the assembled battery 210 reaches the charging end condition (step S6), constant voltage charging is ended, but at the same time charging to the auxiliary power storage device is also ended (step S7).

このように本発明によると、二次電池への通常の定電流(定電力)定電圧充電を行う際に、定電圧充電期間中に余剰電力を補助蓄電装置に充電するので、充電時間を追加することなく、補助蓄電装置220への充電を行うことができ、余剰の劣化状態検出部20により求められた劣化状態(SOH)は、電力管理を正確に且つ適正に行うことにより、動作時間を最大限に延ばしたり、さらなる劣化を抑えたりするに当たって重要である。また、特に、電気自動車では、走行可能距離の算出や、車両の要求に応じた電力の入出力制御を行うため、二次電池の残存容量を算出しているが、この際に劣化状態が参照される。   As described above, according to the present invention, when performing normal constant current (constant power) constant voltage charging to a secondary battery, since surplus power is charged to the auxiliary power storage device during the constant voltage charging period, charging time is added. The auxiliary power storage device 220 can be charged without causing a problem, and the deterioration state (SOH) obtained by the surplus deterioration state detection unit 20 can be operated with appropriate power management. It is important to maximize the length and reduce further deterioration. In addition, in particular, in the electric vehicle, the remaining capacity of the secondary battery is calculated in order to perform the calculation of the travelable distance and the input / output control of the power according to the demand of the vehicle. Be done.

1 PHEV(車両)
2 エンジン
3 駆動用バッテリ
4 コントロールユニット
5 走行用モータ
6 ジェネレータ
8 インバータ
9 車載充電器
10 補助蓄電装置
100 制御部
101 電池システム
110 充電状態検出部
120 電池管理ユニット(BMU)
210 組電池
220 補助蓄電装置
230 充放電制御部
231 組電池充放電制御部
232 補助蓄電装置充放電制御部
1 PHEV (vehicle)
2 engine 3 drive battery 4 control unit 5 drive motor 6 generator 8 inverter 9 vehicle charger 10 auxiliary power storage device 100 control unit 101 battery system 110 charge state detection unit 120 battery management unit (BMU)
210 Battery pack 220 auxiliary power storage device 230 charge / discharge control unit 231 battery pack charge / discharge control unit 232 auxiliary power storage device charge / discharge control unit

Claims (3)

二次電池と、
補助蓄電装置と、
前記二次電池及び前記補助蓄電装置の入出力制御を行う制御装置と、
前記二次電池に対して定電流定電圧充電又は定電力定電圧充電方式で充電を行う二次電池充放電制御部と、前記二次電池充放電制御部による充電中に定電流又は定電力充電から定電圧充電に移行した際に、前記定電圧充電に移行した時点の所定電力と、前記定電圧充電に必要な必要電力との差である余剰電力を前記補助蓄電装置に蓄電する補助蓄電充放電制御部と、を具備することを特徴とする電池システム。
With a secondary battery,
An auxiliary power storage device,
A control device that performs input / output control of the secondary battery and the auxiliary power storage device;
A secondary battery charge / discharge control unit for charging the secondary battery by constant current constant voltage charging or constant power constant voltage charging method, and constant current or constant power charging during charging by the secondary battery charge / discharge control unit The auxiliary storage device stores the surplus power, which is the difference between the predetermined power at the time of transition to the constant voltage charge and the necessary power required for the constant voltage charge, when transitioning from constant voltage charge to constant voltage charge. A battery system comprising: a discharge control unit.
前記補助蓄電装置は、キャパシタである、ことを特徴とする請求項1記載の電池システム。   The battery system according to claim 1, wherein the auxiliary power storage device is a capacitor. 請求項1又は2に記載の電池システムを具備することを特徴とする電動車両。   An electric vehicle comprising the battery system according to claim 1.
JP2017077770A 2017-04-10 2017-04-10 Battery system and electrical powered vehicle Pending JP2018182866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017077770A JP2018182866A (en) 2017-04-10 2017-04-10 Battery system and electrical powered vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017077770A JP2018182866A (en) 2017-04-10 2017-04-10 Battery system and electrical powered vehicle

Publications (1)

Publication Number Publication Date
JP2018182866A true JP2018182866A (en) 2018-11-15

Family

ID=64277096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017077770A Pending JP2018182866A (en) 2017-04-10 2017-04-10 Battery system and electrical powered vehicle

Country Status (1)

Country Link
JP (1) JP2018182866A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111261962A (en) * 2018-12-03 2020-06-09 新奥科技发展有限公司 Operation and maintenance method of power type lithium iron phosphate battery
CN114744713A (en) * 2022-04-12 2022-07-12 深圳市华宝新能源股份有限公司 Charging method, device, equipment and medium of energy storage power supply

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111261962A (en) * 2018-12-03 2020-06-09 新奥科技发展有限公司 Operation and maintenance method of power type lithium iron phosphate battery
CN114744713A (en) * 2022-04-12 2022-07-12 深圳市华宝新能源股份有限公司 Charging method, device, equipment and medium of energy storage power supply
CN114744713B (en) * 2022-04-12 2023-08-22 深圳市华宝新能源股份有限公司 Charging method, device, equipment and medium of energy storage power supply

Similar Documents

Publication Publication Date Title
JP5570782B2 (en) POWER SUPPLY DEVICE, VEHICLE EQUIPPED WITH THE SAME, AND CHARGING / DISCHARGE CONTROL METHOD FOR POWER SUPPLY DEVICE
JP4544273B2 (en) VEHICLE POWER SUPPLY DEVICE AND CHARGING STATE ESTIMATION METHOD FOR POWER STORAGE DEVICE IN VEHICLE POWER SUPPLY DEVICE
JP4400414B2 (en) Power supply device and vehicle equipped with the same
US10252623B2 (en) Charge/discharge system
JP5939496B2 (en) Battery control apparatus and method {Batterymanagementapparatusandmethod}
US10315522B2 (en) Charge/discharge system
CN203984052U (en) AC-battery power source
US9834100B2 (en) Charge/discharge system
JP2016126887A (en) Power storage device deterioration estimating device, power storage device deterioration estimating method and mobile
JP2018155706A (en) Device for estimating degradation state of secondary battery, battery system having the same, and electric vehicle
KR101572178B1 (en) Voltage balancing apparatus and method of secondary battery cells
US20170373511A1 (en) Apparatus and method of balancing voltages between battery racks
US10576835B2 (en) Energy storage device, transport apparatus, and control method
KR101567557B1 (en) Voltage balancing apparatus and method of secondary battery cells
CN107005077B (en) Power control device and power control system
JP2018107922A (en) Controller of battery for vehicle
JP2018182866A (en) Battery system and electrical powered vehicle
JP6879136B2 (en) Charge / discharge control device for secondary batteries
JP2018179684A (en) Device for estimating degradation state of secondary battery and cell system and electric vehicle having the same
CN111092463B (en) Secondary battery system and method for controlling charging of secondary battery
JP6229674B2 (en) Secondary battery control device
JP5783051B2 (en) Secondary battery and secondary battery remaining capacity calculation device
JP5673422B2 (en) Secondary battery charging system
Degaa et al. Sizing of hybrid source battery/supercapacitor for automotive applications
JP6186845B2 (en) Auxiliary battery system