JP2010179266A - Fine bubbles-containing liquid producing apparatus, plant cultivation apparatus using the apparatus and liquid for plant cultivation - Google Patents

Fine bubbles-containing liquid producing apparatus, plant cultivation apparatus using the apparatus and liquid for plant cultivation Download PDF

Info

Publication number
JP2010179266A
JP2010179266A JP2009026805A JP2009026805A JP2010179266A JP 2010179266 A JP2010179266 A JP 2010179266A JP 2009026805 A JP2009026805 A JP 2009026805A JP 2009026805 A JP2009026805 A JP 2009026805A JP 2010179266 A JP2010179266 A JP 2010179266A
Authority
JP
Japan
Prior art keywords
liquid
gas
nitrogen
soil
fine bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009026805A
Other languages
Japanese (ja)
Inventor
Hiroshi Furusawa
浩 古沢
Wakana Shimizu
若那 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kochi University of Technology
Original Assignee
Kochi University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kochi University of Technology filed Critical Kochi University of Technology
Priority to JP2009026805A priority Critical patent/JP2010179266A/en
Publication of JP2010179266A publication Critical patent/JP2010179266A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fine bubbles-containing liquid producing apparatus capable of preparing an optimum fine bubbles-containing liquid corresponding to soil environment for growing plants, a plant cultivating apparatus using the apparatus and a liquid for a plant cultivation by which excellent plant growth effect is attained without applying fertilizer. <P>SOLUTION: The fine bubbles-containing liquid producing apparatus includes: a gas-liquid mixing tank for mixing the liquid to become a generation site of fine bubbles with a gas for forming the fine bubbles; a liquid introducing path for introducing the liquid into the gas-liquid mixing tank; a gas supply path for supplying the gas to the gas liquid mixing tank; a gas-containing liquid discharge path for discharging the gas-containing liquid prepared in the gas-liquid mixing tank; a fine bubbles generation means attached to the gas-containing liquid discharge path; and a plurality of liquid storage tanks connected to the liquid introducing path through a branching valve. The liquid storage tank comprises at least a water storage tank, a liquid fertilizer storage tank and an aerobic bacteria-containing liquid storage tank. The plant cultivation apparatus uses the fine bubbles-containing liquid producing apparatus and the liquid for cultivating the plants is obtained from the fine bubbles-containing liquid producing apparatus. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、微細気泡含有液体の製造装置、及びこの装置を用いた植物の栽培装置、並びに植物栽培用液体に関する。   The present invention relates to a production apparatus for a liquid containing fine bubbles, a plant cultivation apparatus using the apparatus, and a plant cultivation liquid.

従来、植物の生育を促進するための装置として、水耕栽培において、培養液となる水に空気や酸素を溶解させる装置が知られている。
この装置を使用すると、水耕栽培の培養液となる水に空気や酸素を溶解させて植物の根へと供給することができるため、植物の根が活性化されて生長が促進される。
2. Description of the Related Art Conventionally, as an apparatus for promoting plant growth, an apparatus for dissolving air and oxygen in water serving as a culture solution in hydroponics is known.
When this apparatus is used, air and oxygen can be dissolved in water used as a culture medium for hydroponics and supplied to the roots of the plant, so that the roots of the plant are activated and growth is promoted.

しかしながら、このような従来の装置は、水中で植物を栽培する水耕栽培への適用を前提とした装置であるため、土壌栽培への適用は困難であった。   However, since such a conventional apparatus is an apparatus premised on application to hydroponics in which plants are cultivated in water, application to soil cultivation has been difficult.

特許文献1には、大気導入資材を培地中に設置し、コンプレッサーによって大気又は窒素を培地(土壌中、水中)に直接供給する植物の栽培装置が開示されている。
この装置を用いることによって、大気又は窒素を直接培地に供給でき、培地に存在する窒素固定菌やその他の微生物を活性化し、これらが作り出す養分で植物の生長促進を図ることができる。
しかし、この装置は、窒素固定菌やその他の微生物が少ない土壌や養分が乏しい土壌に対して適用した場合、土壌中の養分が充分な量とならないため、優れた植物育成効果を得ることはできない。即ち、この装置では、植物が生育する土壌に応じて最適な育成環境を作り出すことはできない。
Patent Document 1 discloses a plant cultivation apparatus in which an air-introducing material is installed in a medium, and air or nitrogen is directly supplied to the medium (in the soil and water) by a compressor.
By using this apparatus, air or nitrogen can be directly supplied to the medium, and the nitrogen-fixing bacteria and other microorganisms present in the medium can be activated, and the growth of plants can be promoted by the nutrients produced by these.
However, when this device is applied to soil with few nitrogen-fixing bacteria and other microorganisms, or soil with poor nutrients, the amount of nutrients in the soil will not be sufficient, so an excellent plant growth effect cannot be obtained. . In other words, this device cannot create an optimum growing environment according to the soil on which the plant grows.

また特許文献2においては、気泡径が数十マイクロから数百ナノオーダーの範囲の微細気泡を発生させるマイクロバブル発生装置を備えた植物の活性化装置が記載されている。
この装置により得られる微細気泡を含有する栽培用水、即ち溶存酸素を多く含む栽培用水を植物に供することにより、酸素を効率よく植物の根に供給することができるため、植物の根を活性化でき、またマイクロバブルの特性を利用して根付近に養分を引き寄せ吸収を促進することができる。
しかしながら、この装置はその構成上、マイクロバブルの発生場となる液体が1種類に特定されるため、植物が生育する土壌に応じて最適な栽培用液体を簡便に選択的に製造することができなかった。
Patent Document 2 describes a plant activation device provided with a microbubble generator that generates fine bubbles having a bubble diameter in the order of several tens of micrometers to several hundreds of nanometers.
By providing the plant with water for cultivation containing fine bubbles obtained by this apparatus, that is, water for cultivation containing a large amount of dissolved oxygen, oxygen can be efficiently supplied to the plant root, so that the plant root can be activated. In addition, by utilizing the characteristics of microbubbles, it is possible to promote the absorption by attracting nutrients near the roots.
However, since this apparatus has a configuration that specifies one kind of liquid that is a microbubble generation field, an optimal cultivation liquid can be easily and selectively produced according to the soil on which the plant grows. There wasn't.

特許文献3においては、空気又は酸素の気泡を含む液体を植物に供給する装置が開示されている。この装置によれば、加圧下で液体に空気又は酸素を溶解させるので高濃度の溶存酸素水が得られ、また前記溶存酸素水を培地に直接供給するための給水パイプを備えているので、植物の根に効率良く酸素が供給できる。
しかし、この装置の気泡水生成部に導入される液体は1種類に特定されるため、植物が生育する土壌に応じて最適な栽培用液体を簡便に選択的に製造することができなかった。
Patent Document 3 discloses an apparatus for supplying a liquid containing air or oxygen bubbles to a plant. According to this apparatus, since air or oxygen is dissolved in a liquid under pressure, a high-concentration dissolved oxygen water is obtained, and a water supply pipe for directly supplying the dissolved oxygen water to the medium is provided. Oxygen can be supplied efficiently to the roots.
However, since the liquid introduced into the bubbly water generating part of this apparatus is specified as one type, it has not been possible to easily and selectively produce an optimal cultivation liquid according to the soil on which the plant grows.

また、特許文献3に記載された液体は、水中に供給されることを前提としたものであって土壌に供給されることを意図したものではない。
更に、この液体に含まれる気泡は、視認できる程度の大きなものであるため、液体中で気泡が維持される時間は短い。また、気泡となる気体は空気又は酸素に限られており、窒素や酸素の比率を植物が生育する環境(土壌環境等)に応じて設定したものではない。
そのため、仮にこの液体を植物を植えた土壌に供給したとしても、土壌中の微生物(特に窒素固定菌)を充分に活性化することはできず、土壌汚染を引き起こす虞がある窒素肥料等の肥料を施さずに植物の充分な成長を促すことは困難である。
Moreover, the liquid described in Patent Document 3 is premised on being supplied in water, and is not intended to be supplied to soil.
Furthermore, since the bubbles contained in the liquid are large enough to be visually recognized, the time for maintaining the bubbles in the liquid is short. Moreover, the gas which becomes a bubble is restricted to air or oxygen, and the ratio of nitrogen and oxygen is not set according to the environment (soil environment etc.) where a plant grows.
Therefore, even if this liquid is supplied to the soil where the plant is planted, the microorganisms (especially nitrogen-fixing bacteria) in the soil cannot be activated sufficiently and fertilizers such as nitrogen fertilizers that may cause soil contamination It is difficult to promote the sufficient growth of the plant without applying.

特開2003−102273号公報JP 2003-102273 A 特開2006−042785号公報JP 2006-042785 A 特開2006−304714号公報JP 2006-304714 A

本発明は、植物が生育する土壌環境に応じて最適な微細気泡含有液体を簡便に調製できる微細気泡含有液体製造装置、及びこの装置を用いた植物の栽培装置、並びに肥料を施さずとも優れた植物育成効果を得ることができる植物栽培用液体の提供を目的とする。   INDUSTRIAL APPLICABILITY The present invention is excellent without producing a fine bubble-containing liquid production apparatus capable of easily preparing an optimum fine bubble-containing liquid according to the soil environment in which the plant grows, and a plant cultivation apparatus using this apparatus, and without fertilizer. It aims at providing the liquid for plant cultivation which can acquire a plant cultivation effect.

請求項1に係る発明は、微細気泡の発生場となる液体と微細気泡を形成する気体とを混合する気液混合槽と、前記気液混合槽に前記液体を導入するための液体導入路と、前記気液混合槽に前記気体を供給するための給気路と、前記気液混合槽内にて調製された気体含有液体を吐出する気体含有液体吐出路と、前記気体含有液体吐出路に取り付けられた微細気泡発生手段と、前記液体導入路と分岐弁を介して連結された複数の液体貯蔵タンクとを備えており、前記液体貯蔵タンクは、少なくとも水貯蔵タンク、液体肥料貯蔵タンク、好気性菌含有液体貯蔵タンクからなることを特徴とする微細気泡含有液体製造装置に関する。
請求項2に係る発明は、前記給気路に混合弁を介して複数の気体貯蔵タンクが連結されており、前記気体貯蔵タンクは、少なくとも酸素タンクと窒素タンクからなることを特徴とする請求項1記載の微細気泡含有液体製造装置に関する。
請求項3に係る発明は、前記液体肥料貯蔵タンクに貯蔵される液体肥料の主成分が窒素肥料、リン酸肥料、カリウム肥料であることを特徴とする請求項1又は2記載の微細気泡含有液体製造装置に関する。
請求項4に係る発明は、前記好気性菌含有液体貯蔵タンクに貯蔵される好気性菌が窒素固定菌であることを特徴とする請求項1乃至3いずれか記載の微細気泡含有液体製造装置に関する。
The invention according to claim 1 is a gas-liquid mixing tank that mixes a liquid that generates microbubbles and a gas that forms microbubbles, and a liquid introduction path for introducing the liquid into the gas-liquid mixing tank. An air supply path for supplying the gas to the gas-liquid mixing tank, a gas-containing liquid discharge path for discharging a gas-containing liquid prepared in the gas-liquid mixing tank, and the gas-containing liquid discharge path And a plurality of liquid storage tanks connected to the liquid introduction path through a branch valve. The liquid storage tank includes at least a water storage tank, a liquid fertilizer storage tank, The present invention relates to a microbubble-containing liquid manufacturing apparatus comprising a liquid storage tank containing aerobic bacteria.
The invention according to claim 2 is characterized in that a plurality of gas storage tanks are connected to the air supply passage via a mixing valve, and the gas storage tank comprises at least an oxygen tank and a nitrogen tank. 1. The apparatus for producing a liquid containing fine bubbles according to 1.
The invention according to claim 3 is characterized in that the main component of the liquid fertilizer stored in the liquid fertilizer storage tank is nitrogen fertilizer, phosphate fertilizer, or potassium fertilizer. It relates to a manufacturing apparatus.
The invention according to claim 4 relates to the apparatus for producing a microbubble-containing liquid according to any one of claims 1 to 3, wherein the aerobic bacterium stored in the aerobic bacterium-containing liquid storage tank is a nitrogen-fixing bacterium. .

請求項5に係る発明は、請求項1乃至4いずれか記載の微細気泡含有液体製造装置を備えた植物の栽培装置であって、前記微細気泡発生手段にて発生した微細気泡を含んだ液体を、植物を植えた土壌に直接供給するように構成したことを特徴とする植物の栽培装置に関する。   The invention according to claim 5 is a plant cultivation apparatus comprising the apparatus for producing a microbubble-containing liquid according to any one of claims 1 to 4, wherein the liquid containing the microbubbles generated by the microbubble generating means is used. Further, the present invention relates to a plant cultivation apparatus characterized in that the plant is directly supplied to the planted soil.

請求項6に係る発明は、液体中に、酸素と窒素を空気と異なる成分比で混合した気体からなる500μm以下の径の微細気泡を含有し、土壌に供給されることを特徴とする植物栽培用液体に関する。
請求項7に係る発明は、前記液体が好気性菌を含有することを特徴とする請求項6記載の植物栽培用液体に関する。
請求項8に係る発明は、前記液体が液体肥料であることを特徴とする請求項6又は7記載の植物栽培用液体に関する。
The invention according to claim 6 is a plant cultivation characterized in that it contains fine bubbles having a diameter of 500 μm or less composed of a gas obtained by mixing oxygen and nitrogen in a component ratio different from air in a liquid, and is supplied to the soil. Relates to liquids for use.
The invention according to claim 7 relates to the plant cultivation liquid according to claim 6, wherein the liquid contains aerobic bacteria.
The invention according to claim 8 relates to the plant cultivation liquid according to claim 6 or 7, wherein the liquid is a liquid fertilizer.

請求項1に係る発明によれば、水、液体肥料、好気性菌含有液体を、分岐弁を介して選択的に気液混合槽に導入し、微細気泡発生手段により微細気泡を含有する微細気泡含有液体を製造することが可能となり、植物の生育する土壌環境に応じて最適な液体を含む微細気泡含有液体を簡便に調製することができる。
請求項2に係る発明によれば、酸素と窒素を混合弁を介して任意の成分比に混合して気液混合槽に導入し、微細気泡発生手段により微細気泡含有液体を製造することが可能となり、植物の生育する土壌環境に応じて最適な気体を含む微細気泡含有液体を簡便に調製することができる。
請求項3に係る発明によれば、液体肥料タンクに貯蔵される液体肥料の主成分が窒素肥料、リン酸肥料、カリウム肥料であるため、養分の極端に少ないやせた土壌においても、高い植物育成効果を得ることのできる微細気泡含有液体を製造することができる。
請求項4に係る発明によれば、好気性菌含有液体貯蔵タンクに貯蔵される好気性菌含有液体中の好気性菌が窒素固定菌であるため、植物を植えた土壌内の窒素固定量をより効率的に増加させることができ、植物育成効果の向上を図ることのできる微細気泡含有液体を製造することができる。
According to the first aspect of the present invention, water, liquid fertilizer, and aerobic bacteria-containing liquid are selectively introduced into the gas-liquid mixing tank via the branch valve, and fine bubbles containing fine bubbles by the fine bubble generating means. The contained liquid can be produced, and the fine bubble-containing liquid containing the optimum liquid can be easily prepared according to the soil environment where the plant grows.
According to the second aspect of the present invention, it is possible to mix oxygen and nitrogen at an arbitrary component ratio through a mixing valve and introduce the mixture into a gas-liquid mixing tank, thereby producing a fine bubble-containing liquid by the fine bubble generating means. Thus, a fine bubble-containing liquid containing an optimum gas can be easily prepared according to the soil environment in which the plant grows.
According to the invention according to claim 3, since the main components of the liquid fertilizer stored in the liquid fertilizer tank are nitrogen fertilizer, phosphate fertilizer, and potassium fertilizer, even in extremely thin soil with no nutrients, high plant growth effect The liquid containing fine bubbles can be produced.
According to the invention which concerns on Claim 4, since the aerobic microbe in the aerobic microbe containing liquid stored in an aerobic microbe containing liquid storage tank is a nitrogen fixation microbe, the nitrogen fixed amount in the soil which planted the plant A fine bubble-containing liquid that can be increased more efficiently and can improve the plant-growing effect can be produced.

請求項5に係る発明によれば、植物の生育する土壌環境に応じて最適な微細気泡含有液体を直接土壌に供給することができるため、高い植物育成効果を得ることができる栽培装置となる。   According to the invention which concerns on Claim 5, since the optimal fine bubble containing liquid can be directly supplied to soil according to the soil environment where a plant grows, it becomes a cultivation apparatus which can acquire a high plant growth effect.

請求項6に係る発明によれば、液体中に酸素と窒素を空気と異なる成分比で混合した気体からなる微細気泡が500μm以下の径であるため、土壌中のミリスケールの間隙を気泡が潰れることなく通ることができる。またこの液体が土壌に供給される植物栽培用液体であるため、窒素や酸素の比率を植物が生育する土壌環境に応じて設定することにより、土壌内に存在する微生物、特に好気性菌を充分に活性化し、植物の養分となり得る窒素の固定量を増加させることができる。
その結果、土壌汚染を引き起こす虞がある化学肥料や有機肥料などの肥料を外部から供給することなく、高い植物育成効果を得ることができる。
請求項7に係る発明によれば、前記液体が好気性菌を含有しているため、微生物、特に好気性菌の少ない土壌であっても土壌中の好気性菌を増加させて、高い植物育成効果を得ることができる。
請求項8に係る発明によれば、前記液体が液体肥料であることから、養分が極端に少ないやせた土壌においても高い植物育成効果を得ることができる。
According to the sixth aspect of the present invention, since the fine bubbles made of a gas in which oxygen and nitrogen are mixed in a liquid at a component ratio different from that of air have a diameter of 500 μm or less, the bubbles are crushed through the millimeter-scale gap in the soil. You can pass without. In addition, since this liquid is a plant cultivation liquid supplied to the soil, by setting the ratio of nitrogen and oxygen according to the soil environment in which the plant grows, sufficient microorganisms present in the soil, especially aerobic bacteria, can be obtained. It is possible to increase the fixed amount of nitrogen that can be activated and become nutrients for the plant.
As a result, a high plant growing effect can be obtained without supplying fertilizers such as chemical fertilizers and organic fertilizers that may cause soil contamination from the outside.
According to the invention which concerns on Claim 7, since the said liquid contains aerobic bacteria, even if it is soil with few microorganisms, especially aerobic bacteria, aerobic bacteria in soil are increased, and high plant growth An effect can be obtained.
According to the invention which concerns on Claim 8, since the said liquid is a liquid fertilizer, the high plant growth effect can be acquired also in the thin soil with very few nutrients.

本発明に係る微細気泡含有液体製造装置の一例を示す構成図である。It is a block diagram which shows an example of the fine bubble containing liquid manufacturing apparatus which concerns on this invention. 本発明に係る微細気泡含有液体製造装置の別の例を示す構成図である。It is a block diagram which shows another example of the fine bubble containing liquid manufacturing apparatus which concerns on this invention. 本発明に係る植物栽培装置の構成図である。It is a block diagram of the plant cultivation apparatus which concerns on this invention. 化学肥料流出量比較試験の結果を示すグラフである。It is a graph which shows the result of a chemical fertilizer outflow amount comparison test. 窒素固定量比較試験の結果を示すグラフである。It is a graph which shows the result of a nitrogen fixation amount comparison test.

以下、本発明に係る微細気泡含有液体製造装置、及びこの装置を用いた植物の栽培装置、並びに植物栽培用液体について詳述する。   Hereinafter, a fine bubble-containing liquid production apparatus according to the present invention, a plant cultivation apparatus using the apparatus, and a plant cultivation liquid will be described in detail.

図1は、本発明に係る微細気泡含有液体製造装置の構成図である。
本発明に係る微細気泡含有液体製造装置は、微細気泡の発生場となる液体と微細気泡を形成する気体とを混合する気液混合槽(1)と、気液混合槽(1)に液体を導入するための液体導入路(2)と、気液混合槽(1)に気体を供給するための給気路(3)と、気液混合槽(1)にて調製された気体含有液体を吐出する気体含有液体吐出路(4)と、気体含有液体吐出路(4)に取り付けられた微細気泡発生手段(5)と、液体導入路(2)と分岐弁(6)を介して連結された複数の液体貯蔵タンク(7)とを備えている。
FIG. 1 is a configuration diagram of the apparatus for producing a liquid containing fine bubbles according to the present invention.
The apparatus for producing a microbubble-containing liquid according to the present invention includes a gas-liquid mixing tank (1) that mixes a liquid that generates microbubbles and a gas that forms microbubbles, and a liquid in the gas-liquid mixing tank (1). A liquid introduction path (2) for introduction, a gas supply path (3) for supplying gas to the gas-liquid mixing tank (1), and a gas-containing liquid prepared in the gas-liquid mixing tank (1). The gas-containing liquid discharge path (4) to be discharged, the fine bubble generating means (5) attached to the gas-containing liquid discharge path (4), the liquid introduction path (2) and the branch valve (6) are connected. And a plurality of liquid storage tanks (7).

給気路(3)には、混合弁(8)を介して複数の気体貯蔵タンク(9)が連結されており、各気体貯蔵タンク(9)に貯蔵された気体を任意の比率(一種類の気体の比率が0となる場合も含む)で混合して給気路(3)へと供給することが可能となっている。
気体貯蔵タンク(9)に貯蔵される気体は酸素及び窒素である。
従って、本発明に係る微細気泡含有液体製造装置において、気体貯蔵タンク(9)は少なくとも2つ備えられる。但し、本発明において気体貯蔵タンク(9)の数は2つに限定されず、3つ以上として貯蔵される気体の種類を増やすことも可能である。また気体貯蔵タンク(9)を備えずに、空気をそのまま給気路(3)を介して気液混合槽(1)に導入しても良い。
A plurality of gas storage tanks (9) are connected to the air supply path (3) via a mixing valve (8), and the gas stored in each gas storage tank (9) can be in any ratio (one type). In the case where the ratio of the gas becomes 0), and can be supplied to the air supply path (3).
The gases stored in the gas storage tank (9) are oxygen and nitrogen.
Therefore, in the apparatus for producing fine bubble-containing liquid according to the present invention, at least two gas storage tanks (9) are provided. However, in the present invention, the number of gas storage tanks (9) is not limited to two, and the number of gases stored as three or more can be increased. Moreover, you may introduce | transduce air into a gas-liquid mixing tank (1) as it is via the air supply path (3), without providing a gas storage tank (9).

微細気泡を形成するための気体は、複数の気体貯蔵タンク(9)から混合弁(8)を介して任意の比率で混合されて給気路(3)を通して気液混合槽(1)に貯蔵された液体中に放出される。また微細気泡の発生場となる液体は、後述する種類の液体を貯蔵した複数の液体貯蔵タンク(7)から分岐弁(6)及び液体導入路(2)を介して気液混合槽(1)に導入される。
気液混合槽(1)に貯蔵された液体中に放出された前記気体は、当該液体と混合されて、気体含有液体が調製される。この気体含有液体を、気体含有液体吐出路(4)に備えられた微細気泡発生手段(5)を通して吐出することで、液体中に微細気泡を含有した微細気泡含有液体が得られる。このとき形成される微細気泡の気泡径が小さいほど、気泡が液体中で長時間維持され、液体への溶解度も向上する。
Gases for forming fine bubbles are mixed at an arbitrary ratio from a plurality of gas storage tanks (9) through a mixing valve (8) and stored in a gas-liquid mixing tank (1) through an air supply path (3). Is released into the liquid. Moreover, the liquid which becomes a generation | occurrence | production field of a fine bubble is a gas-liquid mixing tank (1) from the several liquid storage tank (7) which stored the liquid of the kind mentioned later via a branch valve (6) and a liquid introduction path (2). To be introduced.
The gas released into the liquid stored in the gas-liquid mixing tank (1) is mixed with the liquid to prepare a gas-containing liquid. By discharging this gas-containing liquid through the fine bubble generating means (5) provided in the gas-containing liquid discharge path (4), a fine bubble-containing liquid containing fine bubbles in the liquid is obtained. As the bubble diameter of the fine bubbles formed at this time is smaller, the bubbles are maintained in the liquid for a longer time, and the solubility in the liquid is improved.

一般的に、微細気泡の名称は気泡発生時の気泡径によって異なる。気泡発生時の気泡径が十〜数十μmの範囲であるときはマイクロバブル、数百nm〜十μmの範囲であるときはマイクロナノバブル、数百nm以下であるときはナノバブルと言う。
気泡径が数十μm以下の気泡は、通常の気泡とは異なる性質を有する。具体的には、水中への酸素、オゾン、窒素などの溶解効率が向上する、通常の気泡よりも上昇速度が遅いため液体中に気泡が長く維持される、等の特徴を有する。
In general, the name of the fine bubble differs depending on the bubble diameter when the bubble is generated. When the bubble diameter at the time of bubble generation is in the range of 10 to several tens of μm, it is called microbubble, when it is in the range of several hundred nm to 10 μm, it is called micro-nano bubble, and when it is several hundred nm or less, it is called nanobubble.
Bubbles having a bubble diameter of several tens of μm or less have different properties from normal bubbles. Specifically, it has the characteristics that the dissolution efficiency of oxygen, ozone, nitrogen and the like in water is improved, and the bubbles are kept longer in the liquid because the rising speed is slower than normal bubbles.

本発明で用いる気体(後述する)で形成される微細気泡の気泡径は500μm以下であり、数十μm(100μm未満)の気泡であることが好ましく、具体的には例えば10〜30μmの範囲とされる。
気泡径が500μm以下であると、気泡が潰されることなく土壌中のミリスケールの間隙を通ることができ、また液体中での気泡の維持時間が長くなり土壌中の微生物を充分に活性化することができる。100μm未満であると液体中での気泡の維持時間が格段に長くなり土壌中の微生物の活性度を格段に高めることができる。
The bubble diameter of the fine bubbles formed with the gas (described later) used in the present invention is 500 μm or less, preferably a bubble of several tens of μm (less than 100 μm), specifically, for example, in the range of 10 to 30 μm. Is done.
When the bubble diameter is 500 μm or less, the bubbles can pass through the millimeter-scale gaps in the soil without being crushed, and the retention time of the bubbles in the liquid is prolonged, so that the microorganisms in the soil are sufficiently activated. be able to. When it is less than 100 μm, the maintenance time of bubbles in the liquid is remarkably increased, and the activity of microorganisms in the soil can be significantly increased.

微細気泡発生手段(5)は500μm以下の微細気泡を発生させることができるものであれば特に限定されないが、例えば図1に示した構造とすることができる。具体的には、気体含有液体吐出路(4)の先端にノズル(10)を取り付け、当該ノズル(10)を液槽(11)に収容された液体(12)内に配置し、ノズル(10)から気体含有液体を噴出することにより液体(12)内に微細気泡を発生させ、発生した微細気泡を含んだ液体を吐出管(13)を通して吐出するように構成することができる。
液槽(11)に収容される液体(12)は気液混合槽(1)から供給してもよいし、液体導入路(2)を液槽(11)に接続して供給してもよい。
このような微細気泡発生手段(5)としては、バブルタンク社製(BT-50)のマイクロナノバブル発生装置が挙げられるが、これに限定されない。
図2は別の微細気泡発生手段(5)を備えた微細気泡含有液体製造装置を示す図である。図2に示した微細気泡含有液体製造装置は、ノズル(14)自体が微細気泡発生手段(5)を構成している。
このような微細気泡発生手段(5)としては、例えばオーラテック社製(OM4-MDG-045)のマイクロナノバブル発生装置が挙げられるが、これに限定されない。
ノズル(10)又はノズル(14)からの液体の吐出圧力は、0.1MPa〜0.3MPaに設定するとよい。液体の吐出圧力は、所望の出水量に応じて適宜設定される。
このような微細気泡発生手段(5)を備えた本発明に係る微細気泡含有液体製造装置を用いると、粘土質や砂質等、様々な土壌質において、気泡が潰されることなくその土壌の団粒間間隙や団粒内間隙を通ることのできる微細気泡を含有する液体を製造することができる。
The fine bubble generating means (5) is not particularly limited as long as it can generate fine bubbles of 500 μm or less. For example, the fine bubble generating means (5) can have the structure shown in FIG. Specifically, the nozzle (10) is attached to the tip of the gas-containing liquid discharge path (4), the nozzle (10) is disposed in the liquid (12) accommodated in the liquid tank (11), and the nozzle (10 ) From the gas-containing liquid, fine bubbles are generated in the liquid (12), and the liquid containing the generated fine bubbles can be discharged through the discharge pipe (13).
The liquid (12) accommodated in the liquid tank (11) may be supplied from the gas-liquid mixing tank (1), or may be supplied by connecting the liquid introduction path (2) to the liquid tank (11). .
Examples of such fine bubble generating means (5) include, but are not limited to, a micro / nano bubble generating device manufactured by Bubble Tank (BT-50).
FIG. 2 is a view showing a microbubble-containing liquid manufacturing apparatus provided with another microbubble generating means (5). In the apparatus for producing fine bubble-containing liquid shown in FIG. 2, the nozzle (14) itself constitutes the fine bubble generating means (5).
Examples of such fine bubble generating means (5) include, but are not limited to, a micro-nano bubble generating device manufactured by Auratech (OM4-MDG-045).
The discharge pressure of the liquid from the nozzle (10) or the nozzle (14) may be set to 0.1 MPa to 0.3 MPa. The discharge pressure of the liquid is appropriately set according to the desired water discharge amount.
When the fine bubble-containing liquid production apparatus according to the present invention having such fine bubble generating means (5) is used, in various soil qualities such as clay and sandy matter, the group of the soil is not crushed. A liquid containing fine bubbles that can pass through intergranular gaps or intergranular gaps can be produced.

ここで、通常の気泡と数十μm以下の気泡とを比較すると、通常の気泡は発生してから液中を上昇し、液面に到達すると破裂する。しかし数十μm以下の気泡は、前述したように通常の気泡よりも気泡体積が小さいために上昇速度が遅く、その結果、通常の気泡より長く液中に気泡として維持される。
また数十μm以下の気泡の圧力は、気泡径が小さくなるほどに高くなる。即ち、気泡周囲からかかる圧力により気泡が経時的に小さくなり、気泡内の圧力が高まる。その結果、前述したように気体が効果的に液中に溶解することとなる。
Here, when comparing a normal bubble with a bubble of several tens of μm or less, the normal bubble is generated and then rises in the liquid and bursts when reaching the liquid level. However, bubbles of several tens of μm or less have a lower rising speed because the bubble volume is smaller than normal bubbles as described above, and as a result, the bubbles are maintained in the liquid longer than normal bubbles.
In addition, the pressure of bubbles of several tens of μm or less increases as the bubble diameter decreases. That is, due to the pressure applied from around the bubble, the bubble becomes smaller with time, and the pressure inside the bubble increases. As a result, as described above, the gas is effectively dissolved in the liquid.

微細気泡を形成するための気体は、少なくとも酸素又は窒素のいずれかを含んだ気体であり、酸素と窒素を空気と異なる混合比率で混合した気体であることが好ましい。
酸素は植物の根に直接作用し、根を活性化して養分の吸収を促すことができ、好気性菌を活性化して窒素固定量の増加を図ることができる。また窒素は、土壌内の養分(窒素化合物)の素となる窒素の量を増加させることができ、土壌内に存在する窒素固定菌を活性化して窒素固定量の増加を図ることができる。
酸素と窒素を空気と異なる混合比率で混合した気体の場合、酸素を通常の比率より多くしたり窒素を通常の比率より多くしたりする設定を行うことで、土壌環境に応じて、これらの作用のいずれか一方をより強く発現させて植物育成効果を効果的に高めることが可能となる。
The gas for forming the fine bubbles is a gas containing at least either oxygen or nitrogen, and is preferably a gas in which oxygen and nitrogen are mixed at a different mixing ratio from air.
Oxygen acts directly on the roots of the plant, can activate the roots to promote nutrient absorption, and can activate aerobic bacteria to increase the amount of nitrogen fixed. Nitrogen can increase the amount of nitrogen that is a source of nutrients (nitrogen compounds) in the soil, and can activate nitrogen-fixing bacteria present in the soil to increase the amount of nitrogen fixed.
In the case of a gas in which oxygen and nitrogen are mixed at a different mixing ratio from air, these actions can be performed depending on the soil environment by setting the oxygen to be higher than the normal ratio or the nitrogen to be higher than the normal ratio. Any one of these can be expressed more strongly, and the plant-growing effect can be effectively enhanced.

液体貯蔵タンク(7)に貯蔵される液体は、水、液体肥料、好気性菌含有液体である。従って、本発明に係る微細気泡含有液体製造装置において液体貯蔵タンク(7)は少なくとも3つ備えられる。但し、本発明において液体貯蔵タンク(7)の数は3つに限定されず、4つ以上として貯蔵される液体の種類を増やすことも可能である。   The liquid stored in the liquid storage tank (7) is water, liquid fertilizer, or aerobic bacteria-containing liquid. Therefore, at least three liquid storage tanks (7) are provided in the apparatus for producing fine bubble-containing liquid according to the present invention. However, in the present invention, the number of liquid storage tanks (7) is not limited to three, and the number of liquids stored as four or more can be increased.

液体貯蔵タンク(7)に貯蔵された液体は、各貯蔵タンクから分岐弁(6)を介して気液混合槽(1)に導入される。従って、微細気泡含有液体を供給する土壌質を考慮して、液体を選択的に気液混合槽(1)に導入することができる。更に、気液混合槽(1)内で各液体を任意の比率で混合することができる。
水は植物の生命活動の維持のために必要であり、液体肥料は養分の極端に少ないやせた土壌であっても植物の育成効果の向上を図ることができ、また好気性菌含有液体は、窒素固定菌の少ない土壌においても効果的に土壌内の窒素固定量を増加させることができ、養分を植物に供して生長を促進することができる。
The liquid stored in the liquid storage tank (7) is introduced from each storage tank into the gas-liquid mixing tank (1) via the branch valve (6). Therefore, the liquid can be selectively introduced into the gas-liquid mixing tank (1) in consideration of the soil quality for supplying the liquid containing fine bubbles. Furthermore, each liquid can be mixed in an arbitrary ratio in the gas-liquid mixing tank (1).
Water is necessary to maintain the vital activities of plants, and liquid fertilizer can improve the growth effect of plants even on thin soil with extremely little nutrients. Even in soil with few fixed bacteria, the amount of nitrogen fixed in the soil can be effectively increased, and nutrients can be applied to plants to promote growth.

液体肥料の種類は特定されないが、肥料の三要素である窒素、リン酸、カリウムを含んでいることが望ましい。窒素は、植物の細胞の分裂・増殖に関与するため植物の生長には必須であり、リン酸は植物中の核酸の構成成分であるため植物の生長を促進し、カリウムは植物の根の発育を促進することから、本発明では液体肥料として前記成分を主成分とする化学肥料が好適に用いられる。
本発明に用いる窒素肥料としては、硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウム、尿素、石灰窒素、硝酸カリウム、硝酸石灰、硝酸ソーダ、リン酸肥料としては過リン酸石灰、熔成リン肥、カリウム肥料としては塩化カリウム、硫酸カリウム等が挙げられる。これらは肥効に優れるため、効果的に植物の育成向上を図ることができる。
The type of liquid fertilizer is not specified, but it is desirable to contain nitrogen, phosphoric acid, and potassium, which are the three elements of fertilizer. Nitrogen is essential for plant growth because it is involved in the division and proliferation of plant cells. Phosphate is a component of nucleic acids in plants, so it promotes plant growth, and potassium develops plant roots. Therefore, in the present invention, a chemical fertilizer mainly composed of the above components is preferably used as the liquid fertilizer.
Nitrogen fertilizer used in the present invention is ammonium sulfate, ammonium chloride, ammonium nitrate, urea, lime nitrogen, potassium nitrate, lime lime, sodium nitrate, phosphate fertilizer is superphosphate, molten phosphorus fertilizer, potassium fertilizer is potassium chloride And potassium sulfate. Since these are excellent in fertilizing effect, it is possible to effectively improve plant growth.

好気性菌含有液体中の好気性菌は特定されないが、具体的にはアゾトバクター、根粒菌、光合成細菌、放線菌、硝化菌、亜硝化菌、タンパク質分解菌等が挙げられる。また、多数種類の好気性菌が入っている市販の土壌改良剤を水に溶かして好気性菌含有液体としてもよい。
好気性菌を用いると、酸素からなる微細気泡を含有した微細気泡含有液体を供給することによって好気性菌はより活性化され、土壌内の窒素固定量の増加が可能となる。また、土壌内に一定の窒素化合物が存在すると、好気性菌は窒素の生産を行わないので、過剰な窒素化合物は産生されない。従って、好気性菌の活性化による窒素固定量の増加によって土壌や作物などの汚染が生じることはない。
また好気性菌が窒素固定能を有する窒素固定菌である場合、酸素や窒素からなる微細気泡含有液体を供給することによって活性化され、より効率的に土壌内の窒素固定量を増加させることができ、植物に養分を供することができる。更に、好気性窒素固定菌は好気性であるため、窒素の生産を行わないので過剰な窒素化合物が産生されず、土壌や作物などの汚染が生じることはない。
Although aerobic bacteria in the aerobic bacteria-containing liquid are not specified, specific examples include Azotobacter, rhizobia, photosynthetic bacteria, actinomycetes, nitrifying bacteria, nitrifying bacteria, proteolytic bacteria, and the like. Moreover, it is good also as aerobic microbe containing liquid by melt | dissolving the commercially available soil improvement agent containing many types of aerobic microbes in water.
When an aerobic bacterium is used, the aerobic bacterium is more activated by supplying a fine bubble-containing liquid containing fine bubbles made of oxygen, and the amount of nitrogen fixed in the soil can be increased. Moreover, when a certain nitrogen compound exists in soil, since an aerobic microbe does not produce nitrogen, an excess nitrogen compound is not produced. Therefore, contamination of soil and crops does not occur due to an increase in the amount of nitrogen fixed by the activation of aerobic bacteria.
In addition, when the aerobic bacterium is a nitrogen-fixing bacterium having nitrogen-fixing ability, it is activated by supplying a liquid containing fine bubbles composed of oxygen and nitrogen, and the amount of nitrogen fixed in the soil can be increased more efficiently. Can provide nutrients to plants. Further, since the aerobic nitrogen-fixing bacteria are aerobic, no nitrogen production is performed, so that no excessive nitrogen compounds are produced and no contamination of soil or crops occurs.

以上説明したように、本発明に係る微細気泡含有液体製造装置によれば、微細気泡を形成する気体の成分比(酸素と窒素の混合比)を調整することができ、更に液体の種類(水、液体肥料、好気性菌含有液体)を選択することができる。
そのため、植物の生育する土壌環境に応じて最適な微細気泡含有液体を容易に製造することができる。
As described above, according to the apparatus for producing a microbubble-containing liquid according to the present invention, it is possible to adjust the component ratio (mixing ratio of oxygen and nitrogen) of the gas forming the microbubbles, and further to the type of liquid (water , Liquid fertilizer, aerobic bacteria-containing liquid).
Therefore, an optimal fine bubble-containing liquid can be easily produced according to the soil environment where the plant grows.

図3は、本発明に係る植物栽培装置の構成図である。
本発明に係る植物栽培装置は、上述した微細気泡含有液体製造装置に備えられた微細気泡含有液体を吐出する吐出管(13)又はノズル(14)を、植物を植えた土壌(15)の上部に配置することにより、直接土壌に微細気泡含有液体を供給できる構成を有している。
この植物栽培装置を用いると、微細気泡含有液体製造装置によって土壌環境に応じて最適な微細気泡含有液体を調製でき、得られた微細気泡含有液体を、直接植物を植えた土壌に供給することができるため、植物の育成効果の向上を図ることができる。
FIG. 3 is a configuration diagram of the plant cultivation apparatus according to the present invention.
The plant cultivation apparatus which concerns on this invention is the upper part of the soil (15) which planted the discharge pipe (13) or nozzle (14) which discharges the fine bubble containing liquid with which the fine bubble containing liquid manufacturing apparatus mentioned above was planted. It has the structure which can supply the fine bubble containing liquid directly to soil by arrange | positioning to.
When this plant cultivation device is used, the fine bubble-containing liquid can be prepared according to the soil environment by the fine bubble-containing liquid production device, and the obtained fine bubble-containing liquid can be directly supplied to the soil planted with the plant. Therefore, the improvement effect of the plant can be improved.

本発明に係る植物栽培用液体は、液体中に酸素と窒素を空気と異なる成分比で混合した気体からなる500μm以下の径の微細気泡を含有し、土壌に供給されるものである。
本発明に係る植物栽培用液体は、上記した本発明に係る微細気泡含有液体製造装置を用いて製造することができるが、他の装置を用いて製造してもよい。
The liquid for plant cultivation according to the present invention contains fine bubbles having a diameter of 500 μm or less made of a gas obtained by mixing oxygen and nitrogen in a liquid at a component ratio different from air, and is supplied to the soil.
Although the liquid for plant cultivation which concerns on this invention can be manufactured using the above-mentioned microbubble containing liquid manufacturing apparatus which concerns on this invention, you may manufacture using another apparatus.

微細気泡を含有する液体は、水、液体肥料、好気性菌含有液体のいずれか若しくはこれらを適宜任意の比率で混合した混合液体である。ここで、液体肥料及び好気性菌の種類については、上記したものが好適に用いられる。
微細気泡の径は500μm以下であればよいが、数十μm(100μm未満)の気泡であることが好ましく、具体的には例えば10〜30μmの範囲とされる。その理由は上述した通りである。
The liquid containing fine bubbles is water, liquid fertilizer, aerobic bacteria-containing liquid, or a mixed liquid obtained by mixing these at an appropriate ratio. Here, about the kind of liquid fertilizer and aerobic bacteria, what was mentioned above is used suitably.
The diameter of the fine bubbles may be 500 μm or less, but is preferably a bubble of several tens of μm (less than 100 μm), and specifically, for example, in the range of 10 to 30 μm. The reason is as described above.

本発明に係る植物栽培用液体は、植物の生育環境(土壌環境)に応じて、酸素と窒素の混合比を調整し、また液体の種類を選択することができる。
これにより、養分の少ないやせた土壌、あるいは肥沃な土壌、また施肥された土壌や窒素固定菌量の多い土壌など、植物の生育環境(土壌環境)に応じて最適な植物栽培用液体となる。
The liquid for plant cultivation which concerns on this invention can adjust the mixing ratio of oxygen and nitrogen according to the growth environment (soil environment) of a plant, and can select the kind of liquid.
Thereby, it becomes the optimal liquid for plant cultivation according to the growth environment (soil environment) of plants, such as lean soil with little nutrient, fertile soil, fertilized soil, or soil with a large amount of nitrogen-fixing bacteria.

本発明に係る植物栽培用液体を土壌に供給することにより、土壌に施す肥料を無くする或いは軽減することも可能である。
一般に、窒素化学肥料等により土壌に供給される窒素は、土壌内に存在する微生物の作用によりアンモニア態窒素に変換され、亜硝酸態窒素を経てさらに硝酸態窒素に変換される。従って、土壌内において窒素は、アンモニア態窒素、亜硝酸態窒素、硝酸態窒素として存在する。植物は硝酸態窒素のみを根から吸収するが、吸収しきれない硝酸態窒素は、微生物の作用により窒素に還元される。
しかしながら、継続的な施肥によってアンモニア態窒素や硝酸態窒素が過剰となり、上記の窒素サイクルが崩れ、土壌汚染や作物汚染が引き起こされる。
By supplying the plant cultivation liquid according to the present invention to the soil, it is possible to eliminate or reduce the fertilizer applied to the soil.
Generally, nitrogen supplied to soil by nitrogen chemical fertilizer or the like is converted into ammonia nitrogen by the action of microorganisms present in the soil, and further converted into nitrate nitrogen through nitrite nitrogen. Therefore, nitrogen exists in the soil as ammonia nitrogen, nitrite nitrogen, and nitrate nitrogen. Plants absorb only nitrate nitrogen from the root, but nitrate nitrogen that cannot be absorbed is reduced to nitrogen by the action of microorganisms.
However, continuous fertilization results in excess ammonia nitrogen and nitrate nitrogen, disrupting the nitrogen cycle and causing soil and crop contamination.

本発明に係る植物栽培用液体を土壌環境に応じて調製して土壌に供給することにより、土壌中の微生物を活性化して土壌中に含まれる窒素量を増加させることが可能となるため、養分の少ないやせた土壌にも適用でき、土壌改質ができた後には化学肥料や有機肥料を施すことなく植物の生長を促進することができる。従って、最小限の化学肥料で植物の育成効果の向上を図ることができる。   Since the liquid for plant cultivation according to the present invention is prepared according to the soil environment and supplied to the soil, it becomes possible to activate the microorganisms in the soil and increase the amount of nitrogen contained in the soil. It can also be applied to lean soil with a small amount of soil, and after the soil has been modified, the growth of the plant can be promoted without applying chemical fertilizer or organic fertilizer. Therefore, the plant growth effect can be improved with a minimum amount of chemical fertilizer.

本発明に係る微細気泡含有液体製造装置から得られた微細気泡含有液体を土壌に供給し、土壌から流出する化学肥料量、並びに土壌内の窒素固定量の変化についての試験を行った。   The fine bubble-containing liquid obtained from the fine bubble-containing liquid production apparatus according to the present invention was supplied to the soil, and the amount of chemical fertilizer flowing out of the soil and the change in the nitrogen fixation amount in the soil were tested.

(実施例1)
<化学肥料流出量比較試験>
本発明に係る微細気泡含有液体製造装置を用いて、水を微細気泡発生場(液体肥料及び好気性含有液体を含まない)として10〜30μmのマイクロバブルを含有する微細気泡含有液体を製造した。この微細気泡含有液体1Lを、液体肥料としてハイポネックス(商品名、ハイポネックスジャパン製)を予め施した土壌に供給し、流出した液体を以下に示す手順で調製して試料とした。
流出した液体に水酸化ナトリウムとペルオキソニ硫酸カリウムを加えて100℃にて1時間加熱した。加熱後、アジ化ナトリウムを加えて振とうした後、イソプロピルアルコールを滴下して振とうし、15分放置したものを窒素化合物の定量に用いた。
窒素化合物の定量方法として、全窒素測定法(総和法、アルカリ性ペルオキソニ硫酸カリウム分解法、過硫酸分解法、銅・カドミウムカラム還元法、硫酸ヒドラジニウム還元法)を用い、無機態窒素(硝酸態窒素、アンモニア態窒素、亜硝酸態窒素)及び有機態窒素(タンパク質)を定量して、流出率を算出した。
微細気泡含有液体を供給する土壌として赤玉土600gと砂質土1200gを使用した。これらの土を選択した理由としては、土の性質が異なるからである。具体的には、赤玉土は肥料を吸着しやすく、そのために肥料の流出が起こり難い。また砂質土は土壌内の間隙径が大きく、透水率が良い。
土壌に施したハイポネックスの量は、赤玉土に600g、砂質土に1200gである。
比較例として、微細気泡含有液体のかわりに水道水(1L)を用いて同様の試験を行った。結果を表1及び図4に示す。
Example 1
<Chemical fertilizer runoff comparison test>
Using the apparatus for producing a fine bubble-containing liquid according to the present invention, a fine bubble-containing liquid containing 10-30 μm microbubbles was produced using water as a fine bubble generation field (not including liquid fertilizer and aerobic-containing liquid). 1 L of this fine bubble-containing liquid was supplied to soil previously applied with Hyponex (trade name, manufactured by Hyponex Japan) as a liquid fertilizer, and the outflowed liquid was prepared by the following procedure to prepare a sample.
Sodium hydroxide and potassium peroxodisulfate were added to the effluent liquid and heated at 100 ° C. for 1 hour. After heating, sodium azide was added and shaken, then isopropyl alcohol was added dropwise and shaken, and the mixture was allowed to stand for 15 minutes and used for the determination of nitrogen compounds.
The total nitrogen measurement method (summation method, alkaline peroxodisulfate decomposition method, persulfate decomposition method, copper / cadmium column reduction method, hydrazinium sulfate reduction method) is used as a quantitative method for nitrogen compounds, and inorganic nitrogen (nitrate nitrogen, Ammonia nitrogen, nitrite nitrogen) and organic nitrogen (protein) were quantified to calculate the outflow rate.
As the soil for supplying the liquid containing fine bubbles, 600 g of red crust and 1200 g of sandy soil were used. The reason for selecting these soils is that the properties of the soils are different. Specifically, red crust is easy to adsorb fertilizer, so that it is difficult for the fertilizer to flow out. Sandy soil has a large pore diameter in the soil and good water permeability.
The amount of Hyponex applied to the soil is 600 g for red jade soil and 1200 g for sandy soil.
As a comparative example, a similar test was performed using tap water (1 L) instead of the liquid containing fine bubbles. The results are shown in Table 1 and FIG.

Figure 2010179266
Figure 2010179266

試験の結果、微細気泡含有液体を供給した場合は水道水を供給した場合よりも、肥料の流出率が高いことが確認された。従って、微細気泡含有液体を供給すると、肥料の拡散を促すことができると言える。肥料流出が促進されるため、土壌中の肥料量は流れない程度の濃度である必要があるが、その良好な拡散性を利用して、土壌中の残肥を再拡散させることができ肥料として有効利用することができる。
また、微細気泡含有液体を供給した場合、赤玉土の方が砂質土よりも肥料の流出率が高いことが確認された。土壌内の間隙として、ミリスケール(mm)の団粒間間隙と、マイクロスケール(μm)の団粒内間隙があるが、赤玉土においては団粒内間隙まで微細気泡含有液体が浸透し、肥料を流し出したと考えられる。一方砂質土においては、一般に団粒構造をとり難く団粒内間隙が少ないために、赤玉土に比べ変化が小さいものと考えられる。
As a result of the test, it was confirmed that the fertilizer outflow rate was higher when the fine bubble-containing liquid was supplied than when tap water was supplied. Therefore, it can be said that the supply of the fine bubble-containing liquid can promote the diffusion of the fertilizer. Since fertilizer runoff is promoted, the amount of fertilizer in the soil must be at a level that does not flow, but by utilizing its good diffusivity, residual fertilizer in the soil can be re-diffused as a fertilizer It can be used effectively.
Moreover, it was confirmed that the red fertilizer had a higher fertilizer outflow rate than the sandy soil when the fine bubble-containing liquid was supplied. There are millimeter-scale intergranular gaps and micro-scale (μm) intergranular gaps as soil gaps, but in red jade soil, the liquid containing fine bubbles penetrates to the intergranular gaps, and fertilizer It is thought that was washed away. On the other hand, in sandy soil, it is generally difficult to take a nodule structure and there are few intergranular gaps.

(実施例2)
<窒素固定量比較試験>
本発明に係る微細気泡含有液体製造装置を用いて、実施例1と同じ微細気泡含有液体を製造した。この微細気泡含有液体を、好気性の土壌微生物(アゾトバクター、根粒菌、光合成細菌、放線菌、硝化菌等)を約250種類含有する菌力アップ(商品名、エイビーエス製)を1000倍希釈したものを予め施した土壌に1日1回供給し、その乾土を採取しその採取土を以下に示す手順で調製して試料とした。
採取土20gに蒸留水20gを加えて懸濁液とし、この懸濁液をろ過してろ液を得た。このろ液に水酸化ナトリウムとペルオキソニ硫酸カリウムを加えて100℃にて1時間加熱した。加熱後、アジ化ナトリウムを加えて振とうした後、イソプロピルアルコールを滴下して振とうし、15分放置したものを窒素化合物の定量に用いた。
窒素化合物の定量方法として、全窒素測定法(総和法、アルカリ性ペルオキソニ硫酸カリウム分解法、過硫酸分解法、銅・カドミウムカラム還元法、硫酸ヒドラジニウム還元法)を用い、無機態窒素(硝酸態窒素、アンモニア態窒素、亜硝酸態窒素)及び有機態窒素(タンパク質)を定量して、乾土100g当たりの窒素量を算出した。
比較例として、微細気泡含有液体のかわりに水道水を用いて同様の試験を行った。結果を図5に示す。
(Example 2)
<Nitrogen fixation amount comparison test>
The same microbubble-containing liquid as in Example 1 was manufactured using the microbubble-containing liquid manufacturing apparatus according to the present invention. This microbubble-containing liquid is a 1000-fold dilution of aerobic soil microorganisms (Azotobacter, rhizobia, photosynthetic bacteria, actinomycetes, nitrifying bacteria, etc.) with an increase in fungal power (trade name, manufactured by ABS) Was supplied once a day to the previously applied soil, the dry soil was sampled, and the sampled soil was prepared by the following procedure to prepare a sample.
Distilled water (20 g) was added to the collected soil (20 g) to form a suspension, and the suspension was filtered to obtain a filtrate. Sodium hydroxide and potassium peroxodisulfate were added to the filtrate and heated at 100 ° C. for 1 hour. After heating, sodium azide was added and shaken, then isopropyl alcohol was added dropwise and shaken, and the mixture was allowed to stand for 15 minutes and used for the determination of nitrogen compounds.
The total nitrogen measurement method (summation method, alkaline peroxodisulfate decomposition method, persulfate decomposition method, copper / cadmium column reduction method, hydrazinium sulfate reduction method) is used as a quantitative method for nitrogen compounds, and inorganic nitrogen (nitrate nitrogen, Ammonia nitrogen, nitrite nitrogen) and organic nitrogen (protein) were quantified, and the amount of nitrogen per 100 g of dry soil was calculated.
As a comparative example, the same test was performed using tap water instead of the liquid containing fine bubbles. The results are shown in FIG.

試験の結果(図5)より、微細気泡含有液体及び水道水両方において、供給2日目に窒素量が最大となった。2〜4日目にかけては、両方とも窒素量の減少が見られ、微細気泡含有液体を供給した方が窒素量の減少率が高かった。4日目以降は両方において、窒素量が増加したが、微細気泡含有液体を供給した方が窒素量の増加率が高かった。
以上のいずれの現象においても、土壌中窒素の変化量は微細気泡含有液体を供給した場合の方が水道水を供給した場合よりも大きかった。これは微細気泡含有液体によって、土壌内の好気性菌が活性化されたためと考えられる。特に、微細気泡含有液体の供給直後は様々な菌の生存競争が起こり、土壌中窒素量の変化が激しくなるものと考えられる。2〜4日目にかけての窒素量の減少は窒素利用菌や脱窒菌の繁殖によるものと考えられ、4日目以降の窒素量の増加は窒素固定菌によるアンモニア態窒素の増加と、タンパク質(菌の死骸)の増加によるものと考えられる。
以上のことより、本発明に係る微細気泡含有液体を植物栽培用液体として土壌に供給することで、土壌中の微生物が活性化されて窒素固定量が増加するため、植物の養分となる化合物が多く産生されることとなる。
As a result of the test (FIG. 5), the nitrogen amount reached the maximum on the second day of supply in both the liquid containing fine bubbles and the tap water. From the 2nd to 4th day, the decrease in the amount of nitrogen was observed in both cases, and the rate of decrease in the amount of nitrogen was higher when the fine bubble-containing liquid was supplied. The nitrogen amount increased on both days after the fourth day, but the rate of increase in the nitrogen amount was higher when the fine bubble-containing liquid was supplied.
In any of the above phenomena, the amount of change in nitrogen in the soil was larger when the fine bubble-containing liquid was supplied than when tap water was supplied. This is thought to be because aerobic bacteria in the soil were activated by the liquid containing fine bubbles. In particular, it is considered that the survival competition of various bacteria occurs immediately after the supply of the liquid containing fine bubbles, and the change in the amount of nitrogen in the soil becomes severe. The decrease in the amount of nitrogen during the 2nd to 4th days is thought to be due to the growth of nitrogen-utilizing bacteria and denitrifying bacteria. The increase in the amount of nitrogen after the 4th day is due to an increase in ammonia nitrogen due to nitrogen-fixing bacteria and protein (fungi This is probably due to an increase in the number of dead bodies.
From the above, by supplying the fine bubble-containing liquid according to the present invention to the soil as a liquid for plant cultivation, microorganisms in the soil are activated and the amount of nitrogen fixation increases, so that the compound serving as a nutrient for the plant is Many will be produced.

A・・・微細気泡含有液体製造装置
B・・・植物栽培装置
1・・・気液混合槽
2・・・液体導入路
3・・・給気路
4・・・気体含有液体の吐出路
5・・・微細気泡発生手段
6・・・分岐弁
7・・・液体貯蔵タンク
8・・・混合弁
9・・・気体貯蔵タンク
10・・・ノズル
11・・・液槽
12・・・液体
13・・・吐出管
14・・・ノズル
15・・・土壌
A ... Microbubble-containing liquid manufacturing apparatus B ... Plant cultivation apparatus 1 ... Gas-liquid mixing tank 2 ... Liquid introduction path 3 ... Air supply path 4 ... Gas-containing liquid discharge path 5 ... Fine bubble generating means 6 ... Branch valve 7 ... Liquid storage tank 8 ... Mixing valve 9 ... Gas storage tank 10 ... Nozzle 11 ... Liquid tank 12 ... Liquid 13 ... Discharge pipe 14 ... Nozzle 15 ... Soil

Claims (8)

微細気泡の発生場となる液体と微細気泡を形成する気体とを混合する気液混合槽と、
前記気液混合槽に前記液体を導入するための液体導入路と、
前記気液混合槽に前記気体を供給するための給気路と、
前記気液混合槽内にて調製された気体含有液体を吐出する気体含有液体吐出路と、
前記気体含有液体吐出路に取り付けられた微細気泡発生手段と、
前記液体導入路と分岐弁を介して連結された複数の液体貯蔵タンクとを備えており、
前記液体貯蔵タンクは、少なくとも水貯蔵タンク、液体肥料貯蔵タンク、好気性菌含有液体貯蔵タンクからなることを特徴とする微細気泡含有液体製造装置。
A gas-liquid mixing tank that mixes a liquid that generates fine bubbles and a gas that forms fine bubbles;
A liquid introduction path for introducing the liquid into the gas-liquid mixing tank;
An air supply path for supplying the gas to the gas-liquid mixing tank;
A gas-containing liquid discharge passage for discharging the gas-containing liquid prepared in the gas-liquid mixing tank;
Fine bubble generating means attached to the gas-containing liquid discharge path;
A plurality of liquid storage tanks connected via the liquid introduction path and a branch valve;
The liquid storage tank comprises at least a water storage tank, a liquid fertilizer storage tank, and an aerobic bacteria-containing liquid storage tank.
前記給気路に混合弁を介して複数の気体貯蔵タンクが連結されており、
前記気体貯蔵タンクは、少なくとも酸素タンクと窒素タンクからなることを特徴とする請求項1記載の微細気泡含有液体製造装置。
A plurality of gas storage tanks are connected to the air supply path via a mixing valve,
2. The apparatus for producing a fine bubble-containing liquid according to claim 1, wherein the gas storage tank includes at least an oxygen tank and a nitrogen tank.
前記液体肥料貯蔵タンクに貯蔵される液体肥料の主成分が窒素肥料、リン酸肥料、カリウム肥料であることを特徴とする請求項1又は2記載の微細気泡含有液体製造装置。   The apparatus for producing a liquid containing fine bubbles according to claim 1 or 2, wherein the main components of the liquid fertilizer stored in the liquid fertilizer storage tank are nitrogen fertilizer, phosphate fertilizer, and potassium fertilizer. 前記好気性菌含有液体貯蔵タンクに貯蔵される好気性菌が窒素固定菌であることを特徴とする請求項1乃至3いずれか記載の微細気泡含有液体製造装置。   4. The apparatus for producing fine bubble-containing liquid according to claim 1, wherein the aerobic bacterium stored in the aerobic bacterium-containing liquid storage tank is a nitrogen-fixing bacterium. 請求項1乃至4いずれか記載の微細気泡含有液体製造装置を備えた植物の栽培装置であって、
前記微細気泡発生手段にて発生した微細気泡を含んだ液体を、植物を植えた土壌に直接供給するように構成したことを特徴とする植物の栽培装置。
A plant cultivation apparatus comprising the microbubble-containing liquid production apparatus according to any one of claims 1 to 4,
An apparatus for cultivating a plant, wherein the liquid containing fine bubbles generated by the fine bubble generating means is configured to be supplied directly to soil in which a plant is planted.
液体中に、酸素と窒素を空気と異なる成分比で混合した気体からなる500μm以下の径の微細気泡を含有し、土壌に供給されることを特徴とする植物栽培用液体。   A liquid for plant cultivation, characterized in that it contains fine bubbles having a diameter of 500 μm or less made of a gas obtained by mixing oxygen and nitrogen in a component ratio different from air, and is supplied to soil. 前記液体が好気性菌を含有することを特徴とする請求項6記載の植物栽培用液体。   The liquid for plant cultivation according to claim 6, wherein the liquid contains aerobic bacteria. 前記液体が液体肥料であることを特徴とする請求項6又は7記載の植物栽培用液体。   The liquid for plant cultivation according to claim 6 or 7, wherein the liquid is a liquid fertilizer.
JP2009026805A 2009-02-06 2009-02-06 Fine bubbles-containing liquid producing apparatus, plant cultivation apparatus using the apparatus and liquid for plant cultivation Pending JP2010179266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009026805A JP2010179266A (en) 2009-02-06 2009-02-06 Fine bubbles-containing liquid producing apparatus, plant cultivation apparatus using the apparatus and liquid for plant cultivation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009026805A JP2010179266A (en) 2009-02-06 2009-02-06 Fine bubbles-containing liquid producing apparatus, plant cultivation apparatus using the apparatus and liquid for plant cultivation

Publications (1)

Publication Number Publication Date
JP2010179266A true JP2010179266A (en) 2010-08-19

Family

ID=42761221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009026805A Pending JP2010179266A (en) 2009-02-06 2009-02-06 Fine bubbles-containing liquid producing apparatus, plant cultivation apparatus using the apparatus and liquid for plant cultivation

Country Status (1)

Country Link
JP (1) JP2010179266A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230777A1 (en) * 2018-05-30 2019-12-05 株式会社アクアソリューション Method for extending harvesting period
WO2019230778A1 (en) * 2018-05-30 2019-12-05 株式会社アクアソリューション Soil amelioration method
WO2019230788A1 (en) * 2018-05-30 2019-12-05 株式会社アクアソリューション Fertilizer absorption improvement method
WO2019230766A1 (en) * 2018-05-30 2019-12-05 株式会社アクアソリューション Tomato fruit shape control method
WO2019230754A1 (en) * 2018-05-30 2019-12-05 株式会社アクアソリューション Magnesium deficiency prevention method
WO2022093843A1 (en) * 2020-10-26 2022-05-05 Agvnt, LLC Liquid fertilizer composition containing nano-bubbles and method of use thereof

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019230778A1 (en) * 2018-05-30 2021-04-22 株式会社アクアソリューション How to improve the soil
IL279013B1 (en) * 2018-05-30 2024-10-01 Aquasolution Corp Fertilizer absorption improvement method
WO2019230777A1 (en) * 2018-05-30 2019-12-05 株式会社アクアソリューション Method for extending harvesting period
WO2019230766A1 (en) * 2018-05-30 2019-12-05 株式会社アクアソリューション Tomato fruit shape control method
WO2019230754A1 (en) * 2018-05-30 2019-12-05 株式会社アクアソリューション Magnesium deficiency prevention method
CN112218520A (en) * 2018-05-30 2021-01-12 株式会社水改质 Soil improvement method
CN112218521A (en) * 2018-05-30 2021-01-12 株式会社水改质 Method for improving fertilizer absorption rate
KR20210003882A (en) * 2018-05-30 2021-01-12 가부시키가이샤 아쿠아솔루션 Soil improvement method
KR20210005180A (en) * 2018-05-30 2021-01-13 가부시키가이샤 아쿠아솔루션 How to improve fertilizer absorption rate
EP3804504A4 (en) * 2018-05-30 2021-07-21 AQUASOLUTION Corporation Fertilizer absorption improvement method
WO2019230788A1 (en) * 2018-05-30 2019-12-05 株式会社アクアソリューション Fertilizer absorption improvement method
WO2019230778A1 (en) * 2018-05-30 2019-12-05 株式会社アクアソリューション Soil amelioration method
JPWO2019230788A1 (en) * 2018-05-30 2021-04-22 株式会社アクアソリューション How to improve fertilizer absorption rate
JPWO2019230754A1 (en) * 2018-05-30 2021-07-26 株式会社アクアソリューション How to control magnesium deficiency
JPWO2019230777A1 (en) * 2018-05-30 2021-08-12 株式会社アクアソリューション How to extend the harvest season
JP2022040202A (en) * 2018-05-30 2022-03-10 株式会社アクアソリューション Fertilizer absorption improvement method
JP2022048165A (en) * 2018-05-30 2022-03-25 株式会社アクアソリューション Soil amelioration method
JPWO2019230766A1 (en) * 2018-05-30 2021-07-08 株式会社アクアソリューション Tomato fruit shape control method
JP7370972B2 (en) 2018-05-30 2023-10-30 株式会社アクアソリューション How to control magnesium deficiency
KR102612653B1 (en) * 2018-05-30 2023-12-11 가부시키가이샤 아쿠아솔루션 How to improve soil
KR102613598B1 (en) * 2018-05-30 2023-12-13 가부시키가이샤 아쿠아솔루션 How to improve fertilizer absorption rate
US12077481B2 (en) 2018-05-30 2024-09-03 Aquasolution Corporation Fertilizer absorption improvement method
WO2022093843A1 (en) * 2020-10-26 2022-05-05 Agvnt, LLC Liquid fertilizer composition containing nano-bubbles and method of use thereof

Similar Documents

Publication Publication Date Title
JP2010179266A (en) Fine bubbles-containing liquid producing apparatus, plant cultivation apparatus using the apparatus and liquid for plant cultivation
CN102910983B (en) Technology of improving saline-alkaline soil with microbe fertilizer
CN109401977A (en) Liquid and preparation method thereof is repaired in a kind of active microalgae nutrition
ES2337944T3 (en) METHOD OF GENERATING PHOSPHORY FERTILIZERS THROUGH THE USE OF MICROBIAL FERMENTATION TECHNOLOGY.
CN103958444A (en) Fluid ionized compositions, methods of preparation and uses thereof
CN101941871A (en) Special liquid fertilizer for cultivating poplar and preparation method thereof
CN101258831B (en) Method for domesticating camellia root system from soil cultivation into solution culture
KR20210003882A (en) Soil improvement method
CN103385161A (en) Production method of organic ecotype cucumber soilless culture medium
JP2003164231A (en) Nutritious water feed system for plant cultivation
WO2019087718A1 (en) Hydroponic cultivation method and potted bonsai plant container
WO2022093843A1 (en) Liquid fertilizer composition containing nano-bubbles and method of use thereof
CN111492962B (en) Strawberry culture medium and application thereof
CN104478583B (en) Composition capable of reducing emission of greenhouse gas from cropland and application of composition
JP2011024475A (en) Hydroponic apparatus and hydroponic method
JP2004065192A (en) Method for culturing plant by using organic fertilizer
JPH0812478A (en) Fertilizer for producing vegetable having good taste
EP3870347B1 (en) Assembly and method for introducing oxygen into water
CN108033830A (en) A kind of oxygen fertilizers for potted flowers and preparation method thereof, application
KR20110049237A (en) The method of producing liquid organic fertilizers/bio-pesticides thru liquefying worm poop
JPH06303860A (en) Automatic irrigator in plant cultivation
JPH02192485A (en) Carbon dioxide supplying agent for water grass
WO2020168203A2 (en) Microalgae-based soil inoculating system and methods of use
JP2022511736A (en) Nutritional composition
Hidalgo Vermicompost as a substrate amendment for poinsettia and chrysanthemum production.