JP3127762B2 - Continuous casting method of molten metal - Google Patents
Continuous casting method of molten metalInfo
- Publication number
- JP3127762B2 JP3127762B2 JP07035046A JP3504695A JP3127762B2 JP 3127762 B2 JP3127762 B2 JP 3127762B2 JP 07035046 A JP07035046 A JP 07035046A JP 3504695 A JP3504695 A JP 3504695A JP 3127762 B2 JP3127762 B2 JP 3127762B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- frequency coil
- slab
- short side
- continuous casting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Continuous Casting (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は溶融金属の連続鋳造にあ
たり、特に連続鋳造中の鋳片幅の幅替時以降の生産性の
向上及び鋳片表面性状の向上する溶融金属の連続鋳造方
法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to continuous casting of molten metal, and more particularly to a continuous casting method of molten metal in which the productivity and the surface properties of the slab are improved after the slab width is changed during continuous casting. Things.
【0002】[0002]
【従来の技術】溶鋼の連続鋳造法で製造される鋳片の表
面には、オシレーションマークと呼ばれる鋳型の振動に
起因する表面欠陥が発生する。このオシレーションマー
クは、鋳片の横割れの原因となったり、オシレーション
マークの谷部に偏析層ができ、これが鋼板製品の表面に
残って表面欠陥となる場合がある。このためオシレーシ
ョンマークの深さはできるだけ低減することが要求され
ている。2. Description of the Related Art On a surface of a slab produced by a continuous casting method of molten steel, a surface defect called an oscillation mark is generated due to vibration of a mold. The oscillation mark may cause lateral cracks in the cast slab, or a segregation layer may be formed at a valley of the oscillation mark, and the segregation layer may remain on the surface of the steel sheet product and become a surface defect. For this reason, it is required that the depth of the oscillation mark be reduced as much as possible.
【0003】従来、オシレーションマークの深さの低減
方法としては、鋳型の振動数を増加したり、振動波形の
変更(非サイン波形の使用)等の方法がある。Conventionally, as a method of reducing the depth of the oscillation mark, there are methods such as increasing the frequency of the mold and changing the vibration waveform (using a non-sine waveform).
【0004】しかしながらこれらはいずれも、鋳型振動
の下向き速度が鋳片の移動速度(鋳造速度)より大きく
なる時間、いわゆるネガティブストリップ期の時間を短
縮する方法である。この方法においても、オシレーショ
ンマークの深さの低減には限界があった。However, each of these methods is a method of shortening the time during which the downward speed of the mold vibration becomes higher than the moving speed of the slab (casting speed), that is, the time during the negative strip period. Also in this method, there is a limit in reducing the depth of the oscillation mark.
【0005】又、連続鋳造ではオシレーションマークを
減少するために、鋳型と鋳片の潤滑性が向上するように
モールドパウダーが使用されているが、連続鋳造の鋳型
内の溶鋼挙動の特性上、鋳型短辺と鋳型長辺とのコーナ
ー部は二方向から鋳型により冷却されるためモールドパ
ウダーの溶融層厚みが薄くなること、又、タンディッシ
ュの浸漬ノズルからの溶湯吐出流が鋳型短辺に衝突して
上昇流となり鋳型短辺部は常に裸湯面となりやすく、モ
ールドパウダー厚みが薄くなる。そのため、鋳片の表面
性状は鋳片短辺部、特にコーナー部が鋳片長辺部に比較
して悪い。[0005] In continuous casting, mold powder is used to reduce the oscillation mark so as to improve the lubricity of the mold and the slab. However, due to the characteristics of molten steel behavior in the mold of continuous casting, The corner between the short side of the mold and the long side of the mold is cooled by the mold from two directions, so that the thickness of the molten layer of the mold powder is reduced, and the molten metal discharge flow from the tundish immersion nozzle collides with the short side of the mold As a result, the mold becomes short and the short side of the mold tends to have a bare metal surface, and the thickness of the mold powder is reduced. For this reason, the surface properties of the slab are inferior at the short side of the slab, particularly at the corner, as compared with the long side of the slab.
【0006】これらの問題点を解決する方法として、特
開平5−115952号公報に図3に示すような、鋳型
1の内側に高周波コイル3を設置して電磁力を溶融金属
に印加する方法が提案されている。この方法は、鋳型内
メニスカス部に高周波磁界を印加し、凝固シェル部に磁
気圧力及び誘導電流によるジュール熱を発生させる。そ
して、この熱により凝固シェルの凝固遅れを発生させオ
シレーションマークの深さを浅くさせて鋳片の表面性状
を向上させ、更に、磁気圧力により凝固シェル先端を曲
げ、鋳型と凝固シェルとの間のモールドパウダーの流入
する間隔を広めてモールドパウダーの消費量を増大さ
せ、モールドパウダーによる潤滑を向上させて凝固シェ
ルに加わる鋳造方向の引張応力を軽減する方法である。As a method for solving these problems, Japanese Patent Application Laid-Open No. H5-115952 discloses a method in which a high-frequency coil 3 is installed inside a mold 1 and an electromagnetic force is applied to a molten metal as shown in FIG. Proposed. In this method, a high-frequency magnetic field is applied to a meniscus portion in a mold, and Joule heat is generated in a solidified shell portion by a magnetic pressure and an induced current. The heat causes a solidification delay of the solidified shell, reduces the depth of the oscillation mark to improve the surface properties of the slab, and furthermore, bends the solidified shell tip by magnetic pressure to cause a gap between the mold and the solidified shell. This method increases the consumption of the mold powder by increasing the space between the mold powders flowing in, increases the lubrication by the mold powder, and reduces the tensile stress applied to the solidified shell in the casting direction.
【0007】この方法では1つの高周波コイル3で鋳片
幅全域に電磁力を印加する。そのため鋳片幅と高周波コ
イル長さとは略同一の長さを有し、且つ高周波コイルは
強い電磁力を湯面に印加するために湯面近くに設置され
ている。このようにして表面欠陥の少ない鋳片を製造す
る方法である。In this method, one high-frequency coil 3 applies an electromagnetic force to the entire slab width. Therefore, the slab width and the length of the high-frequency coil are substantially the same, and the high-frequency coil is installed near the surface of the molten metal in order to apply a strong electromagnetic force to the surface of the molten metal. This is a method for producing a cast piece with few surface defects in this way.
【0008】[0008]
【発明が解決しようとする課題】最近、連続鋳造機の生
産性を向上させるために、溶融金属の鋳造中に鋳型短辺
を鋳型長辺に沿って平行移動させること、所謂鋳造中幅
替により鋳片幅の異なるものを、連続鋳造する方法が行
われている。Recently, in order to improve the productivity of a continuous casting machine, the short side of the mold is translated along the long side of the mold during the casting of molten metal. A method of continuously casting slabs having different slab widths has been used.
【0009】しかしながら、特開平5−115952号
公報に公開されている技術を鋳造中幅替に適用すると、
鋳片幅を狭くする際に鋳型短辺と高周波コイルとが物理
的に干渉する。[0009] However, when the technique disclosed in Japanese Patent Application Laid-Open No. H5-115952 is applied to width change during casting,
When narrowing the slab width, the short side of the mold and the high-frequency coil physically interfere with each other.
【0010】その対策として鋳型短辺の幅を変更する時
に :溶融金属の連続鋳造作業を停止して、溶融金属上に
別の高周波コイルを設置する :高周波コイルを取り除き、溶融金属の連続鋳造作業
を継続する 方法があるが、の場合は溶融金属の連続鋳造作業を中
断するので、連続鋳造機の生産性が落ちる。の場合は
高周波コイルを使用しない以降の鋳片は表面性状が悪く
なるという問題があった。[0010] As a countermeasure, when changing the width of the short side of the mold: Stop the continuous casting of the molten metal and install another high-frequency coil on the molten metal: Remove the high-frequency coil and continuously cast the molten metal However, in this case, the productivity of the continuous casting machine is reduced because the continuous casting operation of the molten metal is interrupted. In the case of (1), there was a problem that the surface properties of the cast slab after use of no high-frequency coil deteriorated.
【0011】又、鋳片幅を広くする際には鋳型短辺と高
周波コイルとは物理的に干渉しないが、そのまま高周波
磁界を印加しても鋳片短辺位置と高周波コイル位置とが
離れ、高周波磁場を印加したい短辺には高周波磁場が印
加されず、鋳片短辺の表面性状の改善が得られないとい
う問題があった。When the slab width is increased, the short side of the mold and the high-frequency coil do not physically interfere with each other. There is a problem that the high-frequency magnetic field is not applied to the short side where the high-frequency magnetic field is to be applied, and the surface property of the short side of the slab cannot be improved.
【0012】この発明はこのような事情に鑑みてなされ
たものであって、特に連続鋳造中の鋳片幅の幅替時以降
の生産性を低下させることなく、且つ表面欠陥の少ない
鋳片を製造する溶融金属の連続鋳造方法を提供しようと
するものである。The present invention has been made in view of such circumstances, and in particular, a cast slab having a small number of surface defects without lowering the productivity after changing the slab width during continuous casting. An object of the present invention is to provide a continuous casting method of a molten metal to be manufactured.
【0013】[0013]
【課題が解決するための手段】本発明の溶融金属の連続
鋳造方法は、鋳型の内側に高周波コイルを配置しメニス
カス部に高周波磁場を印加しつつ鋳造する溶融金属の連
続鋳造方法において、両鋳型短辺側のメニスカス上に夫
々1個以上の高周波コイルを別々に配置し、鋳型短辺の
移動に高周波コイルを追随させて移動し、前記高周波コ
イルから高周波磁場をメニスカス部に印加しながら鋳造
することを特徴とするものである。The continuous casting method for molten metal according to the present invention is a continuous casting method for molten metal in which a high-frequency coil is disposed inside a mold and a high-frequency magnetic field is applied to a meniscus portion to perform casting. At least one high-frequency coil is separately arranged on the meniscus on the short side, and the high-frequency coil is moved so as to follow the movement of the short side of the mold, and casting is performed while applying a high-frequency magnetic field from the high-frequency coil to the meniscus portion. It is characterized by the following.
【0014】[0014]
【作用】鋳型両短辺側の溶融金属のメニスカス上に夫々
1個以上の高周波コイルが別々に配置され、連続鋳造時
の鋳片幅替による鋳型短辺移動の場合も、鋳型短辺の移
動に高周波コイルが追随して移動するので、鋳片短辺部
は常に高周波磁場が印加された状態で鋳造される。又、
高周波コイルが浸漬ノズルを境にして両短辺メニスカス
上に分離されて配置されているので、鋳造中幅替におい
ても浸漬ノズルと高周波コイルとが物理的に干渉しな
い。よって、自由に幅替をすることができる。[Function] At least one high-frequency coil is separately arranged on the molten metal meniscus on both short sides of the mold, and when the short side of the mold is moved by changing the slab width during continuous casting, the short side of the mold is moved. Since the high-frequency coil follows the high-frequency coil, the short side of the slab is always cast with a high-frequency magnetic field applied. or,
Since the high-frequency coil is separated and arranged on both short-side meniscuses with the immersion nozzle as a boundary, the immersion nozzle and the high-frequency coil do not physically interfere with each other even during width change during casting. Therefore, the width can be freely changed.
【0015】[0015]
【実施例】次に本発明を図面に基づいて説明する。BRIEF DESCRIPTION OF THE DRAWINGS FIG.
【0016】図1は本発明の実施例に用いられた連続鋳
造鋳型の概要図で、(a)は平面図、(b)は(a)の
X−X断面図である。図において、1は鋳型、2は浸漬
ノズル、3は高周波コイル、4は高周波コイル支持治
具、5は溶鋼、6はモールドパウダー、7はタンディッ
シュ、8は冷却水、9は凝固シェル、10は鋳型長辺、
11は鋳型短辺、12はメニスカスである。FIG. 1 is a schematic view of a continuous casting mold used in an embodiment of the present invention, in which (a) is a plan view and (b) is a sectional view taken along line XX of (a). In the figure, 1 is a mold, 2 is an immersion nozzle, 3 is a high frequency coil, 4 is a high frequency coil support jig, 5 is molten steel, 6 is mold powder, 7 is a tundish, 8 is cooling water, 9 is a solidified shell, 10 Is the long side of the mold,
11 is a short side of the mold, and 12 is a meniscus.
【0017】溶鋼は取鍋よりタンディッシュ7に注入さ
れ、浸漬ノズル2を経由して冷却水8で水冷された鋳型
1(短辺幅が250mmで、長辺幅が1500mm)内
に注入される。又、鋳型1内のメニスカス12上には高
周波コイル3が、浸漬ノズル2の両側に配置されてい
る。鋳型1は鋳型長辺10と鋳型短辺11とで構成さ
れ、連続鋳造中に鋳片の幅を変更する時は、鋳型短辺1
1を鋳型長辺10に沿って矢印方向に平行移動させるこ
とにより、目的の鋳片幅にすることができる。The molten steel is poured from the ladle into the tundish 7 and then into the mold 1 (short side width 250 mm, long side width 1500 mm) cooled by the cooling water 8 via the immersion nozzle 2. . On the meniscus 12 in the mold 1, high-frequency coils 3 are arranged on both sides of the immersion nozzle 2. The mold 1 is composed of a mold long side 10 and a mold short side 11, and when changing the width of the slab during continuous casting, the mold short side 1
By moving 1 in parallel with the direction of the arrow along the long side 10 of the mold, the target slab width can be obtained.
【0018】高周波コイル3は鋳型短辺11の上に配置
された高周波コイル支持治具4によって支持されている
ので、鋳型短辺11の移動に追随して移動する。従っ
て、通常の幅変えの場合には、浸漬ノズルと高周波コイ
ルとが物理的に干渉しないので、自由に幅替をすること
ができるのみでなく、鋳型短辺11が移動しても鋳型短
辺11のメニスカス部を高周波加熱することができる。
鋳片幅を今まで鋳造していた鋳片より極端に狭くする
時、及び今まで鋳造していた鋳片より極端に広くする時
は、高周波コイル支持治具4から高周波コイル3を取り
外して最適なサイズの高周波コイル3を設置する。Since the high-frequency coil 3 is supported by the high-frequency coil support jig 4 disposed on the short side 11 of the mold, the high-frequency coil 3 moves following the movement of the short side 11 of the mold. Therefore, in the case of a normal width change, since the immersion nozzle and the high-frequency coil do not physically interfere with each other, not only can the width be changed freely, but also if the mold short side 11 moves, the mold short side is moved. 11 can be heated by high frequency.
When making the slab width extremely narrower than the slab that has been cast so far, and when making the slab extremely wide than the slab that has been cast so far, it is best to remove the high-frequency coil 3 from the high-frequency coil support jig 4. A high-frequency coil 3 of an appropriate size is installed.
【0019】本発明では高周波コイル3は各々1ターン
とし、別々の電源(図示せず)と連結されており、両コ
イルとも印加のタイミングを鋳型の振動周期に合わせて
変えることができる。二つの電源の高周波発振器は共に
周波数10KHZ、300KWであり、最大高周波コイル電
流値は8000Aである。In the present invention, each of the high-frequency coils 3 has one turn and is connected to a separate power source (not shown), and the application timing of both coils can be changed in accordance with the vibration cycle of the mold. The high-frequency oscillators of the two power supplies have frequencies of 10 KHz and 300 KW, respectively, and the maximum high-frequency coil current value is 8000 A.
【0020】高周波コイルのターン数は理論的にはター
ン数が多い方が同一高周波コイル電流で磁束密度が高く
なるが、ターン数が多い程高周波コイルのインピーダン
スが増えるので、電源の二次電圧(高周波コイル電流)
を高くする必要が生ずるという不利な点がある。実機に
おいては、ターン数を増やすことで得られる効果と電圧
上昇という不利な点との総合的に判断してターン数を決
めれば良い。The number of turns of the high-frequency coil is theoretically higher when the number of turns is larger, and the magnetic flux density is higher at the same high-frequency coil current. However, as the number of turns increases, the impedance of the high-frequency coil increases. High frequency coil current)
However, there is a disadvantage that it is necessary to increase In an actual machine, the number of turns may be determined by comprehensively judging the effect obtained by increasing the number of turns and the disadvantage of increasing the voltage.
【0021】なお、本実施例においては、鋳型短辺11
の上に配置された高周波コイル支持治具4によって高周
波コイル3を支持することにより鋳型短辺11の移動に
高周波コイル3を追随させているが、サーボ機構等によ
り追随させるようにしてもよい。In the present embodiment, the mold short side 11
Although the high-frequency coil 3 is supported by the high-frequency coil support jig 4 disposed thereon, the high-frequency coil 3 follows the movement of the short side 11 of the mold, but may be followed by a servo mechanism or the like.
【0022】図2は、本発明の一実施例に用いられた鋳
型の振動速度波形と高周波磁場の印加のパターンを示す
グラフ図で、(a)はサイン波形の鋳型振動速度であ
り、(b)は非サイン波形の鋳型振動速度である。1サ
イクル中で鋳造速度より鋳型下降速度の速い時期をネガ
ティブストリップ(以下NSという)期といい、鋳造速
度より鋳型下降速度の遅い時期をポジティブストリップ
(以下PSという)期という。FIG. 2 is a graph showing a vibration velocity waveform of a mold used in one embodiment of the present invention and a pattern of application of a high-frequency magnetic field. FIG. 2A shows a mold vibration velocity of a sine waveform, and FIG. ) Is the non-sine waveform mold vibration velocity. A period in which the mold descending speed is higher than the casting speed in one cycle is referred to as a negative strip (hereinafter, referred to as NS) period, and a period in which the mold descending speed is lower than the casting speed is referred to as a positive strip (hereinafter, referred to as PS) period.
【0023】なお、高周波コイル電流印加パターンは下
記の2種類ある。その内容は :高周波コイル電流をPS期は弱く印加し、NS期は
強く印加したもの、 :高周波コイル電流をPS期は印加せず、NS期のみ
印加したもの、で、図2の(c)は上記の、の電流
印加のパターンを示したものである。二つの電流印加パ
ターンとも電流に強弱をつけているが、連続的に印加す
るより効果的であるためである。The following two types of high-frequency coil current application patterns are available. The contents are: a high-frequency coil current is weakly applied in the PS period and a strong application is performed in the NS period.: A high-frequency coil current is applied only in the NS period without being applied in the PS period. Shows the above current application pattern. This is because the two current application patterns have strong and weak currents, but are more effective than continuous application.
【0024】使用した鋼種は炭素濃度が0.04%の低
炭素鋼を用い、タンディッシュ内の溶鋼過熱度は、各実
施例とも20℃〜30℃となるように調整した。使用し
たモールドパウダーは表1に示すような潤滑に有利な低
粘性・低融点モールドパウダーを使用した。The steel type used was low-carbon steel having a carbon concentration of 0.04%, and the degree of superheat of molten steel in the tundish was adjusted to 20 ° C. to 30 ° C. in each of the examples. As the used mold powder, a low-viscosity, low-melting-point mold powder advantageous for lubrication as shown in Table 1 was used.
【0025】なお、モールドパウダー消費量は鋳造中に
消費したモールドパウダー量を鋳片の表面積で割って求
めたもので、オシレーションマーク深さは鋳造後鋳片を
鋳造方向に切断して、切断面を研磨して測定したもので
ある。The amount of mold powder consumed is determined by dividing the amount of mold powder consumed during casting by the surface area of the slab, and the depth of the oscillation mark is determined by cutting the slab in the casting direction after casting. The surface was polished and measured.
【0026】[0026]
【表1】 [Table 1]
【0027】(実施例1)実施例1は連続鋳造中の鋳片
幅を狭くする例で、最初のチャージの鋳片幅は1000
mmで、次のチャージの鋳片幅を750mmに変更した
ものである。(Embodiment 1) Embodiment 1 is an example in which the slab width during continuous casting is reduced. The slab width of the first charge is 1000.
mm, the slab width of the next charge was changed to 750 mm.
【0028】図1の本発明の連続鋳造鋳型と比較のため
図3の従来の技術で用いられた連続鋳造鋳型を用いて、
同一の鋳造条件(鋼種、溶鋼過熱度、モールドパウダー
等)、及び図2(C)で示す同一の電流印加パターン
で行った。尚、高周波コイル電流は6000Aの一定の
条件である。For comparison with the continuous casting mold of the present invention shown in FIG. 1, the continuous casting mold used in the prior art shown in FIG.
The same casting conditions (steel type, degree of superheat of molten steel, mold powder, etc.) and the same current application pattern shown in FIG. The high-frequency coil current is a constant condition of 6000 A.
【0029】表2には鋳造時の鋳造条件と調査結果のモ
ールドパウダー消費量、オシレーションマーク深さを同
時に示している。鋳造条件は鋳造振動波形としてサイン
波形と非サイン波形の2種類とし、各々振動数、振幅巾
を変化させ、鋳造速度を2.0m〜4.0m/分で実施
した。尚、非サイン波形の歪み率は全て40%を採用し
た。Table 2 shows the casting conditions at the time of casting, the consumption of mold powder and the depth of the oscillation mark as a result of the investigation. The casting conditions were two types of casting vibration waveforms, a sine waveform and a non-sine waveform, and the frequencies and amplitudes were changed, and the casting speed was 2.0 m to 4.0 m / min. The distortion rate of all non-sine waveforms was 40%.
【0030】[0030]
【表2】 [Table 2]
【0031】表2には鋳片サイズの欄に二段に鋳片サイ
ズが記載されているが、一段目は最初のチャージの鋳片
サイズを表し、二段目は鋳造中幅替後の次のチャージの
鋳片サイズを表している。又、表2の中で調査結果のモ
ールドパウダー消費量とオシレーションマーク深さの二
重線で囲まれた値は従来例のものである。Table 2 shows the slab size in two columns in the column of slab size. The first column shows the slab size of the first charge, and the second column shows the next slab size after the width change during casting. Represents the slab size of the charge. In Table 2, the values enclosed by the double line of the consumption amount of the mold powder and the depth of the oscillation mark in the investigation result are those of the conventional example.
【0032】本発明では、高周波コイル3の寸法は鋳片
幅方向長さが300mmで、鋳片厚み方向長さが240
mmのものを使用して、最初のチャージの鋳造を開始し
た。この時、高周波コイル3と鋳型短辺11の間隙は5
mmで、高周波コイルを鋳片短辺に出来るだけ接近させ
て配置した。尚、鋳型長辺との間隙も5mmである。こ
の場合、浸漬ノズル2を中心として400mmの範囲が
高周波コイル3のカバー範囲外となるが、本来鋳片幅方
向の中央部は高周波磁場を印加しなくても、表面性状が
良いので問題とならない。次のチャージの鋳造中幅替は
両方の鋳型短辺11を125mmづつ浸漬ノズル2の方
向に移動させて実施した。この時、両方の鋳型短辺11
に支持された高周波コイル3も浸漬ノズル2の方向に追
随して移動するので、鋳造中の鋳片幅を変更しても、高
周波コイル3と鋳片短辺との位置関係は変化せずに高周
波磁場の印加が可能で、又、高周波コイル3と浸漬ノズ
ル2との干渉がないので連続鋳造の作業を中断すること
もない。In the present invention, the dimensions of the high-frequency coil 3 are such that the length in the slab width direction is 300 mm and the length in the slab thickness direction is 240 mm.
The casting of the first charge was started using mm. At this time, the gap between the high-frequency coil 3 and the mold short side 11 is 5
mm, the high frequency coil was placed as close as possible to the short side of the slab. The gap with the long side of the mold is also 5 mm. In this case, the range of 400 mm around the immersion nozzle 2 is outside the cover range of the high-frequency coil 3, but there is no problem because the central portion in the width direction of the slab does not need to apply a high-frequency magnetic field because the surface properties are good. . The width change during casting of the next charge was performed by moving both mold short sides 11 in the direction of the immersion nozzle 2 by 125 mm. At this time, both mold short sides 11
Since the high-frequency coil 3 supported by the coil also moves following the direction of the immersion nozzle 2, even if the width of the slab is changed during casting, the positional relationship between the high-frequency coil 3 and the short side of the slab does not change. Since a high-frequency magnetic field can be applied and there is no interference between the high-frequency coil 3 and the immersion nozzle 2, the continuous casting operation is not interrupted.
【0033】従来例では高周波コイル3の鋳片幅方向の
長さは990mmとして、鋳片短辺に高周波磁力が良く
付加される長さを確保した。又、鋳片厚み方向の長さは
本発明と同じく240mmとした。即ち、従来例では最
初のチャージの1000mm幅の鋳片サイズに合わせ
て、高周波コイルの寸法を長さ990mm、幅240m
mのものを鋳型短辺11から5mm離れた位置に設置し
た。次のチャージで、鋳片サイズを750mmに合わせ
るように、各々の鋳型短辺11を浸漬ノズル2の方向に
移動させると、高周波コイル3と鋳型短辺11が物理的
に干渉して、高周波コイル3が鋳型1内にセットできな
いので、高周波コイル3を溶融金属上から退避させたの
で、鋳片幅を変更したチャージ以降の鋳片には高周波磁
場が印加できなかった。In the conventional example, the length of the high-frequency coil 3 in the slab width direction was set to 990 mm to secure a length for applying high-frequency magnetic force to the short side of the slab. The length in the slab thickness direction was 240 mm as in the present invention. That is, in the conventional example, the dimensions of the high-frequency coil are set to 990 mm in length and 240 m in width according to the size of the slab having a width of 1000 mm of the first charge.
m was placed at a position 5 mm away from the short side 11 of the mold. In the next charge, when each mold short side 11 is moved in the direction of the immersion nozzle 2 so that the slab size is adjusted to 750 mm, the high-frequency coil 3 and the mold short side 11 physically interfere with each other, and the high-frequency coil Since the high-frequency coil 3 was retracted from the molten metal because 3 could not be set in the mold 1, the high-frequency magnetic field could not be applied to the slab after the charge in which the slab width was changed.
【0034】表面性状に関係するオシレションマーク深
さについては、表2から明らかなように、本発明の実施
例は幅替する前のチャージと同様に、幅替した後のチャ
ージも、改善されている。Regarding the depth of the oscillation mark related to the surface texture, as is apparent from Table 2, the embodiment of the present invention improves the charge after the width change as well as the charge before the width change. Have been.
【0035】尚、従来例の幅替する前のチャージと幅替
した後のチャージとの表面性状については、幅替した後
のチャージは幅替する前のチャージより表面性状は悪く
なっている。その理由は幅替した後のチャージは、高周
波コイルを使用できないためである。As to the surface properties of the charge before the width change and the charge after the width change in the conventional example, the charge after the width change has a worse surface property than the charge before the width change. The reason is that the high-frequency coil cannot be used for the charge after the width change.
【0036】モールドパウダー消費量も本発明により、
鋳造中幅替後も改善されている。図2の(c)に示す
印加パターンも、の印加パターンと同様な結果が得ら
れた。According to the present invention, the mold powder consumption is also
It has been improved after width change during casting. The result similar to the application pattern of FIG. 2C was obtained also in the application pattern shown in FIG.
【0037】(実施例2)実施例2は、連続鋳造中の鋳
片幅を途中で広くする例である。(Embodiment 2) Embodiment 2 is an example in which the slab width during continuous casting is increased in the middle.
【0038】図1の本発明の連続鋳造鋳型と図3の従来
の技術で用いられた連続鋳造鋳型とで、同一の鋳造条件
(鋼種、溶鋼過熱度、モールドパウダー等)、同一の電
流印加パターンで行った。この電流印加パターンは、図
2(C)に示すパターンで、高周波コイル電流は60
00Aの一定の条件である。The same casting conditions (steel type, molten steel superheat degree, mold powder, etc.) and the same current application pattern are used for the continuous casting mold of the present invention shown in FIG. 1 and the continuous casting mold used in the conventional technique of FIG. I went in. This current application pattern is the pattern shown in FIG.
00A is a constant condition.
【0039】連続鋳造の最初のチャージの鋳片幅は10
00mmで、次のチャージの鋳片幅は1250mmに変
更される。この時、両方の鋳型短辺11を125mmづ
つ浸漬ノズル2の反対側の方向に移動させた。The slab width of the first charge in continuous casting is 10
At 00 mm, the slab width of the next charge is changed to 1250 mm. At this time, both short sides 11 of the mold were moved by 125 mm in the direction opposite to the immersion nozzle 2.
【0040】本発明の実施例では高周波コイル3の寸法
は鋳片幅方向の長さ420mm、鋳片厚み方向の長さ2
40mmのものを使用した。高周波コイル3は、各々の
鋳型短辺11及び鋳型長辺10から5mm離れた位置に
配置した。In the embodiment of the present invention, the dimensions of the high-frequency coil 3 are 420 mm in the slab width direction and 2 mm in the slab thickness direction.
The thing of 40 mm was used. The high-frequency coil 3 was arranged at a position 5 mm away from the short side 11 and the long side 10 of each mold.
【0041】従来例の場合は、高周波コイル3を鋳型1
内に1つ設置した場合で、鋳片サイズ1000mmに合
わせて、高周波コイル3の寸法は長さ990mm、幅2
40mmとし、鋳型短辺11及び鋳型長辺10から5m
m離れた位置に設置した。In the case of the conventional example, the high-frequency coil 3 is
The size of the high-frequency coil 3 is 990 mm in length and 2 mm in width according to the slab size of 1000 mm.
40 mm, 5 m from short side 11 and long side 10
m away from each other.
【0042】この場合も、本発明の実施例では連続鋳造
中の鋳造幅を変更しても、鋳型短辺11と高周波コイル
3は追随して移動するため、高周波コイル3と鋳片短辺
との位置関係は変化せず、鋳片短辺の表面性状は改善さ
れ、又、高周波コイルと浸漬ノズルとの干渉がなく、連
続鋳造の作業を中断することはない。それに対し従来例
の場合は鋳造中に鋳辺幅を広くしても高周波コイル3と
鋳型短辺11が物理的に干渉しないが、片側の鋳型短辺
11の近傍の溶融金属にのみ高周波磁場が印加される
が、その反対側の鋳型短辺の近傍の溶融金属には高周波
磁場が印加されないので、高周波磁場が印加されない鋳
片短辺の表面性状は悪くなった。Also in this case, according to the embodiment of the present invention, even if the casting width during continuous casting is changed, the short side 11 of the mold and the high-frequency coil 3 follow and move. Does not change, the surface properties of the short side of the slab are improved, there is no interference between the high-frequency coil and the immersion nozzle, and the continuous casting operation is not interrupted. On the other hand, in the case of the conventional example, the high-frequency coil 3 and the mold short side 11 do not physically interfere with each other even if the casting side width is widened during casting, but the high-frequency magnetic field is applied only to the molten metal near the mold short side 11 on one side. Although the high frequency magnetic field was not applied to the molten metal near the short side of the mold on the opposite side, the surface properties of the short side of the slab to which the high frequency magnetic field was not applied deteriorated.
【0043】尚、実施例1及び実施例2とも両鋳型短辺
側のメニスカス上に夫々1個、合計2個の高周波コイル
を配置した場合の例を示しているが、2個以上の高周波
コイルを配置しても、実施例1及び実施例2と同一の結
果が得られた。Note that both the first and second embodiments show examples in which two high-frequency coils are arranged, one each on the meniscus on the short side of both molds. , The same result as in Example 1 and Example 2 was obtained.
【0044】[0044]
【発明の効果】本発明にかかる溶融金属の連続鋳造方法
によれば、鋳型両短辺側の溶融金属のメニスカス上に夫
々1個以上の高周波コイルが別々に配置され、連続鋳造
時の鋳片幅替による鋳型短辺移動の場合も、鋳型短辺の
移動に高周波コイルが追随して移動するので、鋳片短辺
部は常に高周波磁場が印加された状態で鋳造される。
又、高周波コイルが浸漬ノズルを境にして両短辺メニス
カス上に分離されて配置されているので、鋳造中幅替に
おいても浸漬ノズルと高周波コイルとが物理的に干渉し
ない。よって、自由に幅替をすることができる。According to the continuous casting method of molten metal according to the present invention, at least one high-frequency coil is separately disposed on the meniscus of the molten metal on both short sides of the mold, and the cast slab is continuously cast. Also in the case of the short side movement of the mold due to the width change, the high frequency coil moves following the movement of the short side of the mold, so that the short side portion of the slab is cast with the high frequency magnetic field always applied.
Further, since the high-frequency coil is separated and arranged on both short side meniscuses with the immersion nozzle as a boundary, the immersion nozzle and the high-frequency coil do not physically interfere with each other even during width change during casting. Therefore, the width can be freely changed.
【0045】そのため鋳造中幅替を実施しても、高周波
磁界の印加を中止することがなく、又、幅替のために操
業を中断することもないので、生産性や鋳片の表面性状
の低下が防止される。Therefore, even if the width change is performed during casting, the application of the high frequency magnetic field is not stopped, and the operation is not interrupted due to the width change. Reduction is prevented.
【図1】 本発明の実施例に用いられた連続鋳造鋳型の
概要図で、(a)は平面図、(b)は(a)図のX−X
断面図である。FIG. 1 is a schematic view of a continuous casting mold used in an embodiment of the present invention, in which (a) is a plan view and (b) is a view taken along line XX of (a).
It is sectional drawing.
【図2】 本発明の実施例に用いられた鋳型の振動速度
波形と高周波磁場の印加のパターンを示すグラフ図であ
る。FIG. 2 is a graph showing a vibration velocity waveform of a mold used in an example of the present invention and a pattern of application of a high-frequency magnetic field.
【図3】 従来の連続鋳造鋳型の概要図で、(a)は平
面図、(b)は(a)図のX−X断面図である。FIG. 3 is a schematic view of a conventional continuous casting mold, in which (a) is a plan view and (b) is a cross-sectional view taken along line XX of (a).
1 鋳型 2 浸漬ノズル 3 高周波コイル 4 高周波コイル支持治具 5 溶鋼 6 モールドパウダー 7 タンディッシュ 8 冷却水 9 凝固シェル 10 鋳型長辺 11 鋳型短辺 12 メニスカス DESCRIPTION OF SYMBOLS 1 Mold 2 Immersion nozzle 3 High frequency coil 4 High frequency coil support jig 5 Molten steel 6 Mold powder 7 Tundish 8 Cooling water 9 Solidification shell 10 Mold long side 11 Mold short side 12 Meniscus
フロントページの続き (56)参考文献 特開 平5−115952(JP,A) 特開 平7−256413(JP,A) 特開 平6−79410(JP,A) 特開 平7−1085(JP,A) 特開 平6−190520(JP,A) 特開 平7−96360(JP,A) 特開 平6−297092(JP,A) 特開 平6−170497(JP,A) 特開 平6−277805(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22D 11/05 B22D 11/04 311 B22D 11/07 B22D 11/115 Continuation of front page (56) References JP-A-5-115595 (JP, A) JP-A-7-256413 (JP, A) JP-A-6-79410 (JP, A) JP-A-7-1085 (JP) JP-A-6-190520 (JP, A) JP-A-7-96360 (JP, A) JP-A-6-297709 (JP, A) JP-A-6-170497 (JP, A) 6-277805 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B22D 11/05 B22D 11/04 311 B22D 11/07 B22D 11/115
Claims (1)
スカス部に高周波磁場を印加しつつ鋳造する溶融金属の
連続鋳造方法において、両鋳型短辺側のメニスカス上に
夫々1個以上の高周波コイルを別々に配置し、鋳型短辺
の移動に高周波コイルを追随させて移動し、前記高周波
コイルから高周波磁場をメニスカス部に印加しながら鋳
造することを特徴とする溶融金属の連続鋳造方法。1. A continuous casting method for molten metal in which a high-frequency coil is arranged inside a mold and a high-frequency magnetic field is applied to a meniscus portion to perform casting, wherein at least one high-frequency coil is provided on each of the meniscuses on both short sides of the mold. A continuous casting method for molten metal, comprising separately arranging, moving a high-frequency coil following movement of a short side of a mold, and casting while applying a high-frequency magnetic field from the high-frequency coil to a meniscus portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07035046A JP3127762B2 (en) | 1995-02-23 | 1995-02-23 | Continuous casting method of molten metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07035046A JP3127762B2 (en) | 1995-02-23 | 1995-02-23 | Continuous casting method of molten metal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08224649A JPH08224649A (en) | 1996-09-03 |
JP3127762B2 true JP3127762B2 (en) | 2001-01-29 |
Family
ID=12431105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07035046A Expired - Fee Related JP3127762B2 (en) | 1995-02-23 | 1995-02-23 | Continuous casting method of molten metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3127762B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5730738B2 (en) * | 2011-10-07 | 2015-06-10 | 株式会社神戸製鋼所 | Continuous casting method and continuous casting apparatus for slab made of titanium or titanium alloy |
CN110270669B (en) * | 2019-07-31 | 2021-10-26 | 东北大学 | Method for deformation of meniscus of slab crystallizer under condition of magnetic pressure constraint control of high pulling speed |
-
1995
- 1995-02-23 JP JP07035046A patent/JP3127762B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08224649A (en) | 1996-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4824502B2 (en) | Metal vertical continuous casting method using electromagnetic field and casting equipment for its implementation | |
JP3127762B2 (en) | Continuous casting method of molten metal | |
JP4591156B2 (en) | Steel continuous casting method | |
JP6787359B2 (en) | Continuous steel casting method | |
JP3214374B2 (en) | Continuous casting of steel | |
JP3158936B2 (en) | High frequency coil for continuous casting and continuous casting method | |
JP3205018B2 (en) | Manufacturing method of continuous cast slab with excellent surface properties | |
JP3139317B2 (en) | Continuous casting mold and continuous casting method using electromagnetic force | |
JP3076667B2 (en) | Steel continuous casting method | |
JP3159615B2 (en) | Continuous casting machine for molten metal | |
JPH08187563A (en) | Continuous casting method applying electromagnetic force | |
JP3088917B2 (en) | Continuous casting method of molten metal | |
KR20050002222A (en) | Method for controlling the magnetic field of width of continuous casting mold | |
JP3161109B2 (en) | Continuous casting equipment | |
JP4910357B2 (en) | Steel continuous casting method | |
JP4330518B2 (en) | Continuous casting method | |
JPH0673722B2 (en) | Continuous casting method | |
JPH0464769B2 (en) | ||
KR100244660B1 (en) | Control device for molten metal of continuous casting mould | |
JPH0671400A (en) | Device for controlling flow of molten steel in continuous casting mold | |
JPH05237621A (en) | Continuous casting method | |
JP3158899B2 (en) | Electromagnetic casting method | |
JP3055413B2 (en) | Method and apparatus for continuous casting of molten metal | |
JPH08257695A (en) | Continuous casting mold for steel and continuous casting method | |
JPH0819840A (en) | Continuous casting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20001010 |
|
LAPS | Cancellation because of no payment of annual fees |