WO1994006583A1 - Method of casting continuous slab - Google Patents

Method of casting continuous slab Download PDF

Info

Publication number
WO1994006583A1
WO1994006583A1 PCT/JP1992/001205 JP9201205W WO9406583A1 WO 1994006583 A1 WO1994006583 A1 WO 1994006583A1 JP 9201205 W JP9201205 W JP 9201205W WO 9406583 A1 WO9406583 A1 WO 9406583A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
mold
slab
solidified shell
shell
Prior art date
Application number
PCT/JP1992/001205
Other languages
French (fr)
Japanese (ja)
Inventor
Seiji Itoyama
Hirokazu Tozawa
Shuji Takeuchi
Kenichi Sorimachi
Original Assignee
Kawasaki Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corporation filed Critical Kawasaki Steel Corporation
Priority to PCT/JP1992/001205 priority Critical patent/WO1994006583A1/en
Priority to KR1019930702024A priority patent/KR100201947B1/en
Priority to DE69225980T priority patent/DE69225980T2/en
Priority to CA002098572A priority patent/CA2098572C/en
Priority to EP92920028A priority patent/EP0618023B1/en
Publication of WO1994006583A1 publication Critical patent/WO1994006583A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/053Means for oscillating the moulds

Definitions

  • the present invention relates to a continuous metal structure, particularly a vertical continuous structure.
  • the present invention relates to a method of manufacturing a continuous field piece that can reduce the depth of a simulation mark and obtain a piece with less segregation of a mark valley.
  • the present invention significantly reduces segregation at the oscillation mark valleys on the surface of a piece, as well as high cycle conditions, even in a low cycle with a small life frequency f, and has a stable structure. It is an object of the present invention to provide a method for extracting a connecting piece that enables the drawing. Disclosure of the invention
  • the present invention relates to a positive strip and a negative strip while vibrating in a vertical direction a mold for a vertical continuous structure having two pairs of cylindrical walls forming a structure. At least one pair of ⁇ -shaped walls is moved away from the solidified shell at one time in each time period within the time zone, and the ⁇ -shaped walls are moved away from the solidified shell during other time periods. That repeats during continuous production This is the construction method.
  • a positive strip having no negative strip time zone while vibrating in a vertical direction a vertical continuous manufacturing die formed by forming a manufacturing space by two pairs of die walls. At least one pair of ⁇ -shaped walls is moved away from the solidified shell at one time in each of the ⁇ -shaped rising and falling zones, and the other ⁇ -shaped rising and falling time zones.
  • a series of operations for bringing the ⁇ -shaped wall away from the solidification shell into close proximity can be repeated during continuous production.
  • FIG. 1 is a graph showing a temporal change of a vertical vibration velocity and a horizontal displacement of a rectangular wall according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the time-dependent changes in the vertical vibration velocity of the ⁇ type and the horizontal displacement of the ⁇ type wall according to another embodiment of the present invention.
  • FIG. 3 is a schematic perspective view showing a ⁇ -shaped horizontal moving device used for carrying out the present invention.
  • FIG. 4 is a schematic diagram showing an oscillation mark and a segregation layer.
  • FIG. 5 is a graph showing a conventional type I vibration waveform and a type III retraction and forward timing.
  • FIG. 6 is a schematic diagram between the ⁇ -shaped wall and the solidified sur. BEST MODE FOR CARRYING OUT THE INVENTION
  • the mold powder 10 on the molten steel 11 flows sufficiently between the mold wall 9 and the solidification shell 12 to reduce the frictional force between the rust mold wall 9 and the solidification shell.
  • Y indicates the direction of pulling out one piece.
  • the frictional force acting on the initial type solidified shell in the type II mask portion is Considering the frictional force between the mold and the solidified shell, the shear force of the mold powder between the mold and the solidified shell can be calculated by the following equation.
  • V Relative velocity between the ⁇ type wall and the solidification shell
  • the friction force F acting on the solidified shell decreases when the distance X between the ⁇ type and the solidified shell is increased. That is, according to the present invention, the tensile force and the compressive force acting on the shell of the meniscus portion in the early stage of solidification can be greatly reduced, and as a result, the continuity of the solidified shell is maintained, so that the oscillation mark depth is shallow. In other words, the probability that a prayer is formed in the Mark Valley is smaller than in the conventional technology.
  • the effects described above are not largely affected by the waveform of vertical vibration waveform ⁇ ⁇ , which causes the wall of the mold to move forward and backward (close and open) in the horizontal direction (hereinafter referred to as horizontal vibration).
  • the longitudinal vibration shown in Fig. 1 is a sinusoidal wave, and the horizontal vibration is a trapezoidal wave.
  • the amplitude of the horizontal vibration is desirably within 1 mm in order to prevent the risk of the molten metal to enter the gap between the rectangular corners and to cause a restraint break.
  • a short side 2 of a rectangular shape is fixed to a long side 1 of a rectangular shape through a panel 3 for a short side clamp.
  • the method of doing it is taken.
  • the opening and closing of the short-side clamp hydraulic cylinder 4 is provided in the hydraulic circuit. Therefore, in the present invention, the opening and closing of the short-side clamp hydraulic cylinder 4 is also provided in the hydraulic circuit.
  • the ⁇ -shaped movement is performed.
  • 7 indicates a hydraulic motor
  • 8 indicates a hydraulic tank. If a gap is left between the long side of the mold and the short side of the mold during fabrication, molten steel will enter the gap and cause trouble. easy. Therefore, the retraction amount of type ⁇ shall be within lmm.
  • the conventional longitudinal vibration (sign wave) and the case of the vibration wave shown in FIGS. 5 (a) and (b) shown in Japanese Patent Application Laid-Open No. 2-290656 are disclosed. A survey was also conducted. Fig.
  • Fig. 5 (a) shows the case where the vibration of type III moves the type wall backward during the negative strip period
  • Fig. 5 (b) shows the type when the type III descends. This is the case where is retracted.
  • Vibration conditions Oscillation Remarks Horizontal vibration conditions Thickness Occurrence rate
  • Table 1 shows the results of the above slab comparison between Examples 1 and 2 and the conventional method. Table 1 shows that, according to the present invention, as compared with the conventional method, the incidence of occurrence of the prayer in the oscillation valley due to the thickness is significantly reduced and almost completely eliminated. I understand. Industrial applicability
  • the wall of the mold is opened and closed horizontally with respect to the solidification elbow in accordance with the timing of the longitudinal vibration of the mold (forward and backward).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

When a slab is drawn while a mold formed of a long wall and a short one is vertically vibrated in the process of vertical type continuous casting, said long side wall is moved away from the slab with a hydraulic cylinder (4) actuated in a time zone in which large frictional force acts upon the slab. On the contrary, in a time zone in which large frictional force does not act on the slab, the long side wall having been kept away from the slab is brought closer thereto. In this way, by moving the long side wall away from or closer to the slab repeatedly, a depth of oscillation mark is reduced so that a slab with less segregation at the valley of oscillation mark may be obtained.

Description

連铸铸片の铸造方法  Construction method of the connecting piece
技術分野 Technical field
本発明は、 金属の連続铸造、 特に縦型連続铸造において、 ォ 明  The present invention relates to a continuous metal structure, particularly a vertical continuous structure.
シ レーシ ョ ンマーク深さの低減やマーク谷部の偏析が少ない鐯 片を得る こ と ができ る連铸鎳田片の铸造方法に関する も のであ る。 The present invention relates to a method of manufacturing a continuous field piece that can reduce the depth of a simulation mark and obtain a piece with less segregation of a mark valley.
背景技術 Background art
従来、 連铸鐯片表面の手入れ作業を不必要とする こ と を目的 と して、 特にステ ン レス鋼 ( S U S 3 04 ) の鎳造時に、 铸片 表面のオシ レーシ ョ ンマーク谷部の正偏析を軽減し又は防止す る縦型錶型の振動方法が提案されている。 例えば特開平 2 — 2 9 0 6 5 6号公報において、 二対の铸型面で铸造空間を作る連 鐃鐯型の、 縦振動におけるネガテ ィ ブス ト リ ッ プ時間帯に、 あ るいは鐯型下降時間帯のみに、 一対の铸型壁面を相対的に隔離 させる技術がある。  Conventionally, with the aim of eliminating the need for maintenance work on the connecting piece surface, especially when manufacturing stainless steel (SUS304), the right side of the oscillation mark valley on the surface of the piece was corrected. Vertical 錶 -type vibration methods have been proposed to reduce or prevent segregation. For example, in Japanese Unexamined Patent Application Publication No. 2-290656, Japanese Patent Application Laid-Open No. 2-290656 describes a continuous cycling type in which a structure space is formed by two pairs of rectangular surfaces, during a negative strip time period in a longitudinal vibration, or in a time zone. There is a technology that relatively isolates a pair of 铸 -shaped walls only during the mold descending time zone.
この方法は、 単純な縦振動のみを付与する場合に比べる と 、 かな り の効果のある こ とが認められている。 しかし、'実験の結 果によれば、 鐃型の振動数 : が小さい場合には効果が少ないこ と がわかっ た。 また上記方法では、 モール ドパゥ ダの消費量が 少な く な り 、 拘束によるブレークア ウ トの問題が生ずる。 従つ て却 っ て安定錶造を阻害する と い う 問題を引 き起こ す心配が あった。 It has been recognized that this method is considerably more effective than the case where only a simple longitudinal vibration is applied. However, according to the 'experimental results', it was found that the effect was small when the frequency of the cycline was small. Further, in the above method, the consumption of the mold paddle is reduced, and the problem of breakout due to restraint occurs. Therefore, there is a concern that it may cause a problem of hindering the stable structure. there were.
従来、 オシ レ一シ ヨ ンマーク谷部の偏祈の発生機構や発生原 因については、 錶型と凝固シェル間の液相潤滑膜内に鐯型の縦 振動によ って負圧が発生し、 この負圧が原因と なって凝固シュ ル表層部のデン ドライ 卜樹枝間の未凝固濃化溶鋼がシェル表面 に浸み出される こ と に起因している と いわれていた。  In the past, regarding the mechanism and cause of the bias in the oscillating mark valley, negative pressure was generated in the liquid lubricating film between the 錶 and the solidified shell by the 鐯 type longitudinal vibration. It has been said that the negative pressure causes the unsolidified, concentrated molten steel between the dendrites on the surface of the solidified shell to leach onto the shell surface.
しかし 、 本発明者らが铸片偏析部の調査を した結果、 偏析 は、 シヱルに作用する引張力によるシヱルの破断や圧縮力によ る座屈によ り凝固シェルの連続的生長が阻害され、 シェル破断 部や座屈部から濃化液がシェル表面に流出する こ とが原因であ る こ とがわかった。 従って、 凝固初期におけるシェルの破断や 座屈を防止する こ と、 つま り シェルに作用する引張力と圧縮力 を同時に低減する こ とが偏析を防止する有効な手段と なる。  However, as a result of the present inventors' investigation of the segregated portion of the piece, the segregation was found to impede continuous growth of the solidified shell due to fracture of the seal due to tensile force acting on the seal and buckling due to compressive force. However, it was found that the cause was that the concentrated solution flowed out of the shell surface from the shell fracture portion or the buckling portion. Therefore, preventing the shell from breaking or buckling in the early stage of solidification, that is, simultaneously reducing the tensile force and the compressive force acting on the shell, is an effective means for preventing segregation.
本発明は、 寿型振動数: f が小さい、 低サイ クルにおいても、 高サイ クル条件と 同様に鐯片表面のオシレ一シ ョ ンマーク谷部 の偏析を著し く 減少させ、 かつ安定锛造を可能にする連錶铸片 の引抜方法を提供する こ とを目的とする ものである。 発明の開示  The present invention significantly reduces segregation at the oscillation mark valleys on the surface of a piece, as well as high cycle conditions, even in a low cycle with a small life frequency f, and has a stable structure. It is an object of the present invention to provide a method for extracting a connecting piece that enables the drawing. Disclosure of the invention
本発明は、 二対の鐃型壁面で铸造空間を形成して成る縦型連 続铸造用铸型を縦方向に振動させつつ、 ポジテ ィ ブス ト リ ッ プ 時間帯と ネガテ ィ ブス ト リ ッ ブ時間帯内の各時間帯の一時期に は少な く と も一対の錶型壁面を凝固シェルから遠ざけ、 それ以 外の時間帯域には遠ざけた铸型壁面を凝固シェルに接近させる —連の動作を連続鍀造中に繰 り返すこ とを特徴と する連铸鎊片 の鎳造方法である。 SUMMARY OF THE INVENTION The present invention relates to a positive strip and a negative strip while vibrating in a vertical direction a mold for a vertical continuous structure having two pairs of cylindrical walls forming a structure. At least one pair of 錶 -shaped walls is moved away from the solidified shell at one time in each time period within the time zone, and the 铸 -shaped walls are moved away from the solidified shell during other time periods. That repeats during continuous production This is the construction method.
また本発明では、 二対の铸型壁面で铸造空間を形成して成る 縦型連続铸造用铸型を縦方向に振動させつつネガテ ィ ブス ト リ ッ プ時間帯のない、 ポジティ ブス ト リ ッブ時間帯のみの条件 で錶造し、 铸型の上昇域および下降域の各時間帯域の一時期に 少な く と も一対の铸型壁面を凝固シェルから遠ざけ、 その他の 鐯型上昇および下降時間帯域には遠ざけた鐯型壁面を凝固シュ ルに接近させる一連の動作を連続铸造中に繰り返すよ う にする こ と もできる。 図面の簡単な説明  Further, in the present invention, a positive strip having no negative strip time zone while vibrating in a vertical direction a vertical continuous manufacturing die formed by forming a manufacturing space by two pairs of die walls. At least one pair of 上昇 -shaped walls is moved away from the solidified shell at one time in each of the 上昇 -shaped rising and falling zones, and the other 鐯 -shaped rising and falling time zones In the meantime, a series of operations for bringing the 鐯 -shaped wall away from the solidification shell into close proximity can be repeated during continuous production. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 本発明の実施例に係る鐃型の縦方向振動速度と錶 型壁の水平方向変位の各経時変化を示すグラフである。  FIG. 1 is a graph showing a temporal change of a vertical vibration velocity and a horizontal displacement of a rectangular wall according to an embodiment of the present invention.
第 2 図は、 本発明の他の実施例に係る铸型の縦方向振動速度 と铸型壁の水平方向変位の各経時変化を示すグラフである。 第 3図は、 本発明の実施に用いた铸型の水平移動装置を示す 概略斜視図である。  FIG. 2 is a graph showing the time-dependent changes in the vertical vibration velocity of the 铸 type and the horizontal displacement of the 铸 type wall according to another embodiment of the present invention. FIG. 3 is a schematic perspective view showing a 铸 -shaped horizontal moving device used for carrying out the present invention.
第 4図は、 オシレ一シヨ ンマーク、 偏析層を示す模式図であ る。  FIG. 4 is a schematic diagram showing an oscillation mark and a segregation layer.
第 5図は、 従来の铸型の振動波形と、 铸型後退、 前進のタイ ミ ングを示すグラフである。  FIG. 5 is a graph showing a conventional type I vibration waveform and a type III retraction and forward timing.
第 6図は、 錶型壁と凝固シュル間の模式図である。 発明を実施するための最良の形態  FIG. 6 is a schematic diagram between the 錶 -shaped wall and the solidified sur. BEST MODE FOR CARRYING OUT THE INVENTION
第 1 図に示すよ う に、 铸型が最上点に達する と铸型縦方向速 度 V m は 0 と な り 、 铸型が下降を始める と速度 V m は次第に速 く な り 、 錶型が最下点に達する と速度 V m は 0 と なる。 再び錶 型が上昇を始める と速度 V m は速さを増す。 また鐯型の縦振動 は鐯片の引抜速度 V。 との相互関係で、 縦型の縦方向速度 v m が铸片の引抜速度 V c よ り速い時間をネガテ ィ ブス ト リ ッ プ時 間 T n と称している。 As shown in Fig. 1, when the 铸 reaches the top point, the 縦 vertical speed In degrees V m 0 and Do Ri, velocity V m when铸型begins to descend Ri gradually Do rather fast speed V m when錶型reaches the lowest point is 0. When the m type starts to rise again, the speed V m increases. The longitudinal vibration of type 鐯 is the pulling speed of piece 鐯. In relation to this, the time during which the vertical speed v m of the vertical type is faster than the pull-out speed V c of the piece is referred to as the negative strip time T n .
第 1 図に示すよ う に縦型の縦振動時の ( 1 ) 凝固シェルに引 張力の作用するポジテ ィ ブス ト リ ッ プ時間 T p における相対速 度が大き い時間 t t から t 2 までの一時期に少な く と も一対の 鎵型壁を相対的に凝固シュ ルから遠ざかるよ う に水平に後退さ せ、 X 。 の位置 と して開 と する。 ネガテ ィ ブス ト リ ッ プ時間 T n がない場合 ( Τ π = 0 ) は、 第 2 図に示すよ う に铸型上昇 期間における相対速度が大きい時間 t 4 から t 5 までの一時期 に少な く と も一対の锛型壁を相対的に遠ざける よ う に後退 (隔 離) させ、 X 。 の位置と して開とする。 As shown in Fig. 1, (1) The time when the relative speed is large at the positive stripping time T p during which the tensile force acts on the solidified shell during the vertical vibration of the vertical type, from t t to t 2 At least one pair of 壁 -shaped walls are retracted horizontally at a time so as to move relatively away from the solidification shroud. Open as the position of. Negate I ugly Application Benefits Tsu if no flop time T n (Τ π = 0) is rather low at one time from the time the relative speed is greater t 4 to t 5 in铸型rising period Remind as in Figure 2 X is retreated (separated) so that a pair of 壁 -shaped walls are relatively far apart. Open as the position of.
このよ う にする こ と によ って、 第 6図に示すよ う に 寿型壁 9 と凝固シェル 1 2 間の距離 X s から距離 X。 に增大させ、 錶型 壁 9 と凝固シ ヱ ル 1 2 間に溶鋼 1 1 上のモール ドパウ ダ 1 0 を 十分に流入させて、 銹型壁 9 と凝固シェル間の摩擦力を低減さ せる。 なお Yは铸片引抜方向を示す。  By doing so, the distance X from the distance X s between the longevity wall 9 and the solidified shell 12 as shown in FIG. The mold powder 10 on the molten steel 11 flows sufficiently between the mold wall 9 and the solidification shell 12 to reduce the frictional force between the rust mold wall 9 and the solidification shell. . Y indicates the direction of pulling out one piece.
第 1 図において、 その後に続く 、 シヱルに圧縮力の作用する ネガテ ィ ブス ト リ ッ ブ時間 Τ π の相対速度の大きい時間 t 3 か ら t 4 までの一時期に、 铸型壁を相対的に凝固シ ュ ルから遠ざ け、 铸型壁を X。 の位置と して開とする。 また第 2 図に示すよ う にネガテ ィ ブス ト リ ッ プ時間がない場合 ( Τ π = 0 ) は、 铸 型の下降期間の相対速度の大きい時間 t 2 から t 3 までの一時 期に、 鐯型壁を相対的に凝固シェルから水平に遠ざけ、 铸型壁 を X 。 の位置と して開とする。 このネガテ ィ ブス ト リ ッ プのな い場合には铸型と凝固シェルの相対速度は常に上向き と なるた め、 シ ェ ルには圧縮力が作用 しないよ う に考え られる。 しか し、 铸型内メ ニスカス部の凝固シ ルは連続して成長し、 かつ その位置が一定であるので圧縮力が T n = 0の場合でも作用す る。 In Figure 1, followed, at one time up to the big time of the relative velocity of the Negate I Buss Application Benefits Tsu Bed time to the action of the compressive force T [pi t 3 or et t 4 to Shiweru, relatively铸型wall Move the X-shaped wall away from the solidification shroud. Open as the position of. In addition, when there is no Negate I ugly door Clip time Remind as in FIG. 2 π = 0) is,铸 During the time when the relative velocity is large during the mold descent period from time t2 to t3, the 壁 -shaped wall is moved relatively horizontally from the solidified shell, and the 铸 -shaped wall is set to X. Open as the position of. In the absence of the negative strip, the relative velocity between the mold and the solidified shell is always upward, so it is considered that no compressive force acts on the shell. However, the solidified shell at the meniscus in the mold III grows continuously, and its position is constant, so it works even when the compression force is T n = 0.
そ して上記以外の時間帯すなわち第 1 図における時間 t 2 か ら t 3 までおよび時間 t 4 から t 5 まで、 また第 2 図における 時間 t , から t 2 までおよび時間 " t 3 から t 4 までは、 鐃型壁 を前進させて凝固シェルに接近させ錶型壁を X S の位置と して 閉 とする。 つま り铸型と凝固シェル間の距離 Xを X 。 と X s の 位置の間で変化させる。 このよ う な铸型の壁面と凝固シェルと の距離を変化させる铸型水平振動を付与する と、 特に锈型メ 二 ス カ ス部の初期凝固 シェルに作用する摩擦力は、 鐯型 と 凝固 シ ェ ル間の摩擦力を考える と铸型と凝固シヱル間のモール ドパ ウ ダの剪断力と して下記式によ り計算できる。 Their to from time t 2 or al t 3 to and time t 4 in the time zone or first view other than the above to t 5, also the time t in FIG. 2, from t 2 to and the time "t 3 from t 4 Until then, the cylindrical wall is advanced to approach the solidified shell and the 錶 -shaped wall is closed at the position of XS, that is, the distance X between the 铸 -shaped and solidified shell is between X. and Xs. When such a type II horizontal vibration that changes the distance between the type II wall surface and the solidified shell is applied, the frictional force acting on the initial type solidified shell in the type II mask portion is Considering the frictional force between the mold and the solidified shell, the shear force of the mold powder between the mold and the solidified shell can be calculated by the following equation.
F = A - u ( d V / d X ) ( 1 ) F = A-u (d V / d X) (1)
但し、 A : 錶型と凝固シュル間の接触面積 However, A: Contact area between 錶 type and solidification sur
u : 錶型壁面と凝固シェル間に流入したモール ドパゥ ダ の粘性  u: Viscosity of the mold paddle flowing between the 壁面 -shaped wall and the solidified shell
V : 铸型壁面と凝固シ ェ ル間の相対速度 V: Relative velocity between the 铸 type wall and the solidification shell
X : 鐯型と凝固シュル間の距離 上記 ( 1 ) 式からわかるよ う に凝固シェルに作用する摩擦力 F は鐯型と凝固シェル間の距離 Xを大き く した時期に減少する。 つま り 、 本発明によ って凝固初期のメニスカス部のシェルに作 用する引張力 と圧縮力は大き く 低減でき、 その結果凝固シェル の連続性が維持されるのでオシレーシ ョ ンマーク深さが浅く な り 、 かつマーク谷部にも偏祈が形成される確率が従来の技術以 上に小さ く なるのである。 X: Distance between 鐯 type and solidification sur As can be seen from the above equation (1), the friction force F acting on the solidified shell decreases when the distance X between the 鐯 type and the solidified shell is increased. That is, according to the present invention, the tensile force and the compressive force acting on the shell of the meniscus portion in the early stage of solidification can be greatly reduced, and as a result, the continuity of the solidified shell is maintained, so that the oscillation mark depth is shallow. In other words, the probability that a prayer is formed in the Mark Valley is smaller than in the conventional technology.
以上のよ う な効果は、 縦振動波形ゃ锛型壁面を水平方向に前 進 · 後退 (閉、 開) させる (以後、 水平振動と呼ぶ) 波形に大 き く 左右される ものではな く 、 第 1 図に示す縦振動 : サイ ン 波、 水平振動 : 台形波以外の例えば非サイ ン波ゃ三角波な どの 場合にも同様の効果がある。 なお、 水平振動の振幅は、 铸造す る溶湯が铸型コーナーの隙間に浸入して拘束性ブレーク ァ ゥ 卜 が生じる危険を防ぐため、 1 m m以内にするのが望ま しい。  The effects described above are not largely affected by the waveform of vertical vibration waveform ゃ 锛, which causes the wall of the mold to move forward and backward (close and open) in the horizontal direction (hereinafter referred to as horizontal vibration). The longitudinal vibration shown in Fig. 1 is a sinusoidal wave, and the horizontal vibration is a trapezoidal wave. The amplitude of the horizontal vibration is desirably within 1 mm in order to prevent the risk of the molten metal to enter the gap between the rectangular corners and to cause a restraint break.
以下、 本発明の実施例に基づいて説明する。  Hereinafter, a description will be given based on examples of the present invention.
実施例一 1 Example 1 1
水平振動装置と しては、 一般にスラブ連続铸造機では、 第 3 図に示すよ う に铸型短辺 2 を鐯型長辺 1 で短辺ク ラ ンプ用パネ 3 を介 してク ラ ンプする方法がと られている。 本発明では、 短 辺ク ラ ンプ用油圧シ リ ンダ 4の開閉を油圧回路に設けているの で、 本発明では短辺クラ ンプ用油圧シ リ ンダ 4の開閉を油圧回 路にも う けた上下のソ レノ イ ドバルブ 5 、 6 を通じて行う こ と によ って铸型の移動を行う ものである。 7は、 油圧モ一夕、 8 は油圧タ ンクを示す。 铸造中に铸型長辺とモール ド短辺間に隙 間を余 り生じさせる と、 溶鋼が隙間に浸入して ト ラブルが生じ 易い。 このため鐯型の後退量は l m m以内とする。 As a horizontal vibration device, generally, in a continuous slab machine, as shown in Fig. 3, a short side 2 of a rectangular shape is fixed to a long side 1 of a rectangular shape through a panel 3 for a short side clamp. The method of doing it is taken. In the present invention, the opening and closing of the short-side clamp hydraulic cylinder 4 is provided in the hydraulic circuit. Therefore, in the present invention, the opening and closing of the short-side clamp hydraulic cylinder 4 is also provided in the hydraulic circuit. By moving through the upper and lower solenoid valves 5 and 6, the 铸 -shaped movement is performed. 7 indicates a hydraulic motor, and 8 indicates a hydraulic tank. If a gap is left between the long side of the mold and the short side of the mold during fabrication, molten steel will enter the gap and cause trouble. easy. Therefore, the retraction amount of type。 shall be within lmm.
上記第 3 図の铸型壁の水平振動装置を適用し、 ステンレス鋼 ( S U S 304 ) の铸片を連続铸造した場合の铸片表面のオシ レーシ ヨ ンマーク 13の深さ d , (第 4図参照) と 、 オシ レー シヨ ンマーク部の偏析層深さ d 2 とからオシレーシヨ ン部偏析 厚み ( d 2 - d 1 ) を得、 この偏析層厚み ( d 2 - d ! ) とォ シレ一シ ョ ンマーク深さ d 2 を調査した。 比較のために従来の 縦振動のみの場合 (サイ ン波) と、 特開平 2 — 2 9 0 6 5 6号 公報で示されている第 5図 ( a ) 、 ( b ) の振動波の場合の調 査も行った。 なお、 第 5図 ( a ) は铸型の振動がネガティ ブス ト リ ッ ブ期間の間に铸型壁を後方に移動させる場合であり、 第 5図 ( b ) は铸型の下降時に铸型を後退させる場合である。 な お、 本発明の铸造条件は、 鐯片引抜速度 V c = 1.2 /min 、 铸 型縦振動数: f = 150 回 Z分、 振幅 S = 5.3mm 、 縦振動波形 =サ イ ン、 水平振動振幅 = 0.3mrn 、 水平振動パターンは台形波 (第 1 図参照) 、 铸型壁の開 · 閉のタイ ミ ングは角度換算 (第 1 図 の V m が正に最大の時をゼロ度とする) で、 105 度から 130 度 まで (第 1 図における時間 t 2 〜 t 3 間) と 240 度から 275 度 まで (第 1 図における時間 t 4 〜 t 5 間) を閉 ( X s 位置) 、 それ以外では開 ( X。 位置) となるよ う にした。 開から閉、 あ るいは閉から開への移動速度は SOmmZsec と した。 使用 したモ -ル ドパゥ ダは 1300°Cでの粘度が 1 . 1 ポアズ、 凝固温度が 900 °Cの潤滑剤と した。 The depth d of the oscillation mark 13 on the surface of the piece when the piece of stainless steel (SUS 304) is continuously manufactured by applying the horizontal vibration device of the rectangular wall shown in Fig. 3 above (see Fig. 4) ) And the segregation layer depth d 2 at the oscillation mark part, the segregation thickness (d 2 -d 1) of the oscillation part is obtained, and the segregation layer thickness (d 2 -d!) And the oscillation mark to investigate the depth d 2. For comparison, only the case of the conventional longitudinal vibration (sign wave) and the case of the vibration wave shown in FIGS. 5 (a) and (b) shown in Japanese Patent Application Laid-Open No. 2-290656 are disclosed. A survey was also conducted. Fig. 5 (a) shows the case where the vibration of type III moves the type wall backward during the negative strip period, and Fig. 5 (b) shows the type when the type III descends. This is the case where is retracted. The manufacturing conditions of the present invention are as follows: (1) One-piece pulling speed V c = 1.2 / min, (2) Longitudinal frequency: f = 150 times Z, amplitude (S) = 5.3 mm, longitudinal vibration waveform = sin, horizontal vibration Amplitude = 0.3 mrn, horizontal vibration pattern is trapezoidal wave (see Fig. 1), 铸 type wall opening / closing timing is angle conversion (zero degree when V m in Fig. 1 is exactly maximum) in), to 130 degrees to 105 degrees (from the first during time t 2 ~ t 3 in Figure) and 240 degrees to 275 degrees (time t 4 ~ t 5 between) in FIG. 1 closed (X s position), Otherwise, it is open (X. position). The speed of movement from open to closed or from closed to open was SOmmZsec. The mold pad used was a lubricant with a viscosity of 1.1 poise at 1300 ° C and a solidification temperature of 900 ° C.
実施例一 2 Example 1 2
ネガティ ブス ト リ ブ時間がない T N = 0 の場合の例と して铸 型縦振動の振幅 S = 2. Omm と して水平の開閉タイ ミ ングを第 2 図の よ う に 110 〜 160 度 (第 2 図の時間 t , 〜 t 2 間) と 、 250 〜290 度 (第 2図の時間 t 3 〜 t 4 間) と を閉、 それ以外 では開 と した。 その他の条件は実施例 1 と 同様と した。 As an example when T N = 0 with no negative strip time テ ィ As shown in Fig. 2, the horizontal opening / closing timing is set to 110 to 160 degrees (between times t and t2 in Fig. 2 ) and 250 to 290 degrees, assuming that the amplitude of the mold longitudinal vibration is S = 2. Omm. and a (second diagram between times t 3 ~ t 4) is closed, open in others. Other conditions were the same as in Example 1.
表 1 铸型の縦方向 偏 析 Table 1 Vertical segregation of type III
N o. 振動法 振動条件 オシレー 備考 水平振動条件 厚み 発生率 シヨ ン  No. Vibration method Vibration conditions Oscillation Remarks Horizontal vibration conditions Thickness Occurrence rate
振幅 振動数 u 2 U 1 マーク深さ  Amplitude Frequency u 2 U 1 Mark depth
imm) (cpm) (mm) (%) d 2 (mm)  imm) (cpm) (mm) (%) d 2 (mm)
5.3 1 5 0 水平振動なし n Q fiリ 7 f 0.4 2 TN > 05.3 1 5 0 No horizontal vibration n Q fi 7 f 0.4 2 T N > 0
1 従来法 1 Conventional method
2 3 0 0 水平振動かし 0. 1 0 2 5 0.1 5 T -1- M 1¾ > ο v2 3 0 0 Horizontal vibrator 0.1 0 2 5 0.1 5 T- 1 -M 1¾> ο v
2 従来法 5.3 1 5 0 ネガティ ブ期開 0. 2 0 4 3 0.3 7 TN > 0 2 Conventional method 5.3 1 5 0 Negative phase opening 0.2 0 4 3 0.37 TN> 0
3 従来法 2 1 5 0 铸型下降時開 0. 1 8 3 4 0.3 2 TN = 0 3 Conventional method 2 1 5 0 Open when descending type 铸 0.1 8 3 4 0.3 2 T N = 0
4 本発明 5.3 1 5 0 本発明の条件 0 0 0.2 1 TN > 0 4 Present invention 5.3 1 5 0 Conditions of the present invention 0 0 0.2 1 T N > 0
(第 1図の通り)  (As shown in Fig. 1)
5 本発明 2 1 5 0 本発明の条件 0 0 0.1 5 TN = 0 5 Present invention 2 1 5 0 Conditions of the present invention 0 0 0.1 5 T N = 0
(第 2図の通り) (As shown in Fig. 2)
表 1 に前記の鋼片調査結果を実施例 1 、 2 の場合と従来法と を比較して示した。 表 1 よ り 、 本発明によれば、 従来法に比較 してオシ レーシ ョ ン谷部の偏祈が厚みと なって現出する発生率 が著し く 減少し、 ほぼ皆無と なる こ とが分かる。 産業上の利用可能性 Table 1 shows the results of the above slab comparison between Examples 1 and 2 and the conventional method. Table 1 shows that, according to the present invention, as compared with the conventional method, the incidence of occurrence of the prayer in the oscillation valley due to the thickness is significantly reduced and almost completely eliminated. I understand. Industrial applicability
初期凝固シェルに作用する圧縮力や引張力を極力小さ く でき る よ う に铸型の縦振動のタイ ミ ングに合わせて錶型壁面を凝固 エルに対して水平方向に開閉 (前進 · 後退) する鐃型振動法を 提供する こ と によ り 、 従来に比べて低い鐯型振動数において鐯 片表面のオ シ レーシ ョ ンマーク谷部の偏析を著 し く 軽減でき る。 その結果、  In order to minimize the compressive and tensile forces acting on the initial solidification shell, the wall of the mold is opened and closed horizontally with respect to the solidification elbow in accordance with the timing of the longitudinal vibration of the mold (forward and backward). By providing a cycling vibration method, the segregation of the oscillation mark valleys on the surface of the piece can be significantly reduced at a lower vibration frequency than in the past. as a result,
①拘束性ブレークァゥ ト発生の危険なハイ サイ クル镜型振動条 件で、 铸造する必要がないので生産性の ト ラブルが減少する。 (1) Under high-cycle vibration conditions where dangerous restraint breaks occur, there is no need to build, reducing productivity problems.
②ステ ン レス鋼 S U S 3 0 4 鎳片の場合、 従来のよ う に加熱 . 圧 延する前に錶片表面の偏析をグライ ンダ一で削除する量が減少 し、 著しい場合には無手入れのま まで次工程に锛片を送る こ と が可能なので、 歩留 りの向上が期待できる。 (2) In the case of stainless steel SUS 304 slab, the amount of segregation on the surface of the slab is reduced by a grinder before rolling, as before. Since it is possible to send pieces to the next process, an improvement in yield can be expected.

Claims

請 求 の 範 囲 The scope of the claims
1 . 二対の铸型壁面で銹造空間を形成してなる縦型連続錶造 用鎳型を縦方向に振動させつつ、 ポジティ ブス 卜 リ ッ プ時間帯 と ネガテ ィ ブス ト リ ッ プ時間帯内の各時間帯の一時期には少な く と も一対の i寿型壁面を凝固シェルから遠ざけ、 それ以外の時 間帯域には遠ざけた铸型壁面を凝固シェルに接近させる一連の 動作を連続铸造中に繰返すこ と を特徴とする連鐯鐃片の鎳造方 法。 1. Positive stripping time and negative stripping time while vertically oscillating a mold for vertical continuous construction with two pairs of mold walls forming a rust space. At least one pair of i-shaped walls is moved away from the solidified shell at one time during each time zone in the zone, and a series of operations is performed to move the 铸 -shaped wall away from the solidified shell to the solidified shell in other time zones. A method for producing a cycling piece, which is repeated during production.
2 . 二対の铸型壁面で鐃造空間を形成してなる縦型連続铸造 用鎳型を縦方向に振動させつつ、 ポジテ ィ ブス ト リ ッ ブ時間帯 のみの条件で鐃造し、 铸型の上昇域および下降域の各時間帯の —時期には少な く と も一対の铸型壁面を凝固シ ェ ルから遠ざ け、 その他の铸型上昇および下降時間帯域には遠ざけた鐯型壁 面を凝固シェルに接近させる一連の動作を連続鐯造中に繰 り返 す こ と を特徴とする連铸 寿片の镜造方法。 2. While oscillating in the vertical direction, a vertical continuous construction mold formed by two pairs of rectangular walls forming a cylindrical space, cycling only under the conditions of the positive stripping time. In each of the rise and fall time periods of the mold, at least one pair of mold walls was moved away from the solidification shell and the other in the rise and fall time zones A method for producing a continuous life piece, wherein a series of operations for bringing a wall surface close to a solidified shell are repeated during continuous production.
PCT/JP1992/001205 1992-09-22 1992-09-22 Method of casting continuous slab WO1994006583A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP1992/001205 WO1994006583A1 (en) 1992-09-22 1992-09-22 Method of casting continuous slab
KR1019930702024A KR100201947B1 (en) 1992-09-22 1992-09-22 Method of casting continuous slab
DE69225980T DE69225980T2 (en) 1992-09-22 1992-09-22 CONTINUOUS CASTING OF SLABS IN OSCILLATING CHOCOLATE WITH HORIZONTALLY RETRACTABLE WALLS
CA002098572A CA2098572C (en) 1992-09-22 1992-09-22 Casting process for continuous castings
EP92920028A EP0618023B1 (en) 1992-09-22 1992-09-22 casting continuous slab in oscillated mold with horizontally retractable walls

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP1992/001205 WO1994006583A1 (en) 1992-09-22 1992-09-22 Method of casting continuous slab
CA002098572A CA2098572C (en) 1992-09-22 1992-09-22 Casting process for continuous castings

Publications (1)

Publication Number Publication Date
WO1994006583A1 true WO1994006583A1 (en) 1994-03-31

Family

ID=25676288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/001205 WO1994006583A1 (en) 1992-09-22 1992-09-22 Method of casting continuous slab

Country Status (2)

Country Link
CA (1) CA2098572C (en)
WO (1) WO1994006583A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015093277A (en) * 2013-11-08 2015-05-18 新日鐵住金株式会社 Mold for continuous casting and continuous casting method using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6418553A (en) * 1987-07-13 1989-01-23 Kawasaki Steel Co Instrument for detecting friction force between mold and cast slab in continuous casting apparatus
JPH02290656A (en) * 1988-12-08 1990-11-30 Kawasaki Steel Corp Method for oscillating mold for vertical type continuous casting
JPH0399756A (en) * 1989-09-11 1991-04-24 Kawasaki Steel Corp Device for oscillating mold in continuous casting equipment
JPH03297546A (en) * 1990-04-16 1991-12-27 Kawasaki Steel Corp Method for oscillating mold for vertical type continuous casting
JPH04143057A (en) * 1990-10-02 1992-05-18 Kawasaki Steel Corp Method for oscillating mold for vertical type continuous casting

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6418553A (en) * 1987-07-13 1989-01-23 Kawasaki Steel Co Instrument for detecting friction force between mold and cast slab in continuous casting apparatus
JPH02290656A (en) * 1988-12-08 1990-11-30 Kawasaki Steel Corp Method for oscillating mold for vertical type continuous casting
JPH0399756A (en) * 1989-09-11 1991-04-24 Kawasaki Steel Corp Device for oscillating mold in continuous casting equipment
JPH03297546A (en) * 1990-04-16 1991-12-27 Kawasaki Steel Corp Method for oscillating mold for vertical type continuous casting
JPH04143057A (en) * 1990-10-02 1992-05-18 Kawasaki Steel Corp Method for oscillating mold for vertical type continuous casting

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0618023A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015093277A (en) * 2013-11-08 2015-05-18 新日鐵住金株式会社 Mold for continuous casting and continuous casting method using the same

Also Published As

Publication number Publication date
CA2098572C (en) 1999-12-21
CA2098572A1 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
US4945975A (en) Method of oscillation of mold of vertical continuous caster
Yamamura et al. Formation of a solidified hook-like structure at the subsurface in ultra low carbon steel
US5579824A (en) Continuous casting process with vertical mold oscillation
WO1994006583A1 (en) Method of casting continuous slab
KR101906699B1 (en) Method for operating continuous casting machine
EP0618023B1 (en) casting continuous slab in oscillated mold with horizontally retractable walls
Park et al. Analysis of thermo-mechanical behavior in billet casting
KR100201947B1 (en) Method of casting continuous slab
JPH105956A (en) Continuous casting method of steel
JP2539550B2 (en) Continuous casting slab casting method
CN104014754B (en) Method for producing high manganese steel through ultrasonic vibration crystallizer for continuous casting
JP2001522312A (en) Method for generating vibration in a continuous casting mold
JPH059188B2 (en)
JPH0243574B2 (en)
JPH0479744B2 (en)
JPH0356824B2 (en)
JPS63126654A (en) Continuous casting method for cast slab
JP3205018B2 (en) Manufacturing method of continuous cast slab with excellent surface properties
JP2010188375A (en) Casting mold equipment for continuous casting of metal and continuous casting method
TW416875B (en) Method for swaying a continuous casting mold
RU2142864C1 (en) Method for production of continuous deformed castings
JPH10156505A (en) Method for oscillating mold for vertical type continuous casting
JPH0489163A (en) Continuous casting method and mold thereof
JPH04178240A (en) Continuous casting method for stainless steel
JPH09234549A (en) Method for controlling oscillation of mold for continuous casting

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2098572

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 1993 81313

Country of ref document: US

Date of ref document: 19931129

Kind code of ref document: A

AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE

WWE Wipo information: entry into national phase

Ref document number: 1992920028

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1992920028

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992920028

Country of ref document: EP