JP2010182829A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2010182829A
JP2010182829A JP2009024158A JP2009024158A JP2010182829A JP 2010182829 A JP2010182829 A JP 2010182829A JP 2009024158 A JP2009024158 A JP 2009024158A JP 2009024158 A JP2009024158 A JP 2009024158A JP 2010182829 A JP2010182829 A JP 2010182829A
Authority
JP
Japan
Prior art keywords
electrode
layer
substrate
disposed
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009024158A
Other languages
English (en)
Inventor
Hisao Kawasaki
久夫 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009024158A priority Critical patent/JP2010182829A/ja
Publication of JP2010182829A publication Critical patent/JP2010182829A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

【課題】ゲート・ドレイン間の帰還容量増大を防止し、超高周波動作に適する半導体装置。
【解決手段】
基板10上に順次配置され,窒化物系化合物半導体層からなるバッファ層12およびアルミニウム窒化ガリウム層(AlxGa1-xN)(0.1≦x≦1)からなるショットキー層14と、ショットキー層14上に配置されたソース電極16およびドレイン電極18と、ショットキー層14に形成され,ソース電極16およびドレイン電極18間のチャネルを細線状に分割する複数の溝26と、複数の溝26および細線状に分割されたチャネルを横断して配置されたゲート電極20と、ショットキー層14,複数の溝26およびゲート電極20上に形成された絶縁層22と、絶縁層22上に配置され,ソース電極16に接続されたソースフィールドプレート電極24とを備える。
【選択図】図1

Description

本発明は半導体装置に関し、特に細線状チャネルを有し、超高周波動作に適する、高性能化された窒化ガリウム(GaN)系電界効果型トランジスタからなる半導体装置に関する。
GaNなどの化合物半導体を用いた電界効果型トランジスタ(FET:Field Effect Transistor)は、優れた高周波特性を有しマイクロ波帯で動作する半導体装置として広く実用化されている。従来、マイクロ波帯で用いられているFETは、例えば、SiC基板上にGaNバッファ層、AlGaNショットキー層が堆積され、AlGaNショットキー層上にソース電極,ドレイン電極、ゲート電極が配置された構成を備える。Ka帯以上の高周波でFETの特性改善を図るにはゲート長の短縮化が有効である。しかし、サブハーフミクロン以下のゲート電極に対してはゲート長の短縮に伴い、ショートチャネル効果が顕著になり、ドレインコンダクタンスが低下してしまう。ドレインコンダクタンスの低下を防止する方法として、ショットキー層に溝を設け、チャネルを細線状に分割した半導体装置が提案されている(例えば、特許文献1参照。)。
しかしながら、特許文献1に開示された半導体装置では、溝の部分に配置されたゲート電極が半導体装置の動作に寄与しないため、単位ゲート電極幅当たりのゲート・ドレイン帰還容量の増大を招いてしまう。ゲート・ドレイン帰還容量の増大は、半導体装置の利得を低下させ、かつ不安定動作による半導体装置の発振を引き起こす可能性がある。
特開平05−275463号公報
本発明の目的は、ゲート・ドレイン間の帰還容量増大を防止し、超高周波動作に適する高性能な半導体装置を提供することにある。
上記目的を達成するための本発明の一態様によれば、基板と、前記基板上に配置された窒化物系化合物半導体層からなるバッファ層と、前記バッファ層上に配置され、アルミニウム窒化ガリウム層(AlxGa1-xN)(0.1≦x≦1)からなるショットキー層と、前記ショットキー層上に配置されたソース電極およびドレイン電極と、前記ソース電極および前記ドレイン電極間の前記ショットキー層に形成され、前記ソース電極および前記ドレイン電極間のチャネルを細線状に分割する複数の溝と、前記ソース電極および前記ドレイン電極間に配置され、前記複数の溝および細線状に分割された前記チャネルを横断して配置されたゲート電極と、前記ソース電極および前記ドレイン電極間に配置され、前記ショットキー層、前記複数の溝および前記ゲート電極上に形成された絶縁層と、前記絶縁層上に配置され、前記ソース電極に接続されたソースフィールドプレート電極とを備えた半導体装置が提供される。
本発明によれば、ゲート・ドレイン間の帰還容量増大を防止し、超高周波動作に適する高性能な半導体装置を提供することができる。
本発明の第1の実施の形態に係る半導体装置の模式的平面パターン構成図。 図1のI−I線に沿う模式的断面構造図。 図1のII−II線に沿う模式的断面構造図。 図1のIII−III線に沿う模式的断面構造図。 図1のIV−IV線に沿う模式的断面構造図。 図1のV−V線に沿う模式的断面構造図。 本発明の第2の実施の形態に係る半導体装置の模式的平面パターン構成図。 図7のVI−VI線に沿う模式的断面構造図。 図7のVII−VII線に沿う模式的断面構造図。 本発明の第2の実施の形態の変形例1に係る半導体装置の模式的平面パターン構成図。 本発明の第2の実施の形態の変形例2に係る半導体装置の模式的平面パターン構成図。
次に、図面を参照して、本発明の実施の形態を説明する。以下において、同じブロックまたは要素には同じ符号を付して説明の重複を避け、説明を簡略にする。図面は模式的なものであり、現実のものとは異なることに留意すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。
以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の実施の形態は、各構成部品の配置などを下記のものに特定するものでない。この発明の実施の形態は、特許請求の範囲において、種々の変更を加えることができる。
[第1の実施の形態]
本発明の第1の実施の形態に係る半導体装置の模式的平面パターン構成は、図1に示すように表される。また、図1のI−I線に沿う模式的断面構造は、図2に示すように表され、図1のII−II線に沿う模式的断面構造は、図3に示すように表され、図1のIII−III線に沿う模式的断面構造は、図4に示すように表され、図1のIV−IV線に沿う模式的断面構造は、図5に示すように表され、図1のV−V線に沿う模式的断面構造は、図6に示すように表される。
第1の実施の形態に係る半導体装置は、図1〜図6に示すように、基板10と、基板10上に配置され、窒化物系化合物半導体層からなるバッファ層12と、バッファ層12上に配置され、アルミニウム窒化ガリウム層(AlxGa1-xN)(0.1≦x≦1)からなるショットキー層14と、ショットキー層14上に配置されたソース電極16およびドレイン電極18と、ソース電極16およびドレイン電極18間のショットキー層14に形成され、ソース電極16およびドレイン電極18間のチャネルを細線状に分割する複数の溝26と、ソース電極16およびドレイン電極18間に配置され、複数の溝26および細線状に分割されたチャネルを横断して配置されたゲート電極20と、ソース電極16およびドレイン電極18間に配置され、ショットキー層14、複数の溝26およびゲート電極20上に形成された絶縁層22と、絶縁層22上に配置され、ソース電極16に接続されたソースフィールドプレート電極24とを備える。
図1〜図6に示される半導体装置は、バッファ層12とショットキー層14のヘテロ接合界面に形成された2次元電子ガス層によって形成される電子の導通チャネルを備える高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor)であり、電子の導通チャネルの幅は、ショットキー層14が細線状に分割されることで、複数の溝26によって制限される。
ソースフィールドプレート電極24は、図1〜図5に示すように、絶縁層22を介して、ソース電極16から、ゲート電極20とドレイン電極18との間まで延在して配置される。
また、第1の実施の形態に係る半導体装置においては、ソースフィールドプレート電極24は、図1〜図5に示すように、ゲート電極20上に配置された絶縁層22を介して、ゲート電極20上にも配置されている。
このように絶縁層22を介して、ソース電極16から、ゲート電極20とドレイン電極18との間まで延在して配置されたソースフィールドプレート電極24によって、第1の実施の形態に係る半導体装置の有するゲート電極20とドレイン電極18間の電極間容量がシールドされる。結果として、ゲート電極20とドレイン電極18間の帰還容量が大幅に低減され、超高周波動作に適する半導体装置を実現することができる。
ソース電極16とドレイン電極18は、アルミニウム窒化ガリウム層(AlxGa1-xN)(0.1≦x≦1)からなるショットキー層14とオーミックコンタクトを形成しており、一方、ゲート電極20は、窒化物系化合物半導体層からなるバッファ層12およびアルミニウム窒化ガリウム層(AlxGa1-xN)(0.1≦x≦1)からなるショットキー層14とショットキー接合を形成している。
複数の溝26は、ショットキー層14をエッチングにより除去することによって、形成する。
第1の実施の形態に係る半導体装置においては、図1〜図3に示すように、基板10上に配置されたバッファ層12とショットキー層14をエッチングすることで、隣接する半導体装置間を素子分離している。すなわち、ショットキー層14およびバッファ層12の深さ方向の一部までエッチングすることで、素子分離している。
その他の方法としては、素子分離は、イオン注入により形成することもできる。イオン種としては、例えば、窒素(N)、アルゴン(Ar)などを適用することができる。また、イオン注入に伴うドーズ量は、例えば、約1×1014 (ions/cm2)程度であり、加速エネルギーは、例えば、約100keV〜200keV程度である。
絶縁層22としては、例えば、PECVD(Plasma Enhanced Chemical Vapor Deposition)法によって堆積された窒化膜、アルミナ(Al23)膜、酸化膜(SiO2)、酸窒化膜(SiON)などで形成することができる。
ソース電極16およびドレイン電極18は、例えば、アルミニウム(Al)、Ti/Auなどで形成される。
ゲート電極20は、例えばNi/Auなどで形成することができる。
また、基板10は、SiC基板、GaAs基板、GaN基板、SiC基板上にGaNエピタキシャル層を形成した基板、Si基板上にGaNエピタキシャル層を形成した基板、SiC基板上にGaN/GaAlNからなるヘテロ接合エピタキシャル層を形成した基板、サファイア基板上にGaNエピタキシャル層を形成した基板、サファイア基板若しくはダイヤモンド基板のいずれかを備えていてもよい。
第1の実施の形態によれば、ゲート電極20とドレイン電極18間に堆積された絶縁層22上にソースフィールドプレート電極24を付加することにより、ソースフィールドプレート電極24によるゲート・ドレイン電極間のシールド効果により、細線状のチャネルを備えた半導体装置のゲート・ドレイン間の帰還容量増大を防止し、高性能な半導体素子を実現することができる。
また、第1の実施の形態によれば、ゲート電極20とドレイン電極18間に堆積された絶縁層22上にソースフィールドプレート電極24を付加することにより、ソースフィールドプレート電極24によるゲート・ドレイン電極間のシールド効果により、細線状のチャネルを備えた半導体装置のゲート・ドレイン間の電界集中を緩和し、電流コプラス現象を緩和することができる。
また、第1の実施の形態によれば、細線状のチャネルを備えた半導体装置のゲート・ドレイン間の電界集中を緩和することによって、電流集中を抑制し、熱分散を良好にすることができる。
第1の実施の形態によれば、ゲート・ドレイン間の帰還容量増大を防止し、超高周波動作に適する高性能な半導体装置を提供することができる。
[第2の実施の形態]
本発明の第2の実施の形態に係る半導体装置の模式的平面パターン構成は、図7に示すように表される。また、図7のVI−VI線に沿う模式的断面構造は、図8に示すように表され、図7のVII−VII線に沿う模式的断面構造は、図9に示すように表される。
第2の実施の形態に係る半導体装置においては、図7〜図9に示すように、ソースフィールドプレート電極24は、ゲート電極20とドレイン電極18間に配置された絶縁層22上に配置されたことを特徴とする。
すなわち、ソースフィールドプレート電極24は、第1の実施の形態においては、図1〜図5に示すように、絶縁層22を介して、ソース電極16から、ゲート電極20とドレイン電極18との間まで延在して配置されていたのに対して、第2の実施の形態においては、図7〜図9に示すように、ソース電極16から、ゲート電極20とドレイン電極18との間まで延在しては配置されず、ゲート電極20とドレイン電極18間に配置された絶縁層22上にのみ配置された構造を有する。
また、第2に実施の形態に係る半導体装置においては、図7〜図9に示すように、ソースフィールドプレート電極24は、溝26を含んで配置されたことを特徴とする。
また、第2の実施の形態に係る半導体装置においては、ソースフィールドプレート電極24は、図7〜図9に示すように、ゲート電極20上には配置されていない。
このように絶縁層22を介して、ゲート電極20とドレイン電極18間にのみソースフィールドプレート電極24を配置することによっても、第2の実施の形態に係る半導体装置の有するゲート電極20とドレイン電極18間の電極間容量がシールドされる。結果として、ゲート電極20とドレイン電極18間の帰還容量が大幅に低減され、超高周波動作に適する半導体装置を実現することができる。
さらに、ソースフィールドプレート電極24は、図7〜図9に示すように、ゲート電極20上には配置されていないことから、ゲート電極20とソースフィールドプレート電極24間、あるいはゲート電極20とソース電極16間の寄生容量は、第1の実施の形態に比べて低減することができる。このため、ゲート入力容量、ゲート帰還容量ともに低減されて、さらなる超高周波動作に適する半導体装置を実現することができる。
その他の構造は、図1〜図6に示す第1の実施の形態に係る半導体装置と同様であるため、重複した説明は省略する。
(変形例1)
第2の実施の形態の変形例1に係る半導体装置の模式的平面パターン構成は、図10に示すように表される。
第2に実施の形態に係る半導体装置は、図7〜9に示すように、ソースフィールドプレート電極24は、溝26を含んで配置されているのに対して、変形例1においては、図10に示すように、ソースフィールドプレート電極24は、溝26を含まないように、ゲート電極20とドレイン電極18間に配置されていることを特徴とする。
第2に実施の形態の変形例1に係る半導体装置においては、ゲート電極20とソースフィールドプレート電極24間の距離を離隔することによって、第2の実施の形態に係る半導体装置に比べ、ゲート電極20とソースフィールドプレート電極24間、あるいはゲート電極20とソース電極16間の寄生容量を低減することができる。
その他の構造は、図1〜図6に示す第1の実施の形態に係る半導体装置と同様であるため、重複した説明は省略する。
(変形例2)
第2の実施の形態の変形例2に係る半導体装置の模式的平面パターン構成は、図11に示すように表される。
変形例2においては、図11に示すように、ソースフィールドプレート電極24は、溝26の一部のみを含むように、ゲート電極20とドレイン電極18間に配置されていることを特徴とする。
第2に実施の形態の変形例2に係る半導体装置においても、ゲート電極20とソースフィールドプレート電極24間の距離を離隔することによって、第2の実施の形態に係る半導体装置に比べ、ゲート電極20とソースフィールドプレート電極24間、あるいはゲート電極20とソース電極16間の寄生容量を低減することができる。さらに、第2の実施の形態の変形例2に係る半導体装置に比べ、ゲート電極20とドレイン電極18間の寄生容量を低減することもできる。
その他の構造は、図1〜図6に示す第1の実施の形態に係る半導体装置と同様であるため、重複した説明は省略する。
第2の実施の形態およびその変形例によれば、ゲート電極20とドレイン電極18間に堆積された絶縁層22上にソースフィールドプレート電極24を付加することにより、ソースフィールドプレート電極24によるゲート・ドレイン電極間のシールド効果により、細線状のチャネルを備えた半導体装置のゲート・ドレイン間の帰還容量増大を防止し、高性能な半導体素子を実現することができる。
また、第2の実施の形態およびその変形例によれば、ゲート電極20とドレイン電極18間に堆積された絶縁層22上にソースフィールドプレート電極24を付加することにより、ソースフィールドプレート電極24によるゲート・ドレイン電極間のシールド効果により、細線状のチャネルを備えた半導体装置のゲート・ドレイン間の電界集中を緩和し、電流コプラス現象を緩和することができる。
また、第2の実施の形態およびその変形例によれば、細線状のチャネルを備えた半導体装置のゲート・ドレイン間の電界集中を緩和することによって、電流集中を抑制し、熱分散を良好にすることができる。
第2の実施の形態およびその変形例によれば、ゲート・ドレイン間の帰還容量増大を防止し、超高周波動作に適する高性能な半導体装置を提供することができる。
さらに、第2の実施の形態およびその変形例によれば、第1の実施の形態に比べ、ゲート・ソース間の寄生容量の増大を防止し、超高周波動作に適する高性能な半導体装置を提供することができる。
[その他の実施の形態]
上記のように、本発明は第1〜第2の実施の形態およびその変形例によって記載したが、この開示の一部をなす論述および図面は例示的なものであり、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例および運用技術が明らかとなろう。
なお、第1〜第2の実施の形態およびその変形例に係る半導体装置においては、ゲート電極20およびソース電極16をそれぞれ2本、ドレイン電極18を1本のみ有する構成例を開示したが、平面パターン構成はこのような簡易な構成に限定されるものではない。例えば、ゲート電極20、ソース電極16およびドレイン電極18ごとに複数のフィンガーをそれぞれ束ねて形成したゲート端子電極、ソース端子電極およびドレイン端子電極を備えるマルチフィンガー構造を備えていても良い。
また、本発明の半導体装置としては、FET、HEMTに限らず、MESFET(Metal Semiconductor Field Effect Transistor)、LDMOS(Lateral Doped Metal-Oxide-Semiconductor Field Effect Transistor)やヘテロ接合バイポーラトランジスタ(HBT:Hetero-junction Bipolar Transistor)などの増幅素子、メムス(MEMS:Micro Electro Mechanical Systems)素子などにも適用できることは言うまでもない。
このように、本発明はここでは記載していない様々な実施の形態などを含む。
本発明の半導体装置は、内部整合型電力増幅素子、電力MMIC(Monolithic Microwave Integrated Circuit)、マイクロ波電力増幅器、ミリ波電力増幅器、高周波MEMS素子などの幅広い分野に適用可能である。
10…基板
12…バッファ層(窒化物系化合物半導体層)
14…ショットキー層(アルミニウム窒化ガリウム層(AlxGa1-xN)(0.1≦x≦1))
16…ソース電極
18…ドレイン電極
20…ゲート電極
22…絶縁層
24…ソースフィールドプレート電極
26…溝

Claims (8)

  1. 基板と、
    前記基板上に配置された窒化物系化合物半導体層からなるバッファ層と、
    前記バッファ層上に配置され、アルミニウム窒化ガリウム層(AlxGa1-xN)(0.1≦x≦1)からなるショットキー層と、
    前記ショットキー層上に配置されたソース電極およびドレイン電極と、
    前記ソース電極および前記ドレイン電極間の前記ショットキー層に形成され、前記ソース電極および前記ドレイン電極間のチャネルを細線状に分割する複数の溝と、
    前記ソース電極および前記ドレイン電極間に配置され、前記複数の溝および細線状に分割された前記チャネルを横断して配置されたゲート電極と、
    前記ソース電極および前記ドレイン電極間に配置され、前記ショットキー層、前記複数の溝および前記ゲート電極上に形成された絶縁層と、
    前記絶縁層上に配置され、前記ソース電極に接続されたソースフィールドプレート電極と
    を備えたことを特徴とする半導体装置。
  2. 前記バッファ層と前記ショットキー層のヘテロ接合界面に形成された2次元電子ガス層のチャネル幅は、前記複数の溝によって制限されることを特徴とする請求項1に記載の半導体装置。
  3. 前記ソースフィールドプレート電極は、前記絶縁層を介して、前記ソース電極から、前記ゲート電極と前記ドレイン電極との間まで延在して配置されたことを特徴とする請求項1または2に記載の半導体装置。
  4. 前記ソースフィールドプレート電極は、前記ゲート電極上に配置された絶縁層を介して、前記ゲート電極上に配置されたことを特徴とする請求項1〜3のいずれか1項に記載の半導体装置。
  5. 前記ソースフィールドプレート電極は、前記ゲート電極と前記ドレイン電極間に配置された前記絶縁膜上に配置されたことを特徴とする請求項1または2に記載の半導体装置。
  6. 前記ソースフィールドプレート電極は、前記溝を含んで配置されることを特徴とする請求項5に記載の半導体装置。
  7. 前記ソースフィールドプレート電極は、前記溝を含んでいない前記ゲート電極と前記ドレイン電極間に配置されていることを特徴とする請求項5に記載の半導体装置。
  8. 前記基板は、SiC基板、GaAs基板、GaN基板、SiC基板上にGaNエピタキシャル層を形成した基板、Si基板上にGaNエピタキシャル層を形成した基板、SiC基板上にGaN/AlGaNからなるヘテロ接合エピタキシャル層を形成した基板、サファイア基板上にGaNエピタキシャル層を形成した基板、サファイア基板若しくはダイヤモンド基板のいずれかを備えることを特徴とする請求項1〜7の内、いずれか1項に記載の半導体装置。
JP2009024158A 2009-02-04 2009-02-04 半導体装置 Pending JP2010182829A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009024158A JP2010182829A (ja) 2009-02-04 2009-02-04 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009024158A JP2010182829A (ja) 2009-02-04 2009-02-04 半導体装置

Publications (1)

Publication Number Publication Date
JP2010182829A true JP2010182829A (ja) 2010-08-19

Family

ID=42764173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009024158A Pending JP2010182829A (ja) 2009-02-04 2009-02-04 半導体装置

Country Status (1)

Country Link
JP (1) JP2010182829A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050054A1 (ja) * 2012-09-28 2014-04-03 パナソニック株式会社 半導体装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050054A1 (ja) * 2012-09-28 2014-04-03 パナソニック株式会社 半導体装置
JPWO2014050054A1 (ja) * 2012-09-28 2016-08-22 パナソニックIpマネジメント株式会社 半導体装置
US9666664B2 (en) 2012-09-28 2017-05-30 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device

Similar Documents

Publication Publication Date Title
US10439059B2 (en) High-linearity transistors
JP5519930B2 (ja) ゲート−ソースフィールドプレートを含むワイドバンドギャップトランジスタ
US7126426B2 (en) Cascode amplifier structures including wide bandgap field effect transistor with field plates
US9419121B1 (en) Semiconductor device with multiple carrier channels
JP5468286B2 (ja) 半導体装置およびその製造方法
US11749726B2 (en) Field effect transistor with source-connected field plate
US20220376105A1 (en) Field effect transistor with selective channel layer doping
JP2011171697A (ja) 高周波半導体装置
US20220376098A1 (en) Field effect transistor with selective modified access regions
WO2019176434A1 (ja) 半導体装置および半導体装置の製造方法、並びに電子機器
JP2011040597A (ja) 半導体装置およびその製造方法
US11502178B2 (en) Field effect transistor with at least partially recessed field plate
JP5468287B2 (ja) 半導体装置およびその製造方法
JP2010062320A (ja) 半導体装置およびその製造方法
JP2010245351A (ja) 半導体装置
JP2010182830A (ja) 半導体装置
WO2021029183A1 (ja) 半導体装置、半導体モジュールおよび電子機器
JP2010182829A (ja) 半導体装置
JP2010245350A (ja) 半導体装置
JP5443769B2 (ja) 半導体装置
US20230130614A1 (en) Transistor with ohmic contacts
US20220302291A1 (en) Field effect transistor with multiple stepped field plate
CN118173585A (zh) 一种半导体器件及其制备方法
KR20240005063A (ko) 소스 접속된 필드 플레이트를 갖는 전계 효과 트랜지스터
KR20240005070A (ko) 변형된 액세스 영역들을 갖는 전계 효과 트랜지스터