JP2007220658A - Packed battery, power supply system, and method of manufacturing packed battery - Google Patents
Packed battery, power supply system, and method of manufacturing packed battery Download PDFInfo
- Publication number
- JP2007220658A JP2007220658A JP2006313364A JP2006313364A JP2007220658A JP 2007220658 A JP2007220658 A JP 2007220658A JP 2006313364 A JP2006313364 A JP 2006313364A JP 2006313364 A JP2006313364 A JP 2006313364A JP 2007220658 A JP2007220658 A JP 2007220658A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- secondary battery
- aqueous secondary
- storage element
- discharge depth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 31
- 238000003860 storage Methods 0.000 claims abstract description 319
- 238000001514 detection method Methods 0.000 claims abstract description 35
- 239000011255 nonaqueous electrolyte Substances 0.000 claims abstract description 23
- 230000005611 electricity Effects 0.000 claims description 87
- 239000007774 positive electrode material Substances 0.000 claims description 39
- 239000007773 negative electrode material Substances 0.000 claims description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 17
- 239000003990 capacitor Substances 0.000 claims description 16
- -1 iron phosphate compound Chemical class 0.000 claims description 16
- 239000011572 manganese Substances 0.000 claims description 16
- 229910002804 graphite Inorganic materials 0.000 claims description 13
- 239000010439 graphite Substances 0.000 claims description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 12
- 229910000398 iron phosphate Inorganic materials 0.000 claims description 11
- 229910052596 spinel Inorganic materials 0.000 claims description 11
- 239000011029 spinel Substances 0.000 claims description 11
- 229910052748 manganese Inorganic materials 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- 229910003481 amorphous carbon Inorganic materials 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 9
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- ZAUUZASCMSWKGX-UHFFFAOYSA-N manganese nickel Chemical compound [Mn].[Ni] ZAUUZASCMSWKGX-UHFFFAOYSA-N 0.000 claims description 8
- 229910015118 LiMO Inorganic materials 0.000 claims description 7
- 239000000956 alloy Substances 0.000 claims description 7
- 229910045601 alloy Inorganic materials 0.000 claims description 7
- 239000003575 carbonaceous material Substances 0.000 claims description 7
- 229910052749 magnesium Inorganic materials 0.000 claims description 7
- 229910044991 metal oxide Inorganic materials 0.000 claims description 7
- 150000004706 metal oxides Chemical class 0.000 claims description 7
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 claims description 6
- 229910001947 lithium oxide Inorganic materials 0.000 claims description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 35
- 229910001416 lithium ion Inorganic materials 0.000 description 35
- 238000007599 discharging Methods 0.000 description 32
- 238000010586 diagram Methods 0.000 description 16
- 230000006866 deterioration Effects 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- 239000011149 active material Substances 0.000 description 8
- 239000002033 PVDF binder Substances 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 6
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 5
- 229910002099 LiNi0.5Mn1.5O4 Inorganic materials 0.000 description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000002612 dispersion medium Substances 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 3
- 229910013716 LiNi Inorganic materials 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000011267 electrode slurry Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 3
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 2
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 2
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000006258 conductive agent Substances 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 239000011245 gel electrolyte Substances 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000011244 liquid electrolyte Substances 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000007784 solid electrolyte Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 229910000314 transition metal oxide Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910016118 LiMn1.5Ni0.5O4 Inorganic materials 0.000 description 1
- 229910012578 LiNi0.4Mn0.3Co0.3O2 Inorganic materials 0.000 description 1
- 229910014422 LiNi1/3Mn1/3Co1/3O2 Inorganic materials 0.000 description 1
- 229910013872 LiPF Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910012465 LiTi Inorganic materials 0.000 description 1
- 101150058243 Lipf gene Proteins 0.000 description 1
- 235000012093 Myrtus ugni Nutrition 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 244000061461 Tema Species 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910001437 manganese ion Inorganic materials 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Mounting, Suspending (AREA)
- Connection Of Batteries Or Terminals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は複数の電池を直列に構成した組電池、それを用いた電源システム、及び組電池の製造方法に関する。 The present invention relates to an assembled battery in which a plurality of batteries are configured in series, a power supply system using the assembled battery, and an assembled battery manufacturing method.
近年、電気自動車、ハイブリッド電気自動車、家庭等で用いられる大型電源システムには所期の出力を得るために複数の電池が接続された組電池が用いられている。リチウムイオン二次電池、リチウムポリマー二次電池等の非水系二次電池は軽量で高容量、高出力であるため、大型電源システム用の電池として注目されている。 In recent years, a large power supply system used in an electric vehicle, a hybrid electric vehicle, a home, or the like uses an assembled battery in which a plurality of batteries are connected in order to obtain a desired output. Non-aqueous secondary batteries, such as lithium ion secondary batteries and lithium polymer secondary batteries, are attracting attention as batteries for large power supply systems because of their light weight, high capacity, and high output.
上記のような大型電源システムの用途に用いられる電池としては、広範囲な充放電深度で利用できる電池が好ましく、安定な動力を得るために出力が大きく変動することは好ましくない。電池の出力は、(電池の電圧)×(電流)、あるいは(電圧)×(電圧)÷(電池の内部抵抗)であるから、電池の電圧、あるいは電池の内部抵抗に大きく左右される。リチウムイオン二次電池等の非水系二次電池は、一般に、充電深度が深いあるいは放電深度が浅い場合は、電池電圧は高く、電池の内部抵抗は小さくなる。逆に、充電深度が浅いあるいは放電深度が深い場合は、電池電圧は低く、電池の内部抵抗は大きくなる傾向がある。したがって、充放電深度による電池電圧の差あるいは充放電深度による電池の内部抵抗の差を小さくすることで、広範囲な充放電深度で利用しても出力の変動を小さくすることができる。 A battery that can be used in a wide range of charge / discharge depths is preferable as the battery used for the large power supply system as described above, and it is not preferable that the output greatly fluctuates in order to obtain stable power. Since the battery output is (battery voltage) × (current) or (voltage) × (voltage) ÷ (battery internal resistance), it greatly depends on the battery voltage or the battery internal resistance. In general, a non-aqueous secondary battery such as a lithium ion secondary battery has a high battery voltage and a low internal resistance when the charge depth is deep or the discharge depth is shallow. Conversely, when the charging depth is shallow or the discharging depth is deep, the battery voltage tends to be low and the internal resistance of the battery tends to increase. Therefore, by reducing the difference in the battery voltage depending on the charge / discharge depth or the difference in the internal resistance of the battery depending on the charge / discharge depth, fluctuations in output can be reduced even when used over a wide range of charge / discharge depths.
複数の非水系二次電池が接続されて組電池として使用される場合、放電時には各単電池の容量のばらつきにより容量の小さい単電池が過放電になることを防止するための放電リザーブを確保し、充電時には高電圧によって正極活物質の相変化等を生じ電池が劣化するのを回避するため、中間の充放電深度が利用されている。例えば、コバルト系酸化物を正極活物質とし、黒鉛を負極活物質とする汎用のリチウムイオン二次電池では、充放電深度の上限及び下限の領域での使用を避け、通常充放電終端の約25%前後を除いた充放電深度(25〜75%)の範囲が使用されている。 When multiple non-aqueous secondary batteries are connected and used as an assembled battery, a discharge reserve is ensured to prevent over-discharge of single cells with small capacity due to variations in the capacity of each single cell during discharge. In order to avoid deterioration of the battery due to a phase change or the like of the positive electrode active material due to a high voltage during charging, an intermediate charge / discharge depth is used. For example, in a general-purpose lithium ion secondary battery using cobalt-based oxide as the positive electrode active material and graphite as the negative electrode active material, avoid use in the upper and lower limit regions of the charge / discharge depth, and usually about 25 The range of the charge / discharge depth (25 to 75%) excluding around% is used.
上記のような二次電池の充放電深度を検知する方法としては、電池の温度、電流値の積算等を利用する方法が知られている。しかし、これらの方法は長期の使用において誤差が生じやすいため、電池の電圧、もしくは電池の内部抵抗から検知することも行われている。ここで、内部抵抗は、電池に流れている電流値変化ΔIとそのときの電池電圧変化ΔVより、[内部抵抗=ΔV/ΔI]の式から求めることができる。 As a method for detecting the charge / discharge depth of the secondary battery as described above, a method utilizing the temperature of the battery, integration of the current value, or the like is known. However, since these methods are likely to cause errors in long-term use, detection is also performed from the voltage of the battery or the internal resistance of the battery. Here, the internal resistance can be obtained from the equation [internal resistance = ΔV / ΔI] from the current value change ΔI flowing through the battery and the battery voltage change ΔV at that time.
電池電圧あるいは電池の内部抵抗から充放電深度を検知する場合、出力変動を小さくする場合とは反対に、使用される充放電深度の領域で充放電深度にしたがって電池電圧あるいは電池の内部抵抗が大きく変化することが好ましい。しかしながら、電圧変化あるいは内部抵抗の変化が平坦な非水系二次電池が用いられると、電池電圧あるいは電池の内部抵抗による充放電深度の検知が難しい。特に、5V級スピネル型リチウムマンガン酸化物であるLiNi0.5Mn1.5O4や、リン酸鉄化合物が正極活物質として用いられる非水系二次電池は、従来の正極活物質に比べ非常に平坦な充放電曲線を有しており、出力変動の小さな電池として期待されている。従って、このような正極活物質を有する非水系二次電池から構成される組電池は、広範囲な充放電深度で出力変動が小さく、安定性には優れるが、電圧検知もしくは電池の内部抵抗検知による方法で充放電深度を検知することが困難となる。 When the charge / discharge depth is detected from the battery voltage or the internal resistance of the battery, the battery voltage or the internal resistance of the battery is increased according to the charge / discharge depth in the region of the charge / discharge depth, as opposed to reducing the output fluctuation. It is preferable to change. However, when a non-aqueous secondary battery having a flat voltage change or internal resistance change is used, it is difficult to detect the charge / discharge depth based on the battery voltage or the internal resistance of the battery. In particular, LiNi 0.5 Mn 1.5 O 4 , which is a 5 V class spinel type lithium manganese oxide, and non-aqueous secondary batteries in which an iron phosphate compound is used as a positive electrode active material are much more difficult than conventional positive electrode active materials. The battery has a flat charge / discharge curve and is expected as a battery with small output fluctuation. Therefore, an assembled battery composed of a non-aqueous secondary battery having such a positive electrode active material has a small output fluctuation at a wide range of charge / discharge depth and excellent stability, but it is based on voltage detection or internal resistance detection of the battery. It becomes difficult to detect the charge / discharge depth by the method.
また、一般に非水系二次電池が充放電深度の浅いあるいは深い領域まで使用される場合は、電圧検知あるいは電池の内部抵抗検知は容易となるが、使用形態として常に充放電深度の両終端まで使用されるわけではない。さらに、複数の電池から構成される組電池では、単電池ごとに容量の差異があるため、一部の電池で過充電あるいは過放電状態となりやすい。このため、充放電深度の浅いあるいは深い領域まで使用されることは好ましくない。組電池の単電池ごとに正確に電圧あるいは電池の内部抵抗を検知するよう検知回路を個別に配置することも考えられるが、装置が複雑化するとともに高精度の検知素子が必要とされ、製造コストが増大するという問題がある。 In general, when non-aqueous secondary batteries are used up to shallow or deep charge / discharge depths, it is easy to detect voltage or internal resistance of the battery. It is not done. Furthermore, in an assembled battery composed of a plurality of batteries, there is a difference in capacity for each unit cell, so that some batteries are likely to be overcharged or overdischarged. For this reason, it is not preferable to use it up to a shallow or deep region of charge / discharge depth. Although it is conceivable to arrange the detection circuit separately so that the voltage or the internal resistance of the battery is accurately detected for each battery of the assembled battery, the device becomes complicated and a high-precision detection element is required. There is a problem that increases.
そこで、上記のような複数の非水系二次電池が接続されて組電池として使用される場合について、いくつかの方法が提案されている。例えば特許文献1では、非水系二次電池を主体とし、非水系二次電池よりも容量の小さいニッケル水素電池などの水溶液系二次電池とが接続された組電池を用いる方法が提案されている。この組電池によれば、充電末期が容量の小さい水溶液系二次電池によって検知されるため、非水系二次電池が過充電状態になる前に充電が終了される。また、水溶液系二次電池が充電末期に非水系二次電池と異なる特有の電圧挙動を示すため、水溶液系二次電池のみの電圧を検知することにより組電池全体の充電深度が検知できる。 Then, several methods are proposed about the case where the above several non-aqueous secondary batteries are connected and used as an assembled battery. For example, Patent Document 1 proposes a method using an assembled battery in which an aqueous secondary battery such as a nickel hydrogen battery having a smaller capacity than a nonaqueous secondary battery and having a smaller capacity than the nonaqueous secondary battery is connected. . According to this assembled battery, since the end of charging is detected by the aqueous secondary battery having a small capacity, the charging is terminated before the non-aqueous secondary battery is overcharged. Further, since the aqueous secondary battery exhibits a unique voltage behavior different from that of the non-aqueous secondary battery at the end of charging, the charging depth of the entire assembled battery can be detected by detecting the voltage of only the aqueous secondary battery.
また、電池の使用のされ方によっては、電池電圧で充放電深度を検出することが困難な場合が存在する。例えば、電池が常に使用されており電流が流れている際には、電流の大きさによって電圧が変動するために、電池電圧と充放電深度が一致しない場合がある。例えば特許文献2では、電流と電圧を計測し、その測定値から、電池の内部抵抗を計測し、これによって電池の内部抵抗と充放電深度を関連付ける方法が提案されている。
しかしながら、特許文献1に開示された組電池は、使用されていくと設定時の充放電深度と電圧の関係がずれてくるという問題を有している。 However, the assembled battery disclosed in Patent Document 1 has a problem that the relationship between the charge / discharge depth and the voltage at the time of setting shifts as it is used.
すなわち、特許文献1での電圧検知による方法は、水溶液系二次電池における満充電時の大きな電圧変化が測定の対象とされるため、充電末期の検知は容易である。しかし、水溶液系二次電池では、過充電領域において充電電流が流されても充電にはその電流が使用されず電解液中の水の電気分解が生じているのに対し、水溶液系二次電池が過充電領域にあるときでも非水系二次電池では満充電に達していないため、充電が継続して行われる。また、水溶液系二次電池では、通常の使用領域においても大きな充電電流が流れた場合や環境温度が高い場合等に、充電電流の一部は充電に使用されず水の電気分解に使用される。従って、組電池の製造時に、水溶液系二次電池の未充電状態と非水系二次電池の未充電状態とが一致するよう設定されても、比較的簡単に水溶液系二次電池の充放電深度と非水系二次電池の充放電深度の関係がずれていく。特に、特許文献1の組電池は、非水系二次電池の容量よりも水溶液系二次電池の容量を小さくしているため、水溶液系二次電池では容量劣化の原因となる過充電領域まで常に充電されることとなり、この容量劣化によっても充放電深度がずれてくる。このため、水溶液系二次電池の満充電時の電圧低下を利用し、非水系二次電池の充電状態を予測して組電池全体の充放電を制御する機能が失われていくという問題がある。 That is, in the method based on voltage detection in Patent Document 1, since a large voltage change at the time of full charge in an aqueous secondary battery is a measurement target, it is easy to detect the end of charge. However, in an aqueous solution type secondary battery, even if a charging current flows in the overcharge region, the current is not used for charging and water in the electrolyte is electrolyzed. Even when the battery is in the overcharge region, the non-aqueous secondary battery does not reach full charge, and charging is continued. Moreover, in the case of an aqueous solution type secondary battery, a part of the charging current is not used for charging but used for electrolysis of water when a large charging current flows even in a normal use region or when the environmental temperature is high. . Therefore, even when the battery pack is manufactured so that the uncharged state of the aqueous secondary battery and the non-charged state of the non-aqueous secondary battery are set to coincide with each other, the charge / discharge depth of the aqueous secondary battery is relatively easy. The relationship between the charge / discharge depth of the non-aqueous secondary battery shifts. In particular, since the assembled battery of Patent Document 1 has a capacity of an aqueous secondary battery smaller than that of a non-aqueous secondary battery, the aqueous secondary battery always has an overcharge region that causes capacity deterioration. The battery is charged, and the charge / discharge depth shifts due to this capacity deterioration. For this reason, there is a problem that the function of controlling charging / discharging of the entire assembled battery by predicting the charging state of the non-aqueous secondary battery by using the voltage drop at the time of full charge of the aqueous secondary battery is lost. .
また、特許文献2に開示された電池の内部抵抗と充放電深度を関連付ける方法では、電池の内部抵抗が大きな電池の場合は、検知が容易である。しかし、電源システム用電源として好ましい、電池の内部抵抗変化が非常に小さい非水系二次電池が用いられる場合には、内部抵抗による充放電深度の検知が難しい。特に、5V級スピネル型リチウムマンガン酸化物であるLiNi0.5Mn1.5O4やリン酸鉄化合物が正極活物質として用いられる非水系二次電池では、従来のニッケル酸化物やコバルト酸化物のような正極活物質を用いた非水系二次電池に比べ、充放電深度による内部抵抗変化が小さいため、電池の内部抵抗検知による方法では充放電深度を検知することが困難になるという問題がある。
Moreover, in the method of associating the internal resistance of the battery with the charge / discharge depth disclosed in
本発明は上記課題を鑑みてなされたものであり、大型電源システムに複数の非水系二次電池を主体として有する組電池が用いられる場合に、安定な高出力を供給できるとともに、装置の複雑化を招くことなく組電池の充放電深度を正確に検知して過充電及び過放電を効果的に防止でき、もって信頼性の高い組電池を提供することを目的とする。 The present invention has been made in view of the above problems, and can provide a stable high output and increase the complexity of a device when an assembled battery mainly including a plurality of nonaqueous secondary batteries is used in a large power supply system. It is an object of the present invention to provide a highly reliable assembled battery which can effectively detect overcharge and overdischarge by accurately detecting the charge / discharge depth of the assembled battery without incurring the problem.
上記課題を解決した本発明の組電池は、複数の非水系二次電池Aを主体とし、前記複数の非水系二次電池Aと少なくとも1個の電圧検知用の非水電解質を有する蓄電素子Bとが直列に接続された組電池であって、前記非水系二次電池Aにおける放電深度25%での単電池当たりの電圧(VA1)と放電深度75%での単電池当たりの電圧(VA2)との電圧差を△VAとし、前記蓄電素子Bにおける前記非水系二次電池Aの放電深度25%に相当する放電深度での単電池当たりの電圧(VB1)と前記非水系二次電池Aの放電深度75%に相当する放電深度での単電池当たりの電圧(VB2)との電圧差を△VBとしたとき、前記蓄電素子Bの△VBが前記非水系二次電池Aの△VAより大きいことを特徴とする。 The assembled battery of the present invention that has solved the above problems is a power storage element B mainly composed of a plurality of non-aqueous secondary batteries A and having the plurality of non-aqueous secondary batteries A and at least one non-aqueous electrolyte for voltage detection. Are connected in series, and the non-aqueous secondary battery A has a voltage per unit cell at a discharge depth of 25% (V A1 ) and a voltage per unit cell at a discharge depth of 75% (V A2 ) is defined as ΔV A, and the voltage per unit cell (V B1 ) at the discharge depth corresponding to 25% of the discharge depth of the non-aqueous secondary battery A in the electricity storage element B and the non-aqueous two when the voltage difference between the voltage (V B2) per single cell in the discharge depth corresponding to the depth of discharge of 75% of the next cell a △ and V B, △ V B is the non-aqueous secondary of said power storage device B It is greater than △ V a of the battery a.
上記構成によれば、大型電源システム用として安定な高出力が要求される非水系二次電池Aにおける電圧変化の平坦な放電深度の範囲に相当する放電深度の範囲で、非水系二次電池Aの単電池当たりの電圧変化よりも大きな単電池当たりの電圧変化を有する蓄電素子Bが組電池に組み込まれる。この蓄電素子Bの電圧変化によって組電池の充放電深度が検知されるため、非水系二次電池A単独の組電池と比較して正確な充放電深度を検知することができる。また、充放電による充放電深度のずれの少ない非水電解質を有する蓄電素子Bが検知用の電池として使用されるため、長期使用によっても蓄電素子Bの設定時からの充放電深度のずれが抑えられる。その結果、非水系二次電池Aの充放電深度が、検知される組電池の充放電深度からずれてくることが防止される。 According to the above configuration, the non-aqueous secondary battery A within a discharge depth range corresponding to the flat discharge depth range of the voltage change in the non-aqueous secondary battery A that requires a stable high output for a large power supply system. The battery element B having a voltage change per unit cell larger than the voltage change per unit cell is incorporated into the assembled battery. Since the charging / discharging depth of the assembled battery is detected by the voltage change of the electric storage element B, the accurate charging / discharging depth can be detected as compared with the assembled battery of the non-aqueous secondary battery A alone. Moreover, since the electrical storage element B which has a nonaqueous electrolyte with few deviation | shifts of the charge / discharge depth by charging / discharging is used as a battery for a detection, the shift | offset | difference of the charge / discharge depth from the setting of the electrical storage element B is suppressed also by long-term use. It is done. As a result, the charge / discharge depth of the nonaqueous secondary battery A is prevented from deviating from the detected charge / discharge depth of the assembled battery.
本発明において、前記蓄電素子Bの単電池当たりの電池容量CBは前記非水系二次電池Aの単電池当たりの電池容量CAより大きいことが好ましい。 In the present invention, the battery capacity C B per unit cell of the electricity storage element B is preferably larger than the battery capacity C A per unit cell of the non-aqueous secondary battery A.
上記構成によれば、蓄電素子Bの単電池当たりの電池容量CBが前記非水系二次電池Aの単電池当たりの電池容量CAより大きいため、組電池の充電末期が蓄電素子Bの充電末期によって規制されない。従って、組電池の主体を構成する高出力の非水系二次電池Aが有効に活用される。 According to the above configuration, since the battery capacity C B per unit cell of the storage element B is larger than the battery capacity C A per unit cell of the non-aqueous secondary battery A, the end of charging of the assembled battery is the charge of the storage element B. Not regulated by end of life. Therefore, the high-power nonaqueous secondary battery A constituting the main body of the assembled battery is effectively used.
本発明において、前記蓄電素子Bは電気二重層キャパシタを用いることが好ましい。 In the present invention, the electrical storage element B preferably uses an electric double layer capacitor.
上記構成によれば、電圧変化の大きな蓄電素子が得られるため、蓄電素子Bの充放電深度が正確に検知される。 According to the above configuration, since a power storage element having a large voltage change is obtained, the charge / discharge depth of power storage element B is accurately detected.
また、本発明において、前記蓄電素子Bは非水系二次電池を用いることが好ましい。 In the present invention, it is preferable to use a non-aqueous secondary battery as the electricity storage element B.
上記構成によれば、高エネルギー密度の非水系二次電池が検知用の蓄電素子として使用されるため、組電池全体のエネルギー密度の低下が抑えられる。また、充放電深度と電圧との関係が設定時からずれの少ない蓄電素子Bが得られる。 According to the above configuration, since a non-aqueous secondary battery having a high energy density is used as a storage element for detection, a decrease in energy density of the entire assembled battery can be suppressed. Further, it is possible to obtain the power storage element B in which the relationship between the charge / discharge depth and the voltage is less shifted from the setting time.
本発明において、前記蓄電素子Bとして非水系二次電池Aと同様の非水系二次電池が使用される場合、非水系二次電池Aの負極は、負極活物質として黒鉛系炭素材料を含有し、前記蓄電素子Bの負極は、負極活物質として非晶質炭素、合金及び金属酸化物から選ばれる少なくとも1種の材料を含有することが好ましい。 In the present invention, when a non-aqueous secondary battery similar to the non-aqueous secondary battery A is used as the storage element B, the negative electrode of the non-aqueous secondary battery A contains a graphite-based carbon material as a negative electrode active material. The negative electrode of the electricity storage element B preferably contains at least one material selected from amorphous carbon, an alloy, and a metal oxide as a negative electrode active material.
上記構成によれば、黒鉛系炭素材料は非水系二次電池の通常の使用領域において電圧変化が小さく、非晶質炭素等の材料は同領域において電圧変化が大きいため、電圧検知が容易である。また、高出力であるとともに充放電深度のずれが少ない非水系二次電池Aと蓄電素子Bの組み合わせからなる組電池が得られる。 According to the above configuration, the graphite-based carbon material has a small voltage change in the normal use region of the non-aqueous secondary battery, and the material such as amorphous carbon has a large voltage change in the same region, so that the voltage detection is easy. . In addition, an assembled battery composed of a combination of the non-aqueous secondary battery A and the power storage element B with high output and little deviation in the charge / discharge depth can be obtained.
本発明において、前記蓄電素子Bとして非水系二次電池Aと同様の非水系二次電池が使用される場合、非水系二次電池Aの正極は、正極活物質としてリン酸鉄化合物及びニッケルマンガンスピネル酸化物から選ばれる少なくとも1種を含有し、前記蓄電素子Bの正極は、正極活物質としてLiMO2(ただし、MはNi、Co、Mn、Al、及びMgからなる群から選ばれる少なくとも1種である)で表されるリチウム酸化物を含有することが好ましい。 In the present invention, when a non-aqueous secondary battery similar to the non-aqueous secondary battery A is used as the electricity storage element B, the positive electrode of the non-aqueous secondary battery A has an iron phosphate compound and nickel manganese as the positive electrode active material. The positive electrode of the electricity storage element B contains at least one selected from spinel oxides, and LiMO 2 (wherein M is selected from the group consisting of Ni, Co, Mn, Al, and Mg). It is preferable to contain a lithium oxide represented by a seed.
上記構成によれば、正極活物質としてのリン酸鉄化合物やニッケルマンガンスピネル酸化物は、非水系二次電池の通常の使用領域において電圧変化が非常に小さく、正極活物質としてのLiMO2で表されるリチウム酸化物は、同領域において電圧変化が大きいため、電圧検知が容易である。また、高出力であるとともに充放電深度のずれが少ない非水系二次電池Aと蓄電素子Bの組み合わせからなる組電池が得られる。 According to the above configuration, the iron phosphate compound or nickel manganese spinel oxide as the positive electrode active material has a very small voltage change in the normal use region of the non-aqueous secondary battery, and is represented by LiMO 2 as the positive electrode active material. Since the voltage change of the lithium oxide is large in the same region, voltage detection is easy. In addition, an assembled battery composed of a combination of the non-aqueous secondary battery A and the power storage element B with high output and little deviation in the charge / discharge depth can be obtained.
また、上記課題を解決した本発明の組電池は、複数の非水系二次電池Aを主体とし、前記複数の非水系二次電池Aと少なくとも1個の内部抵抗検知用の非水電解質を有する蓄電素子Dとが直列に接続された組電池であって、前記非水系二次電池Aにおける放電深度25%での単電池当たりの内部抵抗(RA1)と放電深度75%での単電池当たりの内部抵抗(RA2)との差を△RAとし、前記蓄電素子Dにおける前記非水系二次電池Aの放電深度25%に相当する放電深度での単電池当たりの内部抵抗(RD1)と前記非水系二次電池Aの放電深度75%に相当する放電深度での単電池当たりの内部抵抗(RD2)との差を△RDとしたとき、前記蓄電素子Dの△RDが前記非水系二次電池Aの△RAより大きいことを特徴とする。 Moreover, the assembled battery of the present invention that has solved the above-mentioned problems is mainly composed of a plurality of non-aqueous secondary batteries A, and includes the plurality of non-aqueous secondary batteries A and at least one non-aqueous electrolyte for detecting internal resistance. An assembled battery in which a storage element D is connected in series, and the non-aqueous secondary battery A has an internal resistance (R A1 ) per unit cell at a discharge depth of 25% and a unit cell at a discharge depth of 75%. the internal resistance of the difference between (R A2) △ and R a, internal resistance per cell in the discharge depth corresponding to the depth of discharge of 25% of the non-aqueous secondary battery a in the electric device D (R D1) wherein when the difference of △ R D of the internal resistance per cell in the discharge depth corresponding to the depth of discharge of 75% of the non-aqueous secondary battery a (R D2), △ R D of the electric device D is the wherein the larger than △ R a nonaqueous secondary battery a
上記構成によれば、大型電源システム用として安定な高出力が要求される非水系二次電池Aにおける内部抵抗変化の平坦な放電深度の範囲に相当する放電深度の範囲で、非水系二次電池Aの単電池当たりの内部抵抗変化よりも大きな単電池当たりの内部抵抗変化を有する蓄電素子Dが組電池に組み込まれる。この蓄電素子Dの内部抵抗変化によって組電池の充放電深度が検知されるため、非水系二次電池A単独の組電池と比較して正確な充放電深度を検知することができる。 According to the above configuration, in the non-aqueous secondary battery A in a non-aqueous secondary battery A that requires a stable and high output, the non-aqueous secondary battery has a discharge depth range corresponding to the flat discharge depth range of the internal resistance change. A storage element D having an internal resistance change per unit cell larger than the internal resistance change per unit cell of A is incorporated in the assembled battery. Since the charge / discharge depth of the assembled battery is detected by the internal resistance change of the electricity storage element D, it is possible to detect an accurate charge / discharge depth as compared with the assembled battery of the non-aqueous secondary battery A alone.
本発明において、前記蓄電素子Dの単電池当たりの電池容量CDは前記非水系二次電池Aの単電池当たりの電池容量CAより大きいことが好ましい。 In the present invention, the battery capacity C D per unit cell of the electricity storage element D is preferably larger than the battery capacity C A per unit cell of the non-aqueous secondary battery A.
上記構成によれば、蓄電素子Dの単電池当たりの電池容量CDが前記非水系二次電池Aの単電池当たりの電池容量CAより大きいため、組電池の充電末期が蓄電素子Dの充電末期によって規制されない。従って、組電池の主体を構成する高出力の非水系二次電池Aが有効に活用される。 According to the above configuration, the charging of the battery capacity C D for the larger cell capacity C A per unit cell of the non-aqueous secondary battery A, the end of charging power storage device D of the battery pack per unit cell of the storage element D Not regulated by end of life. Therefore, the high-power nonaqueous secondary battery A constituting the main body of the assembled battery is effectively used.
また、本発明において、前記蓄電素子Dは非水系二次電池を用いることが好ましい。 In the present invention, it is preferable to use a non-aqueous secondary battery as the power storage element D.
上記構成によれば、高エネルギー密度の非水系二次電池が検知用の蓄電素子として使用されるため、組電池全体のエネルギー密度の低下が抑えられる。また、充放電深度と電池の内部抵抗との関係が設定時からずれの少ない蓄電素子Dが得られる。 According to the above configuration, since a non-aqueous secondary battery having a high energy density is used as a storage element for detection, a decrease in energy density of the entire assembled battery can be suppressed. In addition, it is possible to obtain the energy storage element D in which the relationship between the charge / discharge depth and the internal resistance of the battery is less deviated from the setting time.
本発明において、前記蓄電素子Dとして非水系二次電池Aと同様の非水系二次電池が使用される場合、非水系二次電池Aの負極は、負極活物質として黒鉛系炭素材料を含有し、前記蓄電素子Dの負極は、負極活物質として非晶質炭素、合金及び金属酸化物から選ばれる少なくとも1種の材料を含有することが好ましい。 In the present invention, when a non-aqueous secondary battery similar to the non-aqueous secondary battery A is used as the storage element D, the negative electrode of the non-aqueous secondary battery A contains a graphite-based carbon material as a negative electrode active material. The negative electrode of the electricity storage element D preferably contains at least one material selected from amorphous carbon, an alloy, and a metal oxide as a negative electrode active material.
上記構成によれば、黒鉛系炭素材料は非水系二次電池の通常の使用領域において内部抵抗変化が小さく、非晶質炭素等の材料は同領域において内部抵抗変化が大きいため、内部抵抗検知が容易である。また、高出力であるとともに充放電深度のずれが少ない非水系二次電池Aと蓄電素子Dの組み合わせからなる組電池が得られる。 According to the above configuration, the graphite-based carbon material has a small change in internal resistance in the normal use region of the non-aqueous secondary battery, and the material such as amorphous carbon has a large change in internal resistance in the same region. Easy. Moreover, the assembled battery which consists of the combination of the non-aqueous secondary battery A and the electrical storage element D with high output and few deviations in the charge / discharge depth is obtained.
本発明において、前記蓄電素子Dとして非水系二次電池Aと同様の非水系二次電池が使用される場合、非水系二次電池Aの正極は、正極活物質としてリン酸鉄化合物及びニッケルマンガンスピネル酸化物から選ばれる少なくとも1種を含有し、前記蓄電素子Dの正極は、正極活物質としてLiMO2(ただし、MはNi、Co、Mn、Al、及びMgからなる群から選ばれる少なくとも1種である)で表されるリチウム酸化物を含有することが好ましい。 In the present invention, when a non-aqueous secondary battery similar to the non-aqueous secondary battery A is used as the electricity storage element D, the positive electrode of the non-aqueous secondary battery A has an iron phosphate compound and nickel manganese as the positive electrode active material. It contains at least one selected from spinel oxides, and the positive electrode of the electricity storage element D has LiMO 2 as a positive electrode active material (where M is at least one selected from the group consisting of Ni, Co, Mn, Al, and Mg). It is preferable to contain a lithium oxide represented by a seed.
上記構成によれば、正極活物質としてのリン酸鉄化合物やニッケルマンガンスピネル酸化物は、非水系二次電池の通常の使用領域において内部抵抗変化が非常に小さく、正極活物質としてのLiMO2で表されるリチウム酸化物は、同領域において内部抵抗変化が大きいため、電圧検知が容易である。また、高出力であるとともに充放電深度のずれが少ない非水系二次電池Aと蓄電素子Bの組み合わせからなる組電池が得られる。 According to the above configuration, the iron phosphate compound or nickel manganese spinel oxide as the positive electrode active material has a very small change in internal resistance in the normal use region of the non-aqueous secondary battery, and LiMO 2 as the positive electrode active material. Since the lithium oxide represented has a large internal resistance change in the same region, voltage detection is easy. In addition, an assembled battery composed of a combination of the non-aqueous secondary battery A and the power storage element B with high output and little deviation in the charge / discharge depth can be obtained.
そして、本発明において、上記組電池を用いて電源システムを構成することにより、充放電深度によらず高出力でかつ出力変動が小さく、充放電深度が正確に制御される電源システムを供給することができる。 In the present invention, by configuring the power supply system using the assembled battery, a power supply system is provided that has high output regardless of the charge / discharge depth, small output fluctuation, and the charge / discharge depth is accurately controlled. Can do.
また、本発明は、複数の非水系二次電池Aを主体とし、前記複数の非水系二次電池Aと少なくとも1個の電圧検知用の非水電解質を有する蓄電素子Bが直列に接続されており、前記非水系二次電池Aにおける放電深度25%での単電池当たりの電圧(VA1)と放電深度75%での単電池当たりの電圧(VA2)との電圧差を△VAとし、前記蓄電素子Bにおける前記非水系二次電池Aの放電深度25%に相当する放電深度での単電池当たりの電圧(VB1)と前記非水系二次電池Aの放電深度75%に相当する放電深度での単電池当たりの電圧(VB2)との電圧差を△VBとしたとき、前記蓄電素子Bの△VBが非水系二次電池Aの△VAより大きく、かつ、前記蓄電素子Bの単電池当たりの電池容量CBが前記非水系二次電池Aの単電池当たりの電池容量CAより大きい組電池の製造方法であって、前記非水系二次電池Aと前記蓄電素子Bを接続する前に、前記蓄電素子Bを予備充電することを特徴とするものである。 In addition, the present invention mainly includes a plurality of non-aqueous secondary batteries A, and a plurality of non-aqueous secondary batteries A and at least one non-aqueous electrolyte for voltage detection are connected in series. cage, then a voltage difference △ V a and the voltage (V A2) per single cell in the discharge depth 75% voltage (V A1) of per cell of the 25% depth of discharge in the non-aqueous secondary battery a , Corresponding to a voltage per unit cell (V B1 ) at a discharge depth corresponding to a discharge depth of 25% of the non-aqueous secondary battery A in the electricity storage element B and a discharge depth of 75% of the non-aqueous secondary battery A. when the voltage difference between the voltage per unit cell in the discharge depth (V B2) and △ V B, △ V B of the power storage device B is larger than △ V a nonaqueous secondary battery a, and the battery capacity C B is the nonaqueous secondary battery of per cell storage element B A method for producing an assembled battery having a battery capacity C A larger than a battery cell A, wherein the battery element B is precharged before the non-aqueous secondary battery A and the battery element B are connected. It is what.
組電池の主体を構成する非水系二次電池Aの容量が有効に利用されるべく蓄電素子Bの容量が非水系二次電池Aの容量より大きい組電池の場合、例えば、両電池の未充電状態の放電深度が合致するよう初期に設定されると、組電池の充電末期で蓄電素子Bの放電深度は非水系二次電池の放電深度よりも浅くなる。従って、蓄電素子Bでは充放電時の充放電深度に偏りがあるため、蓄電素子Bでは完全放電まで放電される可能性があり、充放電サイクルによって電池が劣化しやすく、充放電深度と電圧との関係にずれが発生しやすくなる。しかし、上記構成によれば、蓄電素子Bが非水系二次電池Aと接続される前に予備充電されるため、非水系二次電池Aで使用される充放電深度に相当する領域では蓄電素子Bが完全放電となることが防止される。 In the case of an assembled battery in which the capacity of the storage element B is larger than the capacity of the non-aqueous secondary battery A so that the capacity of the non-aqueous secondary battery A constituting the main body of the assembled battery can be used effectively, for example, the uncharged of both batteries When the initial state is set so that the discharge depth of the state matches, the discharge depth of the electricity storage element B becomes shallower than the discharge depth of the nonaqueous secondary battery at the end of charging of the assembled battery. Therefore, since there is a bias in the charge / discharge depth at the time of charge / discharge in the storage element B, there is a possibility that the storage element B will be discharged until complete discharge, and the battery is likely to deteriorate due to the charge / discharge cycle. Deviation tends to occur in the relationship. However, according to the above configuration, since the storage element B is precharged before being connected to the non-aqueous secondary battery A, the storage element is used in a region corresponding to the charge / discharge depth used in the non-aqueous secondary battery A. B is prevented from being completely discharged.
本発明の上記組電池の製造方法において、予備充電の充電量は、蓄電素子Bの単電池当たりの電池容量CBと非水系二次電池Aの単電池当たりの電池容量CAとの容量差以下の電気量であることが好ましい。 In the method for manufacturing an assembled battery according to the present invention, the amount of charge for precharging is a capacity difference between the battery capacity C B per unit cell of the storage element B and the battery capacity C A per unit cell of the non-aqueous secondary battery A. The following amount of electricity is preferable.
上記構成によれば、蓄電素子Bの容量が非水系二次電池Aの容量より大きい場合であっても、予備充電によって蓄電素子Bで充放電に使用される領域が中間の領域にシフトされ、蓄電素子Bは偏りのない充放電深度での充放電が可能となる。 According to the above configuration, even when the capacity of the electricity storage element B is larger than the capacity of the non-aqueous secondary battery A, the region used for charging / discharging in the electricity storage element B is shifted to an intermediate region by the preliminary charging, The power storage element B can be charged / discharged at a uniform charge / discharge depth.
さらに、本発明の上記組電池の製造方法において、前記予備充電の充電量が、前記蓄電素子Bの単電池当たりの電池容量CBと前記非水系二次電池Aの単電池当たりの電池容量CAとの容量差の約半分であることが好ましい。 Furthermore, in the method for manufacturing an assembled battery according to the present invention, the amount of charge for the preliminary charging includes a battery capacity C B per unit cell of the power storage element B and a battery capacity C per unit cell of the non-aqueous secondary battery A. It is preferably about half of the capacity difference from A.
上記構成によれば、非水系二次電池Aの充放電深度の中間位置が蓄電素子Bの充放電で使用できる充放電深度の中間位置と略一致するため、さらに蓄電素子Bの劣化が防止される。 According to the above configuration, since the intermediate position of the charge / discharge depth of the non-aqueous secondary battery A substantially coincides with the intermediate position of the charge / discharge depth that can be used for charging / discharging the power storage element B, the deterioration of the power storage element B is further prevented. The
また、本発明は、複数の非水系二次電池Aを主体とし、前記複数の非水系二次電池Aと少なくとも1個の内部抵抗検知用の非水電解質を有する蓄電素子Dとが直列に接続されており、前記非水系二次電池Aにおける放電深度25%での単電池当たりの内部抵抗(RA1)と放電深度75%での単電池当たりの内部抵抗(RA2)との差を△RAとし、前記蓄電素子Dにおける前記非水系二次電池Aの放電深度25%に相当する放電深度での単電池当たりの内部抵抗(RD1)と前記非水系二次電池Aの放電深度75%に相当する放電深度での単電池当たりの内部抵抗(RD2)との差を△RDとしたとき、前記蓄電素子Dの△RDが前記非水系二次電池Aの△RAより大きく、かつ、前記蓄電素子Dの単電池当たりの電池容量CDが前記非水系二次電池Aの単電池当たりの電池容量CAより大きい組電池の製造方法であって、前記非水系二次電池Aと前記蓄電素子Dとを接続する前に、前記蓄電素子Dを予備充電することを特徴とするものである。 Further, the present invention mainly includes a plurality of non-aqueous secondary batteries A, and the plurality of non-aqueous secondary batteries A and at least one non-aqueous electrolyte for detecting internal resistance are connected in series. It is the difference between the internal resistance per cell of 75% internal resistance (R A1) and the depth of discharge per cell at 25% depth of discharge in the non-aqueous secondary battery a (R A2) △ R A , the internal resistance (R D1 ) per unit cell at a discharge depth corresponding to 25% of the discharge depth of the nonaqueous secondary battery A in the electricity storage element D, and the discharge depth 75 of the nonaqueous secondary battery A. % difference between the internal resistance (R D2) per single cell in the corresponding discharge depth into a △ when the R D, △ R D of the electric device D is from △ R a of the non-aqueous secondary battery a large and the battery capacity C D per unit cell of the electric device D is A method of manufacturing an assembled battery having a battery capacity CA larger than a battery capacity CA per unit cell of the non-aqueous secondary battery A, and before connecting the non-aqueous secondary battery A and the storage element D, the storage element D Is precharged.
組電池の主体を構成する非水系二次電池Aの容量が有効に利用されるべく蓄電素子Dの容量が非水系二次電池Aの容量より大きい組電池の場合、例えば、両電池の未充電状態の放電深度が合致するよう初期に設定されると、組電池の充電末期で蓄電素子Dの放電深度は非水系二次電池の放電深度よりも浅くなる。従って、蓄電素子Dでは充放電時の充放電深度に偏りがあるため、蓄電素子Dでは完全放電まで放電される可能性があり、充放電サイクルによって電池が劣化しやすく、充放電深度と電池の内部抵抗との関係にずれが発生しやすくなる。しかし、上記構成によれば、蓄電素子Dが非水系二次電池Aと接続される前に予備充電されるため、非水系二次電池Aで使用される充放電深度に相当する領域では蓄電素子Dが完全放電となることが防止される。 In the case of an assembled battery in which the capacity of the electricity storage element D is larger than the capacity of the non-aqueous secondary battery A so that the capacity of the non-aqueous secondary battery A constituting the main body of the assembled battery can be used effectively, for example, the uncharged of both batteries When the initial setting is made so that the discharge depth of the state matches, the discharge depth of the electricity storage element D becomes shallower than the discharge depth of the nonaqueous secondary battery at the end of charging of the assembled battery. Therefore, since there is a bias in the charge / discharge depth at the time of charge / discharge in the storage element D, the storage element D may be discharged until complete discharge, and the battery is likely to be deteriorated by the charge / discharge cycle. Deviation tends to occur in relation to internal resistance. However, according to the above configuration, since the storage element D is precharged before being connected to the non-aqueous secondary battery A, the storage element is used in a region corresponding to the charge / discharge depth used in the non-aqueous secondary battery A. D is prevented from being completely discharged.
本発明の上記組電池の製造方法において、予備充電の充電量は、蓄電素子Dの単電池当たりの電池容量CDと非水系二次電池Aの単電池当たりの電池容量CAとの容量差以下の電気量であることが好ましい。 In the assembled method for producing a battery of the present invention, the charge amount of the pre-charging, the capacity difference between the battery capacity C A per unit cell of the battery capacity C D and a non-aqueous secondary battery A per unit cell of the storage element D The following amount of electricity is preferable.
上記構成によれば、蓄電素子Dの容量が非水系二次電池Aの容量より大きい場合であっても、予備充電によって蓄電素子Dで充放電に使用される領域が中間の領域にシフトされ、蓄電素子Dは偏りのない充放電深度での充放電が可能となる。 According to the above configuration, even when the capacity of the electricity storage element D is larger than the capacity of the non-aqueous secondary battery A, the region used for charging / discharging in the electricity storage element D is shifted to an intermediate region by preliminary charging, The power storage element D can be charged / discharged at a uniform charge / discharge depth.
さらに、本発明の上記組電池の製造方法において、前記予備充電の充電量が、前記蓄電素子Dの単電池当たりの電池容量CDと前記非水系二次電池Aの単電池当たりの電池容量CAとの容量差の約半分であることが好ましい。 Furthermore, in the assembled method for producing a battery of the present invention, the charge amount of the preliminary charging, the battery capacity per unit cell in the battery capacity C D and the non-aqueous secondary battery A per unit cell of the electric device D C It is preferably about half of the capacity difference from A.
上記構成によれば、非水系二次電池Aの充放電深度の中間位置が蓄電素子Dの充放電で使用できる充放電深度の中間位置と略一致するため、さらに蓄電素子Dの劣化が防止される。 According to the above configuration, since the intermediate position of the charge / discharge depth of the non-aqueous secondary battery A substantially coincides with the intermediate position of the charge / discharge depth that can be used for charging / discharging of the electricity storage element D, the deterioration of the electricity storage element D is further prevented. The
本発明によれば、複数の非水系二次電池を主体として構成される組電池において、安定な高出力が得られるとともに、電源システムの装置の複雑化がもたらされることなく、安価な方法で、設定される充放電末期が正確に検知される。また、過充電及び過放電が効果的に防止されることにより、高エネルギー密度で、信頼性の高い組電池を得ることができる。 According to the present invention, in an assembled battery mainly composed of a plurality of non-aqueous secondary batteries, a stable high output is obtained, and without complicating the apparatus of the power supply system, an inexpensive method is provided. The set end-of-charge period is accurately detected. In addition, by effectively preventing overcharge and overdischarge, a highly reliable assembled battery with high energy density can be obtained.
図1は、本発明の非水系二次電池Aと蓄電素子Bから構成される組電池の一例を模式的に示す図である。図1に示す組電池(11)は、複数の非水系二次電池A(12)と1つの蓄電素子Bまたは蓄電素子D(13)が直列に接続された組電池である。本発明においては、複数の非水系二次電池A(12)を主体とし、その非水系二次電池Aに少なくとも1つの蓄電素子Bまたは蓄電素子D(13)が直列に接続された構成を備える組電池であれば、各単電池の配列等は特に限定されるものではない。例えば、蓄電素子Bまたは蓄電素子Dが非水系二次電池Aと接続される箇所は、組電池の端部でも内部でもよい。また、複数の非水系二次電池Aと蓄電素子Bまたは蓄電素子Dが直列に接続された組電池が並列に接続された形態であってもよい。さらに複数の非水系二次電池Aが並列に接続された電池群が直列に接続され、その電池群と蓄電素子Bまたは蓄電素子Dが直列に接続された形態であってもよい。また、多数の非水系二次電池Aが使用される大型電源システムでは、検知精度を向上させるため、蓄電素子Bまたは蓄電素子Dは2個以上接続されてもよい。 FIG. 1 is a diagram schematically showing an example of an assembled battery composed of a non-aqueous secondary battery A and a storage element B of the present invention. The assembled battery (11) shown in FIG. 1 is an assembled battery in which a plurality of nonaqueous secondary batteries A (12) and one storage element B or storage element D (13) are connected in series. In the present invention, a plurality of non-aqueous secondary batteries A (12) are mainly used, and at least one power storage element B or power storage element D (13) is connected in series to the non-aqueous secondary battery A. If it is an assembled battery, the arrangement | sequence etc. of each cell are not specifically limited. For example, the location where the electricity storage element B or the electricity storage element D is connected to the nonaqueous secondary battery A may be the end portion or the inside of the assembled battery. Moreover, the form with which the assembled battery in which the some non-aqueous secondary battery A, the electrical storage element B, or the electrical storage element D was connected in series was connected in parallel may be sufficient. Further, a battery group in which a plurality of non-aqueous secondary batteries A are connected in parallel may be connected in series, and the battery group and power storage element B or power storage element D may be connected in series. Further, in a large power supply system in which a large number of nonaqueous secondary batteries A are used, two or more power storage elements B or power storage elements D may be connected in order to improve detection accuracy.
本発明の組電池は、大型電源システム用としても使用されるものであるため、高出力を得る目的で組電池の主体は非水系二次電池Aで構成される。このため、組電池全体の出力やエネルギー密度は、非水系二次電池Aの出力やエネルギー密度により決定される。そして、本発明では、蓄電素子Bまたは蓄電素子Dによって組電池全体の充放電深度が検知されるため、使用される充放電深度の範囲内で非水系二次電池A自体の電圧変化または内部抵抗変化を大きくする必要がない。従って、組電池の主体を構成する非水系二次電池Aには、電圧変化または内部抵抗変化の少ない電池が使用でき、安定な高出力が広い充放電深度の範囲で機器に供給される。 Since the assembled battery of the present invention is also used for a large power supply system, the main body of the assembled battery is composed of a non-aqueous secondary battery A for the purpose of obtaining high output. For this reason, the output and energy density of the whole assembled battery are determined by the output and energy density of the non-aqueous secondary battery A. And in this invention, since the charging / discharging depth of the whole assembled battery is detected by the electrical storage element B or the electrical storage element D, the voltage change or internal resistance of the nonaqueous secondary battery A itself is within the range of the used charging / discharging depth. There is no need to make big changes. Therefore, as the non-aqueous secondary battery A constituting the main body of the assembled battery, a battery with little voltage change or internal resistance change can be used, and a stable high output is supplied to the device in a wide charge / discharge depth range.
一方、上記の電圧変化または内部抵抗変化の少ない非水系二次電池Aのみから構成される組電池では、電圧変化または内部抵抗変化により充放電深度を検知することが困難となる。このため、本発明では、組電池の充放電深度を正確に検知しつつ高出力が得られるように、電圧検知用の電池として、上記の非水系二次電池Aとともに、非水系二次電池Aと特定の関係を有する非水電解質を有する蓄電素子B、または内部抵抗検知用の電池として、上記の非水系二次電池Aとともに、非水系二次電池Aと特定の関係を有する非水電解質を有する蓄電素子Dが、それぞれ使用される。すなわち、本発明の蓄電素子Bとしては、非水電解質を有するとともに、非水系二次電池Aにおける放電深度25%での単電池当たりの電圧(VA1)と放電深度75%での単電池当たりの電圧(VA2)との電圧差を△VAとし、蓄電素子Bにおける非水系二次電池Aの放電深度25%に相当する放電深度での単電池当たりの電圧(VB1)と非水系二次電池Aの放電深度75%に相当する放電深度での単電池当たりの電圧(VB2)との電圧差を△VBとしたとき、蓄電素子Bの△VBが非水系二次電池Aの△VAより大きい特性を有するものが用いられる。そして、蓄電素子Dとしては、非水電解質を有するとともに、非水系二次電池Aにおける放電深度25%での単電池当たりの内部抵抗(RA1)と放電深度75%での単電池当たりの内部抵抗(RA2)との差を△RAとし、蓄電素子Dにおける非水系二次電池Aの放電深度25%に相当する放電深度での単電池当たりの内部抵抗(RD1)と非水系二次電池Aの放電深度75%に相当する放電深度での単電池当たりの内部抵抗(RD2)との差を△RDとしたとき、蓄電素子Dの△RDが前記非水系二次電池Aの△RAより大きい特性を有するものが用いられる。 On the other hand, in the battery pack composed only of the non-aqueous secondary battery A with little voltage change or internal resistance change, it is difficult to detect the charge / discharge depth due to the voltage change or internal resistance change. Therefore, in the present invention, the non-aqueous secondary battery A together with the non-aqueous secondary battery A is used as a voltage detection battery so that a high output can be obtained while accurately detecting the charge / discharge depth of the assembled battery. A non-aqueous electrolyte having a specific relationship with the non-aqueous secondary battery A as well as the non-aqueous secondary battery A as a storage element B having a non-aqueous electrolyte having a specific relationship with the non-aqueous secondary battery A Each of the storage elements D that are included is used. That is, the electricity storage device B of the present invention has a non-aqueous electrolyte, and the non-aqueous secondary battery A has a voltage per unit cell (V A1 ) at a discharge depth of 25% and a unit cell at a discharge depth of 75%. the voltage difference between the voltage (V A2) and △ V a, the voltage per unit cell in the discharge depth corresponding to the depth of discharge of 25% of the non-aqueous secondary cell a in power storage device B and (V B1) a non-aqueous when the voltage difference between the voltage (V B2) per single cell in the discharge depth corresponding to the depth of discharge of 75% of the secondary battery a and △ V B, the electricity storage device B △ V B is a non-aqueous secondary battery Those having characteristics larger than ΔV A of A are used. And as the electrical storage element D, it has a non-aqueous electrolyte, and the non-aqueous secondary battery A has an internal resistance (R A1 ) per unit cell at a discharge depth of 25% and an internal unit per unit cell at a discharge depth of 75%. The difference from the resistance (R A2 ) is ΔR A, and the internal resistance (R D1 ) per unit cell at the discharge depth corresponding to 25% of the discharge depth of the non-aqueous secondary battery A in the storage element D when the difference between the internal resistance per cell in the discharge depth corresponding to the depth of discharge of 75% of the next cell a (R D2) △ was R D, △ R D of the storage element D is the nonaqueous secondary battery Those having characteristics larger than ΔR A of A are used.
蓄電素子Bの△VBを非水系二次電池Aの△VAより大きくすることによって、電圧変化の小さい非水系二次電池Aの充放電深度の検知が難しい場合でも、蓄電素子Bの電圧は非水系二次電池Aの充放電深度の通常の使用領域において連続的に低下あるいは上昇するため、設定される充放電深度が正確に検知される。従って、非水系二次電池Aの電圧の代わりに蓄電素子Bの電圧が検知されることにより、組電池全体の充放電深度が正確に検知され、組電池全体の過充電及び過放電が効果的に防止される。また、蓄電素子Dの△RDを非水系二次電池Aの△RAより大きくすることによって、内部抵抗変化の小さい非水系二次電池Aの充放電深度の検知が難しい場合でも、蓄電素子Dの内部抵抗は非水系二次電池Aの充放電深度の通常の使用領域において連続的に低下あるいは上昇するため、設定される充放電深度が正確に検知される。従って、非水系二次電池Aの内部抵抗の代わりに蓄電素子Dの内部抵抗が検知されることにより、組電池全体の充放電深度が正確に検知され、組電池全体の過充電及び過放電が効果的に防止される。さらに、本発明の蓄電素子Bまたは蓄電素子Dは、非水系二次電池Aと類似の非水電解質を有する電池であるため、水溶液系二次電池に比べて、過充電になった場合や大電流が流れた場合であってもガス発生の影響が抑えられ、蓄電素子Bまたは蓄電素子Dの充放電深度のずれが低減される。 By increasing the △ V B of the storage element B than △ V A nonaqueous secondary battery A, even when it is difficult detection of the charge-discharge depth of the small non-aqueous secondary battery A of voltage change, the voltage of the storage element B Is continuously decreased or increased in the normal use region of the charge / discharge depth of the non-aqueous secondary battery A, so that the set charge / discharge depth is accurately detected. Accordingly, by detecting the voltage of the storage element B instead of the voltage of the non-aqueous secondary battery A, the charge / discharge depth of the entire assembled battery is accurately detected, and overcharging and overdischarging of the entire assembled battery are effective. To be prevented. Further, a △ R D of the storage element D by greater than △ R A nonaqueous secondary battery A, even if difficult to detect the charging and discharging depth smaller non-aqueous secondary battery A internal resistance change, the electric storage element Since the internal resistance of D continuously decreases or increases in the normal use region of the charge / discharge depth of the non-aqueous secondary battery A, the set charge / discharge depth is accurately detected. Therefore, by detecting the internal resistance of the storage element D instead of the internal resistance of the non-aqueous secondary battery A, the charge / discharge depth of the entire assembled battery is accurately detected, and overcharging and overdischarging of the entire assembled battery are prevented. Effectively prevented. Furthermore, since the storage element B or the storage element D of the present invention is a battery having a non-aqueous electrolyte similar to the non-aqueous secondary battery A, the battery element B or the storage element D is more or less overcharged than the aqueous secondary battery. Even when a current flows, the influence of gas generation is suppressed, and a shift in charge / discharge depth of the electricity storage element B or the electricity storage element D is reduced.
本発明において、蓄電素子Bまたは蓄電素子Dの放電深度を、非水系二次電池Aの放電深度に相当する放電深度としているのは、以下の理由に基づくものである。 In the present invention, the discharge depth of the storage element B or the storage element D is set to the discharge depth corresponding to the discharge depth of the nonaqueous secondary battery A for the following reason.
まず、蓄電素子Bまたは蓄電素子Dとして非水系二次電池Aと同種の非水系二次電池が用いられる場合でも、単電池間で放電深度と電圧または放電深度と内部抵抗との関係にばらつきが生ずる場合がある。 First, even when a non-aqueous secondary battery of the same type as the non-aqueous secondary battery A is used as the storage element B or the storage element D, the relationship between the discharge depth and voltage or the discharge depth and internal resistance varies between cells. May occur.
また、蓄電素子Bまたは蓄電素子Dの容量が非水系二次電池Aの容量より大きい場合、非水系二次電池Aの放電深度の割合は必ずしも蓄電素子Bまたは蓄電素子Dの放電深度の割合と一致しない。例えば、図2(a)は、本発明の非水系二次電池Aと蓄電素子Bの各単電池における放電深度と電圧の関係の一例を示す特性図である。両電池ともリチウムイオン二次電池であるが、放電深度と電圧の特性が異なるよう別種の正極活物質が用いられている。上図の非水系二次電池Aは容量1000mAhのリチウムイオン二次電池が、下図の蓄電素子Bは容量1200mAhのリチウムイオン二次電池が用いられている。また、図4は、本発明の非水系二次電池Aと蓄電素子Dの各単電池における放電深度と内部抵抗の関係の一例を示す特性図である。両電池ともリチウムイオン二次電池であるが、上図の非水系二次電池Aは容量2000mAhのリチウムイオン二次電池が、下図の蓄電素子Dは容量2400mAhのリチウムイオン二次電池が用いられている。図2(a)または図4中、蓄電素子Bまたは蓄電素子Dの容量が大きいことを示すため、それぞれ下図における蓄電素子Bまたは蓄電素子Dの特性図の横軸の放電深度は、上図の非水系二次電池Aの放電深度より大きく示されている。これらの図に示されるように、蓄電素子Bまたは蓄電素子Dの容量が非水系二次電池Aの容量よりも大きい場合、それぞれ蓄電素子Bまたは蓄電素子Dの放電深度の25%及び75%は、非水系二次電池Aの放電深度25%及び75%と一致しない。 Further, when the capacity of the storage element B or the storage element D is larger than the capacity of the non-aqueous secondary battery A, the ratio of the discharge depth of the non-aqueous secondary battery A is not necessarily the ratio of the discharge depth of the storage element B or storage element D. It does not match. For example, FIG. 2A is a characteristic diagram showing an example of the relationship between the discharge depth and the voltage in each unit cell of the nonaqueous secondary battery A and the storage element B of the present invention. Both batteries are lithium ion secondary batteries, but different types of positive electrode active materials are used so that the discharge depth and voltage characteristics are different. The non-aqueous secondary battery A in the upper diagram uses a lithium ion secondary battery with a capacity of 1000 mAh, and the storage element B in the lower diagram uses a lithium ion secondary battery with a capacity of 1200 mAh. FIG. 4 is a characteristic diagram showing an example of the relationship between the depth of discharge and the internal resistance in each unit cell of the non-aqueous secondary battery A and the storage element D of the present invention. Both batteries are lithium ion secondary batteries. The non-aqueous secondary battery A in the upper figure uses a lithium ion secondary battery with a capacity of 2000 mAh, and the storage element D in the lower figure uses a lithium ion secondary battery with a capacity of 2400 mAh. Yes. In FIG. 2A or FIG. 4, in order to show that the capacity of the electricity storage element B or the electricity storage element D is large, the discharge depth on the horizontal axis of the characteristic diagram of the electricity storage element B or the electricity storage element D in the lower figure is It is shown larger than the discharge depth of the non-aqueous secondary battery A. As shown in these figures, when the capacity of power storage element B or power storage element D is larger than the capacity of non-aqueous secondary battery A, 25% and 75% of the discharge depth of power storage element B or power storage element D are respectively The discharge depths of the non-aqueous secondary battery A do not coincide with 25% and 75%.
さらに、本発明においては、蓄電素子Bまたは蓄電素子Dの容量が非水系二次電池Aの容量より大きい場合、後述するように、非水系二次電池Aと接続する前に蓄電素子Bまたは蓄電素子Dを予備充電することが好ましいため、この場合にも蓄電素子Bまたは蓄電素子Dの放電深度の割合は非水系二次電池Aの放電深度の割合と一致しなくなる。例えば、図2(b)は、図2(a)の各単電池の放電深度50%の中間位置が一致するように、蓄電素子Bの放電深度が調整された場合の特性図である。このような場合にも、非水系二次電池Aの放電深度は蓄電素子Bの放電深度と一致しないこととなる。また、図4においては、非水系二次電池Aと接続する前に蓄電素子Dを予備充電しており、このことによっても蓄電素子Dの放電深度の割合は非水系二次電池Aの放電深度の割合と一致しなくなる。ちなみに図4の各単電池の放電深度50%の中間位置が一致するように、蓄電素子Dの放電深度が調整された場合の特性図である。 Furthermore, in the present invention, when the capacity of the power storage element B or the power storage element D is larger than the capacity of the non-aqueous secondary battery A, the power storage element B or the power storage before connecting to the non-aqueous secondary battery A as described later. Since it is preferable to precharge the element D, in this case as well, the ratio of the depth of discharge of the electricity storage element B or the electricity storage element D does not coincide with the ratio of the depth of discharge of the nonaqueous secondary battery A. For example, FIG. 2B is a characteristic diagram in the case where the discharge depth of the storage element B is adjusted so that the intermediate position of the discharge depth of 50% of each unit cell of FIG. Even in such a case, the discharge depth of the non-aqueous secondary battery A does not coincide with the discharge depth of the storage element B. In FIG. 4, the power storage element D is precharged before being connected to the non-aqueous secondary battery A, and the discharge depth ratio of the power storage element D is the discharge depth of the non-aqueous secondary battery A. Will not match the percentage of. Incidentally, FIG. 5 is a characteristic diagram when the discharge depth of the electric storage element D is adjusted so that the intermediate position of the discharge depth of 50% of each unit cell in FIG. 4 matches.
上記の蓄電素子Bの放電深度と電圧間の特性または蓄電素子Dの放電深度と内部抵抗間の特性と、非水系二次電池Aの同特性とがそれぞれ異なる点に鑑み、本発明では、蓄電素子Bの電圧検知または蓄電素子Dの内部抵抗検知を行う各放電深度については、非水系二次電池Aの放電深度に相当する放電深度としている。 In view of the difference between the characteristics between the discharge depth of the storage element B and the voltage or the characteristics between the discharge depth and the internal resistance of the storage element D and the characteristics of the nonaqueous secondary battery A, Each discharge depth for detecting the voltage of the element B or detecting the internal resistance of the storage element D is set to a discharge depth corresponding to the discharge depth of the non-aqueous secondary battery A.
ここで、本発明で放電深度のみを比較の対象とするのは、二次電池の放電深度は充電深度と略逆の関係を有するため、放電深度での電圧差または内部抵抗差はそれぞれ充電深度での電圧差または内部抵抗差に略一致し、充電深度の特性を放電深度の特性と看做すことができるからである。従って、本発明の非水系二次電池Aと蓄電素子Bまたは蓄電素子Dの選定に当たっては、各電池の放電深度と電圧または放電深度と内部抵抗との関係を測定し、放電深度と電圧または放電深度と内部抵抗との関係がそれぞれ上記特定の関係にある非水系二次電池Aと蓄電素子Bまたは非水系二次電池Aと蓄電素子Dとがそれぞれ組み合わされて組電池が構成される。なお、25%及び75%の放電深度での電圧または内部抵抗を比較の対象とするのは、前記範囲が電気自動車やハイブリッド自動車等で組電池として頻繁に使用され、高い検知精度が求められるためである。 Here, in the present invention, only the depth of discharge is to be compared, because the discharge depth of the secondary battery has a substantially opposite relationship to the charge depth, so the voltage difference or internal resistance difference at the discharge depth is the charge depth, respectively. This is because it substantially matches the voltage difference or internal resistance difference between the two, and the charge depth characteristic can be regarded as the discharge depth characteristic. Accordingly, in selecting the non-aqueous secondary battery A and the storage element B or the storage element D of the present invention, the relationship between the discharge depth and voltage or discharge depth and internal resistance of each battery is measured, and the discharge depth and voltage or discharge are measured. A non-aqueous secondary battery A and a storage element B, or a non-aqueous secondary battery A and a storage element D, each having a specific relationship between depth and internal resistance, are combined to form an assembled battery. The reason why the voltage or internal resistance at the discharge depths of 25% and 75% is to be compared is that the above range is frequently used as an assembled battery in electric vehicles, hybrid vehicles, etc., and high detection accuracy is required. It is.
本発明における非水系二次電池Aにおける放電深度とは、その組電池の通常使用時に設定される使用初期の満充電時の充電終止電圧における各非水系二次電池Aの放電深度を0%とし、組電池で設定される放電終止電圧の放電末期における各非水系二次電池Aの放電深度を100%として求められるものである。従って、放電深度25%とは前記放電深度を基に単電池でその充電終止電圧まで0.2C(5時間率)で充電し、その後25%分の容量が放電された状態であり、放電深度75%とは充電終止電圧まで0.2Cで充電し、その後75%分の容量が放電された状態を意味する。各放電深度での開放端子電圧がそれぞれVA1及びVA2とされる。そして、蓄電素子Bでは、同様にして測定される放電深度と電圧曲線から非水系二次電池Aの放電深度の25%と75%に相当する放電深度と開放端子電圧VB1及びVB2がそれぞれ求められる。また、同様にして、非水系二次電池Aにおける放電深度25%及び75%でのある電流を取り出したときの電圧から求められる内部抵抗がそれぞれRA1及びRA2とされる。そして、蓄電素子Dでは、同様にして測定される放電深度と内部抵抗曲線から非水系二次電池Aの放電深度の25%と75%に相当する放電深度とにおける非水系二次電池Aの放電深度の25%と75%に相当する放電深度と内部抵抗RD1及びRD2がそれぞれ求められる。 The depth of discharge in the non-aqueous secondary battery A in the present invention is defined as 0% of the depth of discharge of each non-aqueous secondary battery A at the end-of-charge voltage at the initial full charge set during normal use of the assembled battery. The discharge depth of each nonaqueous secondary battery A at the end of discharge of the discharge end voltage set by the assembled battery is obtained as 100%. Therefore, a discharge depth of 25% is a state in which a single cell is charged at 0.2 C (5 hour rate) to the end-of-charge voltage based on the discharge depth, and then a capacity of 25% is discharged. 75% means a state in which the battery is charged at 0.2 C up to the end-of-charge voltage, and then the capacity of 75% is discharged. The open terminal voltage at each discharge depth is set to V A1 and V A2 , respectively. In the storage element B, the discharge depth and open terminal voltages V B1 and V B2 corresponding to 25% and 75% of the discharge depth of the non-aqueous secondary battery A are respectively determined from the discharge depth and voltage curve measured in the same manner. Desired. Similarly, R A1 and R A2 are internal resistances determined from voltages when a certain current is taken out at a discharge depth of 25% and 75% in the nonaqueous secondary battery A, respectively. And in the electrical storage element D, the discharge of the non-aqueous secondary battery A at the discharge depth corresponding to 25% and 75% of the discharge depth of the non-aqueous secondary battery A from the discharge depth and the internal resistance curve measured in the same manner. The depth of discharge corresponding to 25% and 75% of the depth and the internal resistances R D1 and R D2 are obtained, respectively.
本発明において、蓄電素子Bの△VBは非水系二次電池Aの△VAより大きいほど、非水系二次電池Aの出力の安定性と蓄電素子Bの大きな電圧変化が期待できるため好ましい。△VB/△VAの比が2以上であることがより好ましく、5以上がさらに好ましく、10以上が最も好ましい。一方、前記比の上限は特に限定されるものではないが、組電池全体の出力変化への影響を考慮すると20以下が好ましい。 In the present invention, △ V B of the storage element B is larger than △ V A nonaqueous secondary battery A, preferred because a large voltage change can be expected stability and power storage device B outputs of the non-aqueous secondary cell A . △ more preferably the ratio of V B / △ V A is 2 or more, more preferably 5 or more, most preferably 10 or more. On the other hand, the upper limit of the ratio is not particularly limited, but is preferably 20 or less in consideration of the influence on the output change of the entire assembled battery.
また、蓄電素子Dの△RDは非水系二次電池Aの△RAより大きいほど、非水系二次電池Aの出力の安定性と蓄電素子Dの大きな内部抵抗変化が期待できるため好ましい。△RD/△RAの比が2以上であることがより好ましく、8以上がさらに好ましい。一方、前記比の上限は特に限定されるものではないが、組電池全体の出力変化への影響を考慮すると20以下が好ましい。 Also, △ R D of the storage element D is larger than △ R A nonaqueous secondary battery A, preferred because it can expect large internal resistance change of the stability and the storage device D of the output of the non-aqueous secondary battery A is. The ratio of ΔR D / ΔR A is more preferably 2 or more, and more preferably 8 or more. On the other hand, the upper limit of the ratio is not particularly limited, but is preferably 20 or less in consideration of the influence on the output change of the entire assembled battery.
本発明において、蓄電素子Bの容量CBまたは蓄電素子Dの容量CDは、それぞれ非水系二次電池Aの容量CAよりも大きい方が好ましい。非水系二次電池Aの容量より大きな容量の蓄電素子Bまたは蓄電素子Dが用いられると、非水系二次電池Aの充放電深度の使用領域が蓄電素子Bまたは蓄電素子Dの過充電あるいは過放電の領域から離れてくるため、蓄電素子Bまたは蓄電素子Dの劣化が低減されて、それぞれ充放電深度と電圧との関係または充放電深度と内部抵抗との関係の設定時からのずれが低減される。また、本発明の組電池は、蓄電素子Bの電圧または蓄電素子Dの内部抵抗が検知されることによって充放電が規制されるが、非水系二次電池Aの容量よりも大きな蓄電素子Bまたは蓄電素子Dが使用されれば、非水系二次電池Aが充放電容量の余力を有している状態で充放電が終了されないため、組電池を主体として構成する非水系二次電池の容量が十分に活用され、高エネルギー密度の組電池が得られる。 In the present invention, the capacitance C D of the capacitance C B or electric device D of the storage element B are who are larger than the capacity C A non-aqueous secondary battery A is preferred. When the storage element B or the storage element D having a capacity larger than that of the non-aqueous secondary battery A is used, the use area of the charge / discharge depth of the non-aqueous secondary battery A is overcharged or overcharged of the storage element B or the storage element D. Since it is away from the discharge region, the deterioration of the storage element B or the storage element D is reduced, and the deviation from the setting time of the relationship between the charge / discharge depth and the voltage or the relationship between the charge / discharge depth and the internal resistance is reduced. Is done. In the assembled battery of the present invention, charging / discharging is regulated by detecting the voltage of the storage element B or the internal resistance of the storage element D, but the storage element B or the capacity larger than the capacity of the non-aqueous secondary battery A If the storage element D is used, the charge / discharge is not completed in a state where the non-aqueous secondary battery A has the charge / discharge capacity, so the capacity of the non-aqueous secondary battery mainly composed of the assembled battery is increased. A fully assembled battery with a high energy density can be obtained.
蓄電素子Bの容量CBは、非水系二次電池Aの容量CAとの比CB/CAで、1.05以上が好ましく、1.1以上がより好ましい。また、蓄電素子Dの容量CDは、非水系二次電池Aの容量CAとの比CD/CAで、1.05以上が好ましく、1.1以上がより好ましい。一方、前記比が大きすぎると、組電池内の蓄電素子Bまたは蓄電素子Dの占める容積が大きくなりすぎ、組電池のエネルギー密度が低下するため、1.5以下が好ましく、1.2以下がより好ましい。なお、本発明において、各単電池の容量は上述された放電深度の測定条件によって得られる容量である。 The capacity C B of the electricity storage element B is a ratio C B / C A to the capacity C A of the non-aqueous secondary battery A, and is preferably 1.05 or more, and more preferably 1.1 or more. Further, the capacity C D of the electricity storage element D is 1.05 or more, more preferably 1.1 or more, as a ratio C D / C A to the capacity C A of the non-aqueous secondary battery A. On the other hand, if the ratio is too large, the volume occupied by the storage element B or the storage element D in the assembled battery becomes too large, and the energy density of the assembled battery decreases, so 1.5 or less is preferable and 1.2 or less is preferable. More preferred. In the present invention, the capacity of each unit cell is a capacity obtained by the above-described measurement conditions for the depth of discharge.
次に、本発明の非水系二次電池A及び蓄電素子B又は蓄電素子Dの具体的な構成について説明する。 Next, a specific configuration of the non-aqueous secondary battery A and the storage element B or the storage element D of the present invention will be described.
本発明の組電池の主体を構成する非水系二次電池Aとしては、軽量で、高出力が得られるリチウムイオン二次電池、リチウムポリマー二次電池等が用いられる。 As the non-aqueous secondary battery A constituting the main body of the assembled battery of the present invention, a lithium ion secondary battery, a lithium polymer secondary battery, or the like that is lightweight and can provide high output is used.
非水系二次電池Aは遷移金属酸化物を正極活物質とする電池であり、高い放電電圧の電池が得られるため好ましい。正極活物質としては、具体的には、例えば、LiCoO2等のコバルト系酸化物、LiNiO2等のニッケル系酸化物、LiMn2O4等のマンガン系酸化物等の他、LiNixAlyCozO2等の複数の遷移金属が固溶した酸化物が挙げられる。 The non-aqueous secondary battery A is a battery using a transition metal oxide as a positive electrode active material, and is preferable because a battery having a high discharge voltage can be obtained. As the positive electrode active material, specifically, for example, cobalt-based oxides such as LiCoO 2, a nickel-based oxides such as LiNiO 2, other manganese oxide such as LiMn 2 O 4, LiNi x Al y Co An oxide in which a plurality of transition metals such as z O 2 is dissolved is given.
特に、非水系二次電池Aの正極が、正極活物質として、リン酸鉄化合物及びニッケルマンガンスピネル酸化物から選ばれる少なくとも1種を含有する場合、これらの正極活物質は充放電深度に対する電圧変動または内部抵抗変動が非常に小さいため、非水系二次電池Aの正極材料として好ましい。 In particular, when the positive electrode of the nonaqueous secondary battery A contains at least one selected from an iron phosphate compound and a nickel manganese spinel oxide as a positive electrode active material, these positive electrode active materials have voltage fluctuations with respect to the charge / discharge depth. Or, since the internal resistance variation is very small, it is preferable as the positive electrode material of the non-aqueous secondary battery A.
リン酸鉄化合物としては、一般式Liz1Fe1−y1M1 y1PO4(ただし、0<z1≦1で、0≦y1<1であり、M1はNb、Mg、Ti、Zr、Ta、W、Mn、及びNiから選ばれるいずれか1種である)で表されるリン酸鉄化合物が好ましい。また、ニッケルマンガンスピネル酸化物としては、一般式Liz2Mn1.5−y2M2 y2Ni0.5+αO4(ただし、0<z2≦1で、0≦y2<0.3で、−0.1≦α≦0.1であり、M2はCo及びTiから選ばれるいずれか1種である)で表される5V級のニッケルマンガンスピネル酸化物が好ましい。 As the iron phosphate compound, the general formula Li z1 Fe 1-y1 M 1 y1 PO 4 (where 0 <z 1 ≦ 1 and 0 ≦ y 1 <1 and M 1 is Nb, Mg, Ti, Zr , Ta, W, Mn, and Ni). As the nickel-manganese spinel oxide represented by the general formula Li z2 Mn 1.5-y2 M 2 y2 Ni 0.5 + α O 4 ( provided that at 0 <z 2 ≦ 1, at 0 ≦ y 2 <0.3, -0.1 ≦ α ≦ 0.1, and M 2 is any one selected from Co and Ti).
非水系二次電池Aの正極は、例えば、正極活物質と結着剤、必要により他の添加剤を含有する合剤を正極集電体に塗布し、圧延することにより作製される。 The positive electrode of the non-aqueous secondary battery A is produced, for example, by applying a positive electrode active material, a binder, and a mixture containing other additives as necessary to the positive electrode current collector and rolling.
非水系二次電池Aの負極活物質としては、具体的には、例えば、黒鉛、非晶質炭素等の炭素材料の他、リチウム、スズ等の金属あるいはそれらの合金や酸化物、LiTixOy、LiMn2O4等の金属酸化物が好ましい。 Specific examples of the negative electrode active material of the non-aqueous secondary battery A include, for example, carbon materials such as graphite and amorphous carbon, metals such as lithium and tin, or alloys and oxides thereof, LiTi x O Metal oxides such as y and LiMn 2 O 4 are preferred.
非水系二次電池の電圧特性または内部抵抗特性は、正極活物質と負極活物質の種類に主として影響されるため、非水系二次電池Aの正極活物質は、上記の活物質の中でも、低い電圧差または低い内部抵抗差が得られる活物質を使用することが好ましい。本発明において、組電池で安定な高出力を得ることを考慮すれば、電圧差△VAは、150mV以下が好ましく、より好ましくは100mV以下である。これらの活物質の中でも、正極活物質として5V級スピネル型リチウムマンガン酸化物であるLiNi0.5Mn1.5O4またはリン酸鉄化合物を用いた正極と、負極活物質として黒鉛を用いた負極とが組み合わされた非水系二次電池は、中間部の充放電電位が特に平坦で、△VAが100mV以下となる場合がある。また、上記正極活物質と上記負極活物質とが組み合わされた非水系二次電池は、充放電深度に対する内部抵抗変化が特に平坦である。そのため、安定な高出力が得られる反面、電圧検知または内部抵抗検知が困難となることから、これらの活物質が組み合わされた非水系二次電池は、本発明において特に優れた効果を発揮する。 Since the voltage characteristics or internal resistance characteristics of the non-aqueous secondary battery are mainly influenced by the types of the positive electrode active material and the negative electrode active material, the positive electrode active material of the non-aqueous secondary battery A is low among the above active materials. It is preferable to use an active material capable of obtaining a voltage difference or a low internal resistance difference. In the present invention, in view of obtaining a stable high output by the battery pack, the voltage difference △ V A, preferably 150mV or less, more preferably 100mV or less. Among these active materials, positive electrode using LiNi 0.5 Mn 1.5 O 4 or iron phosphate compound which is 5V class spinel type lithium manganese oxide as positive electrode active material, and graphite as negative electrode active material. non-aqueous secondary battery and the negative electrode are combined, the charge and discharge potential of the intermediate portion is particularly flat, there is a case where △ V a is 100mV or less. The non-aqueous secondary battery in which the positive electrode active material and the negative electrode active material are combined has a particularly flat internal resistance change with respect to the charge / discharge depth. Therefore, while stable high output can be obtained, voltage detection or internal resistance detection becomes difficult, and the nonaqueous secondary battery in which these active materials are combined exhibits particularly excellent effects in the present invention.
非水系二次電池Aの負極は、例えば、負極活物質と結着剤、必要により他の添加剤を含有する合剤を負極集電体に塗布し、圧延することにより作製される。なお、負極としてリチウム等の金属あるいは合金が用いられる場合は、その圧延板が負極とされてもよい。 The negative electrode of the non-aqueous secondary battery A is produced, for example, by applying a negative electrode active material, a binder, and a mixture containing other additives as necessary to the negative electrode current collector and rolling. When a metal such as lithium or an alloy is used for the negative electrode, the rolled plate may be used as the negative electrode.
本発明の非水系二次電池Aの非水電解質としては、リチウムイオン二次電池に使用される液体電解質だけでなく、リチウムポリマー二次電池に使用されるゲル状あるいは固体の電解質であってもよい。液体電解質としては、エチレンカーボネート、プロピレンカーボネート等の有機溶媒にLiPF6等のリチウム塩を含有する非水電解質が挙げられる。ゲル状または固体電解質としては、リチウム塩を含有するポリエチレンオキサイド等が挙げられる。 The nonaqueous electrolyte of the nonaqueous secondary battery A of the present invention is not only a liquid electrolyte used for a lithium ion secondary battery, but also a gel or solid electrolyte used for a lithium polymer secondary battery. Good. Examples of the liquid electrolyte include nonaqueous electrolytes containing a lithium salt such as LiPF 6 in an organic solvent such as ethylene carbonate and propylene carbonate. Examples of the gel or solid electrolyte include polyethylene oxide containing a lithium salt.
本発明の蓄電素子Bまたは蓄電素子Dとしては、非水電解質を有する電気二重層キャパシタ、非水系二次電池等が用いられる。蓄電素子Bの電位差△VBは、非水系二次電池Aの電位差△VAより大きければ特に限定されないが、一般的な検知素子の検知精度を考慮すれば、200mV以上が好ましく、300mV以上がより好ましく、500mV以上が最も好ましい。一方、組電池全体の電圧変化への影響を考慮すると1300mV以下が好ましく、1000mV以下がより好ましい。また、蓄電素子Dの内部抵抗差△RDは、非水系二次電池Aの内部抵抗差△RAより大きければ特に限定されない。 As the electricity storage element B or the electricity storage element D of the present invention, an electric double layer capacitor having a nonaqueous electrolyte, a nonaqueous secondary battery, or the like is used. Potential difference △ V B of the storage element B is not particularly limited as larger than the potential difference △ V A nonaqueous secondary battery A, considering the detection accuracy of the common sensing element, is preferably at least 200 mV, more than 300mV More preferably, 500 mV or more is most preferable. On the other hand, considering the influence on the voltage change of the entire assembled battery, 1300 mV or less is preferable, and 1000 mV or less is more preferable. The internal resistance difference △ R D of the storage element D is not particularly limited as greater than the internal resistance difference △ R A nonaqueous secondary battery A.
蓄電素子Bとして電気二重層キャパシタが用いられる場合、放電深度にしたがって大きな電圧変化(1000mV以上)が得られるため、蓄電素子Bの電圧の正確な検知が容易であり、従って、組電池で充放電の終止電圧が正確に検知できるため好ましい。 When an electric double layer capacitor is used as the storage element B, a large voltage change (1000 mV or more) can be obtained according to the depth of discharge, so that accurate detection of the voltage of the storage element B is easy. This is preferable because the end voltage can be accurately detected.
図2(c)は本発明の非水系二次電池Aと蓄電素子Bの各単電池の放電深度と電圧の関係の一例を示す特性図であり、上図が非水系二次電池Aとして容量1000mAhのリチウムイオン二次電池が用いられる場合、下図が蓄電素子Bとして容量1000mAhの電気二重層キャパシタが用いられる場合である。この図2(c)に示すように、電気二重層キャパシタは非水系二次電池Aより充放電によって電圧が直線的に変化するため、厳格な充放電制御が要求される電源システム用の組電池に好ましく用いられる。 FIG. 2C is a characteristic diagram showing an example of the relationship between the discharge depth and the voltage of each unit cell of the non-aqueous secondary battery A and the storage element B of the present invention, and the upper diagram shows the capacity as the non-aqueous secondary battery A. When a 1000 mAh lithium ion secondary battery is used, the following figure shows a case where an electric double layer capacitor having a capacity of 1000 mAh is used as the storage element B. As shown in FIG. 2 (c), since the voltage of the electric double layer capacitor changes linearly by charging / discharging from the non-aqueous secondary battery A, the assembled battery for a power supply system requiring strict charge / discharge control. Is preferably used.
本発明において、蓄電素子Bとして電気二重層キャパシタが用いられる場合、ガス発生による影響を低減するため、プロピレンカーボネートなどの有機溶媒を主成分とする非水電解質を有する電気二重層キャパシタが用いられる。電気二重層キャパシタは比抵抗の低下のために電解液成分として水を含有してもよいが、水成分を主体とする電解液ではガス発生が顕著となるため、有機溶媒が主成分として用いられる。 In the present invention, when an electric double layer capacitor is used as the electricity storage element B, an electric double layer capacitor having a non-aqueous electrolyte mainly composed of an organic solvent such as propylene carbonate is used in order to reduce the influence of gas generation. The electric double layer capacitor may contain water as an electrolyte component for reducing the specific resistance, but an organic solvent is used as a main component because gas generation becomes significant in an electrolyte solution mainly composed of a water component. .
電気二重層キャパシタの非水電解質としては、上記のような有機溶媒に、例えばトリエチルメチルアンモニウムフルオロボレート(TEMA・BF4)等の電解質塩等を溶解させた非水電解質が挙げられる。 Examples of the non-aqueous electrolyte of the electric double layer capacitor include a non-aqueous electrolyte in which an electrolyte salt such as triethylmethylammonium fluoroborate (TEMA · BF 4 ) is dissolved in the above organic solvent.
本発明において、電気二重層キャパシタとしては、従来から公知の製法により作製されるものを使用することができる。そして、組電池の特性に合わせて、発電要素の一部として使用される場合に要求される所定の電圧、容量等が得られる電気二重層キャパシタが適宜選択される。 In the present invention, as the electric double layer capacitor, those produced by a conventionally known production method can be used. In accordance with the characteristics of the assembled battery, an electric double layer capacitor capable of obtaining a predetermined voltage, capacity, etc. required when used as a part of the power generation element is appropriately selected.
本発明において、蓄電素子Bとして非水系二次電池が使用される場合、非水系二次電池はエネルギー密度が大きいため組電池全体のエネルギー密度の低下が防止されるとともに、蓄電素子Bの充放電深度と電圧の関係が初期設定からずれにくいため好ましい。また、蓄電素子Dとして非水系二次電池が使用される場合、同様に、非水系二次電池はエネルギー密度が大きいため組電池全体のエネルギー密度の低下が防止されるとともに、蓄電素子Dの充放電深度と内部抵抗の関係が初期設定からずれにくいため好ましい。 In the present invention, when a non-aqueous secondary battery is used as the power storage element B, the energy density of the non-aqueous secondary battery is large, so that a reduction in the energy density of the entire assembled battery is prevented and charging / discharging of the power storage element B is performed. This is preferable because the relationship between depth and voltage is less likely to deviate from the initial setting. Further, when a non-aqueous secondary battery is used as the storage element D, similarly, the non-aqueous secondary battery has a large energy density, so that a decrease in the energy density of the entire assembled battery is prevented and the charging of the storage element D is also prevented. This is preferable because the relationship between the depth of discharge and the internal resistance is less likely to deviate from the initial setting.
蓄電素子Bまたは蓄電素子Dとして非水系二次電池が用いられる場合、上述した非水系二次電池Aと同様の正極、負極、非水電解質の構成を有する非水系二次電池が用いられる。これらの中でも、蓄電素子Bの△VBは非水系二次電池Aの△VAより大きいことが必要であるため、放電深度にしたがって大きな電圧変化を示す活物質を使用することが好ましい。また、蓄電素子Dの△RDは非水系二次電池Aの△RAより大きいことが必要であるため、放電深度にしたがって大きな内部抵抗変化を示す活物質を使用することが好ましい。 When a non-aqueous secondary battery is used as the electricity storage element B or the electricity storage element D, a non-aqueous secondary battery having the same positive electrode, negative electrode, and non-aqueous electrolyte structure as the non-aqueous secondary battery A described above is used. Among these, for △ V B of the storage element B is required to be greater than the △ V A nonaqueous secondary battery A, it is preferable to use an active material showing a large voltage change in accordance with the depth of discharge. Further, since △ R D of the storage element D is required to be greater than the △ R A nonaqueous secondary battery A, it is preferable to use an active material showing large internal resistance changes according to the depth of discharge.
このような正極活物質としては、LiMO2(ただし、MはNi、Co、Mn、Al、及びMgからなる群から選ばれる少なくとも1種である)で表されるリチウム酸化物を含有することが好ましい。特に、LiNixAlyCozO2等の複数の遷移金属が固溶された金属酸化物が好ましい。 Such a positive electrode active material may contain a lithium oxide represented by LiMO 2 (wherein M is at least one selected from the group consisting of Ni, Co, Mn, Al, and Mg). preferable. In particular, a metal oxide in which a plurality of transition metals such as LiNi x Al y Co z O 2 is dissolved is preferable.
負極活物質としては、非晶質炭素、スズ等の金属あるいはその合金、及び金属酸化物から選ばれる少なくとも1種の材料を含有することが好ましい。なお、非水系二次電池Aの材料と蓄電素子Bまたは蓄電素子Dの材料とを共通化することにより低コストを図る場合は、たとえば、負極は同じ黒鉛を使用することが好ましい。 The negative electrode active material preferably contains at least one material selected from amorphous carbon, metals such as tin or alloys thereof, and metal oxides. In addition, when aiming at low cost by sharing the material of the non-aqueous secondary battery A and the material of the electricity storage element B or the electricity storage element D, for example, it is preferable to use the same graphite for the negative electrode.
本発明において、非水系二次電池Aの正極は、正極のLi電位基準の平均放電電位が蓄電素子Bまたは蓄電素子Dの正極のLi電位基準の平均放電電位より低い正極を用いることが好ましい。 In the present invention, the positive electrode of the non-aqueous secondary battery A is preferably a positive electrode whose average discharge potential based on the Li potential of the positive electrode is lower than the average discharge potential based on the Li potential of the positive electrode of the storage element B or the storage element D.
上記のような正極の平均放電電位の関係を有する非水系二次電池Aと蓄電素子Bまたは蓄電素子Dとの組み合わせからなる組電池であれば、使用時に蓄電素子Bまたは蓄電素子Dが非水系二次電池Aより高電位とならず、蓄電素子Bまたは蓄電素子Dの劣化が非水系二次電池Aの劣化より遅くなり、組電池の容量が、劣化した蓄電素子Bまたは蓄電素子Dの容量によって規制されることが防止される。 If the battery pack is composed of a combination of the non-aqueous secondary battery A having the relationship of the average discharge potential of the positive electrode as described above and the electricity storage element B or the electricity storage element D, the electricity storage element B or the electricity storage element D is non-aqueous when used. The potential of the secondary battery A does not become higher, the deterioration of the storage element B or the storage element D becomes slower than the deterioration of the non-aqueous secondary battery A, and the capacity of the assembled battery becomes the capacity of the deteriorated storage element B or storage element D It is prevented from being regulated by.
また、本発明において、蓄電素子Bまたは蓄電素子Dとして非水系二次電池が用いられる場合、非水系二次電池Aの正極中に含まれるMn量より、蓄電素子Bまたは蓄電素子Dの正極中に含まれるMn量が少ない方が好ましい。例えば、正極活物質としてマンガン系酸化物が使用されると充放電により正極から溶出したマンガンイオンが負極に移動し、負極上に被膜が形成されることによって容量等の特性が低下する。従って、上記のようなMn量の関係を有する非水系二次電池Aと蓄電素子Bまたは蓄電素子Dとの組み合わせからなる組電池であれば、蓄電素子Bまたは蓄電素子Dの正極中のMn量が非水系二次電池Aの正極中のMn量よりも少ないため、蓄電素子Bまたは蓄電素子Dの劣化が非水系二次電池Aの劣化よりも遅くなる。このため、非水系二次電池Aが使用可能な状態であるにも拘らず劣化した蓄電素子Bまたは蓄電素子Dの容量によって組電池の容量が規制されることが防止される。このような組み合わせとしては、非水系二次電池Aの正極活物質にLiMn1.5Ni0.5O4が用いられる場合、蓄電素子Bまたは蓄電素子Dの正極活物質には、LiCoO2やLiNiO2等のマンガンを含有していない正極活物質や、LiNi0.4Mn0.3Co0.3O2等のマンガン含有量の少ない正極活物質を用いる例が挙げられる。 Further, in the present invention, when a non-aqueous secondary battery is used as the storage element B or the storage element D, the amount of Mn contained in the positive electrode of the non-aqueous secondary battery A is determined in the positive electrode of the storage element B or the storage element D. It is preferable that the amount of Mn contained in is smaller. For example, when a manganese-based oxide is used as the positive electrode active material, manganese ions eluted from the positive electrode due to charge / discharge move to the negative electrode, and a film is formed on the negative electrode, thereby reducing characteristics such as capacity. Therefore, if the battery pack is a combination of the nonaqueous secondary battery A having the relationship of Mn amount as described above and the storage element B or the storage element D, the Mn amount in the positive electrode of the storage element B or the storage element D Is smaller than the amount of Mn in the positive electrode of the non-aqueous secondary battery A, the deterioration of the storage element B or the storage element D is slower than the deterioration of the non-aqueous secondary battery A. For this reason, the capacity of the assembled battery is prevented from being regulated by the capacity of the storage element B or the storage element D that has deteriorated even though the non-aqueous secondary battery A is in a usable state. As such a combination, when LiMn 1.5 Ni 0.5 O 4 is used for the positive electrode active material of the non-aqueous secondary battery A, the positive electrode active material of the electricity storage device B or the electricity storage device D includes LiCoO 2 or Examples include a positive electrode active material not containing manganese such as LiNiO 2 and a positive electrode active material having a low manganese content such as LiNi 0.4 Mn 0.3 Co 0.3 O 2 .
本発明の組電池は、上記の特性を有する複数の非水系二次電池Aと、少なくとも1つの蓄電素子Bまたは蓄電素子Dとを直列に接続することにより製造される。そして、この組電池が電圧検知装置または内部抵抗検知装置、過充電防止回路、過放電防止回路等と一体化されることにより電源システムが製造される。 The assembled battery of the present invention is manufactured by connecting a plurality of nonaqueous secondary batteries A having the above characteristics and at least one power storage element B or power storage element D in series. And this power supply system is manufactured by integrating this assembled battery with a voltage detection device or an internal resistance detection device, an overcharge prevention circuit, an overdischarge prevention circuit, etc.
本発明において、非水系二次電池Aと、非水系二次電池Aの容量よりも大きな容量を有する蓄電素子Bまたは蓄電素子Dとが組み合わされて使用される組電池を製造する場合、非水系二次電池Aと蓄電素子Bまたは蓄電素子Dとを接続する前に、蓄電素子Bまたは蓄電素子Dを予備充電することが好ましい。 In the present invention, in the case of manufacturing an assembled battery in which a nonaqueous secondary battery A and a storage element B or a storage element D having a capacity larger than the capacity of the nonaqueous secondary battery A are used in combination, Before connecting secondary battery A and power storage element B or power storage element D, it is preferable to precharge power storage element B or power storage element D.
図2(a)に示したように、非水系二次電池Aと蓄電素子Bの両電池の容量が異なる場合、蓄電素子Bの放電深度は非水系二次電池Aの放電深度とずれが生ずる。このため、予め容量の大きな蓄電素子Bが所定の電気量で充電されれば、その予備充電の電気量分だけ放電深度がずれた状態で非水系二次電池Aと接続される。図2(b)は、図2(a)の非水系二次電池Aと蓄電素子Bの組み合わせで、蓄電素子Bと非水系二次電池Aの容量差の約半分の電気量(100mAh)が蓄電素子Bに予備充電された場合の特性図である。 As shown in FIG. 2A, when the nonaqueous secondary battery A and the storage element B have different capacities, the discharge depth of the storage element B deviates from the discharge depth of the nonaqueous secondary battery A. . For this reason, if the power storage element B having a large capacity is charged with a predetermined amount of electricity in advance, it is connected to the non-aqueous secondary battery A in a state where the depth of discharge is shifted by the amount of electricity for the preliminary charge. FIG. 2B is a combination of the non-aqueous secondary battery A and the storage element B in FIG. 2A, and the amount of electricity (100 mAh) is about half the capacity difference between the storage element B and the non-aqueous secondary battery A. FIG. 6 is a characteristic diagram when the storage element B is precharged.
この図2(b)に示すように、蓄電素子Bの充放電で使用される放電深度の領域は、蓄電素子Bの充放電可能な放電深度の領域の中間部にシフトされる。この予備充電による調整によって、電圧差を大きくしている蓄電素子Bで使用される電圧の範囲も中間部となるため充放電時の電圧の偏りが低減され、また、蓄電素子Bの使用領域が過充電あるいは過放電の領域から離れるため、蓄電素子Bの劣化が防止される。 As shown in FIG. 2 (b), the discharge depth region used for charging / discharging the electricity storage element B is shifted to the middle part of the discharge depth region where the electricity storage element B can be charged / discharged. Due to the adjustment by the preliminary charging, the voltage range used in the power storage element B having a large voltage difference is also an intermediate portion, so that the bias of the voltage at the time of charging and discharging is reduced. Since it leaves | separates from the area | region of an overcharge or overdischarge, degradation of the electrical storage element B is prevented.
また、図4に示したように、非水系二次電池Aと蓄電素子Dの両電池の容量が異なる場合、蓄電素子Dの放電深度は非水系二次電池Aの放電深度とずれが生ずる。このため、予め容量の大きな蓄電素子Dが所定の電気量で充電されれば、その予備充電の電気量分だけ放電深度がずれた状態で非水系二次電池Aと接続される。図4は、蓄電素子Dと非水系二次電池Aの容量差の約半分の電気量(200mAh)が蓄電素子Dに予備充電された場合の特性図である。 Further, as shown in FIG. 4, when the capacities of both the non-aqueous secondary battery A and the storage element D are different, the discharge depth of the storage element D is different from the discharge depth of the non-aqueous secondary battery A. For this reason, if the storage element D having a large capacity is charged in advance with a predetermined amount of electricity, it is connected to the non-aqueous secondary battery A in a state where the depth of discharge is shifted by the amount of electricity for preliminary charging. FIG. 4 is a characteristic diagram when the electricity storage element D is precharged with about half the amount of electricity (200 mAh) of the capacity difference between the electricity storage element D and the non-aqueous secondary battery A.
この図4に示すように、蓄電素子Dの充放電で使用される放電深度の領域は、蓄電素子Bの充放電可能な放電深度の領域の中間部にシフトされる。この予備充電による調整によって、内部抵抗差を大きくしている蓄電素子Dで使用される充放電範囲は中間部となるため、蓄電素子Dが過充電あるいは過放電の領域から離れるため、蓄電素子Dの劣化が防止される。 As shown in FIG. 4, the discharge depth region used for charging / discharging the electricity storage element D is shifted to an intermediate portion of the discharge depth region where the electricity storage element B can be charged / discharged. Due to the adjustment by the preliminary charging, the charging / discharging range used in the power storage element D having a large internal resistance difference becomes an intermediate portion, so that the power storage element D moves away from the overcharge or overdischarge region. Deterioration is prevented.
本発明において、前記予備充電の電気量としては、蓄電素子Bと非水系二次電池Aの容量差以下、または蓄電素子Dと非水系二次電池Aの容量差以下であればよく、好ましくは両電池の容量差の20〜50%であり、より好ましくは約半分である。予備充電の電気量を両電池の容量差の約半分にすれば、両電池の放電深度50%の中間位置が略一致するようになるため、いずれの電池も使用可能な領域の中間部で充放電され、劣化が低減される。 In the present invention, the amount of electricity for the preliminary charging may be less than or equal to the capacity difference between the storage element B and the non-aqueous secondary battery A, or less than or equal to the capacity difference between the storage element D and the non-aqueous secondary battery A. It is 20-50% of the capacity | capacitance difference of both batteries, More preferably, it is about half. If the amount of electricity for pre-charging is about half the capacity difference between the two batteries, the middle position of the discharge depth of both batteries will be approximately the same, so both batteries will be charged in the middle of the usable area. It is discharged and deterioration is reduced.
次に、本発明の組電池が用いられる電源システムについて説明する。図3は、本発明の電源システムの一例を示す回路図であり、電源システム(21)は、複数の非水系二次電池A(12)からなる主電源部(22)と、複数の非水系二次電池A(12)と直列に接続された蓄電素子Bまたは蓄電素子D(13)からなる監視部(23)とを備える組電池(11)と、蓄電素子B(13)の電圧または蓄電素子D(13)の内部抵抗を検知し、検知された電圧または内部抵抗に基づき組電池全体の充放電を制御する制御部(24)から構成されている。 Next, a power supply system in which the assembled battery of the present invention is used will be described. FIG. 3 is a circuit diagram showing an example of the power supply system of the present invention. The power supply system (21) includes a main power supply unit (22) composed of a plurality of nonaqueous secondary batteries A (12) and a plurality of nonaqueous systems. The assembled battery (11) including the monitoring unit (23) including the power storage element B or the power storage element D (13) connected in series with the secondary battery A (12), and the voltage or power storage of the power storage element B (13) It is comprised from the control part (24) which detects the internal resistance of the element D (13), and controls charging / discharging of the whole assembled battery based on the detected voltage or internal resistance.
本発明の電源システムに使用される制御部(24)としては、従来の組電池の充放電制御に使用されている装置が用いられる。具体的には、例えば、制御部(24)は、蓄電素子B(13)の両端電圧を検知するための検知手段、または蓄電素子D(13)の内部抵抗を検知するための検知手段と、予め作成された蓄電素子Bの充放電深度と電圧とのデータテーブルが入力された記憶手段、または蓄電素子Dの充放電深度と内部抵抗とのデータテーブルが入力された記憶手段と、検知された電圧に基づき蓄電素子B(13)の充放電深度を決定する充放電深度検知手段、または検知された内部抵抗に基づき蓄電素子D(13)の充放電深度を決定する充放電深度検知手段とを備えている。そして、得られた蓄電素子Bまたは蓄電素子D(13)の充放電深度に基づき、組電池(11)全体の充放電が管理される。 As a control part (24) used for the power supply system of this invention, the apparatus currently used for the charging / discharging control of the conventional assembled battery is used. Specifically, for example, the control unit (24) includes a detection unit for detecting the voltage across the storage element B (13) or a detection unit for detecting the internal resistance of the storage element D (13). The storage means to which the data table of the charge / discharge depth and voltage of the storage element B prepared in advance was input, or the storage means to which the data table of the charge / discharge depth and internal resistance of the storage element D was input, was detected. Charge / discharge depth detection means for determining the charge / discharge depth of the storage element B (13) based on the voltage, or charge / discharge depth detection means for determining the charge / discharge depth of the storage element D (13) based on the detected internal resistance. I have. And charging / discharging of the whole assembled battery (11) is managed based on the charging / discharging depth of the obtained electrical storage element B or electrical storage element D (13).
上記のような電源システムにおいては、予めその電源システムで設定される充放電条件に基づき求められる非水系二次電池Aの充放電深度と電圧との関係を基に、その非水系二次電池Aの充放電深度に相当する蓄電素子Bの充放電深度が決定され、検知される電圧と組電池の充放電深度との関係が設定される。組電池の充放電時に非水系二次電池Aで使用される充放電深度の範囲は、組電池が組み込まれる電源システムで要求される特性を考慮して設定される。例えば、極めて安定な高出力が要求されるシステムでは電圧変化の少ない狭い範囲の充放電深度のみが利用される場合があり、大容量で長時間の使用が要求されるシステムでは広い範囲の充放電深度が利用される場合がある。このような充放電深度の異なる電源システムに使用される組電池であっても、本発明では非水系二次電池として頻繁に使用される範囲(25〜75%)の放電深度間での電圧差を基準として蓄電素子Bが選定されるため、システムの充放電深度に制限されることなく適用できる。 In the power supply system as described above, the nonaqueous secondary battery A is based on the relationship between the charge / discharge depth of the nonaqueous secondary battery A and the voltage obtained in advance based on the charge / discharge conditions set in the power supply system. The charge / discharge depth of power storage element B corresponding to the charge / discharge depth is determined, and the relationship between the detected voltage and the charge / discharge depth of the assembled battery is set. The range of the charge / discharge depth used in the non-aqueous secondary battery A during charging / discharging of the assembled battery is set in consideration of the characteristics required for the power supply system in which the assembled battery is incorporated. For example, only a narrow range of charge / discharge depth with little voltage change may be used in a system that requires extremely stable high output, and a wide range of charge / discharge is required in a system that requires large capacity and long-term use. Depth may be used. Even in an assembled battery used in such a power supply system with different charge / discharge depths, a voltage difference between discharge depths in a range (25 to 75%) frequently used as a non-aqueous secondary battery in the present invention. Since the storage element B is selected based on the above, it can be applied without being limited by the charge / discharge depth of the system.
あるいは、上記のような電源システムにおいては、予めその電源システムで設定される充放電条件に基づき求められる非水系二次電池Aの充放電深度と内部抵抗との関係を基に、その非水系二次電池Aの充放電深度に相当する蓄電素子Dの充放電深度が決定され、検知される内部抵抗と組電池の充放電深度との関係が設定される。組電池の充放電時に非水系二次電池Aで使用される充放電深度の範囲は、組電池が組み込まれる電源システムで要求される特性を考慮して設定される。例えば、極めて安定な高出力が要求されるシステムでは内部抵抗変化の少ない狭い範囲の充放電深度のみが利用される場合があり、大容量で長時間の使用が要求されるシステムでは広い範囲の充放電深度が利用される場合がある。このような充放電深度の異なる電源システムに使用される組電池であっても、本発明では非水系二次電池として頻繁に使用される範囲(25〜75%)の放電深度間での内部抵抗差を基準として蓄電素子Dが選定されるため、システムの充放電深度に制限されることなく適用できる。 Alternatively, in the power supply system as described above, based on the relationship between the charge / discharge depth of the nonaqueous secondary battery A and the internal resistance obtained based on the charge / discharge conditions set in advance in the power supply system, the nonaqueous two The charge / discharge depth of the storage element D corresponding to the charge / discharge depth of the secondary battery A is determined, and the relationship between the detected internal resistance and the charge / discharge depth of the assembled battery is set. The range of the charge / discharge depth used in the non-aqueous secondary battery A during charging / discharging of the assembled battery is set in consideration of the characteristics required for the power supply system in which the assembled battery is incorporated. For example, in a system that requires extremely stable high output, only a narrow range of charge / discharge depth with little internal resistance change may be used, and in a system that requires large capacity and long-term use, a wide range of charge / discharge is available. The depth of discharge may be used. Even in an assembled battery used for such power supply systems with different charge / discharge depths, the internal resistance between discharge depths in the range (25 to 75%) frequently used as a non-aqueous secondary battery in the present invention. Since the electrical storage element D is selected on the basis of the difference, it can be applied without being limited by the charge / discharge depth of the system.
以下に、本発明の組電池の具体的な実施の形態が説明されるが、本発明はこれらの実施の形態に限定されるものではない。 Specific embodiments of the assembled battery of the present invention will be described below, but the present invention is not limited to these embodiments.
<実施の形態1>
本実施の形態では、非水系二次電池Aとしてリチウムイオン二次電池と、蓄電素子Bとして同種のリチウムイオン二次電池との組み合わせからなる組電池について検討された。
<Embodiment 1>
In the present embodiment, an assembled battery composed of a combination of a lithium ion secondary battery as the non-aqueous secondary battery A and the same type of lithium ion secondary battery as the power storage element B has been studied.
[単電池の作製]
(リチウムイオン二次電池−1:L−1)
正極活物質としてLiNi0.5Mn1.5O4100質量部、導電剤としてアセチレンブラック2.5質量部、結着剤としてポリフッ化ビニリデン(PVDF)4質量部が分散媒と混練されて正極スラリーが作製された。このスラリーが集電体である厚み15μmのアルミニウム箔の両面に塗布され、乾燥、圧延されて、その後所定のサイズに切り出されて正極板が作製された。
[Production of single cell]
(Lithium ion secondary battery-1: L-1)
100 parts by mass of LiNi 0.5 Mn 1.5 O 4 as a positive electrode active material, 2.5 parts by mass of acetylene black as a conductive agent, and 4 parts by mass of polyvinylidene fluoride (PVDF) as a binder are kneaded with a dispersion medium. A slurry was made. This slurry was applied to both sides of a 15 μm thick aluminum foil as a current collector, dried and rolled, and then cut into a predetermined size to produce a positive electrode plate.
上記とは別に、負極活物質として黒鉛100質量部、結着剤としてPVDF6質量部が分散媒と混練されて負極スラリーが作製された。このスラリーが集電体である厚み10μmの銅箔の両面に塗布され、乾燥、圧延されて、その後所定のサイズに切り出され負極板が作製された。 Separately from the above, 100 parts by mass of graphite as a negative electrode active material and 6 parts by mass of PVDF as a binder were kneaded with a dispersion medium to prepare a negative electrode slurry. This slurry was applied to both sides of a 10 μm thick copper foil as a current collector, dried and rolled, and then cut into a predetermined size to produce a negative electrode plate.
上記のようにして作製された正極板及び負極板を用い、27μmのポリエチレン製セパレータを間に介して両電極が対向するように渦巻状に巻回されて、電極体が作製された。この電極体が電池缶内に挿入され、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)が1:3の体積比で混合された溶媒に1.5MのLiBF4が溶解された電解液が注入されて、電池缶外径18mm、高さ65mmの18650サイズのリチウムイオン二次電池−1(L―1)が作製された。 Using the positive electrode plate and the negative electrode plate produced as described above, the electrode body was produced by spirally winding the two electrodes so as to face each other with a 27 μm polyethylene separator interposed therebetween. This electrode body is inserted into a battery can, and an electrolytic solution in which 1.5M LiBF 4 is dissolved in a solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) are mixed at a volume ratio of 1: 3 is injected. Thus, a lithium ion secondary battery-1 (L-1) of 18650 size having a battery can outer diameter of 18 mm and a height of 65 mm was produced.
上記のようにして作製された電池は、0.2Cの電流値で充電終止電圧4.85V、放電終止電圧3.0Vとした際の容量が1000mAhであった。 The battery produced as described above had a capacity of 1000 mAh when the end-of-charge voltage was 4.85 V and the end-of-discharge voltage was 3.0 V at a current value of 0.2 C.
(リチウムイオン二次電池−2:L−2)
正極活物質としてLiNi0.5Mn1.5O4の代わりにLiNi0.8Al0.1Co0.2O2が用いられ、容量がL−1の容量の1.2倍となるように塗布量が変更され、それに応じて負極の塗布量が変更された以外は、L−1と同様にして、リチウムイオン二次電池−2(L−2)が作製された。
(Lithium ion secondary battery-2: L-2)
LiNi 0.8 Al 0.1 Co 0.2 O 2 is used as the positive electrode active material instead of LiNi 0.5 Mn 1.5 O 4 so that the capacity becomes 1.2 times the capacity of L-1. A lithium ion secondary battery-2 (L-2) was produced in the same manner as L-1, except that the coating amount was changed to 1 and the coating amount of the negative electrode was changed accordingly.
上記のようにして作製された電池は、0.2Cの電流値で充電終止電圧4.2V、放電終止電圧3.0Vとした際の容量が1200mAhであった。 The battery produced as described above had a capacity of 1200 mAh when the end-of-charge voltage was 4.2 V and the end-of-discharge voltage was 3.0 V at a current value of 0.2C.
(リチウムイオン二次電池−3:L−3)
負極活物質として黒鉛の代わりに非晶質炭素が用いられた以外は、L−2と同様にして、リチウムイオン二次電池−3(L−3)が作製された。
(Lithium ion secondary battery-3: L-3)
A lithium ion secondary battery-3 (L-3) was produced in the same manner as L-2 except that amorphous carbon was used instead of graphite as the negative electrode active material.
上記のようにして作製された電池は、0.2Cの電流値で充電終止電圧4.2V、放電終止電圧3.0Vとした際の容量が1200mAhであった。 The battery produced as described above had a capacity of 1200 mAh when the end-of-charge voltage was 4.2 V and the end-of-discharge voltage was 3.0 V at a current value of 0.2C.
(リチウムイオン二次電池−4:L−4)
電池体積を大きくし、容量が2000mAhに変更された以外は、L−2と同様にして、リチウムイオン二次電池−4(L−4)が作製された。
(Lithium ion secondary battery-4: L-4)
A lithium ion secondary battery-4 (L-4) was produced in the same manner as L-2, except that the battery volume was increased and the capacity was changed to 2000 mAh.
[組電池の作製]
(組電池−1)
上記のようにして作製されたL−1とL−2が用いられ、各電池が充放電及びエージングで活性化された後、接続前に蓄電素子Bとして使用されるL−2については予備充電が行われた。予備充電では蓄電素子Bとして使用されるL−2の容量と非水系二次電池Aとして使用されるL−1との容量差の半分の電気量が充電された。次に、10個のL−1が直列に接続され、その端部に蓄電素子Bとして1個のL−2が直列に接続されて組電池−1が作製された。
[Production of assembled battery]
(Battery-1)
L-1 and L-2 produced as described above are used, and after each battery is activated by charging / discharging and aging, preliminary charging is performed for L-2 used as power storage element B before connection. Was done. In the preliminary charging, an amount of electricity that is half of the capacity difference between the capacity L-2 used as the electricity storage element B and the capacity L-1 used as the non-aqueous secondary battery A was charged. Next, ten L-1s were connected in series, and one L-2 was connected in series as a storage element B to the end thereof, thereby producing assembled battery-1.
(組電池−2)
組電池−1の作製において、蓄電素子BとしてL−3が使用された以外は、組電池−1と同様にして組電池−2が作製された。
(Battery-2)
An assembled battery-2 was produced in the same manner as the assembled battery-1, except that L-3 was used as the power storage element B in the production of the assembled battery-1.
(組電池−3)
組電池−1の作製において、予備充電の電気量がL−2とL−1の容量差の20%分の電気量とされた以外は、組電池−1と同様にして組電池−3が作製された。
(Battery-3)
In the production of the assembled battery-1, the assembled battery-3 is the same as the assembled battery-1, except that the amount of electricity for the precharge is 20% of the capacity difference between L-2 and L-1. Made.
(組電池−4)
組電池−1の作製において、蓄電素子BとしてL−4が使用された以外は、組電池−1と同様にして組電池−4が作製された。
(Battery-4)
An assembled battery-4 was produced in the same manner as the assembled battery-1, except that L-4 was used as the electricity storage element B in the production of the assembled battery-1.
(組電池−5)
組電池−1の作製において、予備充電を行わなかった以外は、組電池−1と同様にして組電池−5が作製された。
(Battery-5)
In the production of the assembled battery-1, an assembled battery 5 was produced in the same manner as the assembled battery-1, except that the preliminary charging was not performed.
(組電池−6)
組電池−1の作製において、11個のL−1が直列に接続されて組電池−6が作製された。なお、末端に接続された同一のL−1が蓄電素子Bとして使用されるため予備充電はされなかった。
(Battery-6)
In the production of the assembled battery-1, 11 L-1s were connected in series to produce an assembled battery-6. In addition, since the same L-1 connected to the terminal was used as the electricity storage element B, the preliminary charging was not performed.
上記のようにして作製された各組電池におけるL−1の単電池での放電深度25%及び75%での電圧VA1、VA2、その電圧差△VA及び容量CA、L−2〜L−4の上記各放電深度に相当する放電深度での電圧VB1、VB2、電圧差△VB及び容量CBを表1に示す。 The voltage V A1 , V A2 , the voltage difference ΔV A and the capacity C A , L-2 at the discharge depths of 25% and 75% in the L-1 cell in each assembled battery produced as described above. Table 1 shows voltages V B1 , V B2 , voltage difference ΔV B, and capacity C B at discharge depths corresponding to the above-described discharge depths of L-4.
各組電池について、組電池全体の出力とサイクル後の充放電深度のずれが評価された。組電池の出力は、放電深度50%で、2Aの電流で放電したときの10秒後の電圧と電流が測定され、組電池−6の出力を100%として評価された。 About each assembled battery, the shift | offset | difference of the output of the whole assembled battery and the charge / discharge depth after a cycle was evaluated. As for the output of the assembled battery, the voltage and current after 10 seconds were measured when discharging was performed at a current of 2 A at a discharge depth of 50%, and the output of the assembled battery-6 was evaluated as 100%.
サイクル後の充放電深度のずれは、1Cで非水系二次電池Aの放電深度25%及び75%に相当する放電深度での蓄電素子Bの電圧で充放電制御されたサイクル試験(サイクル数:50回)が各組電池で行われた後、初期設定で蓄電素子Bが放電深度50%を示す電圧で放電が停止され、その時の各組電池のL−1を測定し、その放電深度と当初設定の放電深度50%からの放電深度のずれで評価された。表1にこの結果を示す。 The shift in the charge / discharge depth after the cycle is a cycle test in which charge / discharge control is performed with the voltage of the storage element B at the discharge depth corresponding to 25% and 75% of the discharge depth of the non-aqueous secondary battery A at 1C (number of cycles: 50 times) is performed in each assembled battery, and at the initial setting, the storage element B stops discharging at a voltage indicating a discharge depth of 50%, and L-1 of each assembled battery at that time is measured, and the discharge depth and The evaluation was based on the deviation of the discharge depth from the initially set discharge depth of 50%. Table 1 shows the results.
表1に示されるように、非水系二次電池Aと、非水系二次電池Aの電圧差△VAより3〜9倍程度大きな電圧差△VBを有する蓄電素子Bとが組み合わされて組電池が構成されることにより、サイクル後であっても非水系二次電池Aは組電池の初期設定の放電深度からずれの少ない組電池が得られる。また、蓄電素子Bには電圧変化の大きなリチウムイオン二次電池が使用されているが、10個の非水系二次電池Aに対して1個の蓄電素子Bが使用されているため、出力密度の低下も抑えられている。従って、本発明の組電池は高出力であるとともに、電圧検知が電圧変化の大きな蓄電素子Bによって行われるため、電圧変化の平坦な非水系二次電池Aが主体として用いられる場合でも充放電末期が正確に検知でき、充放電深度のずれが少なく、過充電及び過放電が効果的に防止される。そして、組電池−1〜組電池−4は、非水系二次電池Aの容量よりも大きな容量を有する蓄電素子Bが使用されているが、放電深度の調整のために所定の電気量が予備充電されているため組電池の充放電時に電圧の偏りが少なく、蓄電素子Bの完全放電が防止されるため、その劣化が抑えられ充放電深度のずれの少ない組電池が得られる。
As shown in Table 1, the non-aqueous secondary battery A, a power storage device B having a voltage difference △
電源システムが適用される機器に応じて、寿命特性や熱安定性などの電池としての諸特性を向上させるために、種々の充放電特性の異なる活物質が使用される。例えば、正極活物質として遷移金属酸化物が用いられる場合、金属サイトをNi、Co、Mn、Fe、Cr、Al、Ti、Mg、Zn等の金属元素で置換したり、酸素のサイトにF等を置換する場合がある。このような正極活物質の組成や正極と負極の容量バランスなどによって、非水系二次電池Aと蓄電素子Bとの電圧差の関係が変わる場合がある。しかし、そのような場合でも、電圧差△VBが電位差△VAより大きい電池が蓄電素子Bとして用いられることで、本発明の効果が得られる。 Depending on the device to which the power supply system is applied, various active materials having different charge / discharge characteristics are used in order to improve various characteristics of the battery such as life characteristics and thermal stability. For example, when a transition metal oxide is used as the positive electrode active material, the metal site is replaced with a metal element such as Ni, Co, Mn, Fe, Cr, Al, Ti, Mg, Zn, or F at the oxygen site. May be replaced. Depending on the composition of the positive electrode active material and the capacity balance between the positive electrode and the negative electrode, the relationship of the voltage difference between the nonaqueous secondary battery A and the storage element B may change. However, even in such a case, when the voltage difference △ V B potential difference △ V A larger battery used as a power storage device B, the effect of the present invention is obtained.
<実施の形態2>
本実施の形態では、非水系二次電池Aとしてリチウムイオン二次電池と、蓄電素子Bとして電気二重層キャパシタとの組み合わせからなる組電池が検討された。
<
In the present embodiment, an assembled battery composed of a combination of a lithium ion secondary battery as the nonaqueous secondary battery A and an electric double layer capacitor as the power storage element B has been studied.
[単電池の作製]
(キャパシタ−1:C−1)
正極及び負極として活性炭をアルミニウム箔に塗布したものを用い、セパレータを介して両電極が対向するように渦巻状に巻回されて、素子が作製された。この素子をケースに挿入し、溶媒に電解質塩が溶解された非水電解質を素子に含浸させてキャパシタ−1(C−1)が作製された。
[Production of single cell]
(Capacitor-1: C-1)
A device in which activated carbon was applied to an aluminum foil as a positive electrode and a negative electrode was wound in a spiral shape so that both electrodes face each other with a separator interposed therebetween. This element was inserted into a case, and a capacitor-1 (C-1) was fabricated by impregnating the element with a nonaqueous electrolyte in which an electrolyte salt was dissolved in a solvent.
上記のようにして作製されたキャパシタは0.2Cの電流値で充電終止電圧2.5V、放電終止電圧0Vとした際の容量が1000mAhであった。 The capacitor produced as described above had a current value of 0.2 C, a charge end voltage of 2.5 V, and a capacity of 1000 mAh when the discharge end voltage was 0 V.
(キャパシタ−2:C−2)
C−1の作製において、容量が1.2倍となるように電極面積の大きな正極及び負極が用いられ、素子を大きくした以外は、C−1と同様にしてキャパシタ−2(C−2)が作製された。
(Capacitor-2: C-2)
Capacitor-2 (C-2) was prepared in the same manner as C-1, except that a positive electrode and a negative electrode having a large electrode area were used so that the capacitance was 1.2 times in the production of C-1, and the element was enlarged. Was made.
上記のようにして作製された電池は0.2Cの電流値で充電終止電圧2.5V、放電終止電圧0Vとした際の容量が1200mAhであった。 The battery produced as described above had a current value of 0.2 C, a charge end voltage of 2.5 V, and a capacity of 1200 mAh when the discharge end voltage was 0 V.
[組電池の作製]
(組電池−7)
上記のようにして作製されたC−1を蓄電素子Bとし、実施の形態1で作製されたL−1を非水系二次電池Aとして、組電池−1と同様にして組電池−7が作製された。なお、L−1とC−1は同容量のため予備充電は行われなかった。
[Production of assembled battery]
(Battery-7)
In the same manner as in the assembled battery-1, the assembled battery -7 is obtained by using the C-1 produced as described above as the power storage element B and the L-1 produced in the first embodiment as the non-aqueous secondary battery A. Made. Since L-1 and C-1 have the same capacity, no preliminary charging was performed.
(組電池−8)
組電池−1の作製において、蓄電素子BとしてC−2が使用された以外は、組電池−1と同様にして組電池−8が作製された。
(Battery-8)
In the production of the assembled battery-1, an assembled battery -8 was produced in the same manner as the assembled battery-1, except that C-2 was used as the electricity storage element B.
上記のようにして作製された組電池−7及び組電池−8について、実施の形態1と同様の出力及びサイクル後の充放電深度のずれの評価が行われた。その評価結果を組電池−6とともに表2に示す。 About the assembled battery-7 and the assembled battery-8 which were produced as mentioned above, evaluation of the shift | offset | difference of the output similar to Embodiment 1 and the charge / discharge depth after a cycle was performed. The evaluation results are shown in Table 2 together with the assembled battery-6.
表2に示されるように、蓄電素子Bとして電気二重層キャパシタが用いられた組電池−7及び組電池−8は、同一のリチウムイオン二次電池のみから構成される組電池−6よりも放電深度の誤差が少ない組電池であることが分かる。また、組電池の出力に関しても、組電池−7及び組電池−8の出力はリチウムイオン二次電池のみからなる組電池−6に比べて若干低くなるが、その差も6%以下であり、略同等のエネルギー密度を有する組電池が得られることが分かる。 As shown in Table 2, the assembled battery-7 and the assembled battery-8, in which the electric double layer capacitor is used as the storage element B, are discharged more than the assembled battery-6 composed of only the same lithium ion secondary battery. It can be seen that the battery pack has a small depth error. Also, regarding the output of the assembled battery, the outputs of the assembled battery-7 and the assembled battery-8 are slightly lower than those of the assembled battery-6 consisting of only lithium ion secondary batteries, but the difference is also 6% or less. It turns out that the assembled battery which has a substantially equivalent energy density is obtained.
<実施の形態3>
本実施の形態では、非水系二次電池Aとしてリチウムイオン二次電池と、蓄電素子Dとして同種のリチウムイオン二次電池の組み合わせからなる組電池について検討された。
<
In the present embodiment, an assembled battery composed of a combination of a lithium ion secondary battery as the non-aqueous secondary battery A and a lithium ion secondary battery of the same type as the power storage element D has been studied.
[単電池の作製]
(リチウムイオン二次電池−5:L−5)
正極活物質としてLiFePO4100質量部、導電剤としてアセチレンブラック10質量部、結着剤としてポリフッ化ビニリデン(PVDF)4質量部が分散媒と混練されて正極スラリーが作製された。このスラリーが集電体である厚み15μmのアルミニウム箔の両面に塗布され、乾燥、圧延されて、その後所定のサイズに切り出されて正極板が作製された。なお、LiFePO4の電子抵抗が低いため粒径が約100nmと小さな活物質を用いた。
[Production of single cell]
(Lithium ion secondary battery-5: L-5)
100 parts by mass of LiFePO 4 as a positive electrode active material, 10 parts by mass of acetylene black as a conductive agent, and 4 parts by mass of polyvinylidene fluoride (PVDF) as a binder were kneaded with a dispersion medium to prepare a positive electrode slurry. This slurry was applied to both sides of a 15 μm thick aluminum foil as a current collector, dried and rolled, and then cut into a predetermined size to produce a positive electrode plate. In addition, since the electronic resistance of LiFePO 4 is low, an active material having a small particle size of about 100 nm was used.
上記とは別に、負極活物質として黒鉛100質量部、結着剤としてPVDF6質量部が分散媒と混練されて負極スラリーが作製された。このスラリーが集電体である厚み10μmの銅箔の両面に塗布され、乾燥、圧延されて、その後所定のサイズに切り出され負極板が作製された。 Separately from the above, 100 parts by mass of graphite as a negative electrode active material and 6 parts by mass of PVDF as a binder were kneaded with a dispersion medium to prepare a negative electrode slurry. This slurry was applied to both sides of a 10 μm thick copper foil as a current collector, dried and rolled, and then cut into a predetermined size to produce a negative electrode plate.
上記のようにして作製された正極板及び負極板を用い、20μmのポリエチレン製セパレータを間に介して両電極が対向するように渦巻状に巻回されて、電極体が作製された。この電極体が電池缶内に挿入され、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)が1:1:8の体積比で混合された溶媒に1.4MのLiPF4が溶解された電解液が注入されて、電池缶外径26mm、高さ65mmの26650サイズのリチウムイオン二次電池−5(L―5)が作製された。 Using the positive electrode plate and the negative electrode plate manufactured as described above, the electrode body was manufactured by being spirally wound so that both electrodes face each other with a 20 μm polyethylene separator interposed therebetween. This electrode body was inserted into a battery can, and 1.4 M LiPF 4 was added to a solvent in which ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) were mixed at a volume ratio of 1: 1: 8. The lithium ion secondary battery-5 (L-5) of 26650 size having a battery can outer diameter of 26 mm and a height of 65 mm was produced.
上記のようにして作製された電池は、0.2Cの電流値で充電終止電圧3.7V、放電終止電圧2.0Vとした際の容量が2000mAhであった。 The battery produced as described above had a capacity of 2000 mAh when the end-of-charge voltage was 3.7 V and the end-of-discharge voltage was 2.0 V at a current value of 0.2C.
(リチウムイオン二次電池−6:L−6)
正極活物質としてLiFePO4の代わりにLiNi1/3Mn1/3Co1/3O2が用いられ、容量がL−5の容量の1.2倍となるように塗布量が変更され、それに応じて負極の塗布量が変更された以外は、L−5と同様にして、リチウムイオン二次電池−6(L−6)が作製された。
(Lithium ion secondary battery-6: L-6)
LiNi 1/3 Mn 1/3 Co 1/3 O 2 was used instead of LiFePO 4 as the positive electrode active material, and the coating amount was changed so that the capacity was 1.2 times the capacity of L-5. Accordingly, a lithium ion secondary battery-6 (L-6) was produced in the same manner as L-5, except that the coating amount of the negative electrode was changed.
上記のようにして作製された電池は、0.2Cの電流値で充電終止電圧4.2V、放電終止電圧2.5Vとした際の容量が2400mAhであった。 The battery produced as described above had a capacity of 2400 mAh when the end-of-charge voltage was 4.2 V and the end-of-discharge voltage was 2.5 V at a current value of 0.2C.
図4に、L−5(上図)とL−6(下図)について、放電深度に対する内部抵抗の変化を示す。ここで、図4の内部抵抗は次のようにして測定した。各放電深度に調整後、開放電圧Vxを測定し、その後、2Aで10秒間放電を行った際の電圧Vyとの電圧差(Vx−Vy)を電流値(2A)で除することにより、内部抵抗を求めた。 FIG. 4 shows changes in internal resistance with respect to the depth of discharge for L-5 (upper diagram) and L-6 (lower diagram). Here, the internal resistance of FIG. 4 was measured as follows. After adjusting to each depth of discharge, the open circuit voltage V x is measured, then dividing the voltage difference between the voltage V y when performing a 10 sec discharge 2A a (V x -V y) at a current value (2A) Thus, the internal resistance was obtained.
図4に示すように、L−6よりL−5の方が内部抵抗の変化が非常に小さい。したがってL−5を用いた組電池を用いることで、充放電深度によらず内部抵抗差が小さい、すなわち出力変動の小さい組電池を得ることが可能である。出力変動の小さい組電池で電源システムを構成することは、充放電深度によってパワーが落ちることを考慮せずにすみ、電源システム設計が容易になる利点がある。 As shown in FIG. 4, the change in internal resistance is much smaller in L-5 than in L-6. Therefore, by using an assembled battery using L-5, it is possible to obtain an assembled battery having a small internal resistance difference, that is, a small output fluctuation, regardless of the charge / discharge depth. Constructing a power supply system with a battery pack with small output fluctuations has the advantage that the power supply system design can be facilitated without considering the power drop due to the charge / discharge depth.
[組電池の作製]
(組電池−9)
上記のようにして作製されたL−5とL−6が用いられ、各電池が充放電及びエージングで活性化された後、接続前に蓄電素子Dとして使用されるL−6については予備充電が行われた。予備充電では蓄電素子Dとして使用されるL−6の容量と非水系二次電池Aとして使用されるL−5との容量差の半分の電気量が充電された。次に、10個のL−5が直列に接続され、その端部に蓄電素子Dとして1個のL−6が直列に接続されて組電池−9が作製された。
[Production of assembled battery]
(Battery-9)
L-5 and L-6 produced as described above are used, and after each battery is activated by charge / discharge and aging, L-6 used as a storage element D before connection is precharged. Was done. In the preliminary charging, a half of the capacity difference between the capacity of L-6 used as the electricity storage element D and the capacity of L-5 used as the non-aqueous secondary battery A was charged. Next, ten L-5s were connected in series, and one L-6 was connected in series as a power storage element D to the end thereof, thereby producing an assembled battery-9.
(組電池−10)
組電池−9の作製において、11個のL−5が直列に接続されて組電池−10が作製された。なお、末端に接続された同一のL−5が蓄電素子Dとして使用されるため予備充電はされなかった。
(Battery-10)
In the production of the assembled battery-9, 11 L-5s were connected in series to produce the assembled battery-10. In addition, since the same L-5 connected to the terminal was used as the electricity storage element D, the preliminary charging was not performed.
上記のようにして作製された各組電池におけるL−5の単電池での放電深度25%及び75%での内部抵抗差△RA、及び容量CA、L−6の上記放電深度に相当する放電深度での内部抵抗差△RD、及び容量CDを表3に示す。 Corresponds to the internal resistance difference ΔR A at the discharge depth of 25% and 75% in the L-5 unit cell and the discharge depth of the capacity C A , L-6 in each assembled battery produced as described above. internal resistance difference in the depth of discharge of △ R D, and the capacitance C D shown in Table 3.
各組電池について、組電池全体の出力とサイクル後の充放電深度のずれが評価された。組電池の出力は、放電深度50%で、10Aの電流で放電したときの10秒後の電圧と電流から算出され、組電池−10の出力を100%として評価された。 About each assembled battery, the shift | offset | difference of the output of the whole assembled battery and the charge / discharge depth after a cycle was evaluated. The output of the battery pack was calculated from the voltage and current after 10 seconds when the battery was discharged at a current of 10 A at a discharge depth of 50%, and the output of the battery pack-10 was evaluated as 100%.
サイクル後の充放電深度のずれは、1Cで非水系二次電池Aの放電深度25%及び75%に相当する放電深度での蓄電素子Dの電圧で充放電制御されたサイクル試験(サイクル数:50回)が各組電池で行われた後、初期設定で蓄電素子Dが放電深度50%を示す電圧で放電が停止され、その時の各組電池のL−5を測定し、その放電深度と当初設定の放電深度50%からの放電深度のずれで評価された。表3にこの結果を示す。 The shift in the charge / discharge depth after the cycle is a cycle test in which charge / discharge control is performed with the voltage of the storage element D at a discharge depth corresponding to 25% and 75% of the discharge depth of the nonaqueous secondary battery A at 1C (number of cycles: 50 times) is performed in each assembled battery, and at the initial setting, discharging is stopped at a voltage at which the storage element D has a discharge depth of 50%, and L-5 of each assembled battery at that time is measured. The evaluation was based on the deviation of the discharge depth from the initially set discharge depth of 50%. Table 3 shows the results.
表3に示されるように、非水系二次電池Aと、非水系二次電池Aの内部抵抗差△RAより約8倍程度大きな内部抵抗差△RDを有する蓄電素子Dとが組み合わされて組電池が構成されることにより、サイクル後であっても非水系二次電池Aは組電池の初期設定の放電深度からずれの少ない組電池が得られる。また、蓄電素子Dには内部抵抗変化の大きなリチウムイオン二次電池が使用されているが、10個の非水系二次電池Aに対して1個の蓄電素子Dが使用されているため、組電池としての内部抵抗変化も抑えられている。 As shown in Table 3, the non-aqueous secondary battery A, the electric device D having an internal resistance difference △ about 8 times more R A high internal resistance difference △ R D of the non-aqueous secondary cell A are combined By configuring the assembled battery, the non-aqueous secondary battery A can be obtained with little deviation from the default discharge depth of the assembled battery even after the cycle. In addition, a lithium ion secondary battery having a large internal resistance change is used for the storage element D, but since one storage element D is used for 10 non-aqueous secondary batteries A, the assembled battery The change in internal resistance as a battery is also suppressed.
従って、本発明の組電池は充放電深度によらず安定した高出力であるとともに、内部抵抗検知が内部抵抗変化の大きな蓄電素子Dによって行われるため、内部抵抗変化の平坦な非水系二次電池Aが主体として用いられる場合でも充放電末期が正確に検知でき、充放電深度のずれが少なく、過充電及び過放電が効果的に防止される。そして、組電池−9は非水系二次電池Aの容量よりも大きな容量を有する蓄電素子Dが使用されているが、放電深度の調整のために所定の電気量が予備充電されているため組電池の充放電時に電圧の偏りが少なく、蓄電素子Dの完全放電が防止されるため、その劣化が抑えられ充放電深度のずれの少ない組電池が得られる。 Therefore, the assembled battery according to the present invention has a stable and high output regardless of the charge / discharge depth, and the internal resistance detection is performed by the power storage element D having a large internal resistance change, and thus the non-aqueous secondary battery having a flat internal resistance change. Even when A is used as the main component, the end stage of charging / discharging can be accurately detected, the deviation of the charging / discharging depth is small, and overcharge and overdischarge are effectively prevented. The assembled battery-9 uses a storage element D having a capacity larger than the capacity of the non-aqueous secondary battery A, but a predetermined amount of electricity is precharged to adjust the discharge depth. When the battery is charged / discharged, there is little voltage deviation, and complete discharge of the electricity storage element D is prevented. Therefore, an assembled battery with reduced deterioration and small deviation in charge / discharge depth can be obtained.
11 組電池
12 非水系二次電池A
13 蓄電素子Bまたは蓄電素子D
21 電源システム
22 主電源部
23 監視部
24 制御部
11 assembled
13 Storage element B or Storage element D
21
Claims (18)
前記非水系二次電池Aにおける放電深度25%での単電池当たりの電圧(VA1)と放電深度75%での単電池当たりの電圧(VA2)との電圧差を△VAとし、前記蓄電素子Bにおける前記非水系二次電池Aの放電深度25%に相当する放電深度での単電池当たりの電圧(VB1)と前記非水系二次電池Aの放電深度75%に相当する放電深度での単電池当たりの電圧(VB2)との電圧差を△VBとしたとき、前記蓄電素子Bの△VBが前記非水系二次電池Aの△VAより大きいことを特徴とする組電池。 A battery pack mainly composed of a plurality of non-aqueous secondary batteries A, wherein the plurality of non-aqueous secondary batteries A and a storage element B having at least one non-aqueous electrolyte for voltage detection are connected in series. ,
Wherein the voltage difference between the voltage (V A2) per single cell in the discharge depth 75% voltage (V A1) of per cell at 25% depth of discharge in the non-aqueous secondary battery A △ and V A, the The voltage per unit cell (V B1 ) at the discharge depth corresponding to 25% of the discharge depth of the non-aqueous secondary battery A in the storage element B and the discharge depth corresponding to 75% of the discharge depth of the non-aqueous secondary battery A when the △ V B voltage difference between the voltage per unit cell (V B2) at, characterized in that △ V B of the power storage device B is larger than △ V a of the non-aqueous secondary battery a Assembled battery.
前記非水系二次電池Aと前記蓄電素子Bとを接続する前に、前記蓄電素子Bを予備充電することを特徴とする組電池の製造方法。 A plurality of non-aqueous secondary batteries A as a main body, the plurality of non-aqueous secondary batteries A and a storage element B having at least one non-aqueous electrolyte for voltage detection are connected in series, and the non-aqueous secondary battery the voltage difference between the voltage (V A2) per single cell in the discharge depth 75% voltage (V A1) of per cell at 25% depth of discharge of the secondary battery a was △ V a, the power storage device B The voltage per unit cell (V B1 ) at a discharge depth corresponding to 25% of the discharge depth of the non-aqueous secondary battery A and a single discharge depth corresponding to 75% of the discharge depth of the non-aqueous secondary battery A in FIG. when the voltage difference between the voltage (V B2) per cell △ and V B, the △ V B of the storage element B is greater than the △ V a nonaqueous secondary battery a, and a single of said power storage device B battery capacity C B per cell per unit cell of the non-aqueous secondary battery a A method for producing a battery pack having a larger battery capacity CA than
Before connecting the non-aqueous secondary battery A and the electricity storage element B, the electricity storage element B is precharged.
前記非水系二次電池Aと前記蓄電素子Dとを接続する前に、前記蓄電素子Dを予備充電することを特徴とする組電池の製造方法。 A plurality of non-aqueous secondary batteries A are mainly used, and the plurality of non-aqueous secondary batteries A and a storage element D having at least one non-aqueous electrolyte for detecting internal resistance are connected in series. the difference in the internal resistance per cell in the discharge depth 75% internal resistance (R A1) per unit cell of 25% depth of discharge in aqueous secondary battery a and (R A2) △ and R a, the power storage The internal resistance (R D1 ) per unit cell at the discharge depth corresponding to 25% of the discharge depth of the non-aqueous secondary battery A in the element D and the discharge depth corresponding to 75% of the discharge depth of the non-aqueous secondary battery A when the difference of △ R D of the internal resistance per cell (R D2) at, △ R D of the electric device D is greater than the △ R a of the non-aqueous secondary battery a, and the accumulator wherein the battery capacity C D per unit cell of the element D nonaqueous secondary battery A method for producing a battery pack having a battery capacity C A larger than the battery capacity C A per cell of the pond A,
Before connecting the non-aqueous secondary battery A and the storage element D, the storage element D is pre-charged, and the assembled battery manufacturing method is characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006313364A JP2007220658A (en) | 2006-01-18 | 2006-11-20 | Packed battery, power supply system, and method of manufacturing packed battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006009504 | 2006-01-18 | ||
JP2006313364A JP2007220658A (en) | 2006-01-18 | 2006-11-20 | Packed battery, power supply system, and method of manufacturing packed battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007220658A true JP2007220658A (en) | 2007-08-30 |
Family
ID=38497672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006313364A Ceased JP2007220658A (en) | 2006-01-18 | 2006-11-20 | Packed battery, power supply system, and method of manufacturing packed battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007220658A (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008192437A (en) * | 2007-02-05 | 2008-08-21 | Sanyo Electric Co Ltd | Battery unit |
JP2009238488A (en) * | 2008-03-26 | 2009-10-15 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery and its manufacturing method |
WO2009147854A1 (en) * | 2008-06-04 | 2009-12-10 | パナソニック株式会社 | Battery pack |
JP2010009840A (en) * | 2008-06-25 | 2010-01-14 | Panasonic Corp | Battery pack and battery system equipped with it |
WO2010053174A1 (en) * | 2008-11-06 | 2010-05-14 | 株式会社ジーエス・ユアサコーポレーション | Positive electrode for lithium secondary battery, and lithium secondary battery |
JP2011076888A (en) * | 2009-09-30 | 2011-04-14 | Hitachi Vehicle Energy Ltd | Battery pack constituted of nonaqueous electrolyte secondary batteries |
WO2011090147A1 (en) * | 2010-01-21 | 2011-07-28 | Sony Coproration | Assembled battery and method of controlling assembled battery |
JP2012054019A (en) * | 2010-08-31 | 2012-03-15 | Calsonic Kansei Corp | Battery |
JP2013037862A (en) * | 2011-08-06 | 2013-02-21 | Denso Corp | Battery pack |
JP2013037863A (en) * | 2011-08-06 | 2013-02-21 | Denso Corp | Battery pack |
JP2013065469A (en) * | 2011-09-16 | 2013-04-11 | Murata Mfg Co Ltd | Secondary battery system |
JP2013089523A (en) * | 2011-10-20 | 2013-05-13 | Tdk Corp | Battery pack and electricity storage device including the same |
JP2013089522A (en) * | 2011-10-20 | 2013-05-13 | Tdk Corp | Battery pack and electricity storage device |
JP2013142568A (en) * | 2012-01-10 | 2013-07-22 | Denso Corp | Secondary battery and remaining capacity calculating device for the same |
US8577529B2 (en) | 2009-06-02 | 2013-11-05 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for vehicle |
CN103390775A (en) * | 2012-05-08 | 2013-11-13 | 浙江南博电源科技有限公司 | Grouping method for lithium iron phosphate secondary batteries |
KR20160072221A (en) | 2013-10-21 | 2016-06-22 | 도요타지도샤가부시키가이샤 | Cell system |
JP2016158317A (en) * | 2015-02-23 | 2016-09-01 | 株式会社デンソー | Power storage device |
WO2017046895A1 (en) * | 2015-09-16 | 2017-03-23 | 株式会社 東芝 | Assembled battery and battery pack |
WO2017133760A1 (en) * | 2016-02-02 | 2017-08-10 | Toyota Motor Europe Nv/Sa | Control device and method for discharging a rechargeable battery |
WO2017133759A1 (en) * | 2016-02-02 | 2017-08-10 | Toyota Motor Europe Nv/Sa | Control device and method for charging a rechargeable battery |
WO2018012364A1 (en) * | 2016-07-13 | 2018-01-18 | 株式会社 村田製作所 | Battery pack circuit, capacity coefficient detection method, and capacity coefficient detection program |
US11462780B2 (en) | 2017-03-08 | 2022-10-04 | Kabushiki Kaisha Toshiba | Charge/discharge control apparatus, condition-of-use creation apparatus, non-transitory computer readable medium, and power storage system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0898417A (en) * | 1994-09-27 | 1996-04-12 | Yamaha Motor Co Ltd | Charge/discharge control method for secondary battery |
JPH08315793A (en) * | 1995-05-22 | 1996-11-29 | Saitama Nippon Denki Kk | Battery pack for portable telephone |
JPH09180768A (en) * | 1995-12-27 | 1997-07-11 | Sanyo Electric Co Ltd | Battery assembly |
JP2002298933A (en) * | 2001-03-30 | 2002-10-11 | Toshiba Corp | Lithium ion secondary battery pack |
JP2002330545A (en) * | 2001-04-27 | 2002-11-15 | Nissan Motor Co Ltd | Power unit |
JP2004111242A (en) * | 2002-09-19 | 2004-04-08 | Nissan Motor Co Ltd | Battery pack |
JP2004273295A (en) * | 2003-03-10 | 2004-09-30 | Nissan Motor Co Ltd | Sealed nickel-hydrogen secondary battery and hybrid electric automobile equipped with the same |
-
2006
- 2006-11-20 JP JP2006313364A patent/JP2007220658A/en not_active Ceased
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0898417A (en) * | 1994-09-27 | 1996-04-12 | Yamaha Motor Co Ltd | Charge/discharge control method for secondary battery |
JPH08315793A (en) * | 1995-05-22 | 1996-11-29 | Saitama Nippon Denki Kk | Battery pack for portable telephone |
JPH09180768A (en) * | 1995-12-27 | 1997-07-11 | Sanyo Electric Co Ltd | Battery assembly |
JP2002298933A (en) * | 2001-03-30 | 2002-10-11 | Toshiba Corp | Lithium ion secondary battery pack |
JP2002330545A (en) * | 2001-04-27 | 2002-11-15 | Nissan Motor Co Ltd | Power unit |
JP2004111242A (en) * | 2002-09-19 | 2004-04-08 | Nissan Motor Co Ltd | Battery pack |
JP2004273295A (en) * | 2003-03-10 | 2004-09-30 | Nissan Motor Co Ltd | Sealed nickel-hydrogen secondary battery and hybrid electric automobile equipped with the same |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008192437A (en) * | 2007-02-05 | 2008-08-21 | Sanyo Electric Co Ltd | Battery unit |
JP2009238488A (en) * | 2008-03-26 | 2009-10-15 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery and its manufacturing method |
KR101237106B1 (en) * | 2008-06-04 | 2013-02-25 | 파나소닉 주식회사 | Assembled battery |
WO2009147854A1 (en) * | 2008-06-04 | 2009-12-10 | パナソニック株式会社 | Battery pack |
JPWO2009147854A1 (en) * | 2008-06-04 | 2011-10-27 | パナソニック株式会社 | Assembled battery |
JP2010009840A (en) * | 2008-06-25 | 2010-01-14 | Panasonic Corp | Battery pack and battery system equipped with it |
WO2010053174A1 (en) * | 2008-11-06 | 2010-05-14 | 株式会社ジーエス・ユアサコーポレーション | Positive electrode for lithium secondary battery, and lithium secondary battery |
JP5574239B2 (en) * | 2008-11-06 | 2014-08-20 | 株式会社Gsユアサ | Positive electrode for lithium secondary battery and lithium secondary battery |
US8577529B2 (en) | 2009-06-02 | 2013-11-05 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for vehicle |
JP2011076888A (en) * | 2009-09-30 | 2011-04-14 | Hitachi Vehicle Energy Ltd | Battery pack constituted of nonaqueous electrolyte secondary batteries |
WO2011090147A1 (en) * | 2010-01-21 | 2011-07-28 | Sony Coproration | Assembled battery and method of controlling assembled battery |
JP2012054019A (en) * | 2010-08-31 | 2012-03-15 | Calsonic Kansei Corp | Battery |
JP2013037863A (en) * | 2011-08-06 | 2013-02-21 | Denso Corp | Battery pack |
JP2013037862A (en) * | 2011-08-06 | 2013-02-21 | Denso Corp | Battery pack |
JP2013065469A (en) * | 2011-09-16 | 2013-04-11 | Murata Mfg Co Ltd | Secondary battery system |
JP2013089523A (en) * | 2011-10-20 | 2013-05-13 | Tdk Corp | Battery pack and electricity storage device including the same |
JP2013089522A (en) * | 2011-10-20 | 2013-05-13 | Tdk Corp | Battery pack and electricity storage device |
JP2013142568A (en) * | 2012-01-10 | 2013-07-22 | Denso Corp | Secondary battery and remaining capacity calculating device for the same |
CN103390775A (en) * | 2012-05-08 | 2013-11-13 | 浙江南博电源科技有限公司 | Grouping method for lithium iron phosphate secondary batteries |
US10181622B2 (en) | 2013-10-21 | 2019-01-15 | Toyota Jidosha Kabushiki Kaisha | Cell system |
KR20160072221A (en) | 2013-10-21 | 2016-06-22 | 도요타지도샤가부시키가이샤 | Cell system |
JPWO2015059746A1 (en) * | 2013-10-21 | 2017-03-09 | トヨタ自動車株式会社 | Battery system |
JP2016158317A (en) * | 2015-02-23 | 2016-09-01 | 株式会社デンソー | Power storage device |
US10673103B2 (en) | 2015-09-16 | 2020-06-02 | Kabushiki Kaisha Toshiba | Battery module, battery pack and vehicle |
JP6130053B1 (en) * | 2015-09-16 | 2017-05-17 | 株式会社東芝 | Battery pack and battery pack |
WO2017046895A1 (en) * | 2015-09-16 | 2017-03-23 | 株式会社 東芝 | Assembled battery and battery pack |
WO2017133760A1 (en) * | 2016-02-02 | 2017-08-10 | Toyota Motor Europe Nv/Sa | Control device and method for discharging a rechargeable battery |
WO2017133759A1 (en) * | 2016-02-02 | 2017-08-10 | Toyota Motor Europe Nv/Sa | Control device and method for charging a rechargeable battery |
US11225166B2 (en) | 2016-02-02 | 2022-01-18 | Toyota Motor Europe | Control device and method for discharging a rechargeable battery |
US11411421B2 (en) | 2016-02-02 | 2022-08-09 | Toyota Motor Europe | Control device and method for charging a rechargeable battery |
WO2018012364A1 (en) * | 2016-07-13 | 2018-01-18 | 株式会社 村田製作所 | Battery pack circuit, capacity coefficient detection method, and capacity coefficient detection program |
CN109463022A (en) * | 2016-07-13 | 2019-03-12 | 株式会社村田制作所 | Battery circuit, capacity coefficient detection method and capacity coefficient detect program |
US11269015B2 (en) | 2016-07-13 | 2022-03-08 | Murata Manufacturing Co., Ltd. | Battery pack circuit, capacity coefficient detection method, and capacity coefficient detection program |
CN109463022B (en) * | 2016-07-13 | 2022-05-06 | 株式会社村田制作所 | Battery pack circuit, capacity coefficient detection method, and storage medium |
US11462780B2 (en) | 2017-03-08 | 2022-10-04 | Kabushiki Kaisha Toshiba | Charge/discharge control apparatus, condition-of-use creation apparatus, non-transitory computer readable medium, and power storage system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7985495B2 (en) | Assembled battery, power-supply system and production method of assembled battery | |
JP2007220658A (en) | Packed battery, power supply system, and method of manufacturing packed battery | |
US9882406B2 (en) | Charging control method for lithium-ion battery, charging control apparatus for lithium-ion battery and lithium-ion battery system | |
JP5130917B2 (en) | Lithium secondary battery deterioration detection method and deterioration suppression method, deterioration detector and deterioration suppressor, battery pack and charger using the same | |
US10483779B2 (en) | Status determining method for secondary battery, status determining apparatus for secondary battery, secondary battery system, and charge/discharge control apparatus having status determining apparatus | |
CN101785136B (en) | Lithium ion secondary battery, battery pack, hybrid electric vehicle, battery pack system, and charge-discharge control method | |
JP5866987B2 (en) | Secondary battery control device and SOC detection method | |
US9337484B2 (en) | Electrodes having a state of charge marker for battery systems | |
US8487630B2 (en) | Battery pack and method for detecting degradation of battery | |
KR101454829B1 (en) | Apparatus for estimating state of charge of secondary battery including blended cathode material and Method thereof | |
JP5904039B2 (en) | Secondary battery control device | |
CN105340148B (en) | Secondary battery system | |
JP5191502B2 (en) | Lithium ion secondary battery system and lithium ion secondary battery | |
JP6087489B2 (en) | Assembled battery system | |
JPWO2011033781A1 (en) | Charge / discharge method of positive electrode active material in lithium secondary battery, and charge / discharge system including lithium secondary battery, battery pack, battery module, electronic device, and vehicle | |
JPWO2011074196A1 (en) | Battery pack, discharge system, charge / discharge system, and discharge control method for lithium ion secondary battery | |
JP2011108550A (en) | Charging method and charging device for nonaqueous electrolyte secondary battery | |
JP7131568B2 (en) | Estimation device, estimation method and computer program | |
JP5870767B2 (en) | Battery maintenance and regeneration method for non-aqueous electrolyte secondary battery | |
JP5122899B2 (en) | Discharge control device | |
JPWO2018135668A1 (en) | Lithium-ion battery pack | |
JP2001176559A (en) | Method of measuring charged voltage of secondary battery | |
JP2004172112A (en) | Lithium secondary battery and its manufacturing method | |
JPH05290846A (en) | Nonaqueous electrolytic secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091102 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120510 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120626 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120801 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20121026 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130423 |
|
A045 | Written measure of dismissal of application [lapsed due to lack of payment] |
Free format text: JAPANESE INTERMEDIATE CODE: A045 Effective date: 20130827 |