JPH03297546A - Method for oscillating mold for vertical type continuous casting - Google Patents

Method for oscillating mold for vertical type continuous casting

Info

Publication number
JPH03297546A
JPH03297546A JP9760190A JP9760190A JPH03297546A JP H03297546 A JPH03297546 A JP H03297546A JP 9760190 A JP9760190 A JP 9760190A JP 9760190 A JP9760190 A JP 9760190A JP H03297546 A JPH03297546 A JP H03297546A
Authority
JP
Japan
Prior art keywords
mold
continuous casting
pair
solidified shell
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9760190A
Other languages
Japanese (ja)
Inventor
Seiji Itoyama
誓司 糸山
Kenichi Tanmachi
反町 健一
Koichi Tozawa
戸澤 宏一
Hideji Takeuchi
秀次 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP9760190A priority Critical patent/JPH03297546A/en
Publication of JPH03297546A publication Critical patent/JPH03297546A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To achieve stable high velocity casting by relatively advancing/ retreating one pair of mold faces at only one time during executing plural times of vertical oscillations to a mold for vertical type continuous casting having plural pairs of mold faces. CONSTITUTION:The mold for vertical type continuous casting is formed by making casting space with two pairs of the mold faces of mold long side 1 and mold short side 2. During executing N times (N>=2) of the vertical oscillations to the mold, one pair of the mold faces composed of the mold long side 1 are relatively advanced (approached)/retreated (separated) at only one time. During ascending the mold, one pair of the mold faces are retreated, and during descending, these are advanced. Lower parts of the mold faces are taken as a fulcrum and only upper parts are opened/closed. By this method, flowing condition of mold powder into between the mold face and solidified shell is adjusted and breakout can be prevented.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、金属の連続鋳造方法、特に竪型連続鋳造にお
いて、高速鋳造においてもブレークアウトの発生がない
鋳造用鋳型の振動方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a continuous metal casting method, particularly a method of vibrating a casting mold in vertical continuous casting, which does not cause breakout even in high-speed casting. be.

〈従来の技術〉 竪型連続鋳造機において、連続鋳造を行うに当たって、
鋳型を上下方向に縦振動させると同時に鋳型内の溶鋼上
にモールドパウダを添加して、鋳型面と凝固シェル間の
摩擦の低減を図っている。
<Prior art> When performing continuous casting in a vertical continuous casting machine,
The mold is vibrated vertically and at the same time mold powder is added to the molten steel in the mold to reduce the friction between the mold surface and the solidified shell.

このモールドパウダの作用は鋳型の振動条件と密接に関
係し、適切な量のモールドパウダが鋳型面と凝固シェル
間に流入・消費するよう振動条件を調整することが重要
である。
The action of this mold powder is closely related to the vibration conditions of the mold, and it is important to adjust the vibration conditions so that an appropriate amount of mold powder flows into and is consumed between the mold surface and the solidified shell.

一般的に鋳型の振動方法GJ、第2図に示すように鋳型
の振動速度■、が正弦波となるような方法がとられてい
るが、この際、モールドパウダーの消費量は、鋳型の下
降速度が鋳片の引抜き速度よりも小さいポジティブスト
リップ時間T、に依存することが知られている。また、
高速鋳造の場合、モールドパウダー消費量が減少し、拘
束性ブレークアウトや鋳片表面欠陥が多くなる傾向を示
すことも知られている。このような問題を解決するため
、モールドパウダー粘度の低下や特開昭60−1117
955号公報に示すようにネガティブストリップ時間T
l+を短くしてTr待時間長(するように鋳型の振動波
形を正弦波形から偏倚した偏倚正弦波形とする方法が開
示されている。しかしこの方法は振動メカニズJ、の複
雑化や鋳片の表面欠陥の不安定化などの問題があり、十
分満足できる結果を得ていないのが実状である。
In general, a method is used in which the mold vibration method GJ, the mold vibration speed ■, is a sine wave as shown in Figure 2, but in this case, the amount of mold powder consumed is It is known that the speed depends on the positive strip time T, which is smaller than the drawing speed of the slab. Also,
It is also known that high speed casting tends to reduce mold powder consumption and increase restraint breakouts and slab surface defects. In order to solve these problems, we have developed a method to reduce the viscosity of mold powder and
As shown in Japanese Patent No. 955, the negative strip time T
A method has been disclosed in which the vibration waveform of the mold is made into a biased sine waveform, which is deviated from a sine waveform, by shortening the Tr waiting time.However, this method complicates the vibration mechanism and increases the The reality is that there are problems such as destabilization of surface defects, and that fully satisfactory results have not been obtained.

また、米国特許明細書3,494,411号に示すよう
に竪型水冷鋳型を用いて、鋳型を鋳造方向と同し縦方向
に振動を与えるとともに、鋳造方向と直角の横方向に振
動させる方法も開示されている。しかしこの方法は、縦
方向の振動と横方向の振動が独立して行われているため
、モールドパウダの流入量を鋳造条件に合わせて調整す
ることができないという問題があった。
Further, as shown in U.S. Patent No. 3,494,411, there is a method in which a vertical water-cooled mold is used and the mold is vibrated in the vertical direction in the same direction as the casting direction, and in the horizontal direction perpendicular to the casting direction. is also disclosed. However, this method has a problem in that the inflow amount of mold powder cannot be adjusted in accordance with the casting conditions because the vertical vibration and the horizontal vibration are performed independently.

〈発明が解決しようとする課題〉 本発明は、前述のような現状に鑑み、鋳造すべき材料に
対応して鋳型・凝固シェル間距離を増減することによっ
て、モールドパウダの流入量を制御し、高速鋳造の安定
化とブレークアラ1〜の防止を図るこ七ができる竪型連
続鋳造用鋳型の振動方法を提供するためになされたもの
である。
<Problems to be Solved by the Invention> In view of the above-mentioned current situation, the present invention controls the inflow amount of mold powder by increasing or decreasing the distance between the mold and the solidified shell in accordance with the material to be cast. This invention has been made in order to provide a method of vibrating a vertical continuous casting mold that can stabilize high-speed casting and prevent breakage.

く課題を解決するだめの手段〉 本発明は、■二対の鋳型面で鋳造空間を作る竪型連続鋳
造用鋳型の縦振動をN回さ−Uる間に1回だけ一対の鋳
型面を相対的に前進(接近)・後退(離隔)さ・已るこ
とを特徴とする竪型連続鋳造用鋳型の振動方法であり、
■前記鋳型が上昇中は、一対の鋳型面を後退さゼて鋳型
・凝固シェル間距離を増加さ−U、前記鋳型が下降中は
、前記一対の鋳型面を前進させて鋳型・凝固シェル間距
離を減少させることを特徴とする前項■記載の竪型連続
鋳造用鋳型の振動方法であり、■前記鋳型の縦振動周期
がポジティブストリップ時間帯の全域あるいは一時期に
、一対の鋳型面を後退させて鋳型凝固シェル間距離を増
加さゼ、ネガティブストリンプ時間帯の全域あるいは一
時期にある時は、前記一対の鋳型面を前進さ−Uて鋳型
・凝固シェル間距離を減少させることを特徴とする前項
の記載の竪型連続鋳造用鋳型の振動方法で、■前記鋳型
面の下部を支点にして、鋳型上部のめ開閉することによ
り、鋳造金属に対する一対の鋳型面を相対的に前進(接
近)・後退(離隔)させることを特徴とする前項■、■
または■記載の竪型連続鋳造用鋳型の振動方法である。
Means for Solving the Problem> The present invention is characterized by: A vibration method for a vertical continuous casting mold characterized by relatively advancing (approaching), receding (separating), and sweeping.
■When the mold is rising, the distance between the mold and the solidified shell is increased by retracting the pair of mold surfaces, and when the mold is descending, the distance between the mold and the solidified shell is increased by advancing the pair of mold surfaces. A method for vibrating a vertical continuous casting mold as described in the preceding item (1), characterized in that the distance is reduced, and (1) the vertical vibration period of the mold causes a pair of mold surfaces to retreat over the entire positive strip time period or during a period of time. The method is characterized in that the distance between the mold and the solidified shell is increased by moving the pair of mold surfaces forward during the whole or part of the negative strip period, and the distance between the mold and the solidified shell is decreased by moving the pair of mold surfaces forward. In the method of vibrating a vertical continuous casting mold described in the previous section, the pair of mold surfaces relative to the cast metal are advanced (approached) by opening and closing the upper part of the mold, using the lower part of the mold surface as a fulcrum.・The previous item ■, ■ characterized by retreating (separating)
Or the method of vibrating a vertical continuous casting mold described in (2).

く作 用〉 本発明の作用を以下に図面に従って説明する。For Kusaku The operation of the present invention will be explained below with reference to the drawings.

第2図において、Zは糊振動による鋳型の位置を示す正
弦波形で、■□はその位置における鋳型の振動速度を示
す。鋳型が最上点に達すると鋳型振動速度V8は0とな
り、鋳型が下降を始めると振動速度■イは次第に速くな
り、鋳型が最下点に達すると振動速度■、は0となる。
In FIG. 2, Z is a sine waveform indicating the position of the mold due to glue vibration, and ■□ indicates the vibration speed of the mold at that position. When the mold reaches the highest point, the mold vibration speed V8 becomes 0, when the mold starts to descend, the vibration speed (i) gradually becomes faster, and when the mold reaches the lowest point, the vibration speed (i) becomes zero.

再び鋳型が上昇を始めると振動速度■、は速さを増す。When the mold starts to rise again, the vibration speed increases.

また鋳型の縦振動と鋳片の引抜速度■。との相互関係で
、鋳型の振動速度■。が、鋳片の引抜速度■。より遅い
時間をポジティブストリップ時間T2、鋳片の引抜速度
Vcより速い時間をネガティブストリップ時間Tllと
称している。
Also, the longitudinal vibration of the mold and the drawing speed of the slab■. ■ The vibration velocity of the mold in correlation with the . However, the drawing speed of the slab ■. The slower time is called the positive strip time T2, and the time faster than the slab drawing speed Vc is called the negative strip time Tll.

本発明は第4図(a)〜げ)に示すように、竪型連続鋳
造用鋳型の振動がポジティブストリップ時間の全域ある
いは一時期の間にまたは鋳型の上昇中に鋳型を後方に移
動させて鋳型・凝固シェル間距離をX、からXゎに増大
させ、モールドパウダー流入路の拡大を図るので、鋳型
・凝固シェル間に充分な量のモールドパウダを流入させ
ることができる結果、鋳型面と凝固シェルとの間の摩擦
力を低減させ鋳型面への凝固シェルの焼き付きに起因す
る拘束性ブレークアウトを防止できる。このような動作
を縦振動をN回させる間に1回行わせる(第3図参照、
N−3の場合)。
As shown in FIGS. 4(a) to 4), the present invention has a method in which the vibration of the vertical continuous casting mold moves the mold backward over the entire positive strip time or during a period of time or during the rise of the mold.・The distance between the solidified shells is increased from X to It is possible to reduce the frictional force between the mold and the mold surface, thereby preventing restrictive breakout caused by the solidified shell sticking to the mold surface. This kind of operation is performed once every N times of longitudinal vibration (see Figure 3,
In the case of N-3).

以下に具体的に説明する。This will be explained in detail below.

第1図に示すように一般にスラブ連続鋳造機では、モー
ルド短辺2をモールド長辺1でクランプする方法がとら
れているので、本発明者らは、短辺クランプ用油圧シリ
ンダ4の開閉を油圧回路を通じて行うことによって鋳型
の移動を実現したものである。鋳造中にモールド長辺・
モールド短辺間に隙間を余り生じさせると、溶鋼が隙間
に侵入して鋳造トラブルが生じ易い。このため鋳型の後
退量(X、−X、)は1 mm以内で、0 、5 mm
以内とすることが望ましい。
As shown in Fig. 1, in a continuous slab casting machine, generally, a method is adopted in which the short side 2 of the mold is clamped by the long side 1 of the mold. The movement of the mold is achieved through a hydraulic circuit. During casting, the long side of the mold
If too much gap is created between the short sides of the mold, molten steel will easily enter the gap and cause casting troubles. Therefore, the amount of mold retraction (X, -X,) is within 1 mm, and 0,5 mm.
It is desirable to keep it within the range.

また、本方法で、縦振動の毎に長辺モールドを水平方向
に移動させることをしない理由は、長辺モールド1が元
の位置に戻る場合、つまり、短辺モールド2に近づく場
合、制御の不都合で、長辺モールド1が短辺モールド2
に衝突して鋳型が変形することを防止・軽減するためで
ある。このような意味から、縦振動N回に1回の割合で
水平振動を行わせるのである。Nの値は鋳型の材質(強
度・硬度など)によって、また鋳造条件(振動数。
In addition, in this method, the reason why the long side mold is not moved in the horizontal direction for each vertical vibration is that when the long side mold 1 returns to its original position, that is, when it approaches the short side mold 2, the control Due to inconvenience, the long side mold 1 is the short side mold 2.
This is to prevent and reduce deformation of the mold due to collision with the mold. For this reason, horizontal vibration is performed once every N times of vertical vibration. The value of N depends on the mold material (strength, hardness, etc.) and casting conditions (vibration frequency).

鋳込速度など)によって、経験的に決めればよく、本発
明の実施例では2〜10が最適である。
It may be determined empirically depending on the casting speed, etc.), and in the embodiment of the present invention, 2 to 10 is optimal.

一方、鋳型・凝固シェル間の摩擦力を考えると凝固シェ
ルに加わる摩擦力Fは鋳型・凝固シェル間のモールドパ
ウダの剪断力として推算できる。
On the other hand, considering the frictional force between the mold and the solidified shell, the frictional force F applied to the solidified shell can be estimated as the shearing force of the mold powder between the mold and the solidified shell.

この力Fはつぎの式で表される。This force F is expressed by the following formula.

x 但し、A:鋳型・凝固シェル間の接触面積μ:鋳型面・
凝固シェル間に流入したモールドパウダの粘性 7:鋳型面・凝固シェル間の相対速度 X:鋳型・凝固シェル間の距離 上記摩擦力Fが最大となるのは鋳型が最大速度で」1昇
するとき(ポジティブストリップ時間)であり本発明の
ようにポジティブストリップ時間の鋳型・凝固シェル間
距離Xを増大させることは摩擦力Fに対して反比例の関
係にあるので効果的である。これによって高速鋳造時に
、特に問題となる拘束性ブレークアウトの発生が抑止で
きる。
x However, A: Contact area between the mold and solidified shell μ: Mold surface
Viscosity of the mold powder that has flowed between the solidified shells 7: Relative velocity between the mold surface and the solidified shell (positive strip time), and increasing the distance X between the mold and the solidified shell during the positive strip time as in the present invention is effective because it is inversely proportional to the frictional force F. This can prevent the occurrence of restrictive breakout, which is a particular problem during high-speed casting.

また第4図(e)、 (f)に示すように鋳型の上昇中
(ポジティブストリップ時間の一部が含まれる)に鋳型
を後退、または徐々に後退させることによって、鋳型・
凝固シェル間距離を増太さゼで、十分な量のモールドパ
ウダを流入させても同様の効果が期待できることは言う
までもない。
In addition, as shown in FIGS. 4(e) and 4(f), by retracting the mold or gradually retracting it while the mold is rising (including a part of the positive strip time), the mold can be removed.
It goes without saying that the same effect can be expected even if the distance between the solidified shells is increased and a sufficient amount of mold powder is allowed to flow in.

なお、長辺鋳型を開閉させる時のパターン(軌跡)は、
第3図の例に限る必要はなく、例えば連続的に変化する
正弦波、余弦波でもよい。
The pattern (trajectory) when opening and closing the long side mold is as follows.
It is not necessary to limit the waveform to the example shown in FIG. 3; for example, a continuously changing sine wave or cosine wave may be used.

本発明(例)において鋳型・凝固シェル間距離を調整す
るのに、第1図に示すように鋳型の上部、下部を同時に
油圧シリンダで前進・後退させて行っている。これを第
6図に示すように鋳型下部を支点にして、油圧シリンダ
等で上部のみ開閉して鋳型・凝固シェル間距離を調整し
ても同様の効果が得られる。
In the present invention (example), the distance between the mold and the solidified shell is adjusted by simultaneously moving the upper and lower parts of the mold forward and backward using hydraulic cylinders, as shown in FIG. As shown in FIG. 6, the same effect can be obtained by adjusting the distance between the mold and the solidified shell by opening and closing only the upper part using a hydraulic cylinder or the like, using the lower part of the mold as a fulcrum.

〈実施例〉 (実施例1) 本発明方法によって、鋳型を振動させて低炭アルミキル
ド鋼の鋳片を鋳造した場合の鋳型・凝固シェル間へのモ
ールドパウダの流入量およびブレークアウト発生状況を
、従来の正弦波形によって鋳型を振動させた場合と対比
させて第1表に示した。
<Example> (Example 1) When a slab of low carbon aluminum killed steel is cast by vibrating the mold by the method of the present invention, the amount of mold powder flowing into the space between the mold and the solidified shell and the occurrence of breakout are as follows: Table 1 shows a comparison with the case where the mold is vibrated using a conventional sine waveform.

第1表から明らかなように、本発明方法によって鋳型を
振動させた場合には、ブレークアウトの発生が著しく減
少していることがわかる。
As is clear from Table 1, when the mold is vibrated according to the method of the present invention, the occurrence of breakouts is significantly reduced.

■ ■ 5・・・上部クランプ開閉用ソレノイドパルプ、6・・
・下部クランプ開閉用ソレノイドバルブ、7・・・油圧
モーフ、   8・・・油圧タンク、9・・・水冷鋳型
、   10・・・モールドパウダ、If・・・溶 鋼
、    12・・・凝固シェル、Y ・・・鋳片引抜
方向、 T、・・・ポジティブストリップ時間、Tll・・・ネ
ガティブストリップ時間、xo・・・拡大された鋳型・
凝固シェル間距離、xl・・・通常の鋳型・凝固シェル
間距離、■6・・・鋳型の縦方向振動速度、 VC・・・鋳片の引抜速度、 Z ・・・鋳型の縦方向振動変位。
■ ■ 5... Solenoid pulp for opening and closing the upper clamp, 6...
・Solenoid valve for opening/closing the lower clamp, 7... Hydraulic morph, 8... Hydraulic tank, 9... Water-cooled mold, 10... Mold powder, If... Molten steel, 12... Solidified shell, Y: slab pulling direction, T: positive strip time, Tll: negative strip time, xo: enlarged mold.
Distance between solidified shells, xl... Distance between normal mold and solidified shell, ■6... Longitudinal vibration velocity of mold, VC... Pulling speed of slab, Z... Longitudinal vibration displacement of mold .

Claims (1)

【特許請求の範囲】 1、二対の鋳型面で鋳造空間を作る竪型連続鋳造用鋳型
の縦振動をN回(N≧2)させる間に1回だけ一対の鋳
型面を相対的に前進(接近)・後退(離隔)させること
を特徴とする竪型連続鋳造用鋳型の振動方法。 2、前記鋳型が上昇中は、一対の鋳型面を後退させて鋳
型・凝固シェル間距離を増加させ、前記鋳型が下降中は
、前記一対の鋳型面を前進させて鋳型・凝固シェル間距
離を減少させることを特徴とする請求項1記載の竪型連
続鋳造用鋳型の振動方法。 3、前記鋳型の縦振動周期がポジティブストリップ時間
帯の全域あるいは一時期に、一対の鋳型面を後退させて
鋳型・凝固シェル間距離を増加させ、ネガティブストリ
ップ時間帯の全域あるいは一時期にある時は、前記一対
の鋳型面を前進させて鋳型・凝固シェル間距離を減少さ
せることを特徴とする請求項1記載の竪型連続鋳造用鋳
型の振動方法。 4、前記鋳型面の下部を支点にして、鋳型上部のみ開閉
することにより、鋳造金属に対する一対の鋳型面を相対
的に前進(接近)・後退(離隔)させることを特徴とす
る請求項1、2または3記載の竪型連続鋳造用鋳型の振
動方法。
[Claims] 1. The pair of mold surfaces are moved relatively forward only once during vertical vibration of a vertical continuous casting mold that creates a casting space with the two mold surfaces N times (N≧2). A method of vibrating a vertical continuous casting mold characterized by (approaching) and receding (separating) a mold. 2. While the mold is rising, the pair of mold surfaces are moved back to increase the distance between the mold and the solidified shell; while the mold is descending, the pair of mold surfaces are moved forward to increase the distance between the mold and the solidified shell. 2. The method of vibrating a vertical continuous casting mold according to claim 1, wherein the vibration of a vertical continuous casting mold is reduced. 3. When the longitudinal vibration period of the mold is during the whole period or a period of the positive strip time period, the pair of mold surfaces is retreated to increase the distance between the mold and the solidified shell, and when it is during the whole period or a period of the negative strip time period, 2. The method of vibrating a vertical continuous casting mold according to claim 1, wherein the distance between the mold and the solidified shell is reduced by advancing the pair of mold surfaces. 4. Claim 1, characterized in that by opening and closing only the upper part of the mold with the lower part of the mold surface as a fulcrum, the pair of mold surfaces relative to the cast metal are moved forward (approaching) and retreating (separating). The method of vibrating a vertical continuous casting mold according to 2 or 3.
JP9760190A 1990-04-16 1990-04-16 Method for oscillating mold for vertical type continuous casting Pending JPH03297546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9760190A JPH03297546A (en) 1990-04-16 1990-04-16 Method for oscillating mold for vertical type continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9760190A JPH03297546A (en) 1990-04-16 1990-04-16 Method for oscillating mold for vertical type continuous casting

Publications (1)

Publication Number Publication Date
JPH03297546A true JPH03297546A (en) 1991-12-27

Family

ID=14196756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9760190A Pending JPH03297546A (en) 1990-04-16 1990-04-16 Method for oscillating mold for vertical type continuous casting

Country Status (1)

Country Link
JP (1) JPH03297546A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994006583A1 (en) * 1992-09-22 1994-03-31 Kawasaki Steel Corporation Method of casting continuous slab
US5579824A (en) * 1993-11-29 1996-12-03 Kawasaki Steel Corporation Continuous casting process with vertical mold oscillation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994006583A1 (en) * 1992-09-22 1994-03-31 Kawasaki Steel Corporation Method of casting continuous slab
US5579824A (en) * 1993-11-29 1996-12-03 Kawasaki Steel Corporation Continuous casting process with vertical mold oscillation

Similar Documents

Publication Publication Date Title
JP2644349B2 (en) Vibration method of vertical continuous casting mold
JPH03297546A (en) Method for oscillating mold for vertical type continuous casting
KR100707785B1 (en) Method and device for manufacturing continuous cast products
JPH0716767B2 (en) Method and apparatus for continuous casting of metal ribbon
JPH06210405A (en) Casting machine for continuous casting in vertical direction in magnetic field
JPH0819842A (en) Method and device for continuous casting
JPH04143057A (en) Method for oscillating mold for vertical type continuous casting
JP3191594B2 (en) Continuous casting method using electromagnetic force
JPH0399756A (en) Device for oscillating mold in continuous casting equipment
JP2695455B2 (en) Method of pouring molten metal into continuous casting mold
CA1128281A (en) Electromagnetic casting method and apparatus
JPH03193245A (en) Method for continuously casting strip
JP2913114B2 (en) Method of expanding mold width during continuous casting
JP3130152B2 (en) Twin belt type continuous casting machine and pouring method thereof
JPH0489163A (en) Continuous casting method and mold thereof
JPS59166358A (en) Continuous casting method
JPH05245589A (en) Oscillating method of mold for vertical type continuous casting
JPH08187557A (en) Method for continuously casting steel using electromagnetic field
JP2539550B2 (en) Continuous casting slab casting method
JPS63126651A (en) Belt type continuous casting method
JPH03248746A (en) Method for oscillating mould for continuous casting
JPS5717355A (en) Method for electromagnetic stirring of molten sheet within mold in slab continuous casting
JPH04238647A (en) Method for oscillating mold in continuous casting
JPS6130260A (en) Molten metal pouring device for twin-roll casting
JP2003211259A (en) Method for continuously casting steel