JPH08187563A - Continuous casting method applying electromagnetic force - Google Patents

Continuous casting method applying electromagnetic force

Info

Publication number
JPH08187563A
JPH08187563A JP7015590A JP1559095A JPH08187563A JP H08187563 A JPH08187563 A JP H08187563A JP 7015590 A JP7015590 A JP 7015590A JP 1559095 A JP1559095 A JP 1559095A JP H08187563 A JPH08187563 A JP H08187563A
Authority
JP
Japan
Prior art keywords
mold
electromagnetic force
coil
shell
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7015590A
Other languages
Japanese (ja)
Other versions
JP3191594B2 (en
Inventor
Koichi Tsutsumi
康一 堤
Shinichi Nishioka
信一 西岡
Masayuki Nakada
正之 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP01559095A priority Critical patent/JP3191594B2/en
Publication of JPH08187563A publication Critical patent/JPH08187563A/en
Application granted granted Critical
Publication of JP3191594B2 publication Critical patent/JP3191594B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE: To improve the lubricity between a mold and a cast slab and to cast a cast slab having little surface fault by impressing high frequency induction electromagnetic force to near a meniscus part of molten metal from the outer part of the mold and also, from the inner part of the mold. CONSTITUTION: When Lorentz's force acts in the direction of getting away from a coil by the high frequency induction magnetic field impressed from the outer part of the mold, at the time of negative strip, the molten steel 7 is allowed to overflow from the tip part of shell 3 to form newly the shell. At this time, since the shell is formed at the position distant from the mold 1 by the electromagnetic force directed inward, the interval for flowing of the powder 4 between the mold 1 and the solidified shell 3 is widened and tensile stress loaded to the shell by the movement of the mold 1 at the time of the negative strip is reduced. Further, Joule heat caused by induction current is given to the meniscus part with the high frequency induction magnetic force impressed from the inner part of the mold, and the meniscus part marked with oscillation mark is heated and the depth of the mark is made to be shallow.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋼などの溶融金属の連
続鋳造に関し、鋳型と鋳片の潤滑を向上させ、表面欠陥
の少ない鋳片を製造する連続鋳造技術に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to continuous casting of molten metal such as steel, and more particularly to a continuous casting technique for improving the lubrication of a mold and a slab and producing a slab with few surface defects.

【0002】[0002]

【従来技術】鋼などの金属の連続鋳造方法においては、
鋳片と鋳型の摩擦を軽減させて鋳片の焼き付き防止、あ
るいは、ブレークアウト事故を防止するのが大きな課題
である。鋳片と鋳型の摩擦を軽減させるために通常鋳型
を上下に振動させながら鋳造することが行われている。
2. Description of the Related Art In a continuous casting method for metal such as steel,
A major problem is to reduce the friction between the slab and the mold to prevent seizing of the slab or prevent breakout accidents. In order to reduce the friction between the slab and the mold, casting is usually performed while vibrating the mold vertically.

【0003】通常、鋳型振動の波形は正弦波形であり、
この波形を含むオシレーション条件を鋳造条件に応じて
適切に変化させる。特殊な方法として、特公平4−79
744号公報で開示された非正弦波形を採用することに
よって、ネガティブストリップ(以下NSと記す)期を
一定以上確保しつつ、他方ポジティブストリップ(以下
PSと記す)期に鋳型の上昇速度を減少させることで、
鋳型と鋳片の間の潤滑を向上させ鋳型と鋳片の摩擦を軽
減させている。
Usually, the waveform of the mold vibration is a sine waveform,
The oscillation condition including this waveform is appropriately changed according to the casting condition. As a special method, Japanese Patent Publication 4-79
By adopting the non-sinusoidal waveform disclosed in Japanese Patent Publication No. 744, the negative strip (hereinafter referred to as NS) period is secured at a certain level or more, while the mold rising speed is decreased during the positive strip (hereinafter referred to as PS) period. By that,
It improves the lubrication between the mold and the slab and reduces the friction between the mold and the slab.

【0004】[0004]

【発明が解決しようとする課題】上記オシレーション条
件を鋳造条件に応じて適切に変化させる方法としては、
連続鋳造に生成した凝固シェルに圧縮力をかける観点か
ら、例えば鉄と鋼 vol.60(1974)No.7 ,P763 に示される
通り、一定値以上のネガティブストリップ時間比率(以
下NSRと記す)を確保する必要がある。過去の経験か
らNSRが30%以上ないと鋳片にかかる圧縮力不足が
起因とするブレークアウトが発生して操業上問題が多か
った。
As a method of appropriately changing the above oscillation conditions according to casting conditions,
From the viewpoint of applying compressive force to the solidified shell produced in continuous casting, for example, as shown in Iron and Steel vol.60 (1974) No.7, P763, a negative strip time ratio (hereinafter referred to as NSR) of a certain value or more is set. It is necessary to secure it. From past experience, if the NSR was 30% or more, there were many operational problems because breakout occurred due to insufficient compressive force applied to the slab.

【0005】さらに、シェルに一定の圧縮力をかける必
要性からNSRを30%を確保し、鋳造速度を3m/分
とするには、鋳造速度の増加に伴い、振動数又は振幅を
増加させる必要があった。例えば、 (1)鋳造速度 3m/分、振幅±4mmの場合には2
00cpmの振動数が必要である。 (2)鋳造速度 4m/分、振幅±4mmの場合には2
70cpmの振動数が必要である。 (3)鋳造速度 5m/分、振幅±4mmの場合には3
38cpmの振動数が必要である。 (4)鋳造速度 6m/分、振幅±4mmの場合には4
08cpmの振動数が必要である。
Furthermore, in order to secure NSR of 30% and cast speed of 3 m / min from the necessity of applying a constant compressive force to the shell, it is necessary to increase the frequency or amplitude with the increase of cast speed. was there. For example, (1) 2 at casting speed of 3 m / min and amplitude of ± 4 mm
A frequency of 00 cpm is required. (2) Casting speed 4 m / min, 2 when amplitude ± 4 mm
A frequency of 70 cpm is required. (3) Casting speed 5 m / min, 3 when amplitude ± 4 mm
A frequency of 38 cpm is required. (4) Casting speed 6 m / min, 4 when the amplitude is ± 4 mm
A frequency of 08 cpm is required.

【0006】しかし、連鋳機の機械的剛性の点から振動
数はあまり大きくすることができない。そこで、上記を
満たす振動数が確保でず、従って例えば100mm角以
下のような小型の鋳片を除けば3m/分以上の鋳造速度
においては安定な操業を確保が困難であった。また、高
速化に伴い鋳型と鋳片間の潤滑が不足する。潤滑が不足
すると摩擦力が増大し操業上のトラブルであるブレーク
アウト発生する。
However, the frequency cannot be increased so much in view of the mechanical rigidity of the continuous casting machine. Therefore, the frequency that satisfies the above cannot be ensured, and therefore it is difficult to secure stable operation at a casting speed of 3 m / min or more except for a small slab of 100 mm square or less. Further, as the speed increases, the lubrication between the mold and the slab becomes insufficient. If lubrication is insufficient, frictional force increases and breakout, which is a trouble in operation, occurs.

【0007】尚、NS期及びPS期は図6(a)に示す
ように、鋳型振動の1サイクルで鋳造速度よりも鋳型下
降速度の速い時期をNS期といい、それ以外の時期をP
S期と呼んでおり、NS時間比率(以下NSRと記す)
は以下の式で表される。
In the NS period and the PS period, as shown in FIG. 6 (a), the period when the mold descending speed is faster than the casting speed in one cycle of mold vibration is called the NS period, and the other periods are P period.
It is called the S period and the NS time ratio (hereinafter referred to as NSR)
Is expressed by the following formula.

【0008】 NSR={tN /(tP +tN )}×100 で、鋳型振動が正弦波形の場合は以下の様に表すことが
できる。 NSR={1−〔cos-1(−Vc/2πAf)/π〕}×100 ここで、tN ;1サイクルにおけるネガティブストリッ
プの時間 tP ;1サイクルにおけるポジティブストリップの時間 Vc;鋳造速度 A ;鋳型振動の振幅 f ;鋳型振動の振動数
When NSR = {t N / (t P + t N )} × 100 and the mold vibration has a sinusoidal waveform, it can be expressed as follows. NSR = {1- [cos -1 (-Vc / 2πAf) / π]} × 100 where t N ; time of negative strip in one cycle t P ; time of positive strip in one cycle Vc; casting speed A; Amplitude of mold vibration f; Frequency of mold vibration

【0009】また、連続鋳造法においては、溶融金属の
上に鋳型パウダーを添加して鋳造する。パウダーには鋳
型と鋳片の潤滑の他に、溶融金属の保温機能、溶融金属
中の介在物の浮上後の捕捉などの様々な役割がある。鋳
型と鋳片の潤滑を良くさせるためにはパウダーの粘性の
低いものを選択したり、結晶化温度を低くするなどして
いた。
Further, in the continuous casting method, casting is performed by adding mold powder onto the molten metal. In addition to the lubrication of the mold and the slab, the powder has various functions such as a heat retaining function for the molten metal and capturing of inclusions in the molten metal after the floating. In order to improve the lubrication of the mold and the slab, the powder having a low viscosity was selected and the crystallization temperature was lowered.

【0010】しかし、パウダーの物性、オシレーション
条件の変更だけでは潤滑向上には、限界があり、以下に
記すような電磁力を利用した鋳造方法が提案されてい
る。即ち、特開昭52−32824号公報に示されるよ
うに、鋳型の外側から磁場を印加してシェル先端を押し
て、鋳型から鋳片が離れるように電磁力を付加して、鋳
型と鋳片の隙間を広げ、パウダーが流れ込み易くする方
法である。しかしながら、このような磁場の連続印加で
は十分に安定した鋳片性状が得られなかった。
However, there is a limit to the improvement of lubrication only by changing the physical properties of the powder and the oscillation conditions, and a casting method utilizing electromagnetic force as described below has been proposed. That is, as disclosed in JP-A-52-32824, a magnetic field is applied from the outside of the mold to push the tip of the shell, and an electromagnetic force is applied so that the slab separates from the mold, whereby the mold and the slab are separated. This is a method to widen the gap and make it easier for the powder to flow. However, with such continuous application of a magnetic field, sufficiently stable slab properties could not be obtained.

【0011】[0011]

【課題を解決するための手段】本発明者らはこのような
実情に鑑み、電磁力を用いた連続鋳造において、コイル
を鋳型の外側だけでなく、内側、即ち溶融金属の湯面近
傍にもコイルを配置して、高周波磁場を印加する方法を
見いだした。
In view of such circumstances, the present inventors have considered that in continuous casting using electromagnetic force, the coil is provided not only on the outside of the mold but also on the inside, that is, near the molten metal surface. A method of arranging coils and applying a high frequency magnetic field was found.

【0012】また同時に鋳型の振動周期に同期若しくは
関連させて、外側のコイル(以下外コイルという)と内
側のコイル(以下内コイルという)のそれぞれの電磁力
(以下外電磁力、内電磁力という)の印加タイミング
を、ネガティブストリップ期には、内電磁力>外電磁力
とし、ポジティブストリップ期には、外電磁力>内電磁
力とするように磁場を印加する方法である。
At the same time, in synchronization with or in relation to the vibration cycle of the mold, the electromagnetic force of each of the outer coil (hereinafter referred to as the outer coil) and the inner coil (hereinafter referred to as the inner coil) (hereinafter referred to as the outer electromagnetic force and the inner electromagnetic force) will be described. ) Is applied in the negative strip period so that the internal electromagnetic force> the external electromagnetic force, and in the positive strip period, the external magnetic force> the internal electromagnetic force so that the magnetic field is applied.

【0013】かかる手法により溶融金属表面部分に集中
して高周波電磁力を印加することができ、そのためオシ
レーションマークまたは爪の先端部にローレンツ力及び
ジュール熱を効果的に発生することができ、鋳片の表面
品質を向上させることができる。さらに、上記の手段は
NSRが20%以下の場合には特に有効である。
By such a method, high-frequency electromagnetic force can be concentrated on the surface of the molten metal, so that Lorentz force and Joule heat can be effectively generated at the oscillation mark or the tip of the nail, and the casting The surface quality of the piece can be improved. Further, the above means is particularly effective when the NSR is 20% or less.

【0014】[0014]

【作用】本発明の電磁コイルを鋳型の外側と内側の両方
に配置し、鋳型内メニスカスに近傍に高周波電磁力を印
加する。図1に示す通り、高周波磁界を溶融金属の回り
に印加すると溶融金属に誘導電流が発生し、この誘導電
流と印加された磁界との相互作用によりコイルと反発す
る方向にローレンツ力、即ち電磁力が発生する。
The electromagnetic coil of the present invention is arranged both outside and inside the mold, and a high frequency electromagnetic force is applied near the meniscus in the mold. As shown in FIG. 1, when a high-frequency magnetic field is applied around the molten metal, an induced current is generated in the molten metal, and the interaction between the induced current and the applied magnetic field causes a Lorentz force, that is, an electromagnetic force in a direction repulsing the coil. Occurs.

【0015】同時に前記誘導電流によるジュール熱も発
生する。本発明はこのローレンツ力、及びジュール熱を
利用するものである。高周波磁界(1000サイクル/
秒以上)は低周波磁界(1000サイクル/秒未満)に
比較して攪拌力は十分小さく、磁気圧力の効果のみ期待
できるためである。
At the same time, Joule heat due to the induced current is also generated. The present invention utilizes this Lorentz force and Joule heat. High frequency magnetic field (1000 cycles /
This is because the stirring force is sufficiently smaller than that of a low frequency magnetic field (less than 1000 cycles / second), and only the effect of magnetic pressure can be expected.

【0016】本発明で低周波磁界を用いない理由は、低
周波磁界の場合には電磁力による圧力のみならず、大き
な攪拌力を生ずるための湯面の不安定性を助長するため
である。これに対し高周波磁界の場合は攪拌力は充分小
さく電磁力による圧力、誘導ジュール熱の効果が期待で
きる。
The reason why the low frequency magnetic field is not used in the present invention is that in the case of the low frequency magnetic field, not only the pressure due to the electromagnetic force but also the instability of the molten metal surface for generating a large stirring force are promoted. On the other hand, in the case of a high frequency magnetic field, the stirring force is sufficiently small and the effect of pressure and induction Joule heat due to electromagnetic force can be expected.

【0017】図2(a)に鋳型と電磁コイルの配置状況
の縦断面図、同(b)には平面図を示す。鋳型の外側の
電磁コイル(外コイルという)は、主にローレンツ力に
より凝固シェルの内側への湾曲作用を、鋳型の内側の電
磁コイル(内コイルという)は凝固シェルへローレンツ
力の作用しにくい設置位置であり、主に誘導電流による
ジュール熱を付与する作用がある。
FIG. 2 (a) is a vertical sectional view showing the arrangement of the mold and the electromagnetic coil, and FIG. 2 (b) is a plan view. The electromagnetic coil on the outside of the mold (referred to as the outer coil) mainly bends inside the solidification shell due to the Lorentz force, and the electromagnetic coil on the inside of the mold (referred to as the inner coil) prevents the Lorentz force from acting on the solidification shell. This is the position, and has the effect of mainly applying Joule heat due to the induced current.

【0018】即ち、鋳型外部から印加された高周波磁界
により、コイルから遠ざかる方向に方向にローレンツ力
が作用すると、ネガティブストリップの際に、シェル先
端から溶鋼がオーバーフローして新たなシェルが形成さ
れるが、この際に内向きの電磁力のため、鋳型から離れ
た位置でシェルが形成されるため、鋳型と凝固シェル間
のパウダー流入の間隔が広まり、ネガティブストリップ
の際の鋳型の移動によるシェルに加わる引張応力が軽減
される。
That is, when the Lorentz force acts in the direction away from the coil by the high-frequency magnetic field applied from the outside of the mold, molten steel overflows from the tip of the shell to form a new shell during the negative strip. , At this time, due to the inward electromagnetic force, the shell is formed at a position away from the mold, so that the interval of powder inflow between the mold and the solidification shell is widened, and it is added to the shell by the movement of the mold during the negative strip. Tensile stress is reduced.

【0019】また、鋳型内部から印加された高周波電磁
力によりメニスカス部に、誘導電流によるジュール熱が
付与され、オシレーションマークが形成されるメニスカ
ス部が加熱され、凝固遅れが発生して、オシレーション
マークの所謂爪の深さを浅くする。以上の通り、外電磁
力と内電磁力はそれぞれ異なる効果があり、それぞれを
単独で適用してもよく、また両者を併用しても鋳片の品
質を向上できる。
In addition, Joule heat due to an induced current is applied to the meniscus portion by a high frequency electromagnetic force applied from the inside of the mold, the meniscus portion where an oscillation mark is formed is heated, and a solidification delay occurs, causing oscillation. The so-called nail depth of the mark is made shallow. As described above, the external electromagnetic force and the internal electromagnetic force have different effects, and each may be applied alone, or the two can be used together to improve the quality of the cast slab.

【0020】更に、鋳型の振動周期に同期もしくは関連
させて、外コイルと内コイルに対する電流の印加タイミ
ングと強度を下記の様に制御することはより望ましい。
ネガティブストリップ期には、 (内電磁力)>(外電磁力) となるように制御する。ポジティブストリップ期には、 (内電磁力)<(外電磁力) となるように制御する。この様な高周波磁場を印加する
ことによって、より有効に電磁力を応用し、前述の効果
が更に増長される。
Further, it is more desirable to control the application timing and intensity of the current to the outer coil and the inner coil in the following manner in synchronization with or in association with the vibration cycle of the mold.
During the negative strip period, control is performed so that (internal electromagnetic force)> (external electromagnetic force). During the positive strip period, control is performed so that (internal electromagnetic force) <(external electromagnetic force). By applying such a high frequency magnetic field, the electromagnetic force is applied more effectively, and the above-mentioned effect is further enhanced.

【0021】従来ブレイクアウトを防止する為にはネガ
ティブストリップ比を少なくとも20%以上、望ましく
は30%以上としなければならなかったが、上記の手段
を採用した場合には、ネガティブストリップ比を20%
以下とすることができる。即ち、連続鋳造の鋳造速度を
従来よりも高めることができる。
Conventionally, in order to prevent breakout, the negative strip ratio must be at least 20% or more, preferably 30% or more, but when the above means is adopted, the negative strip ratio is 20%.
It can be: That is, the casting speed of continuous casting can be increased more than ever before.

【0022】[0022]

【実施例】本発明の実施例の縦断面図を図2(a)に、
図2(b)に平面図を示す。溶鋼は取鍋からタンディッ
シュ8、浸漬ノズル2を経由して鋳型1に注入される。
外側から磁場を鋳型内に印加するためのコイルと鋳型の
態様には以下のような場合がある。
EXAMPLE A longitudinal sectional view of an example of the present invention is shown in FIG.
A plan view is shown in FIG. Molten steel is poured into the mold 1 from the ladle via the tundish 8 and the immersion nozzle 2.
There are the following cases in the form of the coil and the mold for applying a magnetic field from the outside into the mold.

【0023】例えば、図3のように鋳型の外側にコイル
を巻き、鋳型にコイルの巻き方向とは直角な方向のスリ
ットを鋳型途中まで切る場合、図4のように鋳型の外側
にコイルを巻き、鋳型にコイルの巻き方向とは直角な方
向のスリットを鋳型上部まで切る場合、図5に示す通り
鋳型の内側にコイルを組み込む場合等がある。
For example, when a coil is wound on the outside of the mold as shown in FIG. 3 and a slit perpendicular to the winding direction of the coil is cut in the middle of the mold, the coil is wound on the outside of the mold as shown in FIG. In some cases, a slit is cut in the mold in a direction perpendicular to the coil winding direction up to the upper part of the mold, and as shown in FIG. 5, the coil is incorporated inside the mold.

【0024】尚、図3、図4に示すスリット部は通常空
間となっていて、溶鋼がこのスリット内に差し込まない
ように極めて狭いものであるが、このスリット部に例え
ば耐火物を挿入することは望ましい。本実施例では図4
に示すスリットを鋳型上部まで切った構造の鋳型(内側
寸法:短辺180mm長辺400mm)を用い、外側コ
イルは4ターン、内側コイルは1ターンとし、外側コイ
ル、内側コイルはそれぞれ別の電源と連結されており、
それぞれの電流の印加タイミングを鋳型の振動時期に合
わせて変えることができるものである。
The slit portion shown in FIGS. 3 and 4 is a normal space and is extremely narrow so that molten steel does not enter the slit. However, for example, a refractory should be inserted into this slit portion. Is desirable. In this embodiment, FIG.
Using a mold (inside dimension: short side 180 mm long side 400 mm) with the slit shown in Fig. 1 cut to the top of the mold, the outer coil has 4 turns, the inner coil has 1 turn, and the outer coil and the inner coil each have different power sources. Are connected,
The application timing of each current can be changed according to the vibration timing of the mold.

【0025】コイルは、例えば内部を水冷した銅または
銅合金製のものが好ましい。コイルのターン数は理論的
にはターン数が多い方が同一コイル電流で磁束密度が高
くなる傾向にあるが、ターン数が多い程コイルのインピ
ーダンスが増えるので、電源の二次電圧(コイル電流)
を高くする必要が生ずるという不利な点が有る。これよ
り実機においてはターン数を増やすことで得られる効果
と、電圧上昇という不利な点との総合的な観点からター
ン数を決めれば良い。
The coil is preferably made of, for example, water-cooled copper or copper alloy. Theoretically, the larger the number of turns, the higher the magnetic flux density with the same coil current. However, the larger the number of turns, the higher the impedance of the coil. Therefore, the secondary voltage of the power supply (coil current)
There is a disadvantage that it is necessary to raise the value. Therefore, in the actual machine, the number of turns may be determined from a comprehensive viewpoint of the effect obtained by increasing the number of turns and the disadvantage of increasing the voltage.

【0026】電源の高周波発振器は周波数10KHZ、3
00KWであり、外コイル、内コイル共最大コイル電流値
は8000Aであった。図6に高周波電流の印加方法の
様態を示した。この方法では鋳型振動と外コイルと内コ
イルへの電流印加のタイミングを種々変化させることが
できる。図6で(a)は鋳型振動波型であり、(b)〜
(e)は電流印加の態様を示した。
The high frequency oscillator of the power supply has a frequency of 10 KHZ, 3
The maximum coil current value for both the outer coil and the inner coil was 8000A. FIG. 6 shows the manner of applying the high frequency current. With this method, the timing of mold vibration and current application to the outer coil and the inner coil can be variously changed. In FIG. 6, (a) is a mold vibration wave type, and (b)-
(E) shows a mode of current application.

【0027】(b)は外コイルのみを鋳型振動に関わら
ず、連続的に電流を印加したもの、(c)は外コイルの
みにPS期のみ印加したもの、(d)は外コイルのみに
NS期のみ印加したもの、(e)は内コイルのみを鋳型
振動に関わらず、連続的に電流を印加したもの、(f)
は内コイルのみにNS期のみ印加したもの,(g)は内
コイルのみにPS期のみ印加したものを示す。
(B) is a case where a current is continuously applied to the outer coil regardless of the mold vibration, (c) is a case where only the PS period is applied only to the outer coil, and (d) is an NS only to the outer coil. Applied only during the first period, (e) applied current continuously to the inner coil regardless of mold vibration, (f)
Indicates that only the NS period was applied to only the inner coil, and (g) shows that only the PS period was applied to only the inner coil.

【0028】表1にはこれらの種々の組合せの内、実施
した例を示したものである。尚、図6において切電して
いる時期に極微量の電流を流すことも可能で、通電しな
い場合と同一の効果があった。
Table 1 shows examples of the various combinations carried out. In FIG. 6, it is possible to pass a very small amount of current when the power is cut off, and the same effect as when the power is not supplied is obtained.

【0029】実施例で鋳造した鋼種は炭素濃度が0.1
%の炭素鋼で、タンディッシュ内の溶鋼過熱温度は、各
実施例とも25℃となるように調整した。使用したパウ
ダーは表2に示す通り潤滑に有利な低粘性・低融点パウ
ダーを使用し、パウダー消費量は鋳造終了時、鋳片を鋳
型内に中止めし、冷却後取り出して鋳片の表面に付着し
ているパウダー厚みより計算で求めた。
The steel types cast in the examples have a carbon concentration of 0.1.
% Carbon steel, the molten steel overheating temperature in the tundish was adjusted to be 25 ° C. in each example. The powder used is a low-viscosity, low-melting point powder, which is advantageous for lubrication as shown in Table 2. At the end of casting, the powder is stopped inside the mold, and after cooling, it is taken out and put on the surface of the cast. It was calculated from the thickness of the adhered powder.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】図7は表1のcase及びcaseに
示す印加条件で、表3に示す鋳型振動での試験結果であ
り、外コイルのみに電流を印加し、コイル電流とパウダ
ー消費量との関係を示すものである。外コイルに鋳型振
動の全域に電流を印加した場合、電流を大きくすること
で、パウダー消費量が増大する現象が確認された。
FIG. 7 shows the case in Table 1 and the application conditions shown in case, and the test results with the mold vibration shown in Table 3. Current is applied only to the outer coil, and the relationship between the coil current and the powder consumption is shown. It is shown. When a current was applied to the outer coil over the entire area of the mold vibration, it was confirmed that the powder consumption was increased by increasing the current.

【0033】[0033]

【表3】 [Table 3]

【0034】一方、外コイルにPS期のみ電流を印加し
ても、ほぼ同様の効果が確認されており、連続的に通電
したものと大差ない結果となった。これは鋳型振動の
際、PS期に優先的にパウダーが鋳型と凝固シェル間に
流入していることを示すものである。即ち外コイルに通
電することでコイルから離れる方向に凝固シェルにロー
レンツ力が作用し、流入するパウダーの厚みが増すこと
によると考えられる。
On the other hand, even when a current was applied to the outer coil only in the PS period, almost the same effect was confirmed, and the result was not much different from that when continuously energized. This indicates that during the mold vibration, the powder preferentially flows between the mold and the solidified shell in the PS period. That is, it is considered that when the outer coil is energized, the Lorentz force acts on the solidified shell in the direction away from the coil, and the thickness of the inflowing powder increases.

【0035】連続的に高周波磁界を印加したものがPS
期のみのものと大差ない理由は、NS期に外コイルに通
電しても、すでに凝固シェルがある程度強度を持ってお
り、これにローレンツ力を作用させても、凝固シェルが
移動せず、パウダー流入量にはほとんど貢献しないため
と考えられる。従ってNS期に外コイルに通電する必要
性は少ない。
PS to which a high-frequency magnetic field is continuously applied is PS.
The reason is not much different from that of the solid phase only, when the outer coil is energized in the NS phase, the solidification shell already has strength to some extent, and even when Lorentz force is applied to this, the solidification shell does not move and the powder It is considered that it contributes little to the inflow. Therefore, it is not necessary to energize the outer coil during the NS period.

【0036】図8は表1のcase及びcaseに
示す印加条件で、表3に示す鋳型振動条件での試験結果
で、鋳型内コイルのみに電流を印加し、オシレーション
マークの深さ(鋳片表面からの凹み深さ)への影響を示
すものである。コイル電流を増加するとオシレーション
マーク深さは減少するが、NS期のみ印加したものは電
流値が5000Aを過ぎてオシレーションマーク深さの
低減効果が著しくなるが、連続印加のものは除々に低下
するのみで、効果が少ない。
FIG. 8 shows the case in Table 1 and the application conditions shown in case, and the test results under the mold vibration conditions shown in Table 3, showing that the current is applied only to the coil in the mold and the depth of the oscillation mark This shows the effect on the depth of the recess from the surface). When the coil current is increased, the depth of the oscillation mark decreases, but the current value exceeds 5000A in the case of applying only in the NS period, and the effect of reducing the oscillation mark becomes remarkable, but the value of continuous application gradually decreases. Just do it, the effect is small.

【0037】この理由は、内側コイルの電磁力は凝固シ
ェルには鉛直下向きに作用するため、内側コイルに全域
印加したものは、PS期も凝固シェルに電磁力が鉛直下
向きに作用することで、メニスカスが曲がったままであ
るため、ジュール熱効果はあるものの、オシレーション
マーク深さがあまり浅くならないものと考えられる。
The reason for this is that since the electromagnetic force of the inner coil acts vertically downward on the solidified shell, the electromagnetic force applied to the inner coil over the entire area causes the electromagnetic force to act vertically downward on the solidified shell during the PS period. Since the meniscus remains bent, there is a Joule heat effect, but it is considered that the oscillation mark depth does not become too shallow.

【0038】表4は表1のcaseに示す印加パター
ン、即ち外コイルにはPS期に印可し、内コイルにはN
S期に印加する方法で、コイル電流値は外・内コイル共
5000Aの一定値の条件で実施した結果をまとめて示
したものであり、表4には実際に鋳造したときの鋳造条
件と共に、パウダー消費量、オシレーションマーク深さ
の調査結果を示している。
Table 4 is an application pattern shown in case of Table 1, that is, the outer coil is applied in the PS period and the inner coil is N-shaped.
It is a method of applying in the S period, the coil current value is a summary of the results carried out under the condition of a constant value of 5000A for both the outer and inner coils, and Table 4 shows the casting conditions when actually casting, It shows the results of a survey of powder consumption and oscillation mark depth.

【0039】また、使用した鋳型は図4に示す鋳型を用
い、非正弦波形の歪み率は全て40%を採用し、NSR
は一般的に必要とされている20%以上を採用した。こ
こで、非サイン波形の歪み率α=( t1 −t0 )×100/ t
0 である。ここで、t1:正弦波振動における変位が零か
ら最大値になるまでの時間、t0: 非正弦波振動における
変位が零から最大値になるまでの時間であり、t1 >t0
である。
The mold used was the mold shown in FIG. 4, and the distortion rate of the non-sinusoidal waveform was all 40%.
Adopted more than 20% which is generally required. Here, the distortion rate of the non-sine waveform α = (t 1 −t 0 ) × 100 / t
It is 0 . Here, t 1 is the time until the displacement in the sinusoidal vibration changes from zero to the maximum value, t 0 : the time until the displacement in the non-sinusoidal vibration changes from 0 to the maximum value, and t 1 > t 0
Is.

【0040】[0040]

【表4】 [Table 4]

【0041】尚、表4には同一鋳造条件における高周波
磁界のない状態でのパウダー消費量、及びオシレーショ
ンマーク深さの調査結果を比較として記載している。電
磁力使用により種々の鋳造速度において、パウダー消費
量が増加すると共に、オシレーションマーク深さが減少
し、安定鋳造と表面性状の良好な鋳片が得られた。
Table 4 shows, as a comparison, the powder consumption in the absence of the high-frequency magnetic field under the same casting conditions, and the examination result of the oscillation mark depth. By using electromagnetic force, powder consumption increased and oscillation mark depth decreased at various casting speeds, and stable casting and slabs with good surface quality were obtained.

【0042】次に、正弦波のみを用い、NSRが20%
以下における本発明の実施例を示す。使用したパウダー
には前述の表2に示した潤滑に有利な低粘性・低融点パ
ウダーである。高周波電磁力の印加のパターンは外コイ
ルについては図6の(c)のパターン、内コイルについ
ては同図の(f)のパターンを適用した。即ち、外コイ
ルにはPS期に電流を印加し、内コイルにはNS期に電
流を印加するパターンである。
Next, using only a sine wave, the NSR is 20%.
Examples of the present invention will be shown below. The powder used is the low-viscosity, low-melting-point powder shown in Table 2 which is advantageous for lubrication. As the pattern of applying the high frequency electromagnetic force, the pattern of FIG. 6C is applied to the outer coil, and the pattern of FIG. 6F is applied to the inner coil. That is, it is a pattern in which a current is applied to the outer coil in the PS period and a current is applied to the inner coil in the NS period.

【0043】表5に実際に鋳造したときの鋳造条件とパ
ウダー消費量、オシレーションマーク深さの結果を示
す。この場合用いた鋳型は図4に示したモールド上部ま
でスリットを切ったモールドを用いた時のものである。
表5から明らかなように、本発明の方法を用いた鋳造方
法においては従来スラブの鋳造では達することができな
いような5m/分においても安定した鋳造が達成でき
た。
Table 5 shows the results of casting conditions, powder consumption, and oscillation mark depth during actual casting. The mold used in this case is the one shown in FIG. 4 in which a slit is cut to the upper part of the mold.
As is clear from Table 5, in the casting method using the method of the present invention, stable casting can be achieved even at 5 m / min which cannot be achieved by conventional slab casting.

【0044】[0044]

【表5】 [Table 5]

【0045】[0045]

【発明の効果】以上説明したように高周波電磁力を用い
た連続鋳造において、適切なコイルを配置し、磁場の印
加による電磁力をかけることにより、高速鋳造時にも安
定したパウダー潤滑を確保でき、操業上のトラブルもな
く表面欠陥の極めて少ない鋳片を得ることができる。そ
の結果、無手入れ圧延が可能な鋳片を安定して製造する
ことができ、鋳片歩留まりの向上、製造コストの低減な
ど、その効果は極めて大きい。
As described above, in continuous casting using high frequency electromagnetic force, by placing an appropriate coil and applying an electromagnetic force by applying a magnetic field, stable powder lubrication can be secured even during high speed casting, It is possible to obtain a slab with extremely few surface defects without any operational trouble. As a result, a slab capable of maintenance-free rolling can be stably manufactured, and the effects such as an improvement in slab yield and a reduction in manufacturing cost are extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】高周波電流が溶融金属に与えるローレンツ力を
示す図である。
FIG. 1 is a diagram showing Lorentz force applied to molten metal by a high frequency current.

【図2】本発明における高周波電磁力コイルを備えた鋳
型を示す図である。
FIG. 2 is a view showing a mold provided with a high frequency electromagnetic force coil according to the present invention.

【図3】本発明における鋳型の一態様を示す図である。FIG. 3 is a view showing an aspect of a mold according to the present invention.

【図4】本発明における鋳型の一態様を示す図である。FIG. 4 is a diagram showing an embodiment of a mold according to the present invention.

【図5】本発明における鋳型の一態様を示す図である。FIG. 5 is a view showing an aspect of a mold according to the present invention.

【図6】本発明における外コイルと内コイルに電流を印
加する態様を示す図である。
FIG. 6 is a diagram showing a mode of applying a current to an outer coil and an inner coil in the present invention.

【図7】外コイルの電流値とパウダー消費量との関係を
示す図である。
FIG. 7 is a diagram showing a relationship between a current value of an outer coil and a powder consumption amount.

【図8】内コイルの電流値とオシレーションマーク深さ
との関係を示す図である。
FIG. 8 is a diagram showing a relationship between a current value of an inner coil and an oscillation mark depth.

【符号の説明】[Explanation of symbols]

1 鋳型 2 浸漬ノズル 3 凝固シェル 4 モールドパウダー 5 外コイル 6 内コイル 7 溶融金属 8 タンデッシュ 10 溶融金属 11 電磁コイル 12 高周波電流 13 誘導電流 14 ローレンツ力 1 Mold 2 Immersion Nozzle 3 Solidifying Shell 4 Mold Powder 5 Outer Coil 6 Inner Coil 7 Molten Metal 8 Tundish 10 Molten Metal 11 Electromagnetic Coil 12 High Frequency Current 13 Induction Current 14 Lorentz Force

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鋳型振動を用いて鋳片にネガティブスト
リップとポジティブストリップとを与えながら溶融金属
を連続鋳造する方法において、溶融金属のメニスカス部
近傍に対して、鋳型の外部から高周波電磁力(以下外電
磁力という)を印加し、および/または、鋳型の内側に
おいて高周波電磁力(以下内電磁力という)を印加する
ことを特徴とする電磁力を応用した連続鋳造法。
1. A method of continuously casting a molten metal while applying a negative strip and a positive strip to a slab using a mold vibration, wherein a high frequency electromagnetic force (hereinafter A continuous casting method applying an electromagnetic force characterized by applying an external electromagnetic force) and / or a high frequency electromagnetic force (hereinafter referred to as an internal electromagnetic force) inside the mold.
【請求項2】 前記鋳型のネガティブストリップの時期
(以下NS期という)には、前記内電磁力を前記内電磁
力よりも大きく印可し、他方、前記鋳型振動のポジティ
ブストリップの時期(以下PS期という)には、前記外
電磁力を内電磁力よりも大きくすることを特徴とする請
求項1記載の電磁力を応用した連続鋳造法。
2. The mold negative strip timing (hereinafter referred to as NS period) is applied with the internal electromagnetic force larger than the internal electromagnetic force, while the mold vibration positive strip period (hereinafter referred to as PS period). Said), the external electromagnetic force is made larger than the internal electromagnetic force. The continuous casting method to which the electromagnetic force is applied according to claim 1.
【請求項3】 前記鋳型のネガティブストリップの時間
比率が20%未満である請求項1または2に記載された
電磁力を応用した連続鋳造法。
3. The continuous casting method applying electromagnetic force according to claim 1, wherein the time ratio of the negative strip of the mold is less than 20%.
JP01559095A 1995-01-06 1995-01-06 Continuous casting method using electromagnetic force Expired - Fee Related JP3191594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01559095A JP3191594B2 (en) 1995-01-06 1995-01-06 Continuous casting method using electromagnetic force

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01559095A JP3191594B2 (en) 1995-01-06 1995-01-06 Continuous casting method using electromagnetic force

Publications (2)

Publication Number Publication Date
JPH08187563A true JPH08187563A (en) 1996-07-23
JP3191594B2 JP3191594B2 (en) 2001-07-23

Family

ID=11892948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01559095A Expired - Fee Related JP3191594B2 (en) 1995-01-06 1995-01-06 Continuous casting method using electromagnetic force

Country Status (1)

Country Link
JP (1) JP3191594B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0916434A1 (en) * 1997-11-18 1999-05-19 Inland Steel Company Electromagnetic meniscus control in continuous casting
EP1172158A1 (en) * 2000-07-10 2002-01-16 Kawasaki Steel Corporation Method and apparatus for continuous casting of metals

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6023384B1 (en) * 2016-07-07 2016-11-09 仁頃 まさみ Tag

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0916434A1 (en) * 1997-11-18 1999-05-19 Inland Steel Company Electromagnetic meniscus control in continuous casting
EP1172158A1 (en) * 2000-07-10 2002-01-16 Kawasaki Steel Corporation Method and apparatus for continuous casting of metals
US6712124B1 (en) 2000-07-10 2004-03-30 Jfe Steel Corporation Method and apparatus for continuous casting of metals
EP1508389A2 (en) * 2000-07-10 2005-02-23 JFE Steel Corporation Method and apparatus for continuous casting of metals
EP1508389A3 (en) * 2000-07-10 2005-05-04 JFE Steel Corporation Method and apparatus for continuous casting of metals
US7628196B2 (en) 2000-07-10 2009-12-08 Jfe Steel Corporation Method and apparatus for continuous casting of metals

Also Published As

Publication number Publication date
JP3191594B2 (en) 2001-07-23

Similar Documents

Publication Publication Date Title
JPH08187563A (en) Continuous casting method applying electromagnetic force
JP3205018B2 (en) Manufacturing method of continuous cast slab with excellent surface properties
KR100430083B1 (en) Method of Continuous Casting of Molten Metal
JP4210050B2 (en) Method for continuous casting of molten metal
JP3076667B2 (en) Steel continuous casting method
JP3055413B2 (en) Method and apparatus for continuous casting of molten metal
JPH08197211A (en) Method for continuously casting molten metal and mold for continuous casting
JP2008246534A (en) Continuous casting method for steel
JP3033318B2 (en) Method of supplying lubricant in continuous casting apparatus
JP2009172638A (en) Continuous casting method utilizing electromagnetic force
JP3158936B2 (en) High frequency coil for continuous casting and continuous casting method
JP3127762B2 (en) Continuous casting method of molten metal
JPH0515949A (en) Apparatus and method for continuously casting metal
JP3595529B2 (en) Continuous casting machine for molten metal
JP3525717B2 (en) Continuous casting method of molten metal using electromagnetic force
JP2003211259A (en) Method for continuously casting steel
JP3139317B2 (en) Continuous casting mold and continuous casting method using electromagnetic force
JP2757736B2 (en) Metal continuous casting equipment
KR100244660B1 (en) Control device for molten metal of continuous casting mould
JP2003236644A (en) Method for continuously casting steel
JP3094673B2 (en) Continuous casting method and apparatus
JPH04157053A (en) Method for continuously casting steel
JPH06182497A (en) Method for continuously casting metal
JPH04322842A (en) Mold for continuously casting molten metal
JPH0890165A (en) Continuous casting mold

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees