JP2010192420A - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP2010192420A
JP2010192420A JP2009153778A JP2009153778A JP2010192420A JP 2010192420 A JP2010192420 A JP 2010192420A JP 2009153778 A JP2009153778 A JP 2009153778A JP 2009153778 A JP2009153778 A JP 2009153778A JP 2010192420 A JP2010192420 A JP 2010192420A
Authority
JP
Japan
Prior art keywords
anode catalyst
catalyst layer
fuel
anode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009153778A
Other languages
English (en)
Inventor
Mitsuru Udatsu
満 宇田津
Hiroshi Suga
博史 菅
Asako Sato
麻子 佐藤
Mitsuru Furuichi
満 古市
Jun Monma
旬 門馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009153778A priority Critical patent/JP2010192420A/ja
Priority to TW099101636A priority patent/TW201044684A/zh
Priority to PCT/JP2010/000322 priority patent/WO2010084753A1/ja
Publication of JP2010192420A publication Critical patent/JP2010192420A/ja
Priority to US13/185,971 priority patent/US20110275003A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8673Electrically conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】高濃度燃料を使用する燃料電池の出力を高め、耐久性・長期安定性を向上させる。
【解決手段】この燃料電池は、アノード触媒とプロトン伝導性の電解質を含有するアノード触媒層と、カソード触媒とプロトン伝導性の電解質を含有するカソード触媒層と、アノード触媒層とカソード触媒層との間に挟持されたプロトン伝導性の電解質膜と、アノード触媒層に燃料を供給するための機構を備えた燃料電池であって、アノード触媒層の水銀圧入式ポロシメーターにより測定された空隙率が0〜30%であることを特徴とする。このような燃料電池において、アノード触媒の含有前後の金属比表面積(COパルス吸着法により測定)の比を0〜20%とすることが好ましい。また、アノード触媒層が補強材を含有することが好ましい。
【選択図】図1

Description

本発明は、燃料電池に係り、特にメタノールなどの液体燃料を使用した直接メタノール型の燃料電池に関する。
近年、パーソナルコンピュータ、携帯電話などの電子機器は半導体技術の発達とともに小型化されており、これらの電子機器の電源に燃料電池を用いることが試みられている。燃料電池は、燃料と酸化剤を供給するだけで発電することができるシステムである。特に、直接メタノール型燃料電池(DMFC:Direct Methanol Fuel Cell)は、エネルギー密度の高いメタノールを燃料に使用し、電極触媒上でメタノールから直接電流を取り出すことができ、改質器も不要なことから、小型機器用電源として有望視されている。
DMFCにおける燃料の供給方法として、液体燃料を気化させてからブロア等で燃料電池内に送り込む気体供給型と、50mol%以下の濃度の液体燃料をそのままポンプ等で燃料電池内に送り込む液体供給型、さらに、燃料電池内部で50mol%以上の濃度の液体燃料を気化させる内部気化型などが知られている。
内部気化型DMFCは、液体燃料を保持する層と、保持された液体燃料のうち気化成分を拡散させるための気液分離膜とを備えており、気液分離膜を介して気化した液体燃料がアノード触媒層に供給されるように構成されている。
アノード触媒層では、式(1)に示すように、気化したメタノールと水とが反応して二酸化炭素および水素イオン(プロトン)が生成する。
CHOH+HO → CO+6H+6e ………(1)
カソード触媒層では、式(2)に示すような水の発生を伴う反応が進行する。
(3/2)O+6H+6e → 3HO ………(2)
また、カソード触媒層では、アノード側からカソード側へ拡散したメタノールが直接酸化されることで水を生成する。この水は、自己拡散することによってアノード側へ供給され、アノード触媒層における前記式(1)の反応に必要な水として利用される。
従来からのDMFCにおいて、アノード触媒層はアノード触媒とプロトン伝導性の電解質を含有しており、前記反応を行う界面(触媒と燃料と電解質との三相界面)を増大させるために、多くの空隙を有する構造となっている(例えば、特許文献1、特許文献2参照)。
しかし、このような構造の燃料電池では、燃料として高濃度のメタノール水溶液あるいは純メタノールを使用した場合に、燃料中に含まれる水が少ないため、前記式(1)の反応に必要な水が不足しやすい。そのため、アノード触媒に高濃度のメタノールがそのまま到達し、高い出力が得られないばかりでなく、アノード触媒と電解質が劣化し、発電特性が次第に低下するという問題があった。また、起動中はアノード触媒層中の電解質が燃料や生成した水を吸収して膨潤し、停止中は含有された燃料や水が揮発・乾燥して電解質が収縮するため、間欠運転で起動・停止サイクルを繰り返すことによって、アノード触媒層と電解質膜との界面剥離のような物理的な劣化が生じるという問題があった。
特開平05−36418号公報 特開平08−88008号公報
本発明は、このような問題を解決するためになされたものであり、高濃度燃料を使用する燃料電池の出力を高め、耐久性・長期安定性を向上させることを目的としている。
本発明の燃料電池は、アノード触媒とプロトン伝導性を有する電解質を含有するアノード触媒層と、カソード触媒とプロトン伝導性を有する電解質を含有するカソード触媒層と、前記アノード触媒層と前記カソード触媒層との間に挟持されたプロトン伝導性の電解質膜と、前記アノード触媒層に燃料を供給するための機構を具備する燃料電池であって、前記アノード触媒層の水銀圧入式ポロシメーターにより測定された空隙率が、0〜30%であることを特徴とする。
本発明の燃料電池によれば、アノード触媒がプロトン伝導性を有する電解質によって被覆され、アノード触媒層の空隙率が0〜30%と低減されているので、高濃度燃料を使用する燃料電池の出力特性を高め、出力の長期安定性や耐久性を向上させることができる。
本発明に係る燃料電池の一実施形態の構成を示す縦断面図である。 実施例1,2および比較例1,2の燃料電池において、出力の経時変化を示すグラフである。 実施例1,2および比較例1,2の燃料電池において、アノード触媒層の空隙率と発電開始から100時間後の出力を、ナフィオンの含有割合に対してプロットしたグラフである。 実施例1,2および比較例1,2の燃料電池において、アノード触媒の含有前後の金属比表面積の比と発電開始から100時間後の出力を、ナフィオンの含有割合に対してプロットしたグラフである。
以下、本発明の実施の形態について、図面を参照して説明する。図1は、本発明に係る燃料電池の一実施形態の構成を示す断面図である。
図1に示すように、実施形態の燃料電池20は、アノード触媒層1とアノードガス拡散層2を有するアノード3と、カソード触媒層4とカソードガス拡散層5を有するカソード6、およびアノード触媒層1とカソード触媒層4との間に挟持されたプロトン伝導性を有する電解質膜7とから構成される膜電極接合体(Membrane Electrode Assembly:MEA)8を備えている。また、このMEA8のカソード6の外側に、カソード導電層9と保湿層10、および保湿層10の上に積層された複数の空気導入口11aを有する表面カバー層11を備えている。さらに、MEA8のアノード3の外側に、アノード導電層12と気液分離膜13およびアノード3(アノード触媒層1)に液体燃料Fを供給する燃料供給機構30を備えている。
アノード触媒層1とカソード触媒層4はいずれも、触媒と、プロトン伝導性を有する電解質とを含有している。電解質は、プロトン伝導性とともにメタノール透過性も有している。アノード触媒層1に含有されるアノード触媒、およびカソード触媒層4に含有されるカソード触媒としては、例えば、白金族元素であるPt、Ru、Rh、Ir、Os、Pdなどの単体金属、これらの白金族元素を含有する合金などを挙げることができる。具体的には、アノード触媒として、メタノールや一酸化炭素に対して強い耐性を有するPt−RuやPt−Moなどの合金を、カソード触媒として、PtやPt−Ni、Pt−Coなどの合金のような金属触媒を用いることが好ましいが、これらに限定されるものではない。また、これらの触媒の微粒子を導電性担体に担持した担持触媒を使用してもよい。導電性担体としては、活性炭や黒鉛などの粒子状のカーボンまたは繊維状のカーボンが使用されるが、これらに限定されるものではない。
これらの触媒とともにアノード触媒層1およびカソード触媒層4に含有されるプロトン伝導性とメタノール透過性を有する電解質としては、例えば、スルホン酸基を有するパーフルオロカーボン重合体のようなフッ素系樹脂や、スルホン酸基を有する炭化水素系樹脂などの有機系材料、あるいはタングステン酸やリンタングステン酸などの無機系材料が挙げられる。具体的には、ナフィオン(商品名;デュポン社製)、フレミオン(商品名;旭硝子社製)、アシプレックス(商品名;旭化成工業社製)などが例示される。なお、プロトン伝導性とメタノール透過性を有する電解質は、これらに限定されるものではなく、例えば、トリフルオロスチレン誘導体の共重合体、リン酸を含浸させたポリベンズイミダゾール膜、芳香族ポリエーテルケトンスルホン酸、あるいは脂肪族炭化水素系樹脂のような、水素イオン(プロトン)およびメタノールを輸送可能な電解質を使用することができる。
本発明の実施形態においては、アノード触媒層1の水銀圧入式ポロシメーターにより測定された空隙率が0〜30%となっている。アノード触媒層1の空隙率が30%以下の場合には、高濃度のメタノール燃料を使用した場合でも、プロトン伝導性の電解質中でメタノールが水で希釈されるので、アノード反応に最適な濃度のメタノールがアノード触媒に供給される。したがって、高い出力を得ることができる。空隙率が30%を超える場合には、高濃度のメタノール燃料が、アノード触媒層1の空隙部を通り、プロトン伝導性の電解質の層を透過することなく直接アノード触媒(の表面)に到達するため、高出力が得られない。アノード触媒層1の空隙率は低いほどよく、実質的に空隙が存在しない空隙率0%であるのが最も好ましい。なお、カソード触媒層4の空隙率(水銀圧入式ポロシメーターにより測定)の値も30%以下(0%を含む。)であることが好ましいが、特に限定されない。
水銀圧入式ポロシメーターは、空隙の容積(分布)を測定する装置であり、この装置によるアノード触媒層1の空隙率の測定は、以下のようにして行うことができる。すなわち、燃料電池20を解体して取り出したMEA8を、水中に数時間(例えば5時間)浸漬した後、アノード触媒層1のみを剥がし取り、得られた分離後のアノード触媒層1を、真空中室温で24時間乾燥する。乾燥後の試料の空隙率を、水銀圧入式ポロシメーター(装置名:Pascal 240;サーモフィッシャーサイエンティフィック社製)を用いて測定する。
アノード触媒層1(および必要に応じてカソード触媒層4)の空隙率を変えるには、アノード触媒層1を構成するアノード触媒とプロトン伝導性の電解質との配合割合を調整する方法を採ることができる。そして、アノード触媒層1におけるプロトン伝導性の電解質の含有割合を40重量%を超え80重量%以下にすることにより、アノード触媒層1の空隙率を0〜30%にすることができる。
また実施形態の燃料電池20では、0〜30%の空隙率を有するアノード触媒層1において、アノード触媒の金属比表面積(COパルス吸着法により測定。以下同じ。)は、アノード触媒層1に含有される前のアノード触媒そのものの金属比表面積に対して、0〜20%の比率であることが好ましい。これは、アノード触媒層1中でアノード触媒金属の表面の大部分がプロトン伝導性の電解質で覆われており、アノード触媒金属の露出表面積が総表面積の20%以下(0%を含む。)であることを意味する。なお、COパルス吸着法は、表面の存在する金属粒子に定量のCO(ガス)を断続的に注入し、定常的に溶出されるCO量と始めの吸着時のCO量との差分をCO吸着量として測定する方法である。この方法により、金属触媒の単位質量当りの露出表面積を比表面積として求めることができる。
アノード触媒層1中のアノード触媒の金属比表面積の、含有前のアノード触媒の金属比表面積に対する比率(以下、含有前後のアノード触媒の金属比表面積の比と示す。)が、20%以下(0%を含む。)の場合には、アノード触媒の表面の大部分(80%以上)がプロトン伝導性の電解質により覆われているので、高濃度のメタノール燃料を使用した場合でも、電解質中でメタノールが水で希釈され、アノード反応に最適な濃度のメタノールがアノード触媒に供給される。したがって、高い出力を得ることができる。含有前後のアノード触媒の金属比表面積の比が20%を超える場合には、高濃度のメタノール燃料が、プロトン伝導性の電解質の層を透過することなく直接アノード触媒金属の表面に到達することが多くなるため、高出力が得られない。
実施形態では、含有前後のアノード触媒の金属比表面積の比が0%であり、アノード触媒の表面が電解質で完全に覆われた状態であるのが最も好ましい。なお、カソード触媒層4においても、カソード触媒の含有前後の金属比表面積の比が20%以下(0%を含む。)であることが好ましいが、特に限定されるものではない。
アノード触媒層1に含有されたアノード触媒の金属比表面積の測定は、以下に示すようにして行うことができる。まず、燃料電池を解体して取り出したMEA8を、水中に数時間(例えば5時間)浸漬した後、アノード触媒層1のみを剥がし取り、得られた分離後のアノード触媒層1を、真空中室温で24時間乾燥する。得られたアノード触媒層1を乳鉢で軽くすり潰して粉末状(例えば粒径1mm程度の粉末状)にしたものを、COガス吸着量測定装置(装置名:BEL-CAT B;日本ベル社製)の計量管に充填する。そして、所定の温度(例えば50℃)でCOパルス吸着量を測定し、アノード触媒の金属比表面積を求める。また、アノード触媒層に含有される前のアノード触媒の金属比表面積の測定は、アノード触媒の粉末をそのままCOガス吸着量測定装置の計量管に充填し、所定の温度(例えば50℃)でCOパルス吸着量を測定し、金属比表面積を求める。
アノード触媒層1(および必要に応じてカソード触媒層4)において、含有前後のアノード触媒の金属比表面積の比を変化させるには、アノード触媒層1を構成するアノード触媒とプロトン伝導性の電解質との配合割合を調整する方法を採ることができる。そして、アノード触媒層1におけるプロトン伝導性の電解質の含有割合を40重量%を超え80重量%以下にすることにより、アノード触媒の含有前後の金属比表面積の比を20%以下にすることができる。
さらに、本発明の実施形態においては、アノード触媒層1が補強材を含有することが好ましい。アノード触媒層1に含有させる補強材としては、カーボンや無機材料、高分子、金属等からなる粒子状物質や繊維状物質、または連通孔が規則的に配列された構造を有する多孔質支持体などが挙げられる。これらを組み合わせて使用してもよい。これらの補強材は、前記した触媒金属粒子の担体として用いることも可能である。補強材の含有量はアノード触媒層1全体の5〜30重量%の割合とすることが好ましいが、発電性能に顕著に影響することがなければ特に限定されるものではない。
より具体的には、繊維状物質として、カーボンナノチューブやカーボンナノファイバーのような長さ(繊維長)100nm〜10cm、直径(平均繊維径)0.5nm〜1mmの繊維状カーボン、好ましくは長さ100nm〜500μm、直径0.5nm〜100μmの繊維状カーボンを使用することができる。また、粒子状物質としては、直径(平均粒径)10nm〜10mm、好ましくは直径(平均粒径)10nm〜100μmの高分子、金属、無機材料等からなる粒子を用いることができる。さらに、支持体としては、ポリイミドやカーボン等からなり、規則的に配列された連通孔を有する多孔質支持体を使用することができる。多孔質支持体を使用する場合には、支持体の連通孔(直径10nm〜1mm、好ましくは10nm〜100μm)内に触媒とプロトン伝導性の電解質とをそれぞれ充填・含有させることが好ましい。このように構成することで、触媒層(アノード触媒層1)としての機能の低下を抑えることができる。
このようにアノード触媒層1に補強材を含有させることにより、触媒層の構造を補強して安定化することができるので、起動・停止サイクルの繰り返しによるアノード触媒層1の劣化や破壊を防止し、耐久性を上げ出力の長期安定性を向上させることができる。
本発明の実施形態においては、このように構成されるアノード触媒層1にアノードガス拡散層2が積層されている。また、カソード触媒層4にカソードガス拡散層5が積層されている。アノードガス拡散層2は、アノード触媒層1に燃料を均一に供給する役割を果たすと同時に、アノード触媒層1の集電体としての役割も果たしている。カソードガス拡散層5はカソード触媒層4に酸化剤である空気を均一に供給する役割を果たすと同時に、カソード触媒層4の集電体としての役割も果たしている。これらアノードガス拡散層2およびカソードガス拡散層5は、例えば、カーボンペーパー、カーボンクロス、カーボンシルクなどの多孔性炭素質材、チタン、チタン合金、ステンレス、金などの金属材料からなる多孔質体またはメッシュなどで構成されている。
また、アノード触媒層1とカソード触媒層4との間に、プロトン伝導性を有する電解質膜7が挟持されている。電解質膜7を構成するプロトン伝導性の電解質は、メタノール透過性も有している。電解質膜7を構成する材料としては、例えば、ナフィオンやフレミオンなどのスルホン酸基を有するフッ素系樹脂(パーフルオロカーボン重合体)、スルホン酸基を有する炭化水素系樹脂などの有機系材料、あるいはタングステン酸やリンタングステン酸などの無機系材料が挙げられる。なお、プロトン伝導性の電解質膜7はこれらに限定されるものではない。
さらに、アノードガス拡散層3の外側にアノード導電層12が積層され、カソードガス拡散層5の外側にカソード導電層9が積層されている。アノード導電層12とカソード導電層9は、例えばAu、NIなどの電気特性と化学的安定性に優れた導電性金属材料からなる多孔質層(例えばメッシュ)、または箔体、薄膜あるいはステンレス鋼(SUS)などの導電性金属材料に金などの良導電性金属を被覆した複合材などで構成される。
プロトン伝導性の電解質膜7とアノード導電層12との間であってアノード触媒層1とアノードガス拡散層2の周囲には、例えば断面がO字状であり、平面形状が矩形枠状のシール材21が設けられている。また、プロトン伝導性の電解質膜7とカソード導電層9との間であってカソード触媒層4とカソードガス拡散層5の周囲にも、同じ形状のシール材21が設けられている。これらのシール材21は、MEA8からの燃料漏れおよび酸化剤漏れを防止するものであり、例えばゴムなどの弾性体で構成されている。なお、図1はカソード導電層9を備えた燃料電池を示しているが、カソード導電層9を設けずに、カソードガス拡散層5を導電層として機能させてもよい。
カソード導電層9の上には、保湿層10が積層されている。保湿層10は、カソード触媒層4で生成された水の一部を含み、水の蒸散を抑制するとともに、生成した水の一部をアノード側へ拡散させる機能を有する。また、カソードガス拡散層5に酸化剤である空気を均一に導入し、カソード触媒層4への酸化剤(空気)の均一な拡散を促進する機能も有している。保湿層10としては、例えば多孔質ポリエチレン膜などを使用することができる。
保湿層10の上には、酸化剤である空気を取り入れるための空気導入口11aが複数個形成された表面カバー層11が配置されている。表面カバー層11は、MEA8や保湿層10を加圧し密着性を高める役割も果たしている。例えばSUS304のような金属から構成することができるが、これに限定されない。表面カバー層11における空気の取入れ量の調整は、空気導入口11aの個数や大きさなどを変えることで行われる。
アノード導体層12の外側(燃料供給機構30側)には、気液分離膜13が配置されている。気液分離膜13は、液体燃料Fの気化成分と液体燃料とを分離し、気化成分のみをアノード3側に通過させるものである。この気液分離膜13は、燃料(例えばメタノール)に対して不活性で溶解しない材料で構成される。具体的には、シリコーンゴム薄膜、低密度ポリエチレン(LDPE)薄膜、ポリ塩化ビニル(PVC)薄膜、ポリエチレンテレフタレート(PET)薄膜、フッ素樹脂(例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)など)微多孔膜などの材料により構成される。この気液分離膜13は、周縁から燃料などが漏れないように構成されている。
気液分離膜13とアノード導体層12との間に、樹脂製のフレーム(図示しない)を設けてもよい。フレームで囲まれた空間は、気液分離膜13を拡散してきた燃料の気化成分を一時的に収容する気化燃料収容室(いわゆる蒸気だまり)として機能するとともに、MEA8とアノード導体層12を密着させる補強板としても機能する。この気化燃料収容室および気液分離膜13の透過メタノール量抑制効果により、一度に多量の気化燃料がMEA8(アノード触媒層1)に流入するのが回避され、燃料クロスオーバーの発生が抑制される。フレームは、例えばポリエーテルエーテルケトン(PEEK:ヴィクトレックス社製)のような耐薬品性の高いエンジニアリングプラスチックで構成される。
気液分離膜13の外側に燃料供給機構30が配置されている。燃料供給機構30は、アノード導電層12の開口に対向して設けられた複数の開口部31aを有する燃料分配層31と、この燃料分配層31に液体燃料Fを供給する燃料供給部本体32と、燃料収容部33と、流路34、および流路34に介挿されたポンプ35を備えている。
燃料収容部33には、MEA8に対応した液体燃料Fが収容されている。液体燃料Fとしては、アルコール、カルボン酸およびアルデヒドからなる群から選択される一つ以上の物質の水溶液または非水溶液を使用することができる。具体的には、メタノール水溶液や純メタノール等のメタノール燃料、エタノール水溶液や純エタノール等のエタノール燃料、プロパノール水溶液や純プロパノール等のプロパノール燃料、グリコール水溶液や純グリコール等のグリコール燃料、ジメチルエーテル、ギ酸、もしくはその他の液体燃料が使用される。いずれにしても、燃料電池に応じた液体燃料が収容される。これらの中でも、メタノールは、炭素数が1で反応の際に発生するのが二酸化炭素であり、低温での発電反応が可能であり、産業廃棄物から比較的容易に製造することができる。そのため、液体燃料Fとしてメタノール水溶液あるいは純メタノールを使用するのが好ましい。また、濃度が50mol%以上となるものが好適に用いられるが、必ずしも限定されない。
燃料供給部本体32は、供給された液体燃料Fを燃料分配層31に対して均一に供給するために、液体燃料を分散させるための凹部からなる燃料供給部36を備えている。この燃料供給部36は、配管等で構成される流路34を介して燃料収容部33と接続されている。燃料供給部36には、燃料収容部33から流路34を介して液体燃料Fが導入され、導入された液体燃料Fおよび/またはこの液体燃料Fの気化成分は、燃料分配層31を介して気液分離膜13に供給される。そして気化成分のみがMEA8に供給される。
流路34は、燃料供給部36や燃料収容部33と独立した配管に限られるものではない。例えば、燃料供給部36や燃料収容部33を積層して一体化する場合、これらを繋ぐ液体燃料Fの流路であってもよい。すなわち、燃料供給部36は、流路34を介して燃料収容部33と連通されていればよい。
流路34の一部にはポンプ35が介挿されており、燃料収容部33に収容された液体燃料Fは燃料供給部36まで強制的に送液される。流路34にポンプ35を介在させず、燃料収容部33に収容された液体燃料Fを、重力を利用して燃料供給部36まで落下させて送液してもよい。また、流路34に多孔体等を充填して、毛細管現象により液体燃料Fを燃料供給部36まで送液してもよい。
このポンプ35は、燃料収容部33から燃料供給部36に液体燃料Fを単に送液する供給ポンプとして機能するものであり、MEA8に供給された過剰な液体燃料Fを循環する循環ポンプとしての機能を備えるものではない。このようなポンプ35を備えた燃料電池20は、燃料を循環しないことから、従来のアクティブ方式とは構成が異なる。また、従来の内部気化型のような純パッシブ方式とも構成が異なり、いわゆるセミパッシブ型と呼ばれる方式に該当する。なお、燃料供給手段として機能するポンプ35の種類は、特に限定されるものではないが、少量の液体燃料Fを制御性よく送液することができ、さらに小型軽量化が可能という観点から、ロータリベーンポンプ、電気浸透流ポンプ、ダイアフラムポンプ、しごきポンプ等を使用することが好ましい。ロータリベーンポンプは、モータで羽を回転させて送液するものである。電気浸透流ポンプは、電気浸透流現象を起こすシリカ等の焼結多孔体を用いたものである。ダイアフラムポンプは、電磁石や圧電セラミックスによりダイアフラムを駆動して送液するものである。しごきポンプは、柔軟性を有する燃料流路の一部を圧迫し、燃料をしごき送るものである。これらのうち、駆動電力や大きさ等の観点から、電気浸透流ポンプや圧電セラミックスを有するダイアフラムポンプを使用することがより好ましい。このポンプ35は、制御手段(図示しない)と電気的に接続されており、この制御手段によって、燃料供給部36に供給される液体燃料Fの供給量が制御される。
燃料分配層31は、複数の開口部31aが形成された平板であり、液体燃料Fやその気化成分を透過させない材料で構成される。具体的には、燃料分配層31は、ポリエチレンテレフタレート(PET)樹脂、ポリエチレンナフタレート(PEN)樹脂、ポリイミド系樹脂等で構成され、気液分離膜13と燃料供給部本体32との間に挟持される。燃料供給部本体32に導入された液体燃料Fは、燃料分配層31の複数の開口部31aからアノード3の全面に対して供給される。このように、燃料分配層31によって、アノード3に供給される燃料供給量を均一化することが可能となる。
次に、実施形態に示した燃料電池20の作用について説明する。燃料収容部33から流路34を通って燃料供給部36に供給された液体燃料Fは、液体燃料のまま、もしくは液体燃料と液体燃料が気化した気化燃料が混在する状態で燃料分配層31を通った後、気液分離膜13を通り、液体燃料Fの気化成分のみがアノードガス拡散層2に供給される。アノードガス拡散層2に供給された燃料は、アノードガス拡散層2で拡散してアノード触媒層1に供給される。液体燃料Fとしてメタノール燃料を用いた場合、アノード触媒層1では、次の式(1)に示すメタノールの内部改質反応が生じる。
CHOH+HO → CO+6H+6e ……(1)
メタノール燃料として純メタノールを使用した場合には、メタノールは、カソード触媒層4で生成した水や電解質膜7中の水と前記した式(1)の内部改質反応を行うことによって改質されるか、または水を必要としない他の反応機構により改質される。
この反応で生成した電子(e)は、集電体を経由して外部に導かれ、いわゆる電気として電子機器等を動作させた後、カソード6に導かれる。また、式(1)の内部改質反応で生成したプロトン(H)は、電解質膜7を経てカソード6に導かれる。カソード6には酸化剤として空気が供給される。カソード6に到達した電子(e)とプロトン(H)は、カソード触媒層4で空気中の酸素と次の式(2)に示す反応を生じ、この反応に伴って水を生成する。
(3/2)O+6e+6H → 3HO ……(2)
そして、実施形態の燃料電池20においては、アノード触媒がプロトン伝導性を有する電解質によって被覆され、アノード触媒層1の空隙率が0〜30%と低減されているので、高出力および出力の長期安定性等が得られる。これは、以下に示す理由によるものと考えられる。すなわち、アノード触媒層1の空隙率が低減されているので、燃料であるメタノールが、アノード触媒層1の空隙を通って直接アノード触媒に到達することが少なくなる。そして、燃料がプロトン伝導性の電解質の層を透過してアノード触媒に達し、アノード触媒とプロトン伝導性を有する電解質との2相の界面が、前記式(1)に示すアノード反応の界面になるので、高濃度のメタノール燃料を使用した場合でも、電解質中でメタノールが水で希釈される結果、反応に最適な濃度のメタノールがアノード触媒に供給される。したがって、アノード触媒の劣化が防止され、高い出力が可能となるうえに出力の低下も生じにくくなるものと考えられる。
上述した実施形態の燃料電池は、各種の液体燃料を使用した場合に効果を発揮し、液体燃料の種類や濃度は限定されるものではない。さらに、上述した実施形態は、燃料電池本体の構成として燃料の供給にポンプを使用したセミパッシブ型のものを例に挙げて説明したが、内部気化型のような純パッシブ型の燃料電池に対しても本発明を適用することができる。
次に、本発明に係る燃料電池が優れた出力特性と耐久性を有することを、実施例および比較例に基づいて説明する。
実施例1,2,比較例1,2
アノード触媒粒子(Pt:Ru=1:1)を担持したカーボンブラックと、プロトン伝導性の電解質(樹脂)溶液として、パーフルオロスルホン酸重合体溶液であるナフィオン溶液DE2020(商品名;デュポン社製)と、水およびメトキシプロパノールを、ナフィオンの含有割合を変えて混合し、アノード触媒スラリーを調製した。得られたアノード触媒スラリーを、アノードガス拡散層となる多孔質カーボンペーパー(30mm×40mmの長方形)の一方の面に塗布した後乾燥させ、厚さ100μmのアノード触媒層を形成した。なお、アノード触媒スラリー中でのナフィオンの含有割合を調整することにより、アノード触媒層中でのナフィオンの含有割合が、実施例1においては60重量%、実施例2においては80重量%になるようにした。また、比較例1および比較例2においては、アノード触媒層中でのナフィオンの含有割合がそれぞれ40重量%および20重量%になるようにした。
また、カソード触媒粒子(Pt)を担持したカーボンブラックと、プロトン伝導性の電解質(樹脂)溶液として、パーフルオロスルホン酸重合体溶液であるナフィオン溶液DE2020(商品名;デュポン社製)と、水およびメトキシプロパノールを混合し、カソード触媒スラリーを調製した。このカソード触媒スラリーを、カソードガス拡散層となる多孔質カーボンペーパー(アノードガス拡散層である多孔質カーボンペーパーと同形同大)の一方の面に塗布した後乾燥させ、厚さ100μmのカソード触媒層を形成した。
次に、プロトン伝導性の電解質膜として、厚さが30μmで含水率が10〜20重量%のパーフルオロスルホン酸重合体を含む固体電解質膜であるナフィオン112(デュポン社製)を使用し、この電解質膜と前記アノード(アノードガス拡散層とアノード触媒層)およびカソード(カソードガス拡散層とカソード触媒層)を、アノード触媒層とカソード触媒層がそれぞれ電解質膜側になるように重ね合わせた後、ホットプレスを施すことによりMEAを作製した。なお、電極面積は、アノード、カソードともに12cmとした。
次いで、このようにして製造されたMEAを使用し、以下に示すようにして図1に示す燃料電池を製造した。すなわち、MEA8のアノード3側とカソード6側を、それぞれ複数の開孔を有する金箔で挟み、アノード導電層12とカソード導電層9をそれぞれ形成した。そして、電解質膜7とアノード導体層12との間、および電解質膜7とカソード導電層9との間に、それぞれゴム製のOリングを挟持してシールを施した。さらに、アノード導体層12の外側にポリエーテルエーテルケトン(PEEK)からなるフレームを配設し、その外側(フレームの上)に、多孔質ポリエチレン製フィルムから成る気液分離膜13と、複数の開口31aを有する燃料分配層31、および燃料供給部本体32を順に設けた。
また、保湿層10として、厚さが500μmで、透気度が2秒/100cm(JIS P−8117に規定の測定方法による)、透湿度が400g/(m・24h)(JIS L−1099 A−1に規定の測定方法による)の多孔質ポリエチレン製フィルムを用い、これをカソード導電層9の上に配置した。また、この保湿層10の上に、空気導入口11a(直径3mm、口数60個)が形成された厚さが2mmのステンレス板(SUS304)を配置し、表面カバー層11とした。
さらに、ポンプ35としてしごきポンプを使用し、流路34の一部を一定方向にしごいて圧力を生じさせることにより、燃料収容部33に収容された液体燃料Fを燃料供給部32に送液するようにした。ここで、しごきポンプの回転数を、燃料電池20に流れる電流によって制御する制御回路を構成し、燃料電池20で電気化学反応を生じるのに必要な燃料供給量(電流1Aにつき、1分間当りのメタノールの供給量3.3mg)の1.2倍の燃料が常に供給されるように制御した。
このようにして図1に示す燃料電池を製造し、燃料収容室33内に純メタノールを入れて発電を行わせた。そして、温度25℃、相対湿度50%の環境で出力の変化を測定した。こうして測定された発電時間に対する出力の変化を、図2に示す。なお、出力は、比較例1における初期の出力を100とする相対比として表している。
図2のグラフから、以下に示すことが確認された。すなわち、図2のグラフで発電時間に対する出力の変化を比較すると、アノード触媒層1におけるナフィオンの含有割合を60重量%および80重量%とした実施例1および実施例2においては、ナフィオンの含有割合を40重量%および20重量%とした比較例1および比較例2に比べて、良好な初期特性が得られた。また、長時間発電しても出力の低下がほとんどなく、出力特性の劣化が抑制されることがわかった。
次いで、実施例1,2および比較例1,2でそれぞれ得られた燃料電池を解体し、MEA8を取り出した。そして、取り出されたMEA8を水中に数時間浸漬した後、MEA8からアノード触媒層1のみを剥がし取り、アノード触媒層1の空隙率を水銀圧入式ポロシメーターを用いて測定した。さらに、水中に数時間浸漬後のMEA8から剥がし取られたアノード触媒層中のアノード触媒の金属比表面積と、含有前のアノード触媒の金属比表面積を、それぞれCOパルス吸着法により測定し、後者の比表面積に対する前者の比表面積の比率(%)をそれぞれ算出した。なお、COパルス吸着法による測定は、全自動触媒ガス吸着量測定装置BEL-CAT B(日本ベル社製)を用いて50℃で行った。これらの結果を表1に示す。
Figure 2010192420
表1に示す結果から、アノード触媒層1におけるナフィオンの含有割合が40重量%を超える値となっている実施例1(ナフィオンの含有割合60重量%)および実施例2(ナフィオンの含有割合80重量%)においては、アノード触媒層1の空隙率は30%以下となっており、含有前後のアノード触媒の金属比表面積の比は20%以下になっていることがわかる。これに対して、ナフィオンの含有割合を40重量%および20重量%とした比較例1および比較例2においては、アノード触媒層1の空隙率は30%を超える値となっており、含有前後のアノード触媒の金属比表面積の比も20%を超える値になっていることがわかる。
これらのことから、アノード触媒層1におけるナフィオン含有割合を40重量%を超える値とすることにより、アノード触媒層1の空隙率を30%以下(0%を含む。)にするとともに、含有前後のアノード触媒の金属比表面積の比を20%以下(0%を含む。)にすることができ、このように構成した燃料電池は、初期の出力特性および出力の長期安定性に優れていることがわかった。
次に、アノード触媒層1の空隙率と出力の長期安定性との関係を調べるために、実施例1〜2および比較例1〜2の燃料電池について求められたアノード触媒層の空隙率と発電開始から100時間後の出力とを、アノード触媒層1におけるナフィオンの含有割合に対してそれぞれプロットした。これらのグラフを、図3に示す。なお、図3において、発電開始から100時間後の出力は、比較例1の100時間後の出力を100とした相対比で表している。
さらに、アノード触媒の含有前後の金属比表面積の比と出力の長期安定性との関係を調べるために、実施例1〜2および比較例1〜2の燃料電池について求められた含有前後のアノード触媒の金属比表面積の比と、燃料電池の発電開始から100時間後の出力とを、アノード触媒層1におけるナフィオンの含有割合に対してプロットした。これらのグラフを、図4に示す。なお、図4において、発電開始から100時間後の出力は、比較例1の100時間後の出力を100とした相対比で表している。
図3のグラフから、以下に示すことが確認された。すなわち、アノード触媒層1におけるナフィオンの含有割合を60重量%および80重量%とし、アノード触媒層1の空隙率を30%以下にした実施例1および実施例2の燃料電池では、アノード触媒層1が30%を超える空隙率を有する比較例1および比較例2の燃料電池に比べて、出力特性が大幅に向上しており、特に空隙率が0%である実施例2において、最も高い出力が得られた。
また、図4のグラフから、以下に示すことが確認された。すなわち、アノード触媒層1におけるナフィオンの含有割合を60重量%および80重量%とし、含有前後のアノード触媒の金属比表面積の比を20%以下(0%を含む。)にした実施例1および実施例2の燃料電池では、含有前後の金属比表面積の比が20%を超える比較例1および比較例2の燃料電池に比べて出力特性が向上しており、特に含有前後の金属比表面積の比が0%である実施例2において最も高い出力が得られた。
実施例3
アノード触媒層1に、平均繊維長が5μmで平均粒子径が100nmのカーボンファイバーを30重量%の割合で含有させた以外は実施例2と同様にして、燃料電池を製造した。
この燃料電池において、起動5時間−停止5時間の起動・停止サイクル(間欠運転)を100サイクル行った後出力を測定し、初期の出力に対する比率(維持率)を求めたところ、表2に示すように、初期の出力に対して80%の維持率を示した。比較のために、実施例2の燃料電池についても同様の起動・停止サイクルを100サイクル行い、100サイクル後の出力維持率を測定したところ、初期の出力に対して60%の維持率を示した。
Figure 2010192420
このように、実施例3の燃料電池では、100サイクル後の出力維持率が実施例2の燃料電池に比べて大幅に向上した。この測定結果から、アノード触媒層1にカーボンファイバーを含有させた燃料電池では、起動・停止サイクルによるアノード触媒層1の劣化が抑制されており、サイクル数を重ねても初期の出力が良好に維持されていることがわかった。
以上の実施例から、アノード触媒層1の空隙率を30%以下(0%を含む。)とし、かつ含有前後のアノード触媒の金属比表面積の比を20%以下(0%を含む。)に調整することで、高出力で、出力の長期安定性および耐久性に優れた燃料電池を得ることができることがわかる。また、アノード触媒層に補強材を含有させることで、層構造を補強して安定化し、起動・停止サイクルによるアノード触媒層の劣化や破壊を防止し、耐久性をさらに向上させることができることがわかる。
本発明は液体燃料を使用した各種の燃料電池に適用することができる。また、燃料電池の具体的な構成や燃料の供給状態等も特に限定されるものではない。実施段階では本発明の技術的思想を逸脱しない範囲で構成要素を変形して具体化することができる。さらに、上記実施形態に示される複数の構成要素を適宜に組み合わせたり、また実施形態に示される全構成要素から幾つかの構成要素を削除する等、種々の変形が可能である。本発明の実施形態は本発明の技術的思想の範囲内で拡張もしくは変更することができ、この拡張、変更した実施形態も本発明の技術的範囲に含まれるものである。
1…アノード触媒層、2…アノードガス拡散層、3…アノード、4…カソード触媒層、5…カソードガス拡散層、6…カソード、7…電解質膜、8…MEA、9…カソード導電層、10…保湿層、11…表面カバー層、12…アノード導電層、13…気液分離膜、30…燃料供給機構、31…燃料分配層、32…燃料供給部本体、33…燃料収容部、34…流路、35…ポンプ。

Claims (5)

  1. アノード触媒とプロトン伝導性を有する電解質を含有するアノード触媒層と、カソード触媒とプロトン伝導性を有する電解質を含有するカソード触媒層と、前記アノード触媒層と前記カソード触媒層との間に挟持されたプロトン伝導性の電解質膜と、前記アノード触媒層に燃料を供給するための機構を具備する燃料電池であって、
    前記アノード触媒層の水銀圧入式ポロシメーターにより測定された空隙率が、0〜30%であることを特徴とする燃料電池。
  2. 前記アノード触媒層に含有された前記アノード触媒の金属比表面積(COパルス吸着法により測定)が、前記アノード触媒層に含有される前のアノード触媒の金属比表面積(COパルス吸着法により測定)に対して、0〜20%の割合であることを特徴とする請求項1記載の燃料電池。
  3. 前記アノード触媒層における前記電解質の含有割合が、40重量%を超え80重量%以下であることを特徴とする請求項1または2記載の燃料電池。
  4. 前記アノード触媒層が補強材を含有することを特徴とする請求項1ないし請求項3のいずれか1項記載の燃料電池。
  5. 前記補強材が、繊維状物質と粒子状物質および多孔質支持体から選ばれる少なくとも1種であることを特徴とする請求項4記載の燃料電池。
JP2009153778A 2009-01-23 2009-06-29 燃料電池 Withdrawn JP2010192420A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009153778A JP2010192420A (ja) 2009-01-23 2009-06-29 燃料電池
TW099101636A TW201044684A (en) 2009-01-23 2010-01-21 Fuel cell
PCT/JP2010/000322 WO2010084753A1 (ja) 2009-01-23 2010-01-21 燃料電池
US13/185,971 US20110275003A1 (en) 2009-01-23 2011-07-19 Fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009012836 2009-01-23
JP2009153778A JP2010192420A (ja) 2009-01-23 2009-06-29 燃料電池

Publications (1)

Publication Number Publication Date
JP2010192420A true JP2010192420A (ja) 2010-09-02

Family

ID=42355809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009153778A Withdrawn JP2010192420A (ja) 2009-01-23 2009-06-29 燃料電池

Country Status (4)

Country Link
US (1) US20110275003A1 (ja)
JP (1) JP2010192420A (ja)
TW (1) TW201044684A (ja)
WO (1) WO2010084753A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117661A1 (ja) * 2011-02-28 2012-09-07 三洋電機株式会社 燃料電池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0921996D0 (en) * 2009-12-17 2010-02-03 Johnson Matthey Plc Catayst layer assembley
JP6274608B2 (ja) * 2012-03-15 2018-02-07 日産自動車株式会社 燃料電池
US9188062B2 (en) 2012-08-30 2015-11-17 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine
KR20140065283A (ko) * 2012-11-21 2014-05-29 삼성전자주식회사 연료전지용 전극, 그 제조방법, 이를 포함하는 연료전지용 막전극 접합체 및 이를 포함하는 연료전지

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3555196B2 (ja) * 1994-09-19 2004-08-18 トヨタ自動車株式会社 燃料電池とその製造方法
JP2003282069A (ja) * 2002-03-25 2003-10-03 Electric Power Dev Co Ltd 燃料電池用膜電極接合体
JP2004127762A (ja) * 2002-10-03 2004-04-22 Electric Power Dev Co Ltd 携帯用燃料電池
JP2006032163A (ja) * 2004-07-16 2006-02-02 Hitachi Maxell Ltd 液体燃料電池用発電素子及びそれを用いた液体燃料電池
JP2006344426A (ja) * 2005-06-07 2006-12-21 Nissan Motor Co Ltd 固体高分子型燃料電池
JP2007213988A (ja) * 2006-02-09 2007-08-23 Canon Inc 高分子電解質型燃料電池用電極触媒層、その製造方法および高分子電解質型燃料電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117661A1 (ja) * 2011-02-28 2012-09-07 三洋電機株式会社 燃料電池

Also Published As

Publication number Publication date
TW201044684A (en) 2010-12-16
WO2010084753A1 (ja) 2010-07-29
US20110275003A1 (en) 2011-11-10

Similar Documents

Publication Publication Date Title
WO2011129139A1 (ja) 膜電極複合体およびこれを用いた燃料電池
WO2010084753A1 (ja) 燃料電池
WO2009141985A1 (ja) 燃料電池
JPWO2008032449A1 (ja) 電解質膜および燃料電池
JP2008235026A (ja) 燃料分布調整方法、燃料分布調整膜、燃料分布調整膜の製造方法、燃料電池、および燃料電池の製造方法
JPWO2006085619A1 (ja) 燃料電池
JP2011171301A (ja) 直接酸化型燃料電池
JP2011134600A (ja) 膜電極接合体及び燃料電池
JP2009123441A (ja) 燃料電池
JP2009146864A (ja) 燃料電池
JPWO2008068886A1 (ja) 燃料電池
JP2010277782A (ja) 膜電極接合体及び燃料電池並びにそれらの製造方法
JPWO2008068887A1 (ja) 燃料電池
WO2011052650A1 (ja) 燃料電池
JP2008276990A (ja) 燃料電池用電極および燃料電池
JP2009231195A (ja) 燃料電池及び電子装置
WO2006104128A1 (ja) 燃料電池
JP2008186799A (ja) 燃料電池
JP2007042600A (ja) 燃料電池
JP2010170938A (ja) 燃料電池
JP2011096468A (ja) 燃料電池
JP2010049930A (ja) 燃料電池
JP2009283361A (ja) 燃料電池
JP2009038014A (ja) 燃料電池および燃料電池の製造方法
JP2011065963A (ja) 燃料電池

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120904