JP3205018B2 - Manufacturing method of continuous cast slab with excellent surface properties - Google Patents

Manufacturing method of continuous cast slab with excellent surface properties

Info

Publication number
JP3205018B2
JP3205018B2 JP30671891A JP30671891A JP3205018B2 JP 3205018 B2 JP3205018 B2 JP 3205018B2 JP 30671891 A JP30671891 A JP 30671891A JP 30671891 A JP30671891 A JP 30671891A JP 3205018 B2 JP3205018 B2 JP 3205018B2
Authority
JP
Japan
Prior art keywords
mold
magnetic field
vibration
strip period
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30671891A
Other languages
Japanese (ja)
Other versions
JPH05115952A (en
Inventor
秀次 竹内
健一 反町
敏和 桜谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP30671891A priority Critical patent/JP3205018B2/en
Publication of JPH05115952A publication Critical patent/JPH05115952A/en
Application granted granted Critical
Publication of JP3205018B2 publication Critical patent/JP3205018B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、溶融金属、特に溶鋼の
連続鋳造方法(以下連鋳法と略す)に関するものであ
る。以下の説明では主として溶鋼の連鋳法に関して記載
するが、他の溶融金属、例えばアルミニウム、銅等の非
鉄金属にも適用可能な連鋳法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method for molten metal, particularly molten steel (hereinafter abbreviated as continuous casting method). In the following description, the continuous casting method of molten steel is mainly described, but the present invention relates to a continuous casting method applicable to other molten metals, for example, non-ferrous metals such as aluminum and copper.

【0002】[0002]

【従来の技術】溶鋼の連鋳法で製造される鋳片の表面に
は、オシレ−ションマ−クと呼ばれる鋳型の振動に起因
する表面欠陥が発生する。このオシレ−ションマ−ク
は、鋳片表面の横割れの原因となったり、オシレ−ショ
ンマ−クの谷部に偏析層ができ、これが鋼板製品の表面
に残って表面欠陥となる場合がある。このため、オシレ
−ションマ−クの深さはできるだけ低減することが要求
されている。従来、オシレ−ションマ−クの深さの低減
方法として、鋳型の振動数を増加したり、振動波形の変
更(非サイン波形の使用)等の方法がとられてきた。こ
れらはいずれも、鋳型振動の下向き速度が鋳片の下向き
移動速度(鋳造速度)より負で大きくなる時間、いわゆ
るネガティブストリップ期の時間を短縮する方法であ
り、周知の技術である。
2. Description of the Related Art A surface defect caused by vibration of a mold called an oscillation mark occurs on the surface of a slab produced by a continuous casting method of molten steel. This oscillation mark may cause lateral cracks on the slab surface or form a segregation layer in the valley of the oscillation mark, which may remain on the surface of the steel sheet product and become a surface defect. For this reason, it is required that the depth of the oscillation mark be reduced as much as possible. Conventionally, as a method of reducing the depth of the oscillation mark, a method of increasing the frequency of the mold or changing the vibration waveform (using a non-sine waveform) has been employed. Each of these methods is a well-known technique for reducing the time during which the downward speed of the mold vibration is negatively greater than the downward moving speed (casting speed) of the slab, that is, the time of the so-called negative strip period.

【0003】一方、オシレ−ションマ−クの生成機構に
関しては多くの研究があり、一般的に考えられている生
成機構は以下の通りである。すなわち、上述したネガテ
ィブストリップ期には、鋳型と初期凝固シェル間に存在
する溶融モ−ルドパウダ−中に正圧が発生し、初期凝固
シェルを鋳型から離れる方向に押し倒す。ネガティブス
トリップ期からポジティブストリップ期に移ると、逆に
溶融モ−ルドパウダ−中に負圧が発生し、初期凝固シェ
ルは鋳型の方へ倒れる。
[0003] On the other hand, there have been many studies on the formation mechanism of an oscillation mark, and the formation mechanism generally considered is as follows. That is, in the negative strip period described above, a positive pressure is generated in the molten mold powder existing between the mold and the initially solidified shell, and the initial solidified shell is pushed down in a direction away from the mold. In the transition from the negative strip period to the positive strip period, conversely, a negative pressure is generated in the molten mold powder, and the initially solidified shell falls toward the mold.

【0004】以上の機構を図6に模式的に示した。(Me
tallurgical Transaction B, Vol15B, 1984, p504から
転記) ここで横軸は時間で、(a)は鋳型の速度および
鋳造速度の経時的変化を示し、(b)はそれに伴う初期
凝固シェルの形状の経時的変化を模式的に示した図であ
る。オシレ−ションマ−クの深さの低減方法としては前
述のように鋳型の振動数を増加したり、振動波形の変更
(非サイン波形)等の方法がとられてきた。しかし、こ
れらの方法では、鋳型と鋳片間の潤滑の役目を果してい
る溶融モ−ルドパウダ−の消費量が減少して摩擦力が大
きくなり、最悪の場合はブレ−クアウトを起こす危険が
あった。その理由は、溶融モ−ルドパウダ−が鋳型と鋳
片間に流入する時期であるネガティブストリップ期を故
意に短縮しているためであり、当然予想される結果であ
る。
The above mechanism is schematically shown in FIG. (Me
(Translated from tallurgical Transaction B, Vol 15B, 1984, p504) Here, the horizontal axis is time, (a) shows the change over time in the mold speed and casting speed, and (b) shows the time change of the shape of the initially solidified shell accompanying it. FIG. 4 is a diagram schematically showing a target change. As a method of reducing the depth of the oscillation mark, methods such as increasing the frequency of the mold and changing the vibration waveform (non-sine waveform) have been used as described above. However, in these methods, the consumption of the molten mold powder, which plays a role of lubrication between the mold and the slab, is reduced, and the frictional force is increased. In the worst case, there is a risk of causing breakout. . The reason is that the negative strip period, which is the time when the molten mold powder flows between the mold and the slab, is intentionally shortened, which is an expected result.

【0005】以上のことから、ネガティブストリップ期
の時間を短縮することによってオシレ−ションマ−クの
深さを低減する方法には限界がある。加うるに上記の方
法には潜在的なブレ−クアウトの危険を伴う。以上のよ
うな事情で、従来は実質的にオシレ−ションマ−クを完
全に消滅することは不可能とされていた。
[0005] As described above, there is a limit to a method of reducing the depth of the oscillation mark by shortening the time of the negative strip period. In addition, the above methods involve a potential breakout risk. Under the circumstances described above, it has conventionally been impossible to completely eliminate the oscillation mark.

【0006】[0006]

【発明が解決しようとする課題】本発明は以上のような
現状にかんがみてなされたもので、ネガティブストリッ
プ期を短縮せずに初期凝固シェルが鋳型の振動によって
変形することを防止して、オシレ−ションマ−クの深さ
を低減する連鋳法を提供するためになされたものであ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and prevents an initial solidified shell from being deformed by vibration of a mold without shortening a negative strip period. -It has been made to provide a continuous casting method for reducing the depth of the shock mark.

【0007】[0007]

【課題を解決するための手段】本発明は、溶融金属を連
続鋳造方法により鋳片とする連続鋳造鋳片の製造方法に
おいて、溶融金属の鋳型内の初期凝固位置に外部から交
番磁界を印加するに当り、前記鋳型の振動によるネガテ
ィブストリップ期とポジティブストリップ期に発生する
初期凝固シェルの変形を抑制するように、前記鋳型の振
のネガティブストリップ期とポジティブストリップ期
に同期させて前記交番磁界の強度を変化させることを特
徴とする表面性状の優れた連続鋳造鋳片の製造方法であ
る。
SUMMARY OF THE INVENTION The present invention relates to a method of manufacturing a continuous cast slab in which a molten metal is cast by a continuous casting method, wherein an alternating magnetic field is externally applied to an initial solidification position of the molten metal in a mold. In order to suppress the deformation of the initial solidified shell generated in the negative strip period and the positive strip period due to the vibration of the mold, in synchronization with the negative strip period and the positive strip period of the vibration of the mold, This is a method for producing a continuous cast slab having excellent surface properties, characterized by changing the intensity of an alternating magnetic field.

【0008】[0008]

【作用】本発明の方法では、外部から印加する交番磁界
は、実質的に溶融金属の鋳型内の初期凝固位置に印加す
ることが要求される。また、鋳型の振動と同期させて外
部から印加する交番磁界の磁界強度を変化させる方法
は、初期凝固位置と磁界発生用コイル(以下コイルと略
す)との相対距離を変化させる方法によっておこなって
もよいし、あるいは、単にコイルに印加する交番電流の
強度を変化させる方法によっておこなってもよい。本発
明の実施に際しては、交番磁界を発生する装置(一般に
は交流電源)とコイルが必要である。交番磁界の周波数
は、コイルと鋳型との相対位置関係や溶融金属の種類、
鋳型材質等によって最適な範囲が存在する。例えば銅製
鋳型を使用する溶鋼の連続鋳造の場合には、図1に示す
コイルの配置が考えられ、使用周波数は50Hz以上、
好ましくは1kHz以上がよい。
According to the method of the present invention, the externally applied alternating magnetic field is required to be applied substantially to the initial solidification position of the molten metal in the mold. Further, the method of changing the magnetic field strength of the alternating magnetic field applied from the outside in synchronization with the vibration of the mold may be performed by a method of changing the relative distance between the initial solidification position and the magnetic field generating coil (hereinafter, abbreviated as coil). Alternatively, it may be performed simply by changing the intensity of the alternating current applied to the coil. In practicing the present invention, a device (generally an AC power supply) for generating an alternating magnetic field and a coil are required. The frequency of the alternating magnetic field depends on the relative positional relationship between the coil and the mold, the type of molten metal,
There is an optimum range depending on the mold material and the like. For example, in the case of continuous casting of molten steel using a copper mold, the arrangement of the coil shown in FIG. 1 is conceivable.
Preferably, it is 1 kHz or more.

【0009】また、凝固点が鋼より低い非鉄金属の連続
鋳造の場合には図3に示したようにグラファイト製鋳型
の外側にコイルを配置することが考えられる。この場合
は、あまり周波数の高い交番磁界を印加すると、鋳型に
よって磁界が吸収されるので、適正な周波数領域は50
Hz〜20kHz程度となる。なお、図3はアルミニウ
ムの連続鋳造の例である。
In the case of continuous casting of a non-ferrous metal having a lower freezing point than steel, it is conceivable to dispose a coil outside the graphite mold as shown in FIG. In this case, if an alternating magnetic field with a very high frequency is applied, the magnetic field is absorbed by the mold, so that the appropriate frequency range is 50 Hz.
Hz to about 20 kHz. FIG. 3 shows an example of continuous casting of aluminum.

【0010】次に、鋳型の振動と同期させて磁界強度B
を変化する方法について説明する。まず、この方法を達
成する手段としては、図1のようなコイル配置の場合に
は、鋳型内の溶湯表面からコイルまでの距離を機械的に
変化させてもよいし、あるいは電流強度を周期的に変化
させてもよい。図3のコイル配置の場合も同様な手段を
とることができる。鋳型の振動と磁界強度の変化との同
期の仕方は、コイル配置によって異なる。すなわち、図
1の場合には鉛直下向きに電磁力が作用するので、鋳型
の振動がネガティブストリップ期に磁界強度が大きく、
ポジティブストリップ期に磁界強度が小さくなるような
変化モ−ドを与える。これを図2によって説明すると、
図中tN 部がネガティブストリップ期であるので磁界強
度Bを大きくし、ポジティブストリップ期tp 部では磁
界強度Bを小さくする。磁界強度Bの変化波形としては
振動波形と同様にサイン波としてもよいし、より正確に
は溶融モ−ルドパウダ−中に発生する圧力変化を計算に
よって求め、これを打ち消すような強度変化を持つモ−
ドの波形を与えるのが望ましい。
Next, the magnetic field intensity B is synchronized with the vibration of the mold.
Will be described. First, as a means for achieving this method, in the case of the coil arrangement as shown in FIG. 1, the distance from the surface of the molten metal in the mold to the coil may be mechanically changed, or the current intensity may be periodically changed. May be changed. Similar measures can be taken in the case of the coil arrangement shown in FIG. The method of synchronizing the vibration of the mold with the change in the magnetic field strength differs depending on the coil arrangement. That is, in the case of FIG. 1, the electromagnetic force acts vertically downward, so that the vibration of the mold has a large magnetic field strength during the negative strip period,
A change mode in which the magnetic field intensity is reduced during the positive strip period is provided. This will be described with reference to FIG.
Since drawing t N portion is negative strip stage to increase the magnetic field strength B, and reduce the magnetic field strength B in the positive strip period t p unit. The change waveform of the magnetic field strength B may be a sine wave as in the case of the vibration waveform. More precisely, a change in pressure generated in the molten mold powder is obtained by calculation, and a mode having a change in intensity that cancels out the change is obtained. −
It is desirable to give a waveform of the code.

【0011】また、図3のようなコイル配置の場合は、
水平方向に電磁力が作用するのでネガティブストリップ
期に磁界強度が小さく、ポジティブストリップ期に大き
くなるような変化モ−ド(図4)を与えることによって
初期凝固シェルの変形を抑制することができる。図4に
よって説明すると、ネガティブストリップ期tN 部では
磁界強度Bを小さくし、ポジティブストリップ期tp
では磁界強度Bを大きくする。磁界強度Bの変化波形に
ついては前述と同様の考え方である。いずれにしても、
鋳片と鋳型間の溶融モ−ルドパウダ−中に発生する正、
負の圧力によって初期凝固シェルが変形することを抑制
することが目的なので、この変形を与える圧力変動を打
ち消すだけの電磁力を、打ち消すようなモ−ドで印加す
ることが肝要である。
In the case of a coil arrangement as shown in FIG.
Since the electromagnetic force acts in the horizontal direction, the deformation mode of the initial solidified shell can be suppressed by giving a change mode (FIG. 4) in which the magnetic field intensity is small during the negative strip period and large during the positive strip period. Referring to the FIG. 4, to reduce the magnetic field strength B in the negative strip stage t N unit, increasing the magnetic field strength B in the positive strip period t p unit. The change waveform of the magnetic field strength B is based on the same concept as described above. In any case,
Positive, generated in the molten mold powder between the slab and the mold
Since the purpose is to suppress the deformation of the initially solidified shell due to negative pressure, it is important to apply an electromagnetic force that cancels out the pressure fluctuation that causes this deformation in a mode that cancels out.

【0012】[0012]

【実施例】本発明を溶鋼の連鋳法に適用した実施例につ
いて図1にしたがって述べる。使用した設備は「垂直曲
げ型」の一般的な形式の設備で、鋳型7は銅製で短辺2
が150mm、長辺1が600mmの断面が矩形の組立
鋳型である。交番磁界は図1のコイル配置にしたがって
コイル3によって印加した。3′はコイル3の導線であ
る。用いた交番磁界の周波数は約10kHzであり、溶
鋼表面に相当する位置での磁界強度は0.056テスラ
であった。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a continuous casting method of molten steel will be described with reference to FIG. The equipment used is a general equipment of the "vertical bending type", and the mold 7 is made of copper and has a short side of 2 mm.
Is 150 mm and the long side 1 is 600 mm. The alternating magnetic field was applied by coil 3 according to the coil arrangement of FIG. 3 'is a conductor of the coil 3. The frequency of the alternating magnetic field used was about 10 kHz, and the magnetic field strength at a position corresponding to the molten steel surface was 0.056 Tesla.

【0013】通常の連鋳操業と同様に、溶湯供給用浸積
ノズル4を介してタンディッシュから溶鋼を鋳型7内に
供給した。同時に鋳型内の溶鋼表面へはモ−ルドパウダ
−を連続的に供給した。鋳造速度は1.2m/min、
鋳型振動は120cpmの振動数でストロ−クは4mm
のサイン波形とした。磁界強度Bは、図2に示したよう
なサイン波形に近いモ−ドとなるように鋳型の振動に同
期させて強度を変化させるようにした。なお、実際には
鋳型振動を発生させているコンピュ−タの出力信号を磁
界発生用の電源制御装置にも取り込み、ネガティブスト
リップ期、ポジティブストリップ期を正確に同期させる
ように構成した。
As in the ordinary continuous casting operation, molten steel was supplied from the tundish into the mold 7 through the immersion nozzle 4 for supplying molten metal. At the same time, mold powder was continuously supplied to the molten steel surface in the mold. Casting speed is 1.2m / min,
Mold vibration is 120 cpm and stroke is 4 mm
Sine waveform. The magnetic field strength B is changed in synchronization with the vibration of the mold so as to be in a mode close to a sine waveform as shown in FIG. Actually, the output signal of the computer generating the mold vibration is also taken into a power supply control device for generating a magnetic field, so that the negative strip period and the positive strip period are accurately synchronized.

【0014】次に比較例として、上記の交番磁界を印加
せずに、その他は全く同じ鋳造条件で溶鋼の連鋳を実施
した。次いで実施例と比較例の鋳片のオシレ−ションマ
−クの深さを測定した。測定結果を図5に示した。図5
から明らかなように本発明の実施例では鋳片のオシレ−
ションマ−クの深さは平均値で約40μmとなり、比較
例の約200μm(平均値)に対して鋳片のオシレ−シ
ョンマ−クの深さは1/5以下と大幅に低減することが
できた。このときのモ−ルドパウダ−の消費量は両者と
もほぼ同一であり、鋳型と鋳片間の摩擦力が増大するこ
とはなかった。もちろん、ブレ−クアウトにつながるよ
うな鋳型銅板温度の異常な変動もおこらなかった。ま
た、実施例の連鋳法では、使用する交番磁界によって溶
鋼表面がジュ−ル加熱され、モ−ルドパウダ−の溶融が
促進され、いわゆる「ノロかみ」と称されるモ−ルドパ
ウダ−が鋳片にトラップされる欠陥も殆ど発生しなかっ
た。次いで、図3の装置によって溶融アルミニウムの連
鋳操業を実施したが溶鋼の場合とほぼ同様の好結果をえ
ることができた。
Next, as a comparative example, continuous casting of molten steel was carried out under the same casting conditions except that the alternating magnetic field was not applied. Next, the depths of the oscillation marks of the cast pieces of the example and the comparative example were measured. The measurement results are shown in FIG. FIG.
As is clear from FIG.
The average depth of the slab is about 40 μm, and the depth of the slab oscillation mark can be greatly reduced to 1/5 or less of about 200 μm (average) of the comparative example. Was. At this time, the consumption of the mold powder was almost the same in both cases, and the frictional force between the mold and the slab did not increase. Of course, there was no abnormal fluctuation of the temperature of the mold copper plate which would lead to breakout. In the continuous casting method of the embodiment, the surface of the molten steel is heated by Joule by the alternating magnetic field to be used, so that the melting of the mold powder is promoted. Almost no defects were trapped. Next, continuous casting operation of molten aluminum was carried out by the apparatus shown in FIG. 3, but almost the same good results as in the case of molten steel could be obtained.

【0015】[0015]

【発明の効果】本発明にかかる連鋳法によって、鋳片の
オシレ−ションマ−クの原因である初期凝固シェルの鋳
型振動による変形を抑制することが可能となったため、
鋳片のオシレ−ションマ−クの深さが大幅に低減され、
鋳片の表面性状が顕著に向上した。
According to the continuous casting method of the present invention, it is possible to suppress the deformation of the initially solidified shell, which is the cause of the oscillating mark of the slab, due to the vibration of the mold.
The oscillating mark depth of the slab is greatly reduced,
The surface properties of the slab were significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例における溶鋼の連鋳に使用した鋳型とコ
イルの配置および初期凝固シェルの位置関係を示す平断
面図(a)および側断面図(b)である。
FIG. 1 is a plan sectional view (a) and a side sectional view (b) showing an arrangement of a mold and a coil used for continuous casting of molten steel and a positional relationship of an initially solidified shell in an example.

【図2】図1の装置での鋳造速度、鋳型速度(a)およ
び磁界強度(b)の経時的変化を説明するグラフであ
る。
FIG. 2 is a graph illustrating a change over time of a casting speed, a mold speed (a), and a magnetic field intensity (b) in the apparatus of FIG.

【図3】実施例における溶融アルミニウムの連鋳に使用
した鋳型とコイルの配置および初期凝固シェルの位置関
係を示す平断面図(a)および側断面図(b)でであ
る。
FIG. 3 is a plan sectional view (a) and a side sectional view (b) showing an arrangement of a mold and a coil used for continuous casting of molten aluminum and a positional relationship of an initially solidified shell in an example.

【図4】図3の装置での鋳造速度、鋳型速度(a)およ
び磁界強度(b)の経時的変化を説明するグラフであ
る。
FIG. 4 is a graph for explaining changes over time in casting speed, mold speed (a) and magnetic field strength (b) in the apparatus of FIG.

【図5】実施例と比較例とのオシレ−ションマ−クの深
さ(測定値)を示す特性図である。
FIG. 5 is a characteristic diagram showing the depth (measured value) of an oscillation mark of an example and a comparative example.

【図6】鋳造速度、鋳型速度(a)および初期凝固シェ
ルの形状(b)の経時的変化を説明するグラフである。
FIG. 6 is a graph illustrating a change over time in a casting speed, a mold speed (a), and an initial solidification shell shape (b).

【符号の説明】[Explanation of symbols]

1 鋳型の長辺 2 鋳型の短辺 3 磁界発生用コイル 3′ 磁界発生用コイルの導線 4 溶湯供給用浸積ノズル 5 溶融モ−ルドパウダ− 6 溶融アルミニウム 7 鋳型 8 初期凝固シェル 9 溶鋼 DESCRIPTION OF SYMBOLS 1 Long side of a mold 2 Short side of a mold 3 Coil for generating a magnetic field 3 'Conductor wire of a coil for generating a magnetic field 4 Immersion nozzle for supplying molten metal 5 Molten mold powder 6 Molten aluminum 7 Mold 8 Initial solidification shell 9 Molten steel

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−206550(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22D 11/16 105 B22D 11/053 B22D 11/11 B22D 11/115 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-206550 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B22D 11/16 105 B22D 11/053 B22D 11 / 11 B22D 11/115

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 溶融金属を連続鋳造方法により鋳片とす
る連続鋳造鋳片の製造方法において、溶融金属の鋳型内
の初期凝固位置に外部から交番磁界を印加するに当り、
前記鋳型の振動によるネガティブストリップ期とポジテ
ィブストリップ期に発生する初期凝固シェルの変形を抑
制するように、前記鋳型の振動のネガティブストリップ
期とポジティブストリップ期に同期させて前記交番磁界
の強度を変化させることを特徴とする表面性状の優れた
連続鋳造鋳片の製造方法。
In a method of manufacturing a continuous cast slab in which a molten metal is cast by a continuous casting method, when an alternating magnetic field is applied from the outside to an initial solidification position of a molten metal in a mold,
In order to suppress the deformation of the initial solidified shell generated in the negative strip period and the positive strip period due to the vibration of the mold, the negative strip of the vibration of the mold
A method for producing a continuous cast slab having excellent surface properties, wherein the intensity of the alternating magnetic field is changed in synchronization with a positive strip period and a positive strip period .
JP30671891A 1991-10-25 1991-10-25 Manufacturing method of continuous cast slab with excellent surface properties Expired - Fee Related JP3205018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30671891A JP3205018B2 (en) 1991-10-25 1991-10-25 Manufacturing method of continuous cast slab with excellent surface properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30671891A JP3205018B2 (en) 1991-10-25 1991-10-25 Manufacturing method of continuous cast slab with excellent surface properties

Publications (2)

Publication Number Publication Date
JPH05115952A JPH05115952A (en) 1993-05-14
JP3205018B2 true JP3205018B2 (en) 2001-09-04

Family

ID=17960465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30671891A Expired - Fee Related JP3205018B2 (en) 1991-10-25 1991-10-25 Manufacturing method of continuous cast slab with excellent surface properties

Country Status (1)

Country Link
JP (1) JP3205018B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100365085B1 (en) * 1997-12-26 2003-02-07 주식회사 만도 Aluminum pouring control device for gravity casting
KR102005481B1 (en) * 2016-08-26 2019-07-30 한국중부발전(주) Combustion chamber inner lining component of gas turbine and methode thereof
CN110270669B (en) * 2019-07-31 2021-10-26 东北大学 Method for deformation of meniscus of slab crystallizer under condition of magnetic pressure constraint control of high pulling speed

Also Published As

Publication number Publication date
JPH05115952A (en) 1993-05-14

Similar Documents

Publication Publication Date Title
JP3205018B2 (en) Manufacturing method of continuous cast slab with excellent surface properties
JP2008525197A (en) Magnesium billet or slab continuous casting apparatus using electromagnetic field and manufacturing method
JP3191594B2 (en) Continuous casting method using electromagnetic force
JP2611559B2 (en) Metal continuous casting apparatus and casting method
JP3310884B2 (en) Electromagnetic casting of steel
ITMI20000096A1 (en) PROCEDURE AND DEVICE TO IMPROVE THE QUALITY OF METALLIC BODIES CAST CONTINUOUSLY
JP3491120B2 (en) Method and apparatus for removing nonmetallic inclusions in slab in continuous casting
KR100721874B1 (en) Apparatus for continuous casting of Magnesium billet or slab using low frequency electromagnetic field
JP2885824B2 (en) Metal continuous casting method
JP3094673B2 (en) Continuous casting method and apparatus
JP3127762B2 (en) Continuous casting method of molten metal
JP3139317B2 (en) Continuous casting mold and continuous casting method using electromagnetic force
JP3525717B2 (en) Continuous casting method of molten metal using electromagnetic force
JP3158936B2 (en) High frequency coil for continuous casting and continuous casting method
JPH08206799A (en) Continuous casting method of metal and casting equipment
JP3216312B2 (en) Metal continuous casting equipment
JP3055413B2 (en) Method and apparatus for continuous casting of molten metal
JP2003211259A (en) Method for continuously casting steel
JP3595529B2 (en) Continuous casting machine for molten metal
JP3083234B2 (en) Continuous casting method of molten metal
JP3033318B2 (en) Method of supplying lubricant in continuous casting apparatus
JPH08155611A (en) Method for continuously casting molten metal
JP2002239701A (en) Continuous casting method
JPH04319056A (en) Method for continuously casting steel cast slab
JP2003053491A (en) Method for changing width of cast slab in continuous casting and mold for continuous casting

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080629

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090629

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees