JP5783051B2 - Secondary battery and secondary battery remaining capacity calculation device - Google Patents

Secondary battery and secondary battery remaining capacity calculation device Download PDF

Info

Publication number
JP5783051B2
JP5783051B2 JP2012001981A JP2012001981A JP5783051B2 JP 5783051 B2 JP5783051 B2 JP 5783051B2 JP 2012001981 A JP2012001981 A JP 2012001981A JP 2012001981 A JP2012001981 A JP 2012001981A JP 5783051 B2 JP5783051 B2 JP 5783051B2
Authority
JP
Japan
Prior art keywords
battery
capacity
secondary battery
battery cell
remaining capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012001981A
Other languages
Japanese (ja)
Other versions
JP2013142568A (en
Inventor
賢和 草野
賢和 草野
粟野 直実
直実 粟野
山田 学
学 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012001981A priority Critical patent/JP5783051B2/en
Publication of JP2013142568A publication Critical patent/JP2013142568A/en
Application granted granted Critical
Publication of JP5783051B2 publication Critical patent/JP5783051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

本発明は、例えば車両に搭載されて走行駆動源として機能する二次電池、および二次電池の残存容量を算出する装置に関する。   The present invention relates to a secondary battery that is mounted on, for example, a vehicle and functions as a driving source, and an apparatus that calculates the remaining capacity of the secondary battery.

二次電池の残容量(SOC:state of charge)が適正範囲を超えて少なくなる過放電や、適正範囲を超えて多くなる過充電の状態に陥ると、二次電池の劣化が促進されてしまう。そのため、SOCが適正範囲内となるように充放電制御することが必要であり、そのためには、SOCを高精度で算出する必要がある。そして、充放電していない時の二次電池の端子電圧とSOCとは相関(図2(a)中の特性線Lm参照)があるため、二次電池の電圧を検出し、その検出値からSOCを算出することができる。   Degradation of the secondary battery will be promoted if it falls into an overdischarge state where the remaining capacity (SOC: state of charge) of the secondary battery decreases beyond the appropriate range, or an overcharge state that increases beyond the appropriate range. . Therefore, it is necessary to perform charge / discharge control so that the SOC is within an appropriate range. For that purpose, it is necessary to calculate the SOC with high accuracy. Then, since there is a correlation between the terminal voltage of the secondary battery when not charging / discharging and the SOC (see the characteristic line Lm in FIG. 2A), the voltage of the secondary battery is detected, and the detected value is The SOC can be calculated.

ところで、上述した過充電の状態に陥ると、二次電池が異常発熱して熱損傷することが懸念される。この懸念に対し、例えば、オリビン構造を有するリチウム金属リン酸塩が正極に含まれたリチウム電池等、近年では熱損傷に有利な二次電池が開発されてきている(特許文献1、2参照)。   By the way, when falling into the above-described overcharge state, there is a concern that the secondary battery may generate abnormal heat and be thermally damaged. In response to this concern, for example, secondary batteries that are advantageous against thermal damage have been developed in recent years, such as lithium batteries in which a lithium metal phosphate having an olivine structure is included in the positive electrode (see Patent Documents 1 and 2). .

但し、このように熱損傷に有利な二次電池は、SOCの適正範囲において、SOCの変化に対する電圧の変化が小さい。上述した特性線Lmの例で言うと、適正範囲内(m1<SOC<m3)の傾きは、適正範囲外の傾きに比べて小さい。そのため、適正範囲において電圧検出値からSOCを算出するにあたり、SOCを高精度で算出できないとの問題が生じる。   However, the secondary battery advantageous for heat damage in this manner has a small change in voltage with respect to the change in SOC within the appropriate range of SOC. In the example of the characteristic line Lm described above, the inclination within the appropriate range (m1 <SOC <m3) is smaller than the inclination outside the appropriate range. Therefore, when calculating the SOC from the voltage detection value in the appropriate range, there arises a problem that the SOC cannot be calculated with high accuracy.

この問題に対し、特許文献2では、複数の主要電池セルを直列接続して二次電池を構成するにあたり、電圧検出用の電池セル(検出電池セル)を1つだけ、複数の主要電池セルに直列接続している。そして、主要電池セルの電極とは異なる材料の電極で検出電池セルを構成することで、検出電池セルの特性線Lx(図2(a)参照)の傾きが主要電池セルの特性線Lmの傾きより大きくなるように設定している。   With respect to this problem, in Patent Document 2, when a plurality of main battery cells are connected in series to form a secondary battery, only one voltage detection battery cell (detection battery cell) is used. Connected in series. Then, by configuring the detection battery cell with an electrode made of a material different from the electrode of the main battery cell, the inclination of the characteristic line Lx (see FIG. 2A) of the detection battery cell is inclined to the characteristic line Lm of the main battery cell. It is set to be larger.

これによれば、検出電池セルの電圧検出値から検出電池セルのSOC(s)を高精度で算出できる。そして、このSOC(s)と主要電池セルのSOC(m)との対応関係からSOC(m)を算出でき、ひいては二次電池全体のSOCを算出できる。したがって、複数の主要電池セルが主体となる二次電池の適正範囲について、傾きが大きい特性線Lxに基づき二次電池のSOCを高精度で算出できるようになる。   According to this, the SOC (s) of the detection battery cell can be calculated with high accuracy from the voltage detection value of the detection battery cell. Then, the SOC (m) can be calculated from the correspondence relationship between the SOC (s) and the SOC (m) of the main battery cell, and as a result, the SOC of the entire secondary battery can be calculated. Therefore, the SOC of the secondary battery can be calculated with high accuracy based on the characteristic line Lx having a large inclination in the appropriate range of the secondary battery mainly composed of a plurality of main battery cells.

特開2009−296699号公報JP 2009-296699 A 特開2007−220658号公報JP 2007-220658 A

しかしながら、上記特許文献2による二次電池では、電極材料が異なる2種類の電池セル(主要電池セルおよび検出電池セル)を準備することを要するため、二次電池の生産性が極めて悪くなる。   However, in the secondary battery according to Patent Document 2, since it is necessary to prepare two types of battery cells (main battery cell and detection battery cell) having different electrode materials, the productivity of the secondary battery is extremely deteriorated.

本発明は、上記課題を解決するためになされたものであり、その目的は、生産性悪化を抑制しつつ残容量を高精度で算出できるようにした二次電池、および二次電池の残存容量算出装置を提供することにある。   The present invention has been made to solve the above-described problems, and its purpose is to provide a secondary battery capable of calculating the remaining capacity with high accuracy while suppressing deterioration in productivity, and the remaining capacity of the secondary battery. It is to provide a calculation device.

以下、上記課題を解決するための手段、及びその作用効果について記載する。   Hereinafter, means for solving the above-described problems and the operation and effects thereof will be described.

第1の発明では、直列接続された複数の主要電池セルに、電圧検出用電池を直列接続して構成された二次電池であって、前記電圧検出用電池の電極を前記主要電池セルの電極と同一材料で構成するとともに、前記電圧検出用電池の容量を前記主要電池セルの容量よりも大きくしたことを特徴とする。 In the first invention, the secondary battery is configured by connecting a voltage detection battery in series to a plurality of main battery cells connected in series, and the electrode of the voltage detection battery is the electrode of the main battery cell. And the capacity of the voltage detection battery is made larger than the capacity of the main battery cell.

ところで、先述した適正範囲(m1<SOC<m3)の中央部分においては、直ぐに適正範囲外に陥ることが無いため高精度でSOCを算出する必要性が低い。これに対し、低SOC領域部分においては、過放電状態に陥ることが懸念されるためSOCを高精度で算出する必要性が高い。   By the way, in the central portion of the above-described appropriate range (m1 <SOC <m3), it is not necessary to calculate the SOC with high accuracy because it does not immediately fall outside the appropriate range. On the other hand, in the low SOC region portion, there is a concern that an overdischarge state may occur, so that it is highly necessary to calculate the SOC with high accuracy.

この点に着目した上記発明では、電圧検出用電池を主要電池セルと同一材料で構成するとともに、電圧検出用電池の容量を主要電池セルの容量よりも大きくしている。これによれば、電圧検出用電池の電圧とSOCとの相関を表す特性線Ls(図2(b)参照)は、同一材料の主要電池セルの特性線Lm(図2(a)参照)をSOC軸方向に拡大した形状になる。そのため、電圧検出用電池の特性線Lsのうち、主要電池セルの低SOC領域部分m1〜m2(図2(a)参照)に対応する領域s1〜s2(図2(b)参照)の傾きは、主要電池セルの特性線Lmのうち低SOC領域部分m1〜m2の傾きに比べて大きくなる。   In the above-described invention focusing on this point, the voltage detection battery is made of the same material as that of the main battery cell, and the capacity of the voltage detection battery is made larger than the capacity of the main battery cell. According to this, the characteristic line Ls (see FIG. 2B) representing the correlation between the voltage of the voltage detection battery and the SOC is the characteristic line Lm (see FIG. 2A) of the main battery cell of the same material. The shape is enlarged in the SOC axis direction. Therefore, among the characteristic lines Ls of the voltage detection battery, the slopes of the regions s1 to s2 (see FIG. 2B) corresponding to the low SOC region portions m1 to m2 (see FIG. 2A) of the main battery cells are In the characteristic line Lm of the main battery cell, it becomes larger than the inclination of the low SOC region portions m1 to m2.

したがって、領域s1〜s2については、電圧検出用電池の電圧検出値から電圧検出用電池の残容量(SOC(s))を高精度で算出できる。そして、このSOC(s)と主要電池セルの残容量(SOC(m))との対応関係からSOC(m)を算出でき、ひいては二次電池全体の残容量を算出できる。よって、複数の主要電池セルが主体となる二次電池の低SOC領域部分m1〜m2について、傾きが大きい特性線Lsに基づき二次電池の残容量を高精度で算出できるようになる。   Therefore, for the regions s1 to s2, the remaining capacity (SOC (s)) of the voltage detection battery can be calculated with high accuracy from the voltage detection value of the voltage detection battery. Then, the SOC (m) can be calculated from the correspondence between the SOC (s) and the remaining capacity (SOC (m)) of the main battery cell, and as a result, the remaining capacity of the entire secondary battery can be calculated. Therefore, the remaining capacity of the secondary battery can be calculated with high accuracy based on the characteristic line Ls having a large slope for the low SOC region portions m1 to m2 of the secondary battery mainly composed of a plurality of main battery cells.

以上により、上記発明によれば、電圧検出用電池を主要電池セルと同一材料の電極で構成しつつ、高精度算出が要求される低SOC領域部分m1〜m2については二次電池の残容量を高精度で算出できる。よって、二次電池の生産性悪化を抑制しつつ残容量を高精度で算出できる。   As described above, according to the above-described invention, the remaining capacity of the secondary battery is reduced for the low SOC region portions m1 to m2 where high-accuracy calculation is required while the voltage detection battery is composed of electrodes made of the same material as the main battery cell. It can be calculated with high accuracy. Therefore, the remaining capacity can be calculated with high accuracy while suppressing the deterioration of the productivity of the secondary battery.

第2の発明では、前記電圧検出用電池は、複数の検出電池セルを並列接続して構成されており、前記検出電池セルの容量を前記主要電池セルの容量と同じにしたことを特徴とする(図3参照)。 In the second invention, the voltage detection battery is configured by connecting a plurality of detection battery cells in parallel, and the capacity of the detection battery cell is the same as the capacity of the main battery cell. (See FIG. 3).

上記発明によれば、検出電池セルと主要電池セルの容量が同じであるため、主要電池セルと同一の電池セルを用いて電圧検出用電池を構成することができる。そのため、二次電池の生産性向上を促進できる。ちなみに、「検出電池セルの容量を前記主要電池セルの容量と同じにした」との上記文言は、厳密に容量が同じであることに限定されるものではなく、設計上の容量バラツキ(例えば設計容量のプラスマイナス5%)を許容する意味である。   According to the above invention, since the detection battery cell and the main battery cell have the same capacity, the voltage detection battery can be configured using the same battery cell as the main battery cell. Therefore, the productivity improvement of the secondary battery can be promoted. Incidentally, the above phrase “the capacity of the detection battery cell is the same as the capacity of the main battery cell” is not strictly limited to the same capacity, but the capacity variation in design (for example, design (Plus or minus 5% of capacity) is permitted.

第3の発明では、前記電圧検出用電池は、1つの検出電池セルを有して構成されており、前記検出電池セルの容量を前記主要電池セルの容量よりも大きくしたことを特徴とする(図1参照)。 In a third aspect of the invention, the voltage detection battery includes one detection battery cell, and the capacity of the detection battery cell is larger than the capacity of the main battery cell ( (See FIG. 1).

上記発明によれば、複数の検出電池セルを並列接続して電圧検出用電池を構成する場合に比べて、検出電池セルの個数削減を図ることができる。   According to the said invention, compared with the case where the battery for voltage detection is comprised by connecting a some detection battery cell in parallel, the number reduction of a detection battery cell can be aimed at.

第4の発明では、車両に搭載された内燃機関により発電した電力を充電可能であり、かつ、車両の外部電源から充電可能である、車載二次電池に適用されることを特徴とする。 The fourth invention is characterized by being applied to an in-vehicle secondary battery that can be charged with electric power generated by an internal combustion engine mounted on a vehicle and that can be charged from an external power source of the vehicle.

この種のプラグインハイブリッド車両(PHV車両)では、中高SOC領域では内燃機関を停止させたまま電動モータにより走行(EV走行)させる。そして、二次電池の残容量が低下して低SOC領域になると、残容量が適正範囲以下にならないように内燃機関を適宜運転させて、二次電池を充電させつつ内燃機関および電動モータの両方により走行させる(HV走行)。   In this type of plug-in hybrid vehicle (PHV vehicle), in the middle and high SOC range, the internal combustion engine is stopped (EV traveling) with the electric motor stopped. Then, when the remaining capacity of the secondary battery decreases and becomes a low SOC region, both the internal combustion engine and the electric motor are operated while charging the secondary battery by appropriately operating the internal combustion engine so that the remaining capacity does not fall below the appropriate range. (HV running).

これに対し、外部電源から充電ができないハイブリッド車両(HV車両)では、PHV車両に比べて二次電池の容量が小さいため、適正範囲の下限SOCを高い値に設定するのが一般的である。したがって、低SOC領域に特化して残容量を高精度で算出する要求が低い。   On the other hand, in a hybrid vehicle (HV vehicle) that cannot be charged from an external power source, since the capacity of the secondary battery is smaller than that of a PHV vehicle, the lower limit SOC of the appropriate range is generally set to a high value. Therefore, there is a low demand for calculating the remaining capacity with high accuracy specialized for the low SOC region.

以上により、PHV車両では、低SOC領域に特化して残容量を高精度で算出する要求が高いので、低SOC領域部分m1〜m2について残容量を高精度で算出できるといった上述の効果が、PHV車両に適用した上記発明において効果的に発揮される。   As described above, in the PHV vehicle, since there is a high demand for calculating the remaining capacity with high accuracy specialized for the low SOC region, the above-described effect that the remaining capacity can be calculated with high accuracy for the low SOC region parts m1 to m2 is achieved. This is effective in the above-described invention applied to a vehicle.

第5の発明では、前記車両は、前記車載二次電池の残存容量が所定量以上である場合に、前記内燃機関を停止させたまま電動モータにより走行させる電動走行モードと、前記車載二次電池の残存容量が所定量未満である場合に、前記内燃機関を適宜運転して前記車載二次電池を充電させつつ、前記内燃機関または前記電動モータにより走行させるハイブリッド走行モードと、に切り換え制御されており、前記電圧検出用電池の電圧と前記電圧検出用電池の残存容量との関係を表す特性線の傾きが所定値未満となる点での残存容量を検出容量閾値と呼ぶ場合において、前記検出容量閾値に対応する前記主要電池セルの残存容量が、前記所定量以上となるよう、前記電圧検出用電池の容量を設定したことを特徴とする。 In a fifth aspect of the invention, when the remaining capacity of the in-vehicle secondary battery is equal to or greater than a predetermined amount, the vehicle travels with an electric motor while the internal combustion engine is stopped, and the in-vehicle secondary battery. When the remaining capacity of the vehicle is less than a predetermined amount, the internal combustion engine is appropriately operated to charge the in-vehicle secondary battery, and is controlled to be switched to a hybrid travel mode in which the internal combustion engine or the electric motor travels. When the remaining capacity at the point where the slope of the characteristic line representing the relationship between the voltage of the voltage detecting battery and the remaining capacity of the voltage detecting battery is less than a predetermined value is referred to as a detected capacity threshold, The capacity of the voltage detection battery is set so that the remaining capacity of the main battery cell corresponding to the threshold value is equal to or greater than the predetermined amount.

図2の例では、検出電池セル(電圧検出用電池)の特性線Lsのうち符号Pに示す点の残存容量s2が、「特性線Lsの傾きが所定値未満となる点の残存容量(検出容量閾値)」に相当する。図示されるように、特性線Lsのうち検出容量閾値s2未満のSOC領域では電圧検出用電池のSOC(s)を高精度で算出でき、閾値s2以上の領域では高精度で算出できない。   In the example of FIG. 2, the remaining capacity s2 at the point indicated by the symbol P in the characteristic line Ls of the detection battery cell (voltage detection battery) is “the remaining capacity (detection at which the slope of the characteristic line Ls is less than a predetermined value). Capacity threshold) ”. As shown in the drawing, the SOC (s) of the voltage detection battery can be calculated with high accuracy in the SOC region of the characteristic line Ls less than the detection capacity threshold s2, and cannot be calculated with high accuracy in the region of the threshold s2 or more.

そして、PHV車両のハイブリッド走行モード時には、二次電池が過放電にならないように内燃機関を適宜運転して充電させる制御を実施するので、このような充電を実施しない電動走行モード(EV走行モード)時に比べて、ハイブリッド走行モード(HV走行モード)時には残容量を高精度で算出する要求が高い。   In the hybrid driving mode of the PHV vehicle, control is performed to appropriately charge and charge the internal combustion engine so that the secondary battery is not overdischarged. Therefore, the electric driving mode (EV driving mode) in which such charging is not performed. Compared to sometimes, there is a high demand for calculating the remaining capacity with high accuracy in the hybrid travel mode (HV travel mode).

これらの点を鑑みた上記発明では、検出容量閾値s2に対応する主要電池セルの残存容量を、EV走行モードとHV走行モードとの切り替え制御の判定閾値(所定量)以上の値にしている。そのため、高精度で残容量を算出する要求が高いHV走行モード時において、特性線Lsのうち検出容量閾値s2未満のSOC領域を用いて残容量を高精度で算出できる。   In the above invention in view of these points, the remaining capacity of the main battery cell corresponding to the detected capacity threshold value s2 is set to a value equal to or greater than the determination threshold value (predetermined amount) for switching control between the EV traveling mode and the HV traveling mode. Therefore, the remaining capacity can be calculated with high accuracy using the SOC region of the characteristic line Ls that is less than the detected capacity threshold value s2 in the HV traveling mode in which the demand for calculating the remaining capacity with high accuracy is high.

但し、前記残存容量を判定閾値に比べて過剰に高い値にすると、図2(b)に例示する特性線Lsのうちs2未満の領域の傾きが緩やかになるので、SOC(s)の算出精度向上の妨げとなる。この点を鑑みると、前記残存容量s2を判定閾値に一致させることが望ましい。要するに、上記発明では、符号Pに示す点の残存容量s2がEV走行領域に入っていてもよい。但し、EV走行領域とHV走行領域の境界残存容量s2を位置させることが、算出精度向上の点で望ましい。   However, if the remaining capacity is excessively higher than the determination threshold value, the slope of the region below s2 in the characteristic line Ls illustrated in FIG. Impedes improvement. In view of this point, it is desirable to match the remaining capacity s2 to the determination threshold. In short, in the above-described invention, the remaining capacity s2 at the point indicated by the symbol P may be in the EV travel region. However, it is desirable to locate the boundary remaining capacity s2 between the EV traveling area and the HV traveling area from the viewpoint of improving calculation accuracy.

第6の発明では、前記主要電池セルの正極には、オリビン構造を有するリチウム金属リン酸塩が少なくとも含まれていることを特徴とする。 In a sixth aspect of the invention, the positive electrode of the main battery cell includes at least a lithium metal phosphate having an olivine structure.

ここで、オリビン構造を正極とした二次電池の場合、他の構造の場合に比べて、過充電により異常発熱して熱損傷するおそれが低い。しかし、電極材料が異なる2種類の電池セルを用いた上記特許文献2記載の二次電池では、主要電池セルおよび電圧検出用電池(検出電池セル)の一方にオリビン構造を採用しても、他方にはオリビン構造以外の電極を採用せざるを得ず、熱損傷に強いオリビン構造を両方の電池セルに採用することができない。これに対し上記発明では、電圧検出用電池を主要電池セルと同一材料で構成し、かつ、主要電池セルの正極にオリビン構造を採用するので、主要電池セルおよび電圧検出用電池の両方に、熱損傷に強いオリビン構造が採用されることとなり、熱損傷に強い二次電池を実現できる。   Here, in the case of a secondary battery having an olivine structure as a positive electrode, the risk of abnormal heat generation due to overcharging and thermal damage is low as compared with other structures. However, in the secondary battery described in Patent Document 2 using two types of battery cells having different electrode materials, the olivine structure is adopted as one of the main battery cell and the voltage detection battery (detection battery cell). Therefore, an electrode other than the olivine structure must be employed, and an olivine structure that is resistant to thermal damage cannot be employed for both battery cells. On the other hand, in the above invention, the voltage detection battery is made of the same material as the main battery cell, and the olivine structure is adopted for the positive electrode of the main battery cell, so that both the main battery cell and the voltage detection battery are heated. An olivine structure that is resistant to damage is adopted, and a secondary battery that is resistant to thermal damage can be realized.

また、このような材料で構成された主要電池セルの場合、先述した熱損傷への強さが向上するものの、その背反として、主要電池セルの適正範囲における特性線Lm(図2(a)参照)の傾きが小さくなるので、主要電池セルの電圧からは残容量を高精度で算出できないとの問題が顕著になる。よって、このように問題が顕著になる材料の主要電池セルに適用した上記発明によれば、高精度で残容量を算出できるようになる、といった上述の効果が好適に発揮される。   Moreover, in the case of the main battery cell comprised with such a material, although the strength to the heat damage mentioned above improves, as a contradiction, the characteristic line Lm in the appropriate range of the main battery cell (refer FIG. 2 (a)) ) Becomes smaller, the problem is that the remaining capacity cannot be calculated with high accuracy from the voltage of the main battery cell. Therefore, according to the above-described invention applied to the main battery cell of the material in which the problem becomes remarkable in this way, the above-described effect that the remaining capacity can be calculated with high accuracy is preferably exhibited.

第7の発明では、1〜6の発明のいずれかの二次電池の残存容量を算出する残存容量算出装置であって、前記電圧検出用電池の電圧を検出する電圧センサと、前記電圧センサにより検出された電圧に基づき、前記主要電池セルの残存容量を算出する算出手段と、を備えることを特徴とする。 In the seventh aspect of the present invention, a remaining capacity calculating device for calculating the remaining capacity of any Kano secondary battery of the sixth invention, a voltage sensor for detecting a voltage of said voltage detecting cell, the voltage sensor And calculating means for calculating the remaining capacity of the main battery cell based on the voltage detected by.

要するに、図1に例示されるように、1〜6の発明では二次電池30を発明対象とするのに対し、上記発明では、電圧センサ50および算出手段(電池ECU40)を備えた残存容量算出装置を発明対象とする。 In short, as illustrated in FIG. 1, in the first to sixth inventions , the secondary battery 30 is the subject of the invention, whereas in the above invention, the remaining capacity provided with the voltage sensor 50 and the calculation means (battery ECU 40). The calculation device is the subject of the invention.

本発明の第1実施形態にかかる二次電池と、その二次電池が搭載されたPHV車両を示す概略図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic which shows the secondary battery concerning 1st Embodiment of this invention, and the PHV vehicle by which the secondary battery is mounted. 図1に示す検出電池セルおよび主要電池セルのSOC−V特性を示す図。The figure which shows the SOC-V characteristic of the detection battery cell and main battery cell which are shown in FIG. 本発明の第2実施形態にかかる二次電池と、その二次電池が搭載されたPHV車両を示す概略図。Schematic which shows the secondary battery concerning 2nd Embodiment of this invention, and the PHV vehicle by which the secondary battery is mounted.

以下、本発明を具体化した各実施形態を図面に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。   Hereinafter, embodiments embodying the present invention will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other are denoted by the same reference numerals in the drawings, and the description of the same reference numerals is used.

(第1実施形態)
図1は、本実施形態にかかる二次電池が搭載されたPHV車両を示す概略図であり、このPHV車両には、走行駆動源としての内燃機関10および電動モータ(MG20)と、電動モータ20へ電力供給する二次電池30とが搭載されている。MG20は発電機としても機能するモータジェネレータである。例えばMG20は、車両の減速走行時に回生発電する。または、内燃機関10の駆動力により発電する。
(First embodiment)
FIG. 1 is a schematic diagram showing a PHV vehicle equipped with a secondary battery according to the present embodiment. The PHV vehicle includes an internal combustion engine 10 and an electric motor (MG20) as a travel drive source, and an electric motor 20. And a secondary battery 30 for supplying electric power. The MG 20 is a motor generator that also functions as a generator. For example, the MG 20 generates regenerative power when the vehicle decelerates. Alternatively, power is generated by the driving force of the internal combustion engine 10.

二次電池30とMG20とは電力変換装置(インバータ21およびDCDCコンバータ22)を介して接続されている。具体的には、二次電池30の電力をDCDCコンバータ22で昇圧し、その昇圧電力をインバータ21によりMG20の各相巻線へ通電制御することで、MG20をモータ駆動させる。また、MG20の発電電力をインバータ21で整流し、その整流電力をDCDCコンバータ22で降圧して二次電池30に充電させる。   Secondary battery 30 and MG 20 are connected via a power converter (inverter 21 and DCDC converter 22). Specifically, the electric power of the secondary battery 30 is boosted by the DCDC converter 22, and the boosted power is energized and controlled by the inverter 21 to each phase winding of the MG 20, thereby driving the motor of the MG 20. Further, the generated power of the MG 20 is rectified by the inverter 21, and the rectified power is stepped down by the DCDC converter 22 to charge the secondary battery 30.

充電器23は、図示しない外部電源のプラグから供給される電力を降圧して、二次電池30へ供給する手段である。これにより、車両運転停止時に外部電源から二次電池30を充電することができる。電池ECU40(算出手段)は、後に詳述する手法で二次電池30の残存容量を算出するとともに、算出した残存容量等に基づき、充電器23の作動を制御する。具体的には、二次電池30の残存容量が最適範囲の上限を超えて過充電にならないように、充電器23の作動を制御する。   The charger 23 is a means for stepping down the power supplied from a plug of an external power source (not shown) and supplying it to the secondary battery 30. Thereby, the secondary battery 30 can be charged from an external power source when the vehicle operation is stopped. The battery ECU 40 (calculation means) calculates the remaining capacity of the secondary battery 30 by a method described in detail later, and controls the operation of the charger 23 based on the calculated remaining capacity and the like. Specifically, the operation of the charger 23 is controlled so that the remaining capacity of the secondary battery 30 does not exceed the upper limit of the optimum range and overcharge occurs.

ハイブリッドECU41は、電池ECU40から残存容量の値を取得する。そして、車両運転中において、二次電池30の残存容量が最適範囲となるように、MG20との間で二次電池30を充放電させるよう、取得した残存容量の値に基づきDCDCコンバータ22およびインバータ21の作動を制御する。   The hybrid ECU 41 obtains the remaining capacity value from the battery ECU 40. Then, during operation of the vehicle, the DCDC converter 22 and the inverter are based on the acquired remaining capacity value so that the secondary battery 30 is charged and discharged with the MG 20 so that the remaining capacity of the secondary battery 30 is in the optimum range. 21 is controlled.

エンジンECU42は、運転者によるアクセル操作量や内燃機関10の回転速度に基づき、内燃機関10が要求されている出力を算出し、その要求出力に応じて内燃機関10の作動を制御する。また、残存容量が最適範囲の下限を超えて過放電にならないように、内燃機関10でMG20を適宜発電作動させる。要するに、車両運転中においては、エンジンECU42、ハイブリッドECU41、および電池ECU40により、以下に説明するEV走行モードとHV走行モードとに切り換え制御する。   The engine ECU 42 calculates the output required for the internal combustion engine 10 based on the accelerator operation amount by the driver and the rotational speed of the internal combustion engine 10, and controls the operation of the internal combustion engine 10 according to the required output. In addition, the internal combustion engine 10 appropriately performs a power generation operation so that the remaining capacity does not exceed the lower limit of the optimum range to cause overdischarge. In short, during vehicle operation, the engine ECU 42, the hybrid ECU 41, and the battery ECU 40 perform switching control between an EV traveling mode and an HV traveling mode described below.

すなわち、二次電池30の残存容量が所定量以上である場合には、内燃機関10を停止させたままMG20によりモータ走行させるEV走行モードで、内燃機関10、インバータ21およびDCDCコンバータ22の作動を制御する。したがって、EV走行モード時には、MG20で発電された回生電力を二次電池30に充電させることはあっても、内燃機関10の駆動力によりMG20を発電作動させて充電することはない。   That is, when the remaining capacity of the secondary battery 30 is equal to or greater than a predetermined amount, the operation of the internal combustion engine 10, the inverter 21 and the DCDC converter 22 is performed in the EV travel mode in which the motor travels by the MG 20 while the internal combustion engine 10 is stopped. Control. Therefore, in the EV traveling mode, the regenerative electric power generated by the MG 20 is charged in the secondary battery 30, but the MG 20 is not generated and charged by the driving force of the internal combustion engine 10.

一方、二次電池30の残存容量が所定量未満である場合には、HV走行モードで、内燃機関10、インバータ21およびDCDCコンバータ22の作動を制御する。詳細には、残存容量が最適範囲の下限を超えて過放電状態に陥らないよう、内燃機関10を適宜運転して二次電池30を充電させつつ、内燃機関10およびMG20の少なくとも一方を駆動源として走行させる。   On the other hand, when the remaining capacity of the secondary battery 30 is less than the predetermined amount, the operation of the internal combustion engine 10, the inverter 21, and the DCDC converter 22 is controlled in the HV traveling mode. Specifically, at least one of the internal combustion engine 10 and the MG 20 is driven while the internal combustion engine 10 is appropriately operated to charge the secondary battery 30 so that the remaining capacity does not exceed the lower limit of the optimum range and the battery is charged. Run as.

次に、二次電池30の構造について説明する。   Next, the structure of the secondary battery 30 will be described.

二次電池30は、複数の主要電池セル31を直列接続するとともに、これらの主要電池セル31に対して1つの検出電池セル32を直列接続して構成されている。複数の主要電池セル31および検出電池セル32の電極材料は同一である。   The secondary battery 30 is configured by connecting a plurality of main battery cells 31 in series and connecting one detection battery cell 32 in series to the main battery cells 31. The electrode materials of the plurality of main battery cells 31 and the detection battery cells 32 are the same.

例えば、これらの電池セル31,32の正極には、オリビン構造を有するリチウム金属リン酸塩を含む材料を使用する。リチウム金属リン酸塩の具体例としてはLiMPOが挙げられ、これに含まれるMの具体例としてはFe、Mn、Co、Niが挙げられる。なお、これらFe、Mn、Co、Niの少なくとも1つを含むように混合したMを用いてもよい。 For example, a material containing a lithium metal phosphate having an olivine structure is used for the positive electrodes of these battery cells 31 and 32. Specific examples of the lithium metal phosphate include LiMPO 4 , and specific examples of M contained therein include Fe, Mn, Co, and Ni. In addition, you may use M mixed so that at least 1 of these Fe, Mn, Co, and Ni may be included.

また、これらの電池セル31,32の負極には、炭素系材料(例えばグラファイト系)を使用する。炭素系材料を使用することで、電池セル31,32の大容量化を容易に実現できる。いずれの材料を使用したとしても、複数の主要電池セル31および検出電池セル32の正極には同一材料が用いられ、負極にも同一材料が用いられる。   Further, a carbon-based material (for example, graphite-based) is used for the negative electrodes of these battery cells 31 and 32. By using the carbon-based material, the capacity of the battery cells 31 and 32 can be easily increased. Whichever material is used, the same material is used for the positive electrodes of the plurality of main battery cells 31 and the detection battery cells 32, and the same material is also used for the negative electrodes.

但し、主要電池セル31の各々の容量が20Ah(20Aの電流を1時間流し続けることができる容量)であるのに対し、検出電池セル32の容量は60Ahである。このように、検出電池セル32の容量を主要電池セル31の容量20Ahよりも大きくしている。   However, the capacity of each of the main battery cells 31 is 20 Ah (capacity that allows a current of 20 A to continue to flow for 1 hour), whereas the capacity of the detection battery cell 32 is 60 Ah. Thus, the capacity of the detection battery cell 32 is set larger than the capacity 20 Ah of the main battery cell 31.

図2(a)中の実線Lmは、オリビン構造のリチウム金属リン酸塩を用いた正極、および炭素系材料を用いた負極による主要電池セル31(容量20Ah)についての、SOC−V特性線を示す。SOC−V特性線とは、充放電していない時の電池セルの端子電圧とSOCとの相関を示すものである。図示されるように、オリビン系の材料で主要電池セル31を構成すると、SOCの適正範囲における特性線Lmの傾きを極めて小さく(平らに)できる。そのため、残容量の値が変化することに拘わらず、安定した出力で放電することができるようになる。   A solid line Lm in FIG. 2A represents an SOC-V characteristic line for the main battery cell 31 (capacity 20 Ah) using a positive electrode using lithium metal phosphate having an olivine structure and a negative electrode using a carbon-based material. Show. The SOC-V characteristic line indicates a correlation between the terminal voltage of the battery cell and the SOC when charging / discharging is not performed. As shown in the figure, when the main battery cell 31 is made of an olivine-based material, the slope of the characteristic line Lm in the appropriate SOC range can be made extremely small (flat). Therefore, it is possible to discharge with a stable output regardless of the change in the value of the remaining capacity.

図2(b)中の実線Lsは、主要電池セル31と同一材料かつ容量3倍の検出電池セル32(容量60Ah)についてのSOC−V特性線を示す。図示されるように、検出電池セル32の特性線Lsは、主要電池セル31の特性線LmをSOC軸方向(図2の左右方向)に容量増大分だけ拡大(図2の例では3倍)した形状になる。   A solid line Ls in FIG. 2B indicates an SOC-V characteristic line for the detection battery cell 32 (capacity 60 Ah) having the same material and triple the capacity as the main battery cell 31. As shown in the figure, the characteristic line Ls of the detection battery cell 32 expands the characteristic line Lm of the main battery cell 31 in the SOC axis direction (left and right direction in FIG. 2) by the capacity increase (three times in the example of FIG. 2). The shape becomes.

特性線Lmのうちm1〜m2の範囲では、先述したHV走行モードで制御され、m2〜m3の範囲ではEV走行モードで制御される。なお、m1〜m3が主要電池セル31の適正範囲であり、HV走行モード時には、SOCが常にm1〜m2の範囲で維持されるように制御している。   The characteristic line Lm is controlled in the above-described HV traveling mode in the range of m1 to m2, and is controlled in the EV traveling mode in the range of m2 to m3. In addition, m1-m3 is the appropriate range of the main battery cell 31, and it is controlled so that SOC is always maintained in the range of m1-m2 at the time of HV driving mode.

図1の説明に戻り、検出電池セル32の正極負極間の電圧は、電圧センサ50により検出される。例えば、検出電池セル32の特性線Lsの情報、および主要電池セル31の特性線Lmの情報を電池ECU40に予め記憶させておき、電池ECU40は、検出電池セル32の特性線Lsおよび電圧センサ50の検出電圧値に基づき、現時点での検出電池セル32の残容量SOC(s)を算出する。   Returning to the description of FIG. 1, the voltage between the positive and negative electrodes of the detection battery cell 32 is detected by the voltage sensor 50. For example, information on the characteristic line Ls of the detection battery cell 32 and information on the characteristic line Lm of the main battery cell 31 are stored in the battery ECU 40 in advance, and the battery ECU 40 detects the characteristic line Ls of the detection battery cell 32 and the voltage sensor 50. Based on the detected voltage value, the remaining capacity SOC (s) of the detected battery cell 32 at the present time is calculated.

また、2つの特性線Ls,Lmは関連付けがなされており、図2の例では、検出電池セル32の残容量SOC(s)の3倍の値が、主要電池セル31の残容量SOC(m)に対応する。したがって、検出電圧値に基づき上述の如く算出したSOC(s)の値が5%であれば、現時点でのSOC(m)は15%であると算出することができる。要するに、SOC(m)がHV走行領域にある場合には、検出電池セル32の検出電圧値に基づきSOC(m)を算出する。   The two characteristic lines Ls and Lm are associated with each other, and in the example of FIG. 2, a value three times the remaining capacity SOC (s) of the detection battery cell 32 is equal to the remaining capacity SOC (m ). Therefore, if the SOC (s) value calculated as described above based on the detected voltage value is 5%, the current SOC (m) can be calculated to be 15%. In short, when the SOC (m) is in the HV traveling region, the SOC (m) is calculated based on the detected voltage value of the detection battery cell 32.

なお、EV走行領域にある場合には、同様にして検出電圧値に基づきSOC(m)を算出してもよいし、二次電池30に流れる電流を検出し、その検出電流値の積算値に基づきSOC(m)を算出する等、他の手法により算出してもよい。また、上述の如くSOC(m)を算出する時の電池ECU40および電圧センサ50により「残存容量算出装置」は構成される。   When the vehicle is in the EV travel region, SOC (m) may be calculated based on the detected voltage value in the same manner, or the current flowing through the secondary battery 30 is detected and the integrated value of the detected current value is calculated. You may calculate by other methods, such as calculating SOC (m) based on it. Further, the “remaining capacity calculation device” is configured by the battery ECU 40 and the voltage sensor 50 when calculating the SOC (m) as described above.

2つの特性線Ls,Lmの関連付けは、検出電池セル32の容量と主要電池セル31の容量とに基づき設定すればよい。例えば両容量の比率に応じて、特性線LmをSOC軸方向に拡大したスケールに、特性線LsのSOC軸を関連付けすればよい。   The association between the two characteristic lines Ls and Lm may be set based on the capacity of the detection battery cell 32 and the capacity of the main battery cell 31. For example, the SOC axis of the characteristic line Ls may be associated with a scale obtained by enlarging the characteristic line Lm in the SOC axis direction in accordance with the ratio of both capacities.

ここで、検出電池セル32の特性線Lsの傾きが所定値未満となる点(図2の例では符号Pに示す点)での残存容量s2が検出容量閾値に相当する。そして、先述した関連付けによれば、特性線Lsの残存容量s2(検出容量閾値)は特性線Lmの残存容量m2に対応し、この残存容量m2は、EV走行モードとHV走行モードとの切り替え判定に用いる残存容量(所定量)と一致する。   Here, the remaining capacity s2 at the point where the slope of the characteristic line Ls of the detection battery cell 32 is less than a predetermined value (the point indicated by the symbol P in the example of FIG. 2) corresponds to the detection capacity threshold value. According to the association described above, the remaining capacity s2 (detected capacity threshold) of the characteristic line Ls corresponds to the remaining capacity m2 of the characteristic line Lm, and this remaining capacity m2 is determined to switch between the EV traveling mode and the HV traveling mode. This corresponds to the remaining capacity (predetermined amount) used for.

以上詳述した本実施形態によれば、検出電池セル32を主要電池セル31と同一材料で構成するとともに、検出電池セル32の容量(充電可能最大容量)を主要電池セル31の容量(充電可能最大容量)よりも大きくしている。そのため、主要電池セル31の低SOC領域部分m1〜m2に対応して関連付けられた特性線Lsの領域s1〜s2の傾きが、主要電池セル31の特性線Lmのうち低SOC領域部分m1〜m2の傾きに比べて大きくなる。   According to the present embodiment described in detail above, the detection battery cell 32 is made of the same material as the main battery cell 31, and the capacity of the detection battery cell 32 (maximum chargeable capacity) is set to the capacity of the main battery cell 31 (chargeable). Larger than the maximum capacity). Therefore, the slope of the regions s1 to s2 of the characteristic line Ls associated with the low SOC region portions m1 to m2 of the main battery cell 31 is low in the low SOC region portions m1 to m2 of the characteristic line Lm of the main battery cell 31. It becomes larger than the slope of.

したがって、領域s1〜s2については、検出電池セル32の電圧検出値からSOC(s)を高精度で算出できる。そして、両特性線Ls,Lmの関連付けからSOC(m)を算出でき、ひいては二次電池30の残容量を算出できる。つまり、低SOC領域部分m1〜m2について、傾きが大きい特性線Lsに基づき二次電池の残容量を高精度で算出することを、主要電池セル31と同一材料の検出電池セル32を用いて実現できる。よって、二次電池の生産性悪化を抑制しつつ残容量を高精度で算出できる。   Therefore, for the regions s1 to s2, the SOC (s) can be calculated with high accuracy from the voltage detection value of the detection battery cell 32. Then, the SOC (m) can be calculated from the association between the two characteristic lines Ls and Lm, and the remaining capacity of the secondary battery 30 can be calculated. That is, for the low SOC region portions m1 to m2, it is possible to calculate the remaining capacity of the secondary battery with high accuracy based on the characteristic line Ls having a large inclination by using the detection battery cell 32 of the same material as the main battery cell 31. it can. Therefore, the remaining capacity can be calculated with high accuracy while suppressing the deterioration of the productivity of the secondary battery.

ちなみに、過充電が懸念される高SOC領域(図2(a)に示すm3以上の領域)においては、m1以下の領域と同様に特性線Lmの傾きが急峻である。そのため、二次電池30の端子電圧または主要電池セル31の電圧に基づき二次電池30の残容量を算出しても、高精度で算出することができる。よって、過充電にならないようにSOCを制御することを、容易に実現できる。   Incidentally, in the high SOC region (region of m3 or more shown in FIG. 2A) in which overcharge is a concern, the slope of the characteristic line Lm is steep as in the region of m1 or less. Therefore, even if the remaining capacity of the secondary battery 30 is calculated based on the terminal voltage of the secondary battery 30 or the voltage of the main battery cell 31, it can be calculated with high accuracy. Therefore, it is possible to easily control the SOC so as not to overcharge.

(第2実施形態)
上記第1実施形態では、複数の主要電池セル31に対して1つの検出電池セル32を直列接続して二次電池30を構成しているのに対し、図3に示す本実施形態では、複数(図3の例では3つ)の検出電池セル32bを並列接続して電圧検出用電池32Aを構成し、この電圧検出用電池32Aを複数の主要電池セル31に直列接続して二次電池30を構成している。なお、第1実施形態の場合には、1つの検出電池セル32で電圧検出用電池を構成していると言える。
(Second Embodiment)
In the first embodiment, the secondary battery 30 is configured by connecting one detection battery cell 32 in series to a plurality of main battery cells 31, whereas in the present embodiment shown in FIG. The detection battery cells 32b (three in the example of FIG. 3) are connected in parallel to form a voltage detection battery 32A, and the voltage detection battery 32A is connected in series to a plurality of main battery cells 31 to form a secondary battery 30. Is configured. In the case of the first embodiment, it can be said that one detection battery cell 32 constitutes a voltage detection battery.

本実施形態においても、上記第1実施形態と同様にして、主要電池セル31および検出電池セル32bの電極材料を同一にしている。但し、上記第1実施形態では検出電池セル32の容量を主要電池セル31よりも大きくしているのに対し、本実施形態では、検出電池セル32bの容量を主要電池セル31と同一にしている。   Also in the present embodiment, the electrode materials of the main battery cell 31 and the detection battery cell 32b are the same as in the first embodiment. However, in the first embodiment, the capacity of the detection battery cell 32 is larger than that of the main battery cell 31, whereas in this embodiment, the capacity of the detection battery cell 32b is the same as that of the main battery cell 31. .

要するに本実施形態では、上記第1実施形態における検出電池セル32を、電圧検出用電池32Aに置き換えていると言える。つまり、電圧検出用電池32AのSOC−V特性線は、図2(b)に示す検出電池セル32の特性線Lsと同じになる。   In short, in this embodiment, it can be said that the detection battery cell 32 in the first embodiment is replaced with a voltage detection battery 32A. That is, the SOC-V characteristic line of the voltage detection battery 32A is the same as the characteristic line Ls of the detection battery cell 32 shown in FIG.

以上により、本実施形態によれば、検出電池セル32bと主要電池セル31の容量が同じであるため、主要電池セル31と同一の電池セルを用いて電圧検出用電池32Aを構成することができる。そのため、二次電池30の生産性向上を促進できる。   As described above, according to the present embodiment, since the detection battery cell 32b and the main battery cell 31 have the same capacity, the voltage detection battery 32A can be configured using the same battery cell as the main battery cell 31. . Therefore, the productivity improvement of the secondary battery 30 can be promoted.

(他の実施形態)
本発明は上記実施形態の記載内容に限定されず、以下のように変更して実施してもよい。また、各実施形態の特徴的構成をそれぞれ任意に組み合わせるようにしてもよい。
(Other embodiments)
The present invention is not limited to the description of the above embodiment, and may be modified as follows. Moreover, you may make it combine the characteristic structure of each embodiment arbitrarily, respectively.

・上記各実施形態では、PHV車両に搭載された二次電池30に本発明を適用させているが、外部電源からの充電ができないHV車両に搭載された二次電池に本発明を適用させてもよい。   In each of the above embodiments, the present invention is applied to the secondary battery 30 mounted on the PHV vehicle, but the present invention is applied to the secondary battery mounted on the HV vehicle that cannot be charged from the external power source. Also good.

・図2に示す例では、特性線Lsの傾きが所定値未満となる点Pでの残存容量s2を検出容量閾値と呼び、検出容量閾値と関連付けられた特性線Lm上の残存容量m2を主容量閾値と呼ぶ場合において、EV走行モードとHV走行モードとの切り替え判定に用いる残存容量(所定量)と主容量閾値とが一致するよう、検出電池セル32の容量を設定している。これに対し、主容量閾値が前記所定量からずれていてもよい。但し、HV走行領域の全域について、特性線Lsのうち検出容量閾値よりも低SOCの部分(傾きが急峻な部分)を用いて残容量の算出を可能にすべく、主容量閾値が前記所定量よりも高SOC側にずれていることが望ましい。   In the example shown in FIG. 2, the remaining capacity s2 at the point P where the slope of the characteristic line Ls is less than a predetermined value is referred to as a detected capacity threshold, and the remaining capacity m2 on the characteristic line Lm associated with the detected capacity threshold is the main. In the case of calling the capacity threshold, the capacity of the detection battery cell 32 is set so that the remaining capacity (predetermined amount) used for determination of switching between the EV travel mode and the HV travel mode matches the main capacity threshold. On the other hand, the main capacity threshold value may deviate from the predetermined amount. However, for the entire HV travel region, the main capacity threshold is set to the predetermined amount so that the remaining capacity can be calculated using a portion of the characteristic line Ls that is lower in SOC than the detected capacity threshold (a portion having a steep slope). It is desirable that it is shifted to the higher SOC side.

30…二次電池、31…主要電池セル、32A…電圧検出用電池、32,32b…検出電池セル、40…電池ECU(算出手段(残存容量算出装置))、50…電圧センサ(残存容量算出装置)、P…特性線Lsの傾きが所定値未満となる点、s2…検出容量閾値、m2…検出容量閾値に対応する主要電池セルの残存容量。   30 ... secondary battery, 31 ... main battery cell, 32A ... battery for voltage detection, 32, 32b ... detection battery cell, 40 ... battery ECU (calculation means (remaining capacity calculation device)), 50 ... voltage sensor (remaining capacity calculation) Device), P ... the point at which the slope of the characteristic line Ls becomes less than a predetermined value, s2 ... the detected capacity threshold, m2 ... the remaining capacity of the main battery cell corresponding to the detected capacity threshold.

Claims (7)

直列接続された複数の主要電池セルに、電圧検出用電池を直列接続して構成され、
前記電圧検出用電池には、電圧を検出する電圧センサが設けられており、
残存容量算出装置によって、前記電圧センサにより検出された電圧に基づき、前記主要電池セルの残存容量が算出される二次電池であって、
前記電圧検出用電池の電極を前記主要電池セルの電極と同一材料で構成するとともに、前記電圧検出用電池の容量を前記主要電池セルの容量よりも大きくしたことを特徴とする二次電池。
A plurality of main battery cells connected in series are configured by connecting voltage detection batteries in series,
The voltage detection battery is provided with a voltage sensor for detecting a voltage,
A secondary battery in which a remaining capacity of the main battery cell is calculated by a remaining capacity calculation device based on a voltage detected by the voltage sensor;
A secondary battery characterized in that the electrode of the voltage detection battery is made of the same material as the electrode of the main battery cell, and the capacity of the voltage detection battery is larger than the capacity of the main battery cell.
前記電圧検出用電池は、複数の検出電池セルを並列接続して構成されており、
前記検出電池セルの容量を前記主要電池セルの容量と同じにしたことを特徴とする請求項1に記載の二次電池。
The voltage detection battery is configured by connecting a plurality of detection battery cells in parallel,
The secondary battery according to claim 1, wherein the capacity of the detection battery cell is the same as the capacity of the main battery cell.
前記電圧検出用電池は、1つの検出電池セルを有して構成されており、
前記検出電池セルの容量を前記主要電池セルの容量よりも大きくしたことを特徴とする請求項1に記載の二次電池。
The voltage detection battery is configured to have one detection battery cell,
The secondary battery according to claim 1, wherein a capacity of the detection battery cell is larger than a capacity of the main battery cell.
車両に搭載された内燃機関により発電した電力を充電可能であり、かつ、車両の外部電源から充電可能である、車載二次電池に適用されることを特徴とする請求項1〜3のいずれか1つに記載の二次電池。   4. The method according to claim 1, wherein the second battery is applied to an in-vehicle secondary battery that can be charged with electric power generated by an internal combustion engine mounted on a vehicle and can be charged from an external power source of the vehicle. The secondary battery as described in one. 前記車両は、
前記車載二次電池の残存容量が所定量以上である場合に、前記内燃機関を停止させたまま電動モータにより走行させる電動走行モードと、
前記車載二次電池の残存容量が所定量未満である場合に、前記内燃機関を適宜運転して前記車載二次電池を充電させつつ、前記内燃機関または前記電動モータにより走行させるハイブリッド走行モードと、に切り換え制御されており、
前記電圧検出用電池の電圧と前記電圧検出用電池の残存容量との関係を表す特性線と、前記主要電池セルの電圧と前記主要電池セルの残存容量との関係を表す特性線とが、前記電圧検出用電池及び前記主要電池セルの容量に基づき関連付けられており、前記ハイブリッド走行モードで使用される前記所定容量よりも低容量領域部分において、前記電圧検出用電池の特性線の傾きが、前記主要電池セルの特性線の傾きより大きくるよう、前記電圧検出用電池の容量を設定したことを特徴とする請求項4に記載の二次電池。
The vehicle is
When the remaining capacity of the in-vehicle secondary battery is a predetermined amount or more, an electric travel mode in which the internal combustion engine is caused to travel by an electric motor while being stopped, and
When the remaining capacity of the in-vehicle secondary battery is less than a predetermined amount, the hybrid driving mode in which the internal combustion engine or the electric motor is driven while appropriately driving the internal combustion engine and charging the in-vehicle secondary battery; Is controlled to switch to
The characteristic line representing the relationship between the voltage of the voltage detection battery and the remaining capacity of the voltage detection battery, and the characteristic line representing the relationship between the voltage of the main battery cell and the remaining capacity of the main battery cell, The voltage detection battery and the main battery cell are associated with each other based on the capacity, and in the lower capacity region portion than the predetermined capacity used in the hybrid travel mode, the slope of the characteristic line of the voltage detection battery is cormorant I ing larger than the gradient of the characteristic line of the main cell, secondary battery according to claim 4, characterized in that setting the capacitance of the voltage detection cell.
前記主要電池セルの正極には、オリビン構造を有するリチウム金属リン酸塩が少なくとも含まれていることを特徴とする請求項1〜5のいずれか1つに記載の二次電池。   The secondary battery according to claim 1, wherein the positive electrode of the main battery cell includes at least a lithium metal phosphate having an olivine structure. 請求項1〜6のいずれか1つに記載の二次電池の残存容量を算出する残存容量算出装置であって、
前記電圧検出用電池の電圧を検出する電圧センサと、
前記電圧センサにより検出された電圧に基づき、前記主要電池セルの残存容量を算出する算出手段と、
を備えることを特徴とする二次電池の残存容量算出装置。
A remaining capacity calculation device for calculating the remaining capacity of the secondary battery according to any one of claims 1 to 6,
A voltage sensor for detecting a voltage of the voltage detection battery;
Calculation means for calculating a remaining capacity of the main battery cell based on the voltage detected by the voltage sensor;
An apparatus for calculating a remaining capacity of a secondary battery, comprising:
JP2012001981A 2012-01-10 2012-01-10 Secondary battery and secondary battery remaining capacity calculation device Active JP5783051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012001981A JP5783051B2 (en) 2012-01-10 2012-01-10 Secondary battery and secondary battery remaining capacity calculation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012001981A JP5783051B2 (en) 2012-01-10 2012-01-10 Secondary battery and secondary battery remaining capacity calculation device

Publications (2)

Publication Number Publication Date
JP2013142568A JP2013142568A (en) 2013-07-22
JP5783051B2 true JP5783051B2 (en) 2015-09-24

Family

ID=49039208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012001981A Active JP5783051B2 (en) 2012-01-10 2012-01-10 Secondary battery and secondary battery remaining capacity calculation device

Country Status (1)

Country Link
JP (1) JP5783051B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6631155B2 (en) * 2014-12-26 2020-01-15 株式会社リコー Operation mode control device, operation mode control method, moving object
JP6327175B2 (en) * 2015-02-23 2018-05-23 株式会社デンソー Power storage device
JP6451449B2 (en) * 2015-03-30 2019-01-16 アイシン・エィ・ダブリュ株式会社 Vehicle control system, method and program

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2693927B2 (en) * 1995-05-22 1997-12-24 埼玉日本電気株式会社 Battery pack for mobile phone
JP2002298933A (en) * 2001-03-30 2002-10-11 Toshiba Corp Lithium ion secondary battery pack
JP2007220658A (en) * 2006-01-18 2007-08-30 Matsushita Electric Ind Co Ltd Packed battery, power supply system, and method of manufacturing packed battery
JP5003257B2 (en) * 2007-04-10 2012-08-15 日産自動車株式会社 Power supply system for hybrid electric vehicle and control device thereof
JP2009259607A (en) * 2008-04-17 2009-11-05 Toyota Motor Corp Battery pack
US9030169B2 (en) * 2009-03-03 2015-05-12 Robert Bosch Gmbh Battery system and method for system state of charge determination
JP2011086530A (en) * 2009-10-16 2011-04-28 Toyota Motor Corp Battery pack, and power supply device
JP2011150876A (en) * 2010-01-21 2011-08-04 Sony Corp Assembled battery and method for controlling the same
JP2013037862A (en) * 2011-08-06 2013-02-21 Denso Corp Battery pack

Also Published As

Publication number Publication date
JP2013142568A (en) 2013-07-22

Similar Documents

Publication Publication Date Title
JP5608747B2 (en) Storage capacity management device
JP5570782B2 (en) POWER SUPPLY DEVICE, VEHICLE EQUIPPED WITH THE SAME, AND CHARGING / DISCHARGE CONTROL METHOD FOR POWER SUPPLY DEVICE
JP5862631B2 (en) Power storage system
US9973018B2 (en) Electric storage system
JP5305025B2 (en) Hybrid vehicle
WO2010058839A1 (en) Charge control device
JP5083152B2 (en) Vehicle and secondary battery charging method
US10189464B2 (en) Battery system
JP2017103080A (en) Battery system for electric vehicle
JP2010220391A (en) Charging controller
JP2005261034A (en) Controller of electric storage mechanism
JP5783051B2 (en) Secondary battery and secondary battery remaining capacity calculation device
JP6229674B2 (en) Secondary battery control device
JP5092903B2 (en) Vehicle battery charge / discharge control device
JP5609807B2 (en) Hysteresis reduction system for battery device
JP6701699B2 (en) Battery control system, hybrid vehicle, and battery control method
JP2011116238A (en) Electric power generation controller
JP5754304B2 (en) Control apparatus and control method
JP2020045097A (en) Operation mode control device and movable body
JP2015116098A (en) Output control unit and output control method of capacitor
JP6295942B2 (en) Charger
JP2018157734A (en) Secondary battery management apparatus and electric vehicle
JP7059024B2 (en) Power storage device
JP6056747B2 (en) Vehicle power supply system
JP4487580B2 (en) Battery system for hybrid vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150706

R151 Written notification of patent or utility model registration

Ref document number: 5783051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250