JP3310884B2 - Electromagnetic casting of steel - Google Patents

Electromagnetic casting of steel

Info

Publication number
JP3310884B2
JP3310884B2 JP25961996A JP25961996A JP3310884B2 JP 3310884 B2 JP3310884 B2 JP 3310884B2 JP 25961996 A JP25961996 A JP 25961996A JP 25961996 A JP25961996 A JP 25961996A JP 3310884 B2 JP3310884 B2 JP 3310884B2
Authority
JP
Japan
Prior art keywords
frequency
mold
inclusions
slab
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25961996A
Other languages
Japanese (ja)
Other versions
JPH1099949A (en
Inventor
研三 綾田
等 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP25961996A priority Critical patent/JP3310884B2/en
Publication of JPH1099949A publication Critical patent/JPH1099949A/en
Application granted granted Critical
Publication of JP3310884B2 publication Critical patent/JP3310884B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電磁力を作用させ
ながら鋼の連続鋳造を行う電磁界鋳造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic field casting method for continuously casting steel while applying an electromagnetic force.

【0002】[0002]

【従来の技術】鋼の連続鋳造法においては、連続鋳片の
初期凝固部に高周波磁界の電磁力を作用させ、電磁力の
ピンチ力とその加熱効果によって鋳片の表面性状を改善
する試みがなされている。この電磁界鋳造に用いる鋳型
の一例として、特開平4-178247号で開示された電磁界鋳
型の断面説明図を図1に示した。水冷鋳型1の鋳型壁3
には所定間隔の縦スリット4が入れられており、鋳型の
外周の高周波コイル2によって印加される高周波磁場が
鋳片に浸透しやすい様になっている。
2. Description of the Related Art In a continuous casting method of steel, an attempt is made to improve the surface properties of a slab by applying an electromagnetic force of a high-frequency magnetic field to an initially solidified portion of the continuous slab, and by a pinch force of the electromagnetic force and its heating effect. It has been done. As an example of a mold used for this electromagnetic field casting, FIG. 1 shows a cross-sectional explanatory view of an electromagnetic field mold disclosed in Japanese Patent Application Laid-Open No. 4-178247. Mold wall 3 of water-cooled mold 1
Are provided with vertical slits 4 at predetermined intervals, so that the high-frequency magnetic field applied by the high-frequency coil 2 on the outer periphery of the mold easily penetrates the slab.

【0003】本願出願人は上記電磁界鋳型を用いた鋼の
電磁界鋳造方法について研究を重ねており、特開平2-14
7150号では鋳型と凝固殻の間にスラグ化したパウダーが
入り易く高速鋳造が可能な電磁界鋳造方法を、また特開
平4-178247号では所定間隔で縦方向スリットを鋳型壁に
設け電磁コイルに5〜20kHzの周波数を付与するこ
とによって潤滑剤巻き込みによる介在物欠陥を防止する
電磁界鋳造方法を既に開示している。
[0003] The applicant of the present application has been studying a method of electromagnetically casting steel using the above-mentioned electromagnetic field mold.
No. 7150 discloses an electromagnetic field casting method capable of high-speed casting, in which powder slag is easily inserted between a mold and a solidified shell. An electromagnetic field casting method for preventing inclusion defects due to lubricant entrainment by applying a frequency of 5 to 20 kHz has already been disclosed.

【0004】この様な電磁界鋳造法の利点は、以下の
〜等が挙げられる。 電磁界により発生するピンチ力が初期凝固殻に作用し
て溶鋼静圧を緩和する方向に働くので、鋳型振動に起因
する悪影響を排除でき、オシレーションマークと呼ばれ
る表面凸凹が形成されにくくなって鋳片の表面品質が良
好となる。 電磁界によるピンチ力が、鋳型と初期凝固殻の間に供
給されるパウダー状潤滑剤の流入路を拡大するので、鋳
型と初期凝固殻の摩擦力が減少して鋳片表面品質が良好
となる。 電磁力によって湯面が盛り上がり、さらに電磁力の加
熱効果で初期凝固は湯面下から始まるため、外部原因に
よる湯面変動の影響が初期凝固殻に及びにくくなり鋳片
表面品質が良好となる。 上記加熱効果とピンチ力によって、初期凝固殻が湯面
まで張り出すことがないので、ピンホールや介在物が張
り出した凝固殻の下に捕捉されることを防止できる。
[0004] The advantages of such an electromagnetic field casting method include the following. The pinch force generated by the electromagnetic field acts on the initial solidification shell and acts in the direction of reducing the static pressure of the molten steel, which can eliminate the adverse effects caused by mold vibration and reduce the possibility of forming irregularities called oscillation marks on the casting surface. The surface quality of the piece is good. The pinch force due to the electromagnetic field expands the inflow path of the powdery lubricant supplied between the mold and the initial solidified shell, so that the frictional force between the mold and the initial solidified shell is reduced and the slab surface quality is improved. . Since the molten metal surface rises due to the electromagnetic force, and the initial solidification starts below the surface of the molten metal due to the heating effect of the electromagnetic force, the influence of the fluctuation of the molten metal surface due to external causes is less likely to reach the initial solidified shell, and the surface quality of the cast slab is improved. Due to the heating effect and the pinch force, the initial solidified shell does not protrude to the surface of the molten metal, so that pinholes and inclusions can be prevented from being trapped under the protruding solidified shell.

【0005】但し、従来の方法により鋳造された鋳片に
は、印加した電磁力の作用により表層部に介在物が集積
しており、圧延後の表層部に欠陥がみられ、改善の余地
を残していた。即ち、表層部に集積する介在物は、圧延
時に疵等の発生原因となることから、表層部に介在物が
集積しないような電磁界鋳造方法の開発が要望されてい
た。
However, in the slab cast by the conventional method, inclusions accumulate in the surface layer due to the action of the applied electromagnetic force, and defects are observed in the surface layer after rolling, so that there is room for improvement. Had left. That is, since inclusions that accumulate in the surface layer cause flaws and the like during rolling, development of an electromagnetic field casting method that does not accumulate inclusions in the surface layer has been demanded.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記事情に着
目してなされたものであって、介在物の集積に起因する
表層部の欠陥がなく、良好な表面性状を有する鋳片を製
造する電磁界鋳造方法を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and is intended to produce a slab having no surface layer defects due to the accumulation of inclusions and having good surface properties. It is intended to provide an electromagnetic field casting method.

【0007】[0007]

【課題を解決するための手段】上記課題を解決した本発
明とは、鋳型壁に所定間隔の縦方向スリットを形成しか
つその外周に電磁コイルを設置して初期凝固殻に電磁力
を作用させる電磁界鋳造方法において、鋳片寸法の短辺
の長さをL(cm),磁力線の浸透深さをδ(cm),
磁気透磁率をμ,溶湯の電気伝導度をσ(Ω-1/cm)
とするとき、周波数f(Hz)が下式(1)及び(2)
を満足する値で、かつ250kHz以下に制御して鋳造
することを要旨とするものである。
The present invention solves the above-mentioned problems. In the present invention, a longitudinal slit is formed at a predetermined interval in a mold wall, and an electromagnetic coil is installed on the outer periphery thereof to apply an electromagnetic force to an initially solidified shell. In the electromagnetic field casting method, the length of the short side of the slab dimension is L (cm), the penetration depth of the magnetic force lines is δ (cm),
The magnetic permeability is μ and the electric conductivity of the molten metal is σ (Ω -1 / cm)
When the frequency f (Hz) is expressed by the following equations (1) and (2)
And casting at a controlled frequency of 250 kHz or less.

【0008】[0008]

【数2】 (Equation 2)

【0009】[0009]

【発明の実施の形態】従来の電磁界鋳造方法により介在
物が鋳片の表層部に集積する理由は、以下の様に考えら
れる。即ち、高周波磁界は電気伝導度の高い溶鋼には作
用しやすいが、電気伝導度の低い介在物には作用しにく
いので溶鋼に働く高周波磁界のピンチ力が、介在物に対
しては見かけ上、溶鋼中から外側に向かって排出するよ
うな力として働く。このため介在物は、鋳片の表層部に
集められ圧延工程における疵の発生原因となっていたも
のである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reason why inclusions accumulate on the surface layer of a slab by the conventional electromagnetic field casting method is considered as follows. That is, the high-frequency magnetic field easily acts on molten steel having high electric conductivity, but hardly acts on inclusions having low electric conductivity, so that the pinch force of the high-frequency magnetic field acting on molten steel is apparently high for inclusions. It works as a force to discharge from the molten steel to the outside. For this reason, the inclusions are collected on the surface layer of the slab and cause flaws in the rolling process.

【0010】そこで本発明者らは、高周波磁界による電
磁力が浸透する深さを減少させることにより、電磁力の
作用を受けて集められる介在物の範囲を減少させるとい
う観点から、電磁界の印加条件の見直しを行い、本発明
に想到した。
Accordingly, the present inventors have proposed the application of an electromagnetic field from the viewpoint of reducing the depth of penetration of electromagnetic force by a high-frequency magnetic field, thereby reducing the range of inclusions collected by the action of the electromagnetic force. The conditions were reviewed, and the present invention was reached.

【0011】電磁力の溶湯中への浸透深さδは、以下の
(2)式により表されることが知られており、周波数f
(Hz)を増加することにより浸透深さδ(cm)を小
さくできることが分かる。
It is known that the penetration depth δ of the electromagnetic force into the molten metal is represented by the following equation (2), and the frequency f
It is understood that the penetration depth δ (cm) can be reduced by increasing (Hz).

【0012】[0012]

【数3】 (Equation 3)

【0013】図2は、μが真空の磁気透磁率の1であ
り、σが溶鋼の電気伝導度7.22×103-1/cm)の
場合における周波数fと電磁力の浸透深さδの関係を示
すグラフである。周波数の増加と共に、浸透深さが浅く
なり、特に約20kHz以下の範囲でその影響は非常に
大きく、50kHzを超えると効果は次第に飽和してい
るが、周波数が高い程浸透深さは浅くなることが分か
る。
FIG. 2 shows the frequency f and the penetration depth of the electromagnetic force when μ is 1 of the magnetic permeability in vacuum and σ is 7.22 × 10 3-1 / cm) of the molten steel. 6 is a graph showing the relationship of the length δ. As the frequency increases, the penetration depth becomes shallower, especially in the range of about 20 kHz or less, the effect is very large, and when it exceeds 50 kHz, the effect gradually becomes saturated, but the penetration depth becomes shallower as the frequency becomes higher. I understand.

【0014】従って、表層部における介在物の集積を防
ぐという観点からは、できるだけ周波数を高くして電磁
力の浸透深さを浅くし、電磁力により表層に移動する介
在物量を少なくすることが望ましい。
Therefore, from the viewpoint of preventing the accumulation of inclusions in the surface layer, it is desirable to increase the frequency as much as possible to reduce the penetration depth of the electromagnetic force and to reduce the amount of inclusions moving to the surface layer by the electromagnetic force. .

【0015】但し、周波数が増加するにつれ溶鋼と接す
る側の鋳型壁表面に高周波加熱による熱が集中し、鋳型
温度が局部的に上昇する。したがって、周波数の増加に
は上限があり、鋳型の耐熱温度により決まる。例えば、
銅または銅合金製の鋳型の場合には耐熱温度は350℃
程度であり、周波数の上限は250kHzにすることが
必要であり、200kHz以下であると望ましい。
However, as the frequency increases, heat due to high-frequency heating concentrates on the mold wall surface on the side in contact with the molten steel, and the mold temperature rises locally. Therefore, there is an upper limit to the frequency increase, which is determined by the heat-resistant temperature of the mold. For example,
In case of copper or copper alloy mold, heat resistance temperature is 350 ℃
And the upper limit of the frequency needs to be 250 kHz, and preferably 200 kHz or less.

【0016】ところで、鋳片サイズの0.7%程度の厚
さに相当する表層部は、鋳片が冷却される過程で酸化さ
れてスケールとして脱落することが知られている。従っ
て、この厚さの範囲であれば、介在物が集積しても問題
ない。そこで、介在物の集積を防止する上では、鋳片サ
イズに応じて、許容する浸透深さの下限を設定し、その
下限を超える範囲で周波数をできるだけ低めに設定すれ
ば、鋳型に過度の熱負荷をかけることなく、しかも周波
数増加に伴う電源容量の増加も抑えることができる。そ
の為には、周波数の下限は、以下の(1)及び(2)式
を満足する様に設定すれば良い。尚、下記(1)式は、
後述する実施例の結果等から求めたものであり、鋳片サ
イズが大きくなるに従い、表層部における介在物の集積
量を増やすことなく電磁力の浸透深さを深くできること
を示す。
Incidentally, it is known that the surface layer portion corresponding to a thickness of about 0.7% of the slab size is oxidized in the process of cooling the slab and falls off as scale. Therefore, if the thickness is within the range, there is no problem even if the inclusions are accumulated. Therefore, in order to prevent the accumulation of inclusions, if the lower limit of the permeation depth is set according to the size of the slab and the frequency is set as low as possible in a range exceeding the lower limit, excessive heat is applied to the mold. It is possible to suppress an increase in power supply capacity due to an increase in frequency without applying a load. For this purpose, the lower limit of the frequency may be set so as to satisfy the following equations (1) and (2). In addition, the following equation (1):
It was obtained from the results of the examples described below and the like, and shows that the penetration depth of the electromagnetic force can be increased as the cast slab size increases without increasing the amount of inclusions included in the surface layer.

【0017】[0017]

【数4】 (Equation 4)

【0018】以下実施例によって本発明をさらに詳述す
るが、下記実施例は本発明を制限するものではなく、前
・後記の趣旨を逸脱しない範囲で変更実施することは全
て本発明の技術範囲に包含される。
Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples do not limit the present invention, and all modifications and alterations that do not depart from the spirit of the present invention will be described below. Is included.

【0019】[0019]

【実施例】実施例1 150mm角断面のビレット連鋳機を用いて、以下の鋳
造条件で周波数を変化させて電磁界鋳造を行い、冷却過
程でスケールが脱落した後の鋳片表層部における介在物
の個数を測定した。鋳造に用いた炭素鋼の成分は表1に
示す。
EXAMPLE 1 Using a billet continuous casting machine having a cross section of 150 mm square, electromagnetic field casting was performed with changing the frequency under the following casting conditions, and the interposition at the surface layer of the slab after the scale dropped in the cooling process. The number of objects was measured. Table 1 shows the components of the carbon steel used for casting.

【0020】[0020]

【表1】 [Table 1]

【0021】鋳造速度は0.7〜3.0m/minで鋳
造を行い、鋳型内の磁束密度は、最も磁束密度が高くな
るコイル中央部における空芯での磁束密度で、鋳造速度
0.7m/minの場合に300ガウス、鋳造速度3.
0m/minの場合で380ガウスとし、周波数は1〜
300kHzの範囲で変化させた。周波数と、鋳片表層
部(表面から0〜5mm深さ)における介在物の個数
と、鋳型温度との関係を調べた結果を図3に示す。
Casting is performed at a casting speed of 0.7 to 3.0 m / min. The magnetic flux density in the mold is the air-core magnetic flux density at the center of the coil where the magnetic flux density is highest, and the casting speed is 0.7 m / min. / Min, 300 gauss, casting speed 3.
380 gauss at 0 m / min, frequency is 1 to
It was changed in the range of 300 kHz. FIG. 3 shows the result of examining the relationship between the frequency, the number of inclusions in the slab surface layer (0 to 5 mm depth from the surface), and the mold temperature.

【0022】鋳型の温度が、銅及び銅合金の鋳型の耐熱
温度350℃を超える周波数は250kHzであり、ま
た介在物の数は、およそ80kHzまでは急激に減少
し、80kHz以上ではほぼ0であるか、許容できる量
となっている。従って、鋳片の厚さが150mmの場合
は、80〜250kHzの周波数域を採用すべきことが
分かる。
The frequency at which the temperature of the mold exceeds the heat-resistant temperature of copper and copper alloy molds of 350 ° C. is 250 kHz, and the number of inclusions decreases rapidly up to about 80 kHz, and becomes almost zero above 80 kHz. It is an acceptable amount. Therefore, when the thickness of the slab is 150 mm, it is understood that the frequency range of 80 to 250 kHz should be adopted.

【0023】実施例2 次に300mm角の鋳型を用いて上記表1に示す鋼種に
より同様の鋳造テストを行った。鋳造速度は0.7m/
minであり、鋳型内の磁束密度は、最も磁束密度が高
くなるコイル中央部における空芯での磁束密度で300
ガウスであった。結果は図4に示す。
Example 2 Next, a similar casting test was carried out using the steel types shown in Table 1 above using a 300 mm square mold. Casting speed 0.7m /
min, and the magnetic flux density in the mold is the air-core magnetic flux density at the center of the coil where the magnetic flux density is highest, which is 300
Gauss was. The results are shown in FIG.

【0024】鋳型の温度が、銅及び銅合金の鋳型の耐熱
温度350℃を超える周波数は250kHzであり、ま
た介在物の数は、およそ20kHzまでは急激に減少
し、20kHz以上ではほぼ0か許容できる量となって
いる。従って、鋳片の厚さが300mmの場合は、20
〜250kHzの周波数を採用すべきことが分かる。
The frequency at which the mold temperature exceeds the heat-resistant temperature of 350 ° C. of the copper and copper alloy mold is 250 kHz, and the number of inclusions decreases rapidly up to about 20 kHz, and becomes almost zero or an allowable amount above 20 kHz. It has become. Therefore, when the thickness of the slab is 300 mm, 20
It can be seen that a frequency of ~ 250 kHz should be employed.

【0025】これらの結果から介在物の集積を防止でき
る周波数域の下限を求め、その周波数fを前記式(2)
に代入して浸透深さδを算出したところ、この浸透深さ
δと鋳片サイズLの間には正の相関関係があることが分
かった。前記式(1)は、この浸透深さδと鋳片サイズ
Lの関係を示す条件式であり、δ/Lを1.4×10 -2
以下とする周波数を用いて電磁界鋳造を行うことによ
り、介在物の集積を防止することができるのである。
From these results, accumulation of inclusions can be prevented.
The lower limit of the frequency range is obtained, and the frequency f is calculated by the above equation (2).
To calculate the penetration depth δ, this penetration depth
It can be seen that there is a positive correlation between δ and the slab size L.
won. The equation (1) indicates that the penetration depth δ and the slab size
L is a conditional expression showing the relationship of L, where δ / L is 1.4 × 10 -2
By performing electromagnetic field casting using the following frequency
Therefore, accumulation of inclusions can be prevented.

【0026】[0026]

【発明の効果】本発明は以上の様に構成されているの
で、介在物の集積に起因する表層部の欠陥がなく、良好
な表面性状を有する鋳片を製造する電磁界鋳造方法を提
供できることとなった。
As described above, the present invention can provide an electromagnetic field casting method for producing a slab having good surface properties without defects in the surface layer caused by accumulation of inclusions. It became.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電磁界鋳造における電磁界鋳型の断面説明図で
ある。
FIG. 1 is an explanatory sectional view of an electromagnetic field mold in electromagnetic field casting.

【図2】電磁界鋳造における周波数と浸透深さの関係を
示すグラフである。
FIG. 2 is a graph showing the relationship between frequency and penetration depth in electromagnetic field casting.

【図3】150mm角鋳片の表層部における介在物個数
と鋳型温度に及ぼす周波数の影響を示すグラフである。
FIG. 3 is a graph showing the effect of frequency on the number of inclusions and the mold temperature in the surface layer of a 150 mm square cast slab.

【図4】300mm角鋳片の表層部における介在物個数
と鋳型温度に及ぼす周波数の影響を示すグラフである。
FIG. 4 is a graph showing the effect of frequency on the number of inclusions and mold temperature in the surface layer of a 300 mm square cast slab.

【符号の説明】[Explanation of symbols]

1 水冷鋳型 2 電磁コイル 3 鋳型壁 4 縦方向スリット 5 浸漬ノズル Reference Signs List 1 water-cooled mold 2 electromagnetic coil 3 mold wall 4 longitudinal slit 5 immersion nozzle

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−132189(JP,A) 特開 平8−90165(JP,A) 特開 平7−1093(JP,A) 特開 平6−246405(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22D 11/04 311 B22D 11/11 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-8-132189 (JP, A) JP-A 8-90165 (JP, A) JP-A-7-1093 (JP, A) JP-A-6-106 246405 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) B22D 11/04 311 B22D 11/11

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鋳型壁に所定間隔の縦方向スリットを形
成し、かつその外周に電磁コイルを設置して初期凝固殻
に電磁力を作用させる電磁界鋳造方法において、 鋳片寸法の短辺の長さをL(cm),磁力線の浸透深さ
をδ(cm),磁気透磁率をμ,溶湯の電気伝導度をσ
(Ω-1/cm)とするとき、 周波数f(Hz)が下式(1)及び(2)を満足する値
で、かつ250kHz以下に制御して鋳造することを特
徴とする鋼の電磁界鋳造方法。 【数1】
1. An electromagnetic field casting method in which a longitudinal slit at a predetermined interval is formed in a mold wall and an electromagnetic coil is installed on an outer periphery thereof to apply an electromagnetic force to an initial solidified shell. Length is L (cm), penetration depth of magnetic field lines is δ (cm), magnetic permeability is μ, and electric conductivity of molten metal is σ
−1 / cm), the frequency f (Hz) is a value that satisfies the following formulas (1) and (2), and is controlled to 250 kHz or less. Casting method. (Equation 1)
JP25961996A 1996-09-30 1996-09-30 Electromagnetic casting of steel Expired - Fee Related JP3310884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25961996A JP3310884B2 (en) 1996-09-30 1996-09-30 Electromagnetic casting of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25961996A JP3310884B2 (en) 1996-09-30 1996-09-30 Electromagnetic casting of steel

Publications (2)

Publication Number Publication Date
JPH1099949A JPH1099949A (en) 1998-04-21
JP3310884B2 true JP3310884B2 (en) 2002-08-05

Family

ID=17336601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25961996A Expired - Fee Related JP3310884B2 (en) 1996-09-30 1996-09-30 Electromagnetic casting of steel

Country Status (1)

Country Link
JP (1) JP3310884B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2801523B1 (en) * 1999-11-25 2001-12-28 Usinor CONTINUOUS CASTING PROCESS FOR METALS OF THE TYPE USING ELECTROMAGNETIC FIELDS, AND LINGOTIERE AND CASTING PLANT FOR IMPLEMENTING SAME
JP5006127B2 (en) * 2007-07-13 2012-08-22 古河電気工業株式会社 Continuous casting apparatus, ingot manufacturing method and ingot
TW202003134A (en) * 2018-06-07 2020-01-16 日商日本製鐵股份有限公司 Continuous casting facility and continuous casting method used for thin slab casting

Also Published As

Publication number Publication date
JPH1099949A (en) 1998-04-21

Similar Documents

Publication Publication Date Title
JP3310884B2 (en) Electromagnetic casting of steel
JP3022211B2 (en) Mold for continuous casting of round billet slab and continuous casting method using the mold
JP3205018B2 (en) Manufacturing method of continuous cast slab with excellent surface properties
JP2555768B2 (en) Continuous metal casting apparatus and casting method
JPH07303951A (en) Secondary cooling method for continuous casting and the device thereof
JP3289118B2 (en) Shrinkage hole reduction device in continuous casting
JPS5931415B2 (en) Hollow tube manufacturing method and device
JP3116742B2 (en) Continuous casting apparatus and continuous casting method
JP3161109B2 (en) Continuous casting equipment
JP3159615B2 (en) Continuous casting machine for molten metal
JP3284647B2 (en) Steel continuous casting method
JP2991073B2 (en) Wide thin slab casting method
JP3525717B2 (en) Continuous casting method of molten metal using electromagnetic force
JP3329305B2 (en) Continuous casting method of round billet slab
JP3216312B2 (en) Metal continuous casting equipment
JP3595529B2 (en) Continuous casting machine for molten metal
JP3091066B2 (en) Horizontal continuous casting method for metal
JPH0515949A (en) Apparatus and method for continuously casting metal
JPH06218497A (en) Mold for continuous casting
JP3228242B2 (en) Continuous casting equipment
JP3342774B2 (en) Mold powder for continuous casting
JP2969305B2 (en) Continuous casting method
JP3388933B2 (en) Continuous casting method of titanium-added ultra low carbon steel
JPH11216545A (en) Electromagnetic force applied molten metal continuous casting method
JP3362692B2 (en) Steel continuous casting method and mold

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020423

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140524

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees