JP2010188375A - Casting mold equipment for continuous casting of metal and continuous casting method - Google Patents

Casting mold equipment for continuous casting of metal and continuous casting method Download PDF

Info

Publication number
JP2010188375A
JP2010188375A JP2009034718A JP2009034718A JP2010188375A JP 2010188375 A JP2010188375 A JP 2010188375A JP 2009034718 A JP2009034718 A JP 2009034718A JP 2009034718 A JP2009034718 A JP 2009034718A JP 2010188375 A JP2010188375 A JP 2010188375A
Authority
JP
Japan
Prior art keywords
mold
casting
copper plate
continuous casting
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009034718A
Other languages
Japanese (ja)
Inventor
Tadahira Ishida
匡平 石田
Noriko Kubo
典子 久保
Shunichi Kamezaki
俊一 亀崎
Kazunari Ishino
和成 石野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Engineering Corp
Original Assignee
JFE Steel Corp
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Engineering Corp filed Critical JFE Steel Corp
Priority to JP2009034718A priority Critical patent/JP2010188375A/en
Publication of JP2010188375A publication Critical patent/JP2010188375A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form traveling waves of vibration along a casting direction on an inner wall surface of a casting mold copper plate even in large equipment such as casting mold equipment of a real continuous casting machine when continuously casting molten metal such as molten steel, and consequently to secure lubrication property between a solidified shell and the inner wall surface of the casting mold copper plate, to prevent seizure and sticking of the solidified shell and the inner wall surface of the casting mold, and to stably continuously cast them without causing cracks, breakout of a casting piece surface. <P>SOLUTION: The casting mold equipment for continuous casting of metal is the casting mold equipment 1 for continuous casting which forms a rectangular casting space with two pairs of casting mold copper plates 2, 3. A plurality of actuators 4 are arranged for deforming the inner wall surface of the casting mold copper plate in a direction orthogonal to a casting piece pulling out direction. The casting mold equipment is constituted to propagate displacement of deformation at the inner wall surface of the casting mold copper plate formed by the actuator in the casting piece pulling out direction or in the opposite direction thereof. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、金属の連続鋳造用鋳型設備及び連続鋳造方法に関し、詳しくは、凝固シェルと鋳型銅板の内壁面との間の体積変化が鋳片引抜き方向またはその逆方向に向かって伝播するように、凝固シェルとの接触面側となる鋳型銅板の内壁面に鋳片引抜き方向と直交する方向に周期的な変形が形成される連続鋳造用鋳型設備に関し、また、この鋳型を用いた連続鋳造方法に関するものである。   The present invention relates to a mold equipment for continuous casting of metal and a continuous casting method, and more particularly, so that a volume change between a solidified shell and an inner wall surface of a mold copper plate propagates in a slab drawing direction or the opposite direction. The present invention relates to a continuous casting mold facility in which a cyclic deformation is formed in a direction orthogonal to a slab drawing direction on an inner wall surface of a mold copper plate on the contact surface side with a solidified shell, and a continuous casting method using this mold It is about.

溶鋼などの溶融金属を連続鋳造する際には、鋳型銅板の内壁面(以下、単に「鋳型内壁面」とも記す)と接触して冷却され、生成する凝固シェルと鋳型内壁面との焼き付きやスティッキングを防止し、鋳片に表面割れやブレークアウトなどを発生させずに安定して連続鋳造するために、鋳型を正弦波形などの波形により数mm〜十数mmの振動ストロークで鋳片引抜き方向に沿って往復運動(この往復運動を「オシレーション」と呼ぶ)させるとともに、この鋳型内壁面には連続的または断続的に潤滑剤を供給している。溶鋼の場合には、酸化物や炭酸塩及び弗化物などからなるモールドパウダーを鋳型内の溶鋼湯面上に添加し、溶鋼の熱により溶融させたモールドパウダーを鋳型内壁面と凝固シェルとの間に流入させ、潤滑剤として使用している。尚、ブレークアウトとは、凝固シェルの破断や亀裂などにより未凝固の溶湯が流出する現象であり、振動ストロークとは往復運動の上限と下限との巾、つまり振幅の2倍である。   When continuously casting a molten metal such as molten steel, it cools in contact with the inner wall surface of the mold copper plate (hereinafter also simply referred to as “mold inner wall surface”), and the resulting solidified shell and mold inner wall surface are seized or stuck. In order to stably cast continuously without causing surface cracks or breakouts in the slab, the mold is sine-waved and other waveforms with a vibration stroke of several to tens of millimeters in the slab drawing direction. A reciprocating motion is made along the reciprocating motion (this reciprocating motion is called “oscillation”), and a lubricant is continuously or intermittently supplied to the inner wall surface of the mold. In the case of molten steel, mold powder made of oxide, carbonate, fluoride, etc. is added onto the molten steel surface in the mold, and the molten mold powder is melted by the heat of the molten steel between the mold inner wall surface and the solidified shell. It is used as a lubricant. Breakout is a phenomenon in which unsolidified molten metal flows out due to breakage or cracking of the solidified shell, and the vibration stroke is the width between the upper limit and the lower limit of the reciprocating motion, that is, twice the amplitude.

また、ブレークアウトや鋳片表面性状をより一層改善するために、超音波振動や高周波振動を適用して、モールドパウダーの流入量を制御する技術も報告されている。例えば、特許文献1には、複数個の超音波振動子により鋳型内の溶湯湯面近傍の鋳型内壁面を数kHzの振動数で振動させて連続鋳造する方法が開示され、特許文献2には、振幅が10〜500μm、振動数が1000〜10000cpmの高周波振動で鋳型を鋳片の引抜き方向と直交する方向に振動させて連続鋳造する方法が開示され、また、特許文献3には、対向する2対の鋳型銅板から構成される鋳型において、鋳型全体を鋳片引抜き方向にオシレーションさせながら、一対の鋳型銅板に高周波振動を付与しつつ、鋳型オシレーションの振動サイクルに対応させて一対の鋳型銅板を水平方向に振動させて連続鋳造する方法が開示されている。   In addition, in order to further improve the breakout and slab surface properties, a technique for controlling the inflow amount of mold powder by applying ultrasonic vibration or high frequency vibration has been reported. For example, Patent Document 1 discloses a method of continuously casting a plurality of ultrasonic vibrators by vibrating a mold inner wall surface in the vicinity of a molten metal surface at a frequency of several kHz. , A method of continuously casting the mold in a direction orthogonal to the drawing direction of the slab by high-frequency vibration having an amplitude of 10 to 500 μm and a frequency of 1000 to 10000 cpm is disclosed. In a mold composed of two pairs of mold copper plates, a pair of molds corresponding to the vibration cycle of the mold oscillation while applying high frequency vibration to the pair of mold copper plates while oscillating the entire mold in the direction of drawing the slab. A method of continuous casting by vibrating a copper plate in the horizontal direction is disclosed.

また更に、特許文献4及び特許文献5には、鋳型内壁面に、鋳片引抜き方向へ向かって伝播する振動が形成されるように、鋳型の上部及び下部に振動子を設置し、上部で付与した振動エネルギーを下部で吸収し、鋳型内壁面に振動の進行波を形成させ、潤滑性を確保する技術が開示されている。   Furthermore, in Patent Documents 4 and 5, vibrators are installed at the upper and lower parts of the mold so that vibrations propagating in the direction of drawing the slab are formed on the inner wall surface of the mold, and applied at the upper part. A technique has been disclosed in which the vibration energy absorbed by the lower portion is formed, and a traveling wave of vibration is formed on the inner wall surface of the mold to ensure lubricity.

特開平1−122645号公報JP-A-1-122645 特開平3−210942号公報JP-A-3-210942 特開平5−76997号公報JP-A-5-76997 特開昭62−9750号公報Japanese Patent Laid-Open No. 62-9750 特開2002−321044号公報JP 2002-321044 A

しかしながら、上記従来技術には以下の問題点がある。   However, the above prior art has the following problems.

特許文献1〜3に開示された、鋳型銅板全体を同一位相の超音波で振動させる技術は、単に超音波振動のみで鋳型を振動させた場合には、振動数が大きい反面、振幅が小さく、焼き付きやブレークアウトに対してほとんど効果は得られないが、従来の正弦波形などの波形で鋳型をオシレーションさせた場合に併用すれば、従来の正弦波形などの波形のみで鋳型をオシレーションさせた場合に比較して、それなりの効果は得られる。しかしながら、設備改造に見合うほどの、つまり期待するほどの効果は得られない。   The technology disclosed in Patent Documents 1 to 3, which vibrates the entire mold copper plate with ultrasonic waves of the same phase, when the mold is vibrated only by ultrasonic vibration, the frequency is large, but the amplitude is small, Almost no effect on burn-in or breakout, but when used in combination with a conventional sine waveform or other waveform, the mold oscillates only with a conventional sine waveform or other waveform. Compared to the case, a reasonable effect can be obtained. However, it is not possible to obtain the effect that is appropriate for the equipment modification, that is, the expected effect.

これに対して、特許文献4〜5に開示された、鋳型内壁面に振動の進行波を形成させる技術は、前記進行波とともにモールドパウダーが強制的に移送され、モールドパウダーの流入量が増加して、目的とする効果が得られる。特に、従来の正弦波形などの波形で鋳型をオシレーションさせた場合に併用すれば、十分な効果が発現される。しかしながら、特許文献4〜5に開示された技術では、上下一対の振動子の機械・電気特性及び鋳型の振動特性を厳密に適合させた上で、振動子の制御を事前に計算し、更に、超音波領域での正確な駆動が必要となる。それ故、実機連続鋳造機の鋳型設備のような大型の設備で上記技術を実現させることは極めて困難であるといわざるを得ない。   On the other hand, in the techniques disclosed in Patent Documents 4 to 5 for forming a traveling wave of vibration on the inner wall surface of the mold, the mold powder is forcibly transferred together with the traveling wave, and the inflow amount of the mold powder increases. The desired effect can be obtained. In particular, when the mold is oscillated with a waveform such as a conventional sine waveform, a sufficient effect is exhibited. However, in the techniques disclosed in Patent Documents 4 to 5, the mechanical and electrical characteristics of the upper and lower pair of vibrators and the vibration characteristics of the mold are strictly matched, and then the control of the vibrator is calculated in advance. Accurate driving in the ultrasonic region is required. Therefore, it must be said that it is extremely difficult to realize the above technique with a large facility such as a mold facility of an actual continuous casting machine.

本発明はこのような事情に鑑みてなされたもので、その目的とするところは、溶鋼などの溶融金属を連続鋳造する際に、実機連続鋳造機の鋳型設備のような大型の設備であっても、鋳型銅板の内壁面に鋳造方向に沿った振動の進行波を形成させることができ、その結果、凝固シェルと鋳型銅板の内壁面との潤滑性が確保され、凝固シェルと鋳型内壁面との焼き付きやスティッキングを防止し、鋳片表面の割れやブレークアウトなどを発生させずに安定して連続鋳造することができる連続鋳造用鋳型設備及び連続鋳造方法を提供することである。   The present invention has been made in view of such circumstances, and the object of the present invention is a large facility such as a mold facility of an actual continuous casting machine when continuously casting a molten metal such as molten steel. In addition, a traveling wave of vibration along the casting direction can be formed on the inner wall surface of the mold copper plate. As a result, lubricity between the solidified shell and the inner wall surface of the mold copper plate is ensured, and It is intended to provide a continuous casting mold facility and a continuous casting method capable of preventing continuous seizure and sticking, and stably and continuously casting without causing cracks or breakouts on the surface of a slab.

上記課題を解決するための第1の発明に係る金属の連続鋳造用鋳型設備は、二対の鋳型銅板で矩形の鋳造空間を形成する連続鋳造用鋳型設備であって、前記鋳型銅板の内壁面を鋳片引抜き方向と直交する方向に変形させるためのアクチュエーターが複数配置されていて、該アクチュエーターによって形成される鋳型銅板内壁面での変形の変位が、鋳片引抜き方向またはその逆方向に向かって伝播するように構成されていることを特徴とするものである。   A metal casting equipment for continuous casting according to a first aspect of the present invention for solving the above problems is a casting equipment for continuous casting in which a rectangular casting space is formed by two pairs of casting copper plates, and the inner wall surface of the casting copper plate. A plurality of actuators for deforming the steel plate in a direction perpendicular to the slab drawing direction are arranged, and the displacement of the deformation on the inner wall surface of the mold copper plate formed by the actuator is directed toward the slab drawing direction or the opposite direction. It is configured to propagate.

第2の発明に係る金属の連続鋳造用鋳型設備は、第1の発明において、前記アクチュエーターは0.1Hz〜500Hzで周期的動作を行い、且つ、鋳片引抜き方向の順に位置するアクチュエーターの位相が、順次進んでいるか、または順次遅れていることを特徴とするものである。   The mold equipment for continuous casting of metal according to the second invention is the casting equipment for continuous casting of the metal according to the first invention, wherein the actuator periodically operates at 0.1 Hz to 500 Hz, and the phases of the actuators positioned in order of the slab drawing direction are , Being sequentially advanced or sequentially delayed.

第3の発明に係る金属の連続鋳造用鋳型設備は、第1または第2の発明において、前記アクチュエーターの動作方向は、鋳片引抜き方向と直交する方向であり、前記アクチュエーターの一端が前記鋳型銅板に接続していることを特徴とするものである。   According to a third aspect of the present invention, in the metal casting equipment for continuous casting according to the first or second aspect, the operating direction of the actuator is a direction perpendicular to the slab drawing direction, and one end of the actuator is the mold copper plate It is characterized by being connected to.

第4の発明に係る金属の連続鋳造用鋳型設備は、第1または第2の発明において、前記アクチュエーターの動作方向は、鋳片引抜き方向と平行な方向であり、前記アクチュエーターの両端部が前記鋳型銅板に接続していることを特徴とするものである。   According to a fourth aspect of the present invention, in the metal casting equipment for continuous casting according to the first or second aspect, the operating direction of the actuator is a direction parallel to the slab drawing direction, and both ends of the actuator are the mold. It is characterized by being connected to a copper plate.

第5の発明に係る金属の連続鋳造用鋳型設備は、第1ないし第4の発明の何れかにおいて、前記アクチュエーターは、油圧シリンダーまたは圧電素子からなることを特徴とするものである。   According to a fifth aspect of the present invention, in the metal casting equipment for continuous casting according to any one of the first to fourth aspects, the actuator comprises a hydraulic cylinder or a piezoelectric element.

第6の発明に係る金属の連続鋳造方法は、第1ないし第5の発明の何れか1つに記載の連続鋳造用鋳型設備を用い、前記アクチュエーターによって鋳型銅板の内壁面を鋳片引抜き方向と直交する方向に変形させながら前記鋳造空間に溶融金属を注入することを特徴とするものである。   According to a sixth aspect of the present invention, there is provided a continuous casting method for a metal using the casting equipment for continuous casting according to any one of the first to fifth aspects, wherein the inner wall surface of the casting copper plate is formed in the direction of drawing a slab by the actuator. The molten metal is injected into the casting space while being deformed in an orthogonal direction.

第7の発明に係る金属の連続鋳造方法は、第6の発明において、更に、正弦波形または偏倚正弦波形で前記連続鋳造用鋳型設備をオシレーションさせることを特徴とするものである。   According to a seventh aspect of the present invention, there is provided a metal continuous casting method according to the sixth aspect, further comprising oscillating the mold equipment for continuous casting with a sinusoidal waveform or a biased sinusoidal waveform.

本発明によれば、溶鋼などの溶融金属を連続鋳造する際に、凝固シェルと鋳型銅板内壁面との焼き付きやスティッキングを防止し、鋳片に表面割れやブレークアウトなどを発生させずに安定して連続鋳造することができ、その結果、製造コストの大幅な削減が達成され、工業上有益な効果がもたらされる。   According to the present invention, when continuously casting a molten metal such as molten steel, seizure and sticking between the solidified shell and the inner wall surface of the mold copper plate are prevented, and the slab is stable without causing surface cracks or breakouts. As a result, a significant reduction in manufacturing costs can be achieved, resulting in an industrially beneficial effect.

本発明に係る連続鋳造用鋳型設備を鋳型短辺銅板の方向から見た側断面概略図である。1 is a schematic side sectional view of a continuous casting mold facility according to the present invention as viewed from a direction of a mold short side copper plate. 本発明に係る連続鋳造用鋳型設備を鋳型長辺銅板の方向から見た側断面概略図である。1 is a schematic side sectional view of a continuous casting mold facility according to the present invention as viewed from the direction of a long mold copper plate. 本発明に係る連続鋳造用鋳型設備の平面概略図である。It is a plane schematic diagram of the mold equipment for continuous casting concerning the present invention. アクチュエーターの位相を鋳片引抜き方向の順に進めたときの時間経過に伴う鋳型長辺銅板の変形状況の模式図である。It is a schematic diagram of the deformation | transformation condition of a mold long side copper plate with progress of time when the phase of an actuator is advanced in order of a slab drawing direction. アクチュエーターの動作方向を鋳片引抜き方向と平行な方向とする一例を示す概略図である。It is the schematic which shows an example which makes the operation direction of an actuator a direction parallel to a slab drawing direction.

以下、添付図面を参照して本発明を具体的に説明する。図1〜3は、本発明に係る連続鋳造用鋳型設備の概略図であり、図1は、鋳型短辺銅板の方向から見た側断面概略図、図2は、鋳型長辺銅板の方向から見た側断面概略図、図3は平面概略図である。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. 1 to 3 are schematic views of a continuous casting mold facility according to the present invention, FIG. 1 is a schematic side sectional view seen from the direction of the mold short side copper plate, and FIG. 2 is from the direction of the mold long side copper plate. FIG. 3 is a schematic side sectional view, and FIG. 3 is a schematic plan view.

図1〜3において、符号1は連続鋳造用鋳型設備、2は鋳型銅板のうちの鋳型長辺銅板、3は鋳型銅板のうちの鋳型短辺銅板、4はアクチュエーター、5は固定架台、6は浸漬ノズル、7は吐出孔、8は溶鋼、9は凝固シェル、10はモールドパウダーであり、連続鋳造用鋳型設備1は、相対する一対の鋳型長辺銅版2と、相対する一対の鋳型短辺銅板3とで構成され、合計二対の鋳型銅板で矩形の鋳造空間が形成されている。鋳型短辺銅板3は、鋳型長辺銅板2に挟まれており、この挟まれる位置を変更することで、鋳造される鋳片の幅が変更できるようになっている。鋳型長辺銅板2及び鋳型短辺銅板3は、通常の鋳型オシレーション、つまり、数mm〜十数mmの振動ストローク(=振幅の2倍)で鋳片引抜き方向に沿って往復運動できるように構成されており、また、鋳型長辺銅板2及び鋳型短辺銅板3は、冷却水によって冷却される水冷構造となっている。   1 to 3, reference numeral 1 is a casting equipment for continuous casting, 2 is a long copper plate of the mold copper plate, 3 is a short copper plate of the mold copper plate, 4 is an actuator, 5 is a fixed base, and 6 is a fixed base. An immersion nozzle, 7 is a discharge hole, 8 is molten steel, 9 is a solidified shell, 10 is a mold powder, and a continuous casting mold facility 1 includes a pair of opposed long mold copper plates 2 and a pair of opposed short mold sides. The rectangular casting space is formed by a total of two pairs of mold copper plates. The mold short side copper plate 3 is sandwiched between the mold long side copper plates 2, and the width of the cast slab can be changed by changing the sandwiched position. The mold long-side copper plate 2 and the mold short-side copper plate 3 can reciprocate along the slab drawing direction with a normal mold oscillation, that is, with a vibration stroke of several mm to several tens of mm (= twice the amplitude). Further, the mold long side copper plate 2 and the mold short side copper plate 3 have a water cooling structure cooled by cooling water.

鋳型オシレーションの波形は、通常行われている正弦波形や偏倚正弦波形を採用することが最適である。ここで、偏倚正弦波形とは、正弦波形に対して、鋳型振動の1サイクル中で鋳型が上昇した時の最大変位をとる時間が正弦波形の場合よりも後半にずれ、且つ、鋳型が下降した時の最大変位をとる時間が正弦波形の場合よりも前半にずれた波形となったものである。   As the mold oscillation waveform, it is optimal to adopt a sine waveform or a biased sine waveform that is normally used. Here, the biased sine waveform means that the time taken for the maximum displacement when the mold is raised during one cycle of mold vibration with respect to the sine waveform is shifted to the latter half of the case of the sine waveform, and the mold is lowered. The time taken for the maximum displacement of the hour is a waveform that is shifted to the first half compared to the case of the sine waveform.

鋳型長辺銅板2及び鋳型短辺銅板3の背面には、一端をこれらの鋳型長辺銅板2または鋳型短辺銅板3と接続し、他端を連続鋳造用鋳型設備1に固定されて配置される固体架台5と接続するアクチュエーター4が設置されている。アクチュエーター4は、鋳型長辺銅板2及び鋳型短辺銅板3の幅方向及び鋳片引抜き方向に、複数個配置されている。この場合、鋳片引抜き方向では、鋳型長辺銅板2及び鋳型短辺銅板3において、幅方向の同一箇所に並んで配置されている。尚、図1〜3では、アクチュエーター4の設置数は、鋳造方向に4箇所、幅方向には鋳型長辺銅板2では4箇所、鋳型短辺銅板3では2箇所であるが、これは一例を示すものであり、図1〜3に限定されるものではない。   On the back side of the mold long side copper plate 2 and the mold short side copper plate 3, one end is connected to the mold long side copper plate 2 or the mold short side copper plate 3, and the other end is fixed to the continuous casting mold facility 1. An actuator 4 connected to the solid mount 5 is installed. A plurality of actuators 4 are arranged in the width direction of the mold long side copper plate 2 and the mold short side copper plate 3 and the slab drawing direction. In this case, in the slab drawing direction, the long-side copper plate 2 and the short-side copper plate 3 are arranged side by side at the same position in the width direction. 1 to 3, the number of actuators 4 is four in the casting direction, four in the mold long side copper plate 2 and two in the mold short side copper plate 3 in the width direction. It is shown and is not limited to FIGS.

アクチュエーター4を鋳片引抜き方向と直交する方向に動作させることにより、つまり、アクチュエーター4の軸4aが鋳片引抜き方向と直交する方向に伸縮するように、アクチュエーター4を動作させることにより、アクチュエーター4の一方の端部は固定架台5によって固体されていることから、鋳型長辺銅板2及び鋳型短辺銅板3は、アクチュエーター4の動作に応じて、鋳片引抜き方向と直交する方向に振動するように変形する。この鋳型長辺銅板2及び鋳型短辺銅板3の変形の振幅は、一般に鋳型銅板と凝固シェルとの間隙のモールドパウダー10の厚みが200μm程度であるので、50μm程度を上限とすればよい。   By operating the actuator 4 in a direction orthogonal to the slab extraction direction, that is, by operating the actuator 4 so that the shaft 4a of the actuator 4 extends and contracts in a direction orthogonal to the slab extraction direction, Since one end is solidified by the fixed mount 5, the long mold copper plate 2 and the short mold copper plate 3 vibrate in a direction perpendicular to the slab drawing direction according to the operation of the actuator 4. Deform. The upper limit of the deformation amplitude of the long-side copper plate 2 and the short-side copper plate 3 may be about 50 μm because the thickness of the mold powder 10 in the gap between the mold copper plate and the solidified shell is generally about 200 μm.

本発明に係る連続鋳造用鋳型設備1においては、鋳型長辺銅板2及び鋳型短辺銅板3の内壁面における変形の変位が、鋳片引抜き方向またはその逆方向に向かって伝播するように構成されている。連続鋳造時、鋳型長辺銅板2及び鋳型短辺銅板3を鋳片引抜き方向と直交する方向に振動するように変形させると、鋳型長辺銅板2と凝固シェル9との間隙の体積並びに鋳型短辺銅板3と凝固シェル9との間隙の体積は変化する。ここで、上記の「鋳型長辺銅板2及び鋳型短辺銅板3の内壁面における変形の変位が、鋳片引抜き方向またはその逆方向に向かって伝播する」とは、「前記体積変化が鋳片引抜き方向またはその逆方向に向かって伝播する」と同等の意味である。尚、後述するように、体積変化の進行方向は、変形の変位の進行方向とは逆方向になる。   The continuous casting mold facility 1 according to the present invention is configured such that the displacement of deformation on the inner wall surfaces of the long mold copper plate 2 and the short mold copper plate 3 propagates in the slab drawing direction or in the opposite direction. ing. During continuous casting, if the long mold copper plate 2 and the short mold copper plate 3 are deformed so as to vibrate in the direction perpendicular to the slab drawing direction, the volume of the gap between the long mold copper plate 2 and the solidified shell 9 and the short mold The volume of the gap between the side copper plate 3 and the solidified shell 9 changes. Here, “the displacement of deformation on the inner wall surface of the mold long side copper plate 2 and the mold short side copper plate 3 propagates in the direction of drawing the slab or the opposite direction” means that “the volume change is the slab. This means the same as “propagating in the pulling direction or vice versa”. As will be described later, the progress direction of the volume change is opposite to the progress direction of the deformation displacement.

つまり、本発明に係る連続鋳造用鋳型設備1においては、鋳型長辺銅板2及び鋳型短辺銅板3の内壁面に振動の進行波が形成されるように構成されている。内壁面における振動進行波の形成は、鋳片引抜き方向に並んで配置されるアクチュエーター4を同一周波数で動作させ、且つ、各アクチュエーター4の位相を、鋳片引抜き方向の順に進ませるか、或いは遅らせることによって得ることができる。   That is, the continuous casting mold facility 1 according to the present invention is configured such that traveling waves of vibration are formed on the inner wall surfaces of the long mold copper plate 2 and the short mold copper plate 3. The formation of the traveling traveling wave on the inner wall surface causes the actuators 4 arranged in the slab drawing direction to operate at the same frequency, and the phase of each actuator 4 is advanced or delayed in the order of the slab drawing direction. Can be obtained.

ここで、位相を鋳片引抜き方向の順に進ませるとは、以下のとおりである。即ち、アクチュエーター4を正弦波形で動作させると、軸4aの先端の変位は、一般式であるAsin(2πft+α)(但し、Aは振幅、fは振動数、tは時刻である)で表される。時刻tのときに、鋳片引抜き方向の最も上側のアクチュエーター4の変位をAsin(2πft)とし、その直下のアクチュエーター4の変位をAsin(2πft-β)とし、その直下のアクチュエーター4の変位をAsin(2πft-2β)とするように、鋳片引抜き方向の順に所定値(ここではβ)だけ位相を順次小さくすることを、位相を進ませるという。位相を鋳片引抜き方向の順に遅らすとは、逆に、鋳片引抜き方向の順に所定値だけ位相を順次大きくすることをいう。   Here, the phase is advanced in the order of the slab drawing direction as follows. That is, when the actuator 4 is operated in a sine waveform, the displacement of the tip of the shaft 4a is expressed by a general expression Asin (2πft + α) (where A is the amplitude, f is the frequency, and t is the time). Is done. At time t, the displacement of the uppermost actuator 4 in the slab drawing direction is Asin (2πft), the displacement of the actuator 4 immediately below it is Asin (2πft-β), and the displacement of the actuator 4 directly below is Asin To reduce the phase by a predetermined value (here, β) in order of the slab drawing direction so as to be (2πft-2β) is referred to as advancing the phase. Delaying the phase in the order of the slab drawing direction means conversely increasing the phase by a predetermined value in the order of the slab drawing direction.

図4に、アクチュエーター4を正弦波形で動作させ、鋳片引抜き方向に配置されるアクチュエーター4の位相を鋳片引抜き方向の順に進めたときの時間経過に伴う鋳型長辺銅板2の変形状況の模式図を示す。図4の紙面向かって左から右に、つまり矢印の方向に時間が経過する。   FIG. 4 is a schematic diagram of the deformation state of the long-side copper plate 2 over time when the actuator 4 is operated in a sine waveform and the phase of the actuator 4 arranged in the slab drawing direction is advanced in the order of the slab drawing direction. The figure is shown. Time passes from the left to the right in FIG. 4, that is, in the direction of the arrow.

図4に示すように、鋳型長辺銅板2と凝固シェル9との間隙には、鋳型内溶鋼上に添加され、溶融したモールドパウダー10が流入して充填されている。アクチュエーター4を動作させることにより、鋳型長辺銅板2と凝固シェル9との間隙の体積は変化する。アクチュエーター4の位相を鋳片引抜き方向の順に進めると、鋳型長辺銅板2の内壁面に形成される変形の変位は、鋳片引抜き方向の下流側から上流側に向かう方向に進行する。つまり、振動の進行波は鋳片引抜き方向の下流側から上流側に向かう方向に進行する。これにより、鋳型長辺銅板2と凝固シェル9との間隙の体積変化は、逆に、鋳片引抜き方向の上流側から下流側に向かう方向に進行する。図4では、間隙の体積変化を●印で表示している。間隙の体積変化が鋳片引抜き方向の上流側から下流側に向かうことで、モールドパウダー10も移送される。移送されるモールドパウダー10を補うために、モールドパウダー10の鋳型長辺銅板2と凝固シェル9との間隙への流入が促進され、鋳型長辺銅板2と凝固シェル9との間隙へのモールドパウダー10の流入量が増加する。   As shown in FIG. 4, the gap between the long mold copper plate 2 and the solidified shell 9 is filled with molten mold powder 10 which is added onto the molten steel in the mold and melted. By operating the actuator 4, the volume of the gap between the long copper plate 2 and the solidified shell 9 changes. When the phase of the actuator 4 is advanced in the order of the slab drawing direction, the deformation displacement formed on the inner wall surface of the long copper plate 2 of the mold advances in the direction from the downstream side to the upstream side in the slab drawing direction. That is, the traveling wave of vibration travels in the direction from the downstream side to the upstream side in the slab drawing direction. Thereby, the volume change of the gap between the mold long-side copper plate 2 and the solidified shell 9 advances in the direction from the upstream side to the downstream side in the slab drawing direction. In FIG. 4, the change in the volume of the gap is indicated by ●. The mold powder 10 is also transferred by the change in volume of the gap from the upstream side to the downstream side in the slab drawing direction. In order to supplement the transferred mold powder 10, the flow of the mold powder 10 into the gap between the long mold copper plate 2 and the solidified shell 9 is promoted, and the mold powder into the gap between the long mold copper plate 2 and the solidified shell 9 is promoted. 10 inflow increases.

即ち、使用するモールドパウダー10の特性によって、モールドパウダー10の流入量が不足するときには、アクチュエーター4の位相を鋳片引抜き方向の順に進めることにより、モールドパウダー10の流入量が確保され、潤滑不良に起因する焼き付きやブレークアウトが防止される。一方、逆に、使用するモールドパウダー10の特性によって、モールドパウダー10の流入量が過多のときには、アクチュエーター4の位相を鋳片引抜き方向の順に遅らせることにより、モールドパウダー10の流入量が抑制され、適正量の流入量となり、鋳型内での不均一冷却が防止されて鋳片縦割れなどが減少する。尚、鋳型長辺銅板2及び鋳型短辺銅板3の幅方向に並ぶアクチュエーター4では、鋳片引抜き方向の高さ位置が同じ位置では位相を同一にすればよい。   That is, when the inflow amount of the mold powder 10 is insufficient due to the characteristics of the mold powder 10 to be used, the inflow amount of the mold powder 10 is ensured by advancing the phase of the actuator 4 in order of the slab drawing direction, resulting in poor lubrication. The resulting burn-in and breakout are prevented. On the other hand, when the inflow amount of the mold powder 10 is excessive due to the characteristics of the mold powder 10 to be used, the inflow amount of the mold powder 10 is suppressed by delaying the phase of the actuator 4 in the order of the slab drawing direction. An appropriate amount of inflow is achieved, non-uniform cooling in the mold is prevented, and slab vertical cracks are reduced. In the actuators 4 arranged in the width direction of the mold long side copper plate 2 and the mold short side copper plate 3, the phase may be made the same at the same height position in the slab drawing direction.

アクチュエーター4の振動数は0.1〜500Hz、望ましくは10Hz〜50Hzとすることが好ましい。0.1Hz未満では鋳型銅板の内壁面に形成される振動進行波の進行速度が遅く、発現される効果が少なく、一方、500Hzを越えると効果は飽和し、それ以上の周波数を発生させるための設備費が無駄になる。   The frequency of the actuator 4 is 0.1 to 500 Hz, preferably 10 Hz to 50 Hz. If the frequency is less than 0.1 Hz, the traveling speed of the vibration traveling wave formed on the inner wall surface of the mold copper plate is slow, and the effect to be expressed is small. On the other hand, if the frequency exceeds 500 Hz, the effect is saturated, Equipment costs are wasted.

図1〜4に示すアクチュエーター4は、油圧シリンダーにより構成されているが、圧電素子もアクチュエーター4として好適である。圧電素子は電圧を印加すると体積変化が起こるので、この体積変化を利用して鋳型銅板を変形させる。圧電素子は耐熱温度が200〜300℃であるので、鋳型背面で十分に使用可能である。   The actuator 4 shown in FIGS. 1 to 4 is constituted by a hydraulic cylinder, but a piezoelectric element is also suitable as the actuator 4. Since the piezoelectric element undergoes a volume change when a voltage is applied, the volume change is used to deform the mold copper plate. Since the heat resistance temperature of the piezoelectric element is 200 to 300 ° C., it can be sufficiently used on the back surface of the mold.

アクチュエーター4の設置間隔が広過ぎると、鋳型銅板を十分に変形することができない。従って、アクチュエーター4の設置間隔は、数mm〜数十mmにすることが好ましい。また、鋳型銅板と凝固シェル9との間隙に存在するモールドパウダー10が固化してしまうと、モールドパウダー移送の効果が減じるので、アクチュエーター4を鋳型の下部まで配置する必要はなく、鋳型湯面から鋳型の引抜き方向中央部程度まで配置すればよい。また、鋳型短辺銅板3では、鋳型長辺銅板2に比べてモールドパウダー10の流入量が一般的に多いので、鋳型長辺銅板2のみにアクチュエーター4を配置してもよい。   If the installation interval of the actuator 4 is too wide, the mold copper plate cannot be sufficiently deformed. Therefore, the installation interval of the actuator 4 is preferably several mm to several tens mm. Further, if the mold powder 10 existing in the gap between the mold copper plate and the solidified shell 9 is solidified, the effect of mold powder transfer is reduced. Therefore, it is not necessary to dispose the actuator 4 to the lower part of the mold. What is necessary is just to arrange | position to about the center part of the extraction | drawer direction of a casting_mold | template. Further, since the inflow amount of the mold powder 10 is generally larger in the mold short side copper plate 3 than in the mold long side copper plate 2, the actuator 4 may be disposed only on the mold long side copper plate 2.

以下、このように構成される本発明に係る連続鋳造用鋳型設備1を用いた溶鋼8の連続鋳造方法を説明する。   Hereinafter, a continuous casting method of the molten steel 8 using the continuous casting mold equipment 1 according to the present invention configured as described above will be described.

タンディッシュ(図示せず)に滞在する溶鋼8を、タンディッシュの底部に設置した浸漬ノズル6を介して、浸漬ノズル6の下部に設けた吐出孔7から、一対の鋳型長辺銅板2及び一対の鋳型短辺銅板3により形成される矩形の鋳造空間に注入する。その際に、使用するモールドパウダー10の特性に応じて、鋳型長辺銅板2及び鋳型短辺銅板3の内壁面に形成される変形の変位が、鋳片引抜き方向の下流側から上流側に向かう方向またはその逆方向に進行するように、アクチュエーター4を動作させる。鋳型内の溶鋼8の上にはモールドパウダー10を添加する。この場合、従来の鋳型オシレーションを併用することにより、凝固シェル9の焼き付き及びスティッキングがより一層防止されるので、連続鋳造用鋳型設備1の全体を鋳片引抜き方向に沿ってオシレーションさせることが好ましい。   The molten steel 8 staying in a tundish (not shown) is passed through a submerged nozzle 6 installed at the bottom of the tundish from a discharge hole 7 provided in the lower part of the submerged nozzle 6, and a pair of mold long side copper plates 2 and a pair It is poured into a rectangular casting space formed by the mold short-side copper plate 3. At that time, depending on the characteristics of the mold powder 10 to be used, the deformation displacement formed on the inner wall surfaces of the mold long side copper plate 2 and the mold short side copper plate 3 is directed from the downstream side to the upstream side in the slab drawing direction. The actuator 4 is operated so as to travel in the direction or the opposite direction. Mold powder 10 is added on the molten steel 8 in the mold. In this case, since the seizure and sticking of the solidified shell 9 are further prevented by using the conventional mold oscillation together, it is possible to oscillate the entire continuous casting mold equipment 1 along the slab drawing direction. preferable.

鋳造空間に注入された溶鋼8は鋳型長辺銅板2及び鋳型短辺銅板3の内壁面と接触して冷却され、鋳型長辺銅板2及び鋳型短辺銅板3の内壁面に沿って凝固シェル9を形成する。この凝固シェル9を連続鋳造用鋳型設備1の下方に設けたピンチロール(図示せず)により連続鋳造用鋳型設備1の下方側に連続的に引抜き、溶鋼8の連続鋳造を実施する。   The molten steel 8 injected into the casting space comes into contact with the inner wall surfaces of the long mold copper plate 2 and the short mold copper plate 3 and is cooled, and the solidified shell 9 is formed along the inner wall surfaces of the long mold copper plate 2 and the short mold copper plate 3. Form. The solidified shell 9 is continuously drawn to the lower side of the continuous casting mold facility 1 by a pinch roll (not shown) provided below the continuous casting mold facility 1 to continuously cast the molten steel 8.

このようにして溶鋼8を連続鋳造することにより、凝固シェル9と鋳型長辺銅板2及び鋳型短辺銅板3の内壁面との焼き付きやスティッキングが防止され、鋳片に表面割れやブレークアウトなどを発生させずに安定した連続鋳造が可能となる。   By continuously casting the molten steel 8 in this manner, seizure and sticking between the solidified shell 9 and the inner wall surfaces of the long-side copper plate 2 and the short-side copper plate 3 can be prevented, and surface cracks and breakouts can be caused on the slab. Stable continuous casting can be achieved without generating it.

尚、図1〜4に示すアクチュエーター4は、アクチュエーター4の動作方向が鋳片引抜き方向と直交する方向であるが、図5に示すように、鋳片引抜き方向と平行な方向とすることもできる。図5は、アクチュエーター4の動作方向を鋳片引抜き方向と平行な方向とする例を示す概略図であり、アクチュエーター4の軸4aの両端が鋳型長辺銅板2と接続されている。   In addition, although the actuator 4 shown in FIGS. 1-4 is a direction where the operation direction of the actuator 4 is orthogonal to a slab drawing direction, it can also be set as a direction parallel to a slab drawing direction as shown in FIG. . FIG. 5 is a schematic view showing an example in which the operating direction of the actuator 4 is parallel to the slab drawing direction, and both ends of the shaft 4 a of the actuator 4 are connected to the long-side copper plate 2 of the mold.

1 連続鋳造用鋳型設備
2 鋳型長辺銅板
3 鋳型短辺銅板
4 アクチュエーター
5 固定架台
6 浸漬ノズル
7 吐出孔
8 溶鋼
9 凝固シェル
10 モールドパウダー
DESCRIPTION OF SYMBOLS 1 Mold equipment for continuous casting 2 Mold long side copper plate 3 Mold short side copper plate 4 Actuator 5 Fixed mount 6 Immersion nozzle 7 Discharge hole 8 Molten steel 9 Solidified shell 10 Mold powder

Claims (7)

二対の鋳型銅板で矩形の鋳造空間を形成する連続鋳造用鋳型設備であって、前記鋳型銅板の内壁面を鋳片引抜き方向と直交する方向に変形させるためのアクチュエーターが複数配置されていて、該アクチュエーターによって形成される鋳型銅板内壁面での変形の変位が、鋳片引抜き方向またはその逆方向に向かって伝播するように構成されていることを特徴とする、金属の連続鋳造用鋳型設備。   A casting apparatus for continuous casting that forms a rectangular casting space with two pairs of mold copper plates, wherein a plurality of actuators for deforming the inner wall surface of the mold copper plate in a direction perpendicular to the slab drawing direction are arranged, A mold equipment for continuous casting of metal, characterized in that the deformation displacement on the inner wall surface of the mold copper plate formed by the actuator propagates in the slab drawing direction or in the opposite direction. 前記アクチュエーターは0.1Hz〜500Hzで周期的動作を行い、且つ、鋳片引抜き方向の順に位置するアクチュエーターの位相が、順次進んでいるか、または順次遅れていることを特徴とする、請求項1に記載の金属の連続鋳造用鋳型設備。   2. The actuator according to claim 1, wherein the actuator periodically operates at 0.1 Hz to 500 Hz, and the phases of the actuators positioned in the order of the slab drawing direction are sequentially advanced or sequentially delayed. The mold equipment for continuous casting of the metal described. 前記アクチュエーターの動作方向は、鋳片引抜き方向と直交する方向であり、前記アクチュエーターの一端が前記鋳型銅板に接続していることを特徴とする、請求項1または請求項2に記載の金属の連続鋳造用鋳型設備。   3. The continuous metal according to claim 1, wherein an operation direction of the actuator is a direction orthogonal to a slab drawing direction, and one end of the actuator is connected to the mold copper plate. Casting mold equipment. 前記アクチュエーターの動作方向は、鋳片引抜き方向と平行な方向であり、前記アクチュエーターの両端部が前記鋳型銅板に接続していることを特徴とする、請求項1または請求項2に記載の金属の連続鋳造用鋳型設備。   The operating direction of the actuator is a direction parallel to the slab drawing direction, and both end portions of the actuator are connected to the mold copper plate. Mold equipment for continuous casting. 前記アクチュエーターは、油圧シリンダーまたは圧電素子からなることを特徴とする、請求項1ないし請求項4の何れか1つに記載の金属の連続鋳造用鋳型設備。   The metal casting apparatus for continuous casting according to any one of claims 1 to 4, wherein the actuator comprises a hydraulic cylinder or a piezoelectric element. 請求項1ないし請求項5の何れか1つに記載の連続鋳造用鋳型設備を用い、前記アクチュエーターによって鋳型銅板の内壁面を鋳片引抜き方向と直交する方向に変形させながら前記鋳造空間に溶融金属を注入することを特徴とする、金属の連続鋳造方法。   A molten metal is formed in the casting space using the continuous casting mold equipment according to any one of claims 1 to 5 while the inner wall surface of the mold copper plate is deformed in a direction perpendicular to the slab drawing direction by the actuator. A continuous casting method for a metal, characterized by injecting a metal. 更に、正弦波形または偏倚正弦波形で前記連続鋳造用鋳型設備をオシレーションさせることを特徴とする、請求項6に記載の金属の連続鋳造方法。   The metal continuous casting method according to claim 6, further comprising oscillating the continuous casting mold equipment with a sine waveform or a biased sine waveform.
JP2009034718A 2009-02-18 2009-02-18 Casting mold equipment for continuous casting of metal and continuous casting method Pending JP2010188375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009034718A JP2010188375A (en) 2009-02-18 2009-02-18 Casting mold equipment for continuous casting of metal and continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009034718A JP2010188375A (en) 2009-02-18 2009-02-18 Casting mold equipment for continuous casting of metal and continuous casting method

Publications (1)

Publication Number Publication Date
JP2010188375A true JP2010188375A (en) 2010-09-02

Family

ID=42815005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009034718A Pending JP2010188375A (en) 2009-02-18 2009-02-18 Casting mold equipment for continuous casting of metal and continuous casting method

Country Status (1)

Country Link
JP (1) JP2010188375A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106180607A (en) * 2016-08-30 2016-12-07 中国重型机械研究院股份公司 Magnesium alloy casts cooling and the inwall lubricating arrangement of liquid-solid converter continuously
CN114309476A (en) * 2021-07-29 2022-04-12 齐鲁工业大学 Ultrasonic-assisted casting method and device for metal casting mold

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106180607A (en) * 2016-08-30 2016-12-07 中国重型机械研究院股份公司 Magnesium alloy casts cooling and the inwall lubricating arrangement of liquid-solid converter continuously
CN106180607B (en) * 2016-08-30 2019-10-15 中国重型机械研究院股份公司 Magnesium alloy continuously casts cooling and the inner wall lubricating arrangement that liquid consolidates converter
CN114309476A (en) * 2021-07-29 2022-04-12 齐鲁工业大学 Ultrasonic-assisted casting method and device for metal casting mold
CN114309476B (en) * 2021-07-29 2024-01-26 齐鲁工业大学 Ultrasonic auxiliary casting method and device for metal casting mold

Similar Documents

Publication Publication Date Title
CN102686339B (en) Apparatus and method for controlling horizontal oscillation of an edge dam of a twin roll strip caster
CN1046448C (en) Method of continuously casting molten metal and apparatus therefor
JP2010188375A (en) Casting mold equipment for continuous casting of metal and continuous casting method
KR20110138897A (en) Continuous caster
JP6249099B2 (en) How to operate a continuous casting machine
JP2008525197A (en) Magnesium billet or slab continuous casting apparatus using electromagnetic field and manufacturing method
JP5641761B2 (en) Continuous casting equipment
JP2004322120A (en) Continuous casting method of steel
JP6171863B2 (en) Continuous casting mold and continuous casting method using the same
ITMI20000096A1 (en) PROCEDURE AND DEVICE TO IMPROVE THE QUALITY OF METALLIC BODIES CAST CONTINUOUSLY
JP3205018B2 (en) Manufacturing method of continuous cast slab with excellent surface properties
JP6733336B2 (en) Continuous casting machine and continuous casting method
JP4351502B2 (en) Electromagnetic casting apparatus and electromagnetic casting method
JP4192651B2 (en) Mold for continuous casting
KR20160027047A (en) Three-dimensional oscillation of a continuous casting mould, method, and device
JP2006205239A (en) Method for continuous casting
JPH08206799A (en) Continuous casting method of metal and casting equipment
JP3595529B2 (en) Continuous casting machine for molten metal
JP3094673B2 (en) Continuous casting method and apparatus
JP2526827Y2 (en) Rear weir of continuous sheet casting machine
KR101235269B1 (en) Metal sheet manufacturing device
JP6318848B2 (en) Vibration apparatus for continuous casting mold and continuous casting method
JPH08187563A (en) Continuous casting method applying electromagnetic force
JPS63126654A (en) Continuous casting method for cast slab
WO1994006583A1 (en) Method of casting continuous slab