WO2020168203A2 - Microalgae-based soil inoculating system and methods of use - Google Patents
Microalgae-based soil inoculating system and methods of use Download PDFInfo
- Publication number
- WO2020168203A2 WO2020168203A2 PCT/US2020/018306 US2020018306W WO2020168203A2 WO 2020168203 A2 WO2020168203 A2 WO 2020168203A2 US 2020018306 W US2020018306 W US 2020018306W WO 2020168203 A2 WO2020168203 A2 WO 2020168203A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bioreactor
- water
- algae
- microalgae
- carbon dioxide
- Prior art date
Links
- 239000002689 soil Substances 0.000 title claims description 136
- 238000000034 method Methods 0.000 title claims description 73
- 229910001868 water Inorganic materials 0.000 claims abstract description 195
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 194
- 235000015097 nutrients Nutrition 0.000 claims abstract description 64
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 49
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 47
- 239000008400 supply water Substances 0.000 claims abstract description 32
- 230000012010 growth Effects 0.000 claims abstract description 31
- 230000003750 conditioning effect Effects 0.000 claims abstract description 25
- 238000012258 culturing Methods 0.000 claims abstract description 14
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 164
- 241000195493 Cryptophyta Species 0.000 claims description 109
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 82
- 239000001569 carbon dioxide Substances 0.000 claims description 77
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 74
- 241000894007 species Species 0.000 claims description 59
- 239000000523 sample Substances 0.000 claims description 39
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 30
- 239000007787 solid Substances 0.000 claims description 29
- 244000005700 microbiome Species 0.000 claims description 27
- 239000011785 micronutrient Substances 0.000 claims description 21
- 235000013369 micronutrients Nutrition 0.000 claims description 21
- 241000894006 Bacteria Species 0.000 claims description 16
- 229910052757 nitrogen Inorganic materials 0.000 claims description 16
- 239000003337 fertilizer Substances 0.000 claims description 15
- 241000233866 Fungi Species 0.000 claims description 14
- 235000021073 macronutrients Nutrition 0.000 claims description 14
- 239000007789 gas Substances 0.000 claims description 13
- 229910052698 phosphorus Inorganic materials 0.000 claims description 10
- 230000001902 propagating effect Effects 0.000 claims description 10
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 7
- 238000012544 monitoring process Methods 0.000 claims description 7
- 239000011574 phosphorus Substances 0.000 claims description 7
- 239000000356 contaminant Substances 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- 239000012530 fluid Substances 0.000 claims description 6
- 230000003050 macronutrient Effects 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 6
- 230000008635 plant growth Effects 0.000 claims description 6
- 235000013343 vitamin Nutrition 0.000 claims description 6
- 239000011782 vitamin Substances 0.000 claims description 6
- 229930003231 vitamin Natural products 0.000 claims description 6
- 229940088594 vitamin Drugs 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 238000003384 imaging method Methods 0.000 claims description 5
- 244000062645 predators Species 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 235000013619 trace mineral Nutrition 0.000 claims description 5
- 239000011573 trace mineral Substances 0.000 claims description 5
- 238000011144 upstream manufacturing Methods 0.000 claims description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- 235000013495 cobalt Nutrition 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 4
- 235000010755 mineral Nutrition 0.000 claims description 4
- 239000011707 mineral Substances 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 235000016768 molybdenum Nutrition 0.000 claims description 4
- 239000011733 molybdenum Substances 0.000 claims description 4
- 238000003908 quality control method Methods 0.000 claims description 4
- 239000011593 sulfur Substances 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 239000011701 zinc Substances 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 235000016804 zinc Nutrition 0.000 claims description 3
- 159000000007 calcium salts Chemical class 0.000 claims description 2
- 230000001143 conditioned effect Effects 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 159000000003 magnesium salts Chemical class 0.000 claims description 2
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 claims description 2
- 238000005070 sampling Methods 0.000 claims description 2
- 159000000000 sodium salts Chemical class 0.000 claims description 2
- 150000003722 vitamin derivatives Chemical class 0.000 claims description 2
- 230000001276 controlling effect Effects 0.000 claims 4
- 241000700605 Viruses Species 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 241000196324 Embryophyta Species 0.000 description 48
- 239000000243 solution Substances 0.000 description 35
- 238000003973 irrigation Methods 0.000 description 20
- 230000002262 irrigation Effects 0.000 description 20
- 239000003621 irrigation water Substances 0.000 description 20
- 244000241257 Cucumis melo Species 0.000 description 16
- 235000015510 Cucumis melo subsp melo Nutrition 0.000 description 12
- 238000012271 agricultural production Methods 0.000 description 12
- 241000192700 Cyanobacteria Species 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 9
- 239000001963 growth medium Substances 0.000 description 9
- 241000195628 Chlorophyta Species 0.000 description 8
- 241000607479 Yersinia pestis Species 0.000 description 8
- 238000004140 cleaning Methods 0.000 description 8
- 239000005416 organic matter Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 230000009286 beneficial effect Effects 0.000 description 7
- 239000011575 calcium Substances 0.000 description 7
- 239000003864 humus Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 229910052700 potassium Inorganic materials 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical group [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 6
- 241000244206 Nematoda Species 0.000 description 6
- FJJCIZWZNKZHII-UHFFFAOYSA-N [4,6-bis(cyanoamino)-1,3,5-triazin-2-yl]cyanamide Chemical compound N#CNC1=NC(NC#N)=NC(NC#N)=N1 FJJCIZWZNKZHII-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 229910052791 calcium Inorganic materials 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 231100000765 toxin Toxicity 0.000 description 6
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 5
- 239000003242 anti bacterial agent Substances 0.000 description 5
- 229940088710 antibiotic agent Drugs 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 239000000417 fungicide Substances 0.000 description 5
- 239000000575 pesticide Substances 0.000 description 5
- 239000011591 potassium Substances 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 4
- 239000002028 Biomass Substances 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L calcium carbonate Substances [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 238000005352 clarification Methods 0.000 description 4
- 244000038559 crop plants Species 0.000 description 4
- 235000013399 edible fruits Nutrition 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 239000002054 inoculum Substances 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 239000003053 toxin Substances 0.000 description 4
- 108700012359 toxins Proteins 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 241000186361 Actinobacteria <class> Species 0.000 description 3
- 241000195627 Chlamydomonadales Species 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- 229910002651 NO3 Inorganic materials 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 3
- 238000003501 co-culture Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 150000004676 glycans Chemical class 0.000 description 3
- 239000004009 herbicide Substances 0.000 description 3
- 238000011081 inoculation Methods 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- -1 nitrate ions Chemical class 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 239000005017 polysaccharide Substances 0.000 description 3
- LXNHXLLTXMVWPM-UHFFFAOYSA-N pyridoxine Chemical compound CC1=NC=C(CO)C(CO)=C1O LXNHXLLTXMVWPM-UHFFFAOYSA-N 0.000 description 3
- 238000009394 selective breeding Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 230000001954 sterilising effect Effects 0.000 description 3
- 238000004659 sterilization and disinfection Methods 0.000 description 3
- 239000013589 supplement Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- NGJANBBWZSMYRM-UHFFFAOYSA-N 2,4,6-Trihydroxy-3-methyl-5-(3-methylbutanoyl)benzaldehyde Chemical compound CC(C)CC(=O)C1=C(O)C(C)=C(O)C(C=O)=C1O NGJANBBWZSMYRM-UHFFFAOYSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- 241000589151 Azotobacter Species 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 241000195649 Chlorella <Chlorellales> Species 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 230000000843 anti-fungal effect Effects 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 230000003816 axenic effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 235000020958 biotin Nutrition 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 235000010216 calcium carbonate Nutrition 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000012272 crop production Methods 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000035611 feeding Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000013505 freshwater Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- UXFJYSFCCBPXED-UHFFFAOYSA-N gostatin Chemical compound NC1CNC(C(O)=O)=C(CC(O)=O)C1=O UXFJYSFCCBPXED-UHFFFAOYSA-N 0.000 description 2
- 239000003630 growth substance Substances 0.000 description 2
- 208000006278 hypochromic anemia Diseases 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000002147 killing effect Effects 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 239000001095 magnesium carbonate Chemical group 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012806 monitoring device Methods 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 229930000184 phytotoxin Natural products 0.000 description 2
- RVFULFDTCDRKNZ-UHFFFAOYSA-N prehelminthosporol Chemical compound C1OC(O)C2C(=C)C3(C)CCC(C(C)C)C2C31 RVFULFDTCDRKNZ-UHFFFAOYSA-N 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000002786 root growth Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 239000002352 surface water Substances 0.000 description 2
- JZRWCGZRTZMZEH-UHFFFAOYSA-N thiamine Chemical compound CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N JZRWCGZRTZMZEH-UHFFFAOYSA-N 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- 239000002349 well water Substances 0.000 description 2
- 235000020681 well water Nutrition 0.000 description 2
- CCSTUHGEPDBPEV-NCZXBJOZSA-N (1r,2s,3r,5r)-3-[(8r)-8-hydroxy-7,8-dihydro-4h-imidazo[4,5-d][1,3]diazepin-3-yl]-5-(hydroxymethyl)cyclopentane-1,2-diol Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)C[C@H]1N1C(NC=NC[C@H]2O)=C2N=C1 CCSTUHGEPDBPEV-NCZXBJOZSA-N 0.000 description 1
- QDAOSMKOZCCWLJ-LNIFREGASA-N (2r)-2-[[(2r)-2-[[(2r)-2-amino-5-[[amino-(sulfoamino)phosphoryl]amino]pentanoyl]amino]propanoyl]amino]-6-(diaminomethylideneamino)hexanoic acid Chemical compound NC(N)=NCCCC[C@H](C(O)=O)NC(=O)[C@@H](C)NC(=O)[C@H](N)CCCNP(N)(=O)NS(O)(=O)=O QDAOSMKOZCCWLJ-LNIFREGASA-N 0.000 description 1
- RFZZKBWDDKMWNM-GTBMBKLPSA-N (5s,7r,8s,9r)-8,9-dihydroxy-7-(hydroxymethyl)-6-oxa-1,3-diazaspiro[4.4]nonane-2,4-dione Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@]11C(=O)NC(=O)N1 RFZZKBWDDKMWNM-GTBMBKLPSA-N 0.000 description 1
- KFNRJXCQEJIBER-ZCFIWIBFSA-N (S)-gabaculine Chemical compound N[C@H]1CC(C(O)=O)=CC=C1 KFNRJXCQEJIBER-ZCFIWIBFSA-N 0.000 description 1
- RFFOTVCVTJUTAD-AOOOYVTPSA-N 1,4-cineole Chemical compound CC(C)[C@]12CC[C@](C)(CC1)O2 RFFOTVCVTJUTAD-AOOOYVTPSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 1
- GVEZIHKRYBHEFX-MNOVXSKESA-N 13C-Cerulenin Natural products CC=CCC=CCCC(=O)[C@H]1O[C@@H]1C(N)=O GVEZIHKRYBHEFX-MNOVXSKESA-N 0.000 description 1
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- GFIQMTUSPKSFSY-XNUQMYNASA-N 2-[(9z)-24-(2-aminoethyl)-15-(3-aminopropyl)-3-(2-chloro-1-hydroxyethyl)-9-ethylidene-12-(1-hydroxyethyl)-18-(2-hydroxyethyl)-27-(3-hydroxytetradecanoylamino)-2,5,8,11,14,17,20,23,26-nonaoxo-1-oxa-4,7,10,13,16,19,22,25-octazacyclooctacos-6-yl]-2-hydroxyac Chemical compound CCCCCCCCCCCC(O)CC(=O)NC1COC(=O)C(C(O)CCl)NC(=O)C(C(O)C(O)=O)NC(=O)\C(=C\C)NC(=O)C(C(C)O)NC(=O)C(CCCN)NC(=O)C(CCO)NC(=O)CNC(=O)C(CCN)NC1=O GFIQMTUSPKSFSY-XNUQMYNASA-N 0.000 description 1
- SYQNUQSGEWNWKV-XUIVZRPNSA-N 4-hydroxy-3,5-dimethyl-5-(2-methyl-buta-1,3-dienyl)-5h-thiophen-2-one Chemical compound C=CC(/C)=C/[C@@]1(C)SC(=O)C(C)=C1O SYQNUQSGEWNWKV-XUIVZRPNSA-N 0.000 description 1
- SYQNUQSGEWNWKV-UHFFFAOYSA-N 5R-Thiolactomycin Natural products C=CC(C)=CC1(C)SC(=O)C(C)=C1O SYQNUQSGEWNWKV-UHFFFAOYSA-N 0.000 description 1
- CUCUKLJLRRAKFN-UHFFFAOYSA-N 7-Hydroxy-(S)-usnate Chemical compound CC12C(=O)C(C(=O)C)C(=O)C=C1OC1=C2C(O)=C(C)C(O)=C1C(C)=O CUCUKLJLRRAKFN-UHFFFAOYSA-N 0.000 description 1
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 1
- 244000085413 Aphanizomenon flos aquae Species 0.000 description 1
- 235000013781 Aphanizomenon flos aquae Nutrition 0.000 description 1
- 241000589173 Bradyrhizobium Species 0.000 description 1
- 241000499481 Chaetopeltidales Species 0.000 description 1
- 241001442391 Chaetophorales Species 0.000 description 1
- QDHHCQZDFGDHMP-UHFFFAOYSA-N Chloramine Chemical class ClN QDHHCQZDFGDHMP-UHFFFAOYSA-N 0.000 description 1
- 244000249214 Chlorella pyrenoidosa Species 0.000 description 1
- 235000007091 Chlorella pyrenoidosa Nutrition 0.000 description 1
- 240000009108 Chlorella vulgaris Species 0.000 description 1
- 235000007089 Chlorella vulgaris Nutrition 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 241000760866 Chlorococcum citriforme Species 0.000 description 1
- 241001284755 Chlorocystidales Species 0.000 description 1
- 241000196319 Chlorophyceae Species 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241001442241 Chromochloris zofingiensis Species 0.000 description 1
- 241000192699 Chroococcales Species 0.000 description 1
- FMGBNISRFNDECK-CZSBRECXSA-N Coronatine Chemical compound CC[C@H]1C[C@]1(C(O)=O)NC(=O)C1=C[C@H](CC)C[C@@H]2C(=O)CC[C@H]12 FMGBNISRFNDECK-CZSBRECXSA-N 0.000 description 1
- 241000195634 Dunaliella Species 0.000 description 1
- KXTYBXCEQOANSX-UHFFFAOYSA-N Fusicoccin A Natural products C12=C(C(C)COC(C)=O)CC(O)C2(C)C=C2C(COC)CCC2C(C)C(O)C1OC1OC(COC(C)(C)C=C)C(O)C(OC(C)=O)C1O KXTYBXCEQOANSX-UHFFFAOYSA-N 0.000 description 1
- 239000005980 Gibberellic acid Substances 0.000 description 1
- 241000350665 Hapalosiphon Species 0.000 description 1
- 241000258937 Hemiptera Species 0.000 description 1
- RFZZKBWDDKMWNM-UHFFFAOYSA-N Hydantocidin Natural products OC1C(O)C(CO)OC11C(=O)NC(=O)N1 RFZZKBWDDKMWNM-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 241001467460 Myxogastria Species 0.000 description 1
- 241000192656 Nostoc Species 0.000 description 1
- 241000192522 Nostocales Species 0.000 description 1
- 241001493555 Oedogoniales Species 0.000 description 1
- 241000192494 Oscillatoriales Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 102000015731 Peptide Hormones Human genes 0.000 description 1
- 108010038988 Peptide Hormones Proteins 0.000 description 1
- 241000050442 Phaeophilales Species 0.000 description 1
- IAJOBQBIJHVGMQ-UHFFFAOYSA-N Phosphinothricin Natural products CP(O)(=O)CCC(N)C(O)=O IAJOBQBIJHVGMQ-UHFFFAOYSA-N 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- RVFULFDTCDRKNZ-XZBVAUNFSA-N Prehelminthosporol Natural products O[C@H]1OC[C@@H]2[C@]3(C)C(=C)[C@H]1[C@H]2[C@@H](C(C)C)CC3 RVFULFDTCDRKNZ-XZBVAUNFSA-N 0.000 description 1
- 241000353135 Psenopsis anomala Species 0.000 description 1
- 241000589180 Rhizobium Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241000192120 Scytonema Species 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 241001135312 Sinorhizobium Species 0.000 description 1
- FGWRUVXUQWGLOX-UHFFFAOYSA-N Sorgoleone Natural products COC1=CC(=O)C(O)=C(CCCCCCCC=CCC=CCC=C)C1=O FGWRUVXUQWGLOX-UHFFFAOYSA-N 0.000 description 1
- 241001493558 Sphaeropleales Species 0.000 description 1
- 241000791935 Synechococcales Species 0.000 description 1
- SIIRBDOFKDACOK-WBVHZDCISA-N Tentoxin V1 Natural products CC(C)C[C@@H]1NC(=O)[C@@H](C)N(C)C(=O)CNC(=O)C(=Cc2ccccc2)N(C)C1=O SIIRBDOFKDACOK-WBVHZDCISA-N 0.000 description 1
- 241001442237 Tetrasporales Species 0.000 description 1
- 241000534944 Thia Species 0.000 description 1
- HZKWYVVZQURNOK-UHFFFAOYSA-N Tricolorin A Natural products COc1cc(O)c2c(O)c3C(=O)CC(C)(O)Cc3c(c4c5CC(C)(O)CC(=O)c5c(O)c6c(OC)cc(OC)cc46)c2c1 HZKWYVVZQURNOK-UHFFFAOYSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 1
- 229930003779 Vitamin B12 Natural products 0.000 description 1
- 241000195647 [Chlorella] fusca Species 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- XJLATMLVMSFZBN-VYDXJSESSA-N actinonin Chemical compound CCCCC[C@H](CC(=O)NO)C(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@H]1CO XJLATMLVMSFZBN-VYDXJSESSA-N 0.000 description 1
- XJLATMLVMSFZBN-UHFFFAOYSA-N actinonine Natural products CCCCCC(CC(=O)NO)C(=O)NC(C(C)C)C(=O)N1CCCC1CO XJLATMLVMSFZBN-UHFFFAOYSA-N 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 230000002353 algacidal effect Effects 0.000 description 1
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000000842 anti-protozoal effect Effects 0.000 description 1
- 239000003904 antiprotozoal agent Substances 0.000 description 1
- 229940054349 aphanizomenon flos-aquae Drugs 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 150000001607 bioavailable molecules Chemical class 0.000 description 1
- 239000003131 biological toxin Substances 0.000 description 1
- 230000000853 biopesticidal effect Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- GVEZIHKRYBHEFX-UHFFFAOYSA-N caerulein A Natural products CC=CCC=CCCC(=O)C1OC1C(N)=O GVEZIHKRYBHEFX-UHFFFAOYSA-N 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- GVEZIHKRYBHEFX-NQQPLRFYSA-N cerulenin Chemical compound C\C=C\C\C=C\CCC(=O)[C@H]1O[C@H]1C(N)=O GVEZIHKRYBHEFX-NQQPLRFYSA-N 0.000 description 1
- 229950005984 cerulenin Drugs 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- RFFOTVCVTJUTAD-UHFFFAOYSA-N cineole Natural products C1CC2(C)CCC1(C(C)C)O2 RFFOTVCVTJUTAD-UHFFFAOYSA-N 0.000 description 1
- AGVAZMGAQJOSFJ-WZHZPDAFSA-M cobalt(2+);[(2r,3s,4r,5s)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2r)-1-[3-[(1r,2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2 Chemical compound [Co+2].N#[C-].[N-]([C@@H]1[C@H](CC(N)=O)[C@@]2(C)CCC(=O)NC[C@@H](C)OP(O)(=O)O[C@H]3[C@H]([C@H](O[C@@H]3CO)N3C4=CC(C)=C(C)C=C4N=C3)O)\C2=C(C)/C([C@H](C\2(C)C)CCC(N)=O)=N/C/2=C\C([C@H]([C@@]/2(CC(N)=O)C)CCC(N)=O)=N\C\2=C(C)/C2=N[C@]1(C)[C@@](C)(CC(N)=O)[C@@H]2CCC(N)=O AGVAZMGAQJOSFJ-WZHZPDAFSA-M 0.000 description 1
- 229930191753 cochlioquinone Natural products 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000002361 compost Substances 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- FMGBNISRFNDECK-UHFFFAOYSA-N coronatine Natural products CCC1CC1(C(O)=O)NC(=O)C1=CC(CC)CC2C(=O)CCC12 FMGBNISRFNDECK-UHFFFAOYSA-N 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 235000015872 dietary supplement Nutrition 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 241001233061 earthworms Species 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- YJGVMLPVUAXIQN-UHFFFAOYSA-N epipodophyllotoxin Natural products COC1=C(OC)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YJGVMLPVUAXIQN-UHFFFAOYSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 230000009123 feedback regulation Effects 0.000 description 1
- 230000035558 fertility Effects 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000000855 fungicidal effect Effects 0.000 description 1
- KXTYBXCEQOANSX-MQYZIMMHSA-N fusicoccin Chemical compound O([C@@H]1[C@@H](O)[C@H](C)[C@H]\2CC[C@H](C/2=C/[C@@]2(C)[C@H](O)CC(=C21)[C@H](C)COC(C)=O)COC)[C@H]1O[C@@H](COC(C)(C)C=C)[C@H](O)[C@@H](OC(C)=O)[C@@H]1O KXTYBXCEQOANSX-MQYZIMMHSA-N 0.000 description 1
- 229930188044 fusicoccin Natural products 0.000 description 1
- IXORZMNAPKEEDV-UHFFFAOYSA-N gibberellic acid GA3 Natural products OC(=O)C1C2(C3)CC(=C)C3(O)CCC2C2(C=CC3O)C1C3(C)C(=O)O2 IXORZMNAPKEEDV-UHFFFAOYSA-N 0.000 description 1
- IXORZMNAPKEEDV-OBDJNFEBSA-N gibberellin A3 Chemical compound C([C@@]1(O)C(=C)C[C@@]2(C1)[C@H]1C(O)=O)C[C@H]2[C@]2(C=C[C@@H]3O)[C@H]1[C@]3(C)C(=O)O2 IXORZMNAPKEEDV-OBDJNFEBSA-N 0.000 description 1
- IAJOBQBIJHVGMQ-BYPYZUCNSA-N glufosinate-P Chemical compound CP(O)(=O)CC[C@H](N)C(O)=O IAJOBQBIJHVGMQ-BYPYZUCNSA-N 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 210000004209 hair Anatomy 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 230000015784 hyperosmotic salinity response Effects 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 239000000797 iron chelating agent Substances 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 235000021374 legumes Nutrition 0.000 description 1
- YDWYMAHAWHBPPT-UHFFFAOYSA-N leptospermone Chemical compound CC(C)CC(=O)C1C(=O)C(C)(C)C(=O)C(C)(C)C1=O YDWYMAHAWHBPPT-UHFFFAOYSA-N 0.000 description 1
- PZTZKUAPDKQTOI-UHFFFAOYSA-N leptospermone Natural products CC(C)CC(=O)C1=C(O)C(C)(C)C(=O)C(C)(C)C1=O PZTZKUAPDKQTOI-UHFFFAOYSA-N 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 239000010871 livestock manure Substances 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical class [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 229910000021 magnesium carbonate Chemical group 0.000 description 1
- 235000011160 magnesium carbonates Nutrition 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000001069 nematicidal effect Effects 0.000 description 1
- 239000005645 nematicide Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 239000000618 nitrogen fertilizer Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 235000021049 nutrient content Nutrition 0.000 description 1
- 239000002420 orchard Substances 0.000 description 1
- 238000005949 ozonolysis reaction Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- QDAOSMKOZCCWLJ-UHFFFAOYSA-N phaseolotoxin Natural products NC(N)=NCCCCC(C(O)=O)NC(=O)C(C)NC(=O)C(N)CCCNP(N)(=O)NS(O)(=O)=O QDAOSMKOZCCWLJ-UHFFFAOYSA-N 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 235000017807 phytochemicals Nutrition 0.000 description 1
- 239000003375 plant hormone Substances 0.000 description 1
- 229930000223 plant secondary metabolite Natural products 0.000 description 1
- YJGVMLPVUAXIQN-XVVDYKMHSA-N podophyllotoxin Chemical compound COC1=C(OC)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@H](O)[C@@H]3[C@@H]2C(OC3)=O)=C1 YJGVMLPVUAXIQN-XVVDYKMHSA-N 0.000 description 1
- 229960001237 podophyllotoxin Drugs 0.000 description 1
- YVCVYCSAAZQOJI-UHFFFAOYSA-N podophyllotoxin Natural products COC1=C(O)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YVCVYCSAAZQOJI-UHFFFAOYSA-N 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- RADKZDMFGJYCBB-UHFFFAOYSA-N pyridoxal hydrochloride Natural products CC1=NC=C(CO)C(C=O)=C1O RADKZDMFGJYCBB-UHFFFAOYSA-N 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- SLUXPOIDTZWGCG-UHFFFAOYSA-N rhizobitoxine Natural products OCC(N)COC=CC(N)C(O)=O SLUXPOIDTZWGCG-UHFFFAOYSA-N 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 230000007226 seed germination Effects 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000015424 sodium Nutrition 0.000 description 1
- 238000004162 soil erosion Methods 0.000 description 1
- 239000004016 soil organic matter Substances 0.000 description 1
- FGWRUVXUQWGLOX-AFJQJTPPSA-N sorgoleone Chemical compound COC1=CC(=O)C(O)=C(CCCCCCC\C=C/C\C=C/CC=C)C1=O FGWRUVXUQWGLOX-AFJQJTPPSA-N 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000031068 symbiosis, encompassing mutualism through parasitism Effects 0.000 description 1
- 229930194835 syringotoxin Natural products 0.000 description 1
- 108010013435 syringotoxin B Proteins 0.000 description 1
- UVAAUIDYGIWLMB-HGNFPZBQSA-N tagetitoxin Chemical compound C1S[C@@](O)(C(N)=O)[C@H]2[C@H](OC(=O)C)[C@H](N)[C@@H](OP(O)(O)=O)[C@]1(C(O)=O)O2 UVAAUIDYGIWLMB-HGNFPZBQSA-N 0.000 description 1
- UVAAUIDYGIWLMB-UHFFFAOYSA-N tagetitoxin Natural products C1SC(O)(C(N)=O)C2C(OC(=O)C)C(N)C(OP(O)(O)=O)C1(C(O)=O)O2 UVAAUIDYGIWLMB-UHFFFAOYSA-N 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 108010093253 tentoxin Proteins 0.000 description 1
- SIIRBDOFKDACOK-LFXZBHHUSA-N tentoxin Chemical compound CN1C(=O)[C@H](CC(C)C)NC(=O)[C@H](C)N(C)C(=O)CNC(=O)\C1=C\C1=CC=CC=C1 SIIRBDOFKDACOK-LFXZBHHUSA-N 0.000 description 1
- SIIRBDOFKDACOK-UHFFFAOYSA-N tentoxin Natural products CN1C(=O)C(CC(C)C)NC(=O)C(C)N(C)C(=O)CNC(=O)C1=CC1=CC=CC=C1 SIIRBDOFKDACOK-UHFFFAOYSA-N 0.000 description 1
- 235000019157 thiamine Nutrition 0.000 description 1
- 239000011721 thiamine Substances 0.000 description 1
- 238000003971 tillage Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- DWBKNMQALHFQLC-UHFFFAOYSA-N tricolorin E Natural products O1C2C(O)C(O)C(C)OC2OC(CCCCC)CCCCCCCCCC(=O)OC2C(O)C(CO)OC1C2OC(C1OC(=O)C(C)CC)OC(C)C(OC(=O)C(C)CC)C1OC1OC(C)C(O)C(O)C1O DWBKNMQALHFQLC-UHFFFAOYSA-N 0.000 description 1
- DWBKNMQALHFQLC-YSLUMIJWSA-N tricolorin a Chemical compound O([C@@H]1[C@@H](OC(=O)[C@@H](C)CC)[C@H](C)O[C@H]([C@@H]1OC(=O)[C@@H](C)CC)O[C@H]1[C@H]2O[C@H](CO)[C@@H](O)[C@@H]1OC(=O)CCCCCCCCC[C@@H](O[C@@H]1O[C@H](C)[C@H](O)[C@H](O)[C@H]1O2)CCCCC)[C@@H]1O[C@@H](C)[C@H](O)[C@@H](O)[C@H]1O DWBKNMQALHFQLC-YSLUMIJWSA-N 0.000 description 1
- 229940004858 usnic acid Drugs 0.000 description 1
- ICTZCAHDGHPRQR-UHFFFAOYSA-N usnic acid Natural products OC1=C(C)C(O)=C(C(C)=O)C2=C1C1(C)C(O)=C(C(=O)C)C(=O)C=C1O2 ICTZCAHDGHPRQR-UHFFFAOYSA-N 0.000 description 1
- WEYVVCKOOFYHRW-UHFFFAOYSA-N usninic acid Natural products CC12C(=O)C(C(=O)C)=C(O)C=C1OC1=C2C(O)=C(C)C(O)=C1C(C)=O WEYVVCKOOFYHRW-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 235000019163 vitamin B12 Nutrition 0.000 description 1
- 239000011715 vitamin B12 Substances 0.000 description 1
- 235000019158 vitamin B6 Nutrition 0.000 description 1
- 239000011726 vitamin B6 Substances 0.000 description 1
- 229940045997 vitamin a Drugs 0.000 description 1
- 229940011671 vitamin b6 Drugs 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M21/00—Bioreactors or fermenters specially adapted for specific uses
- C12M21/02—Photobioreactors
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05F—ORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
- C05F11/00—Other organic fertilisers
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05F—ORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
- C05F11/00—Other organic fertilisers
- C05F11/08—Organic fertilisers containing added bacterial cultures, mycelia or the like
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05F—ORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
- C05F11/00—Other organic fertilisers
- C05F11/10—Fertilisers containing plant vitamins or hormones
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
- C12M1/04—Apparatus for enzymology or microbiology with gas introduction means
- C12M1/09—Flotation apparatus
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
- C12M1/34—Measuring or testing with condition measuring or sensing means, e.g. colony counters
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/58—Reaction vessels connected in series or in parallel
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
- C12M29/04—Filters; Permeable or porous membranes or plates, e.g. dialysis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
- C12M29/14—Pressurized fluid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M31/00—Means for providing, directing, scattering or concentrating light
- C12M31/02—Means for providing, directing, scattering or concentrating light located outside the reactor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M31/00—Means for providing, directing, scattering or concentrating light
- C12M31/10—Means for providing, directing, scattering or concentrating light by light emitting elements located inside the reactor, e.g. LED or OLED
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M37/00—Means for sterilizing, maintaining sterile conditions or avoiding chemical or biological contamination
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/26—Means for regulation, monitoring, measurement or control, e.g. flow regulation of pH
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/30—Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
- C12M41/34—Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/12—Unicellular algae; Culture media therefor
Definitions
- Algae have the ability to adapt to their environment. For instance, algae found in soil in the Southwestern deserts have adapted to elevated temperatures, alkaline pH levels, and periods of desiccation, while algae in northern climates have adapted to much lower temperatures, freeze-thaw cycles, higher soil moisture levels, and more acidic soil pH levels, etc. [0004] Endemic algae fill a niche in the field ecosystem. Within the soil ecosystem, a symbiosis with other organisms has developed resulting in a biochemical environment where compounds produced by the endemic algae may augment the growth of other desirable microbes and depress the growth of undesirable or non-beneficial organisms.
- algae are known to produce biochemicals such as amino acids, hormones, peptides, and fatty acids that augment the growth of beneficial microorganisms. These beneficial biochemicals also directly help the crop plants.
- the beneficial microorganisms produce biochemicals that the algae and crop can utilize to grow (e.g., sugars and vitamins) resulting in continued algal and crop growth.
- algae may produce compounds that are antibacterial, antifungal, algicidal, and/or antiprotozoal which prevent the growth of unwanted microbes in soil and surface waters.
- biochemicals are released which can directly feed the soil biome and any crop plants growing in the soil.
- biochemicals are large molecules (e.g., such as proteins, fats, dyes, peptides, nucleic acids, etc.), some or all of which can be absorbed by the crop plant, resulting in crops with greater nutritional value.
- Humus aids in the formation of natural iron chelates (fulvic acids-Fe), which prevents soil from being blocked by calcium and magnesium carbonates, thus avoiding chlorosis problems induced by low bioavailability of these nutrients.
- Chlorosis is the reduction in the green color of plants due to a reduction in the amount of chlorophyll in the leaves brought on by a lack of bioavailable macro and micronutrients such as nitrogen (N), magnesium (Mg), calcium (Ca), and iron (Fe), even when these nutrients are present in the soils.
- Ion exchange capacity is a quantitative means for describing the binding of fertilizer elements to soil particles for storage and release.
- Humus ion exchange capacity e.g., 400 to 600 meq/lOOg
- clays e.g., 50 to 150 meq/lOOg.
- N nitrogen
- P phosphorus
- K potassium
- Fertilizers are more effective if combined with microalgae.
- Algae cells process fertilizers by breaking down certain molecules into more bioavailable forms that plants can more readily use. The nutrients are then more efficiently and completely absorbable by the root system of the plants.
- ammonium nitrate an excellent source of nitrogen, is one of the most common bulk fertilizers used to grow crops. While plants can immediately absorb the nitrate in this fertilizer, the ammonium component is less accessible to the plant.
- Microalgae cells will absorb the ammonium, naturally convert it to nitrogenous biochemicals, and upon their death, will release these valuable biochemicals to the plant for easy consumption.
- the nutrients from fertilizers can bind to the microalgae cells or their organic remains and are less likely to be lost in run-off water during rains or irrigation.
- the algae Upon their death, the algae can also feed bacteria in the soil, which can convert the ammonium ion into nitrate ions.
- Algae produce growth regulators (e.g., gibberellic acid) that improve salt tolerance, induce seed germination and increase plant growth rate and fruit production. Artificial or concentrated growth regulators are expensive, especially when applied in substantial amounts, making it impractical for growers to replicate this effect by use of other products.
- growth regulators e.g., gibberellic acid
- live microalgae cells can function as a catalyst to tap and utilize all of the benefits available from standard fertilizers; and also, to provide a natural supply of essential compounds and phytochemicals, while supporting the overall efficacy of the growing environment.
- These potent attributes work in concert to stimulate plants to grow heartier and more quickly; and to consistently produce a more abundant, higher quality and more nutrient rich end-product such as a crop.
- the benefits from an additive of microalgae cells are available when the algae cells that are delivered to the soil are in healthy living form and in great concentration. The selection and formulation of the algae additive is critical to its overall impact. When correctly instituted, a microalgae additive program is simple to manage, and offers breakthrough potential in agricultural production.
- the impact may be greatest in the most depleted soils such as arid soils that have significant salt and caliche buildup with minimal organic matter. Further, by selecting endemic algae for propagation and delivery to an agricultural production area, there is a higher survival rate, and a greater and faster impact on soil health.
- Some embodiments include a culturing system comprising a bioreactor adapted to propagate microalgae in a culture solution using in combination natural and/or artificial light, and at least one nutrient comprising at least a carbon source, where the microalgae are freely suspended in and form part of the culture solution.
- Some embodiments include an algae nutrient supply coupled to the bioreactor and a first controller between a water conditioning assembly and the bioreactor.
- the water conditioning assembly is coupled as an input of supply water to the bioreactor, and configured to condition the supply water to a specified purity that enables substantially unhindered growth of the microalgae in the culture solution to a specified concentration.
- the first controller can be configured to control the delivery of the algae nutrient supply to the bioreactor.
- a carbon dioxide source is coupled to the bioreactor, where the carbon dioxide is injected into the culture solution as the carbon source.
- Some further embodiments include a second controller coupled to a probe and configured to regulate release of carbon dioxide from the carbon dioxide source to the bioreactor based at least in part on one or more measurements from the probe, where the carbon dioxide is injected into the culture solution as the carbon source.
- the probe is a pH probe configured to measure a pH of the culture solution.
- the water conditioning assembly includes an ozone generator coupled to an ozone contactor, where the ozone generator is configured to generate ozone and deliver the ozone to at least partially ozonate the supply water.
- Some embodiments include a solids filter downstream from an outlet of the ozone contactor, where the solids filter is configured to remove solids from ozonated supply water exiting the ozone contactor.
- Some embodiments include a carbon filter and/or a UV light system positioned downstream from the solids filter, where the carbon filter and/or the UV light system can at least partially de-ozonate the ozonated supply water.
- Some embodiments include at least one pressurized air supply coupled to the bioreactor, where the at least one pressurized air supply can generate gas bubbles to at least partially aerate and/or agitate the culture solution.
- the gas bubbles include CO2, N2, and/or O2.
- Some embodiments further comprise at least one water reservoir or tank providing or coupled to the input of supply water.
- Some further embodiments comprise a mobile trailer supporting at least the bioreactor, the water conditioning assembly, and the carbon dioxide source.
- the microalgae feed source comprises a fertilizer, a macro-nutrient, a micro nutrient, and at least two different microalgae species.
- the macro-nutrient is selected from the group consisting of phosphorus, nitrogen, carbon, silicon, calcium salt, magnesium salt, sodium salt, potassium salt, and sulfur; and the one or more micronutrients is selected from the group consisting of manganese, copper, zinc, cobalt, molybdenum, vitamins and trace elements.
- the micro-nutrient comprises a vitamin and a mineral added to the conditioned supply water.
- Some embodiments comprise a telemetry system configured for a remote monitoring and/or controlling operation of one or more of the first controller, the second controller, the bioreactor, and at least one component or assembly of the water conditioning assembly.
- the artificial light comprises LED lights positioned within the bioreactor and/or proximate to a surface of the bioreactor and exposing the microalgae to light.
- the carbon dioxide source comprises a tank comprising carbon dioxide gas, and/or a carbon dioxide generator, and/or a carbon dioxide-sequester that sequesters and temporarily stores atmospheric carbon dioxide.
- the microalgae feed source comprises a first algae type, and/or a second algae type, and/or bacteria, and/or fungi.
- Some embodiments further comprise a flow-imaging device coupled to an output of the bioreactor, where the flow imaging device is configured to create images of algae, predators, and contaminants in the culture solution for quality control monitoring.
- Some embodiments further comprise a microorganism mixer configured to blend algae, and/or bacteria, and/or fungi, with any of the culture solution exiting the bioreactor.
- Some embodiments include a method comprising preparing one or more microbe- containing samples from at least one location of a current or planned plant growth area, and preparing at least one cultured sample by culturing microbes from the sample. Further, some embodiments include selecting at least one target species of microbe from the at least one cultured sample, and propagating the at least one selected target species of microbe to increase the concentration of the at least one target species of microbe in the at least one cultured sample. Some embodiments include providing a bioreactor adapted to propagate the at least one selected target species in a culture solution, where the at least one selected target species being freely suspended in and forming part of the culture solution.
- some embodiments include coupling a feed source to the bioreactor and a first controller between a water conditioning assembly and the bioreactor, where the water conditioning assembly is coupled as an input of supply water to the bioreactor, and configured to condition the supply water to a specified purity that enables substantially unhindered growth of the at least one selected target species in the culture solution to a specified concentration.
- the first controller is configured to control supply of the feed source to the bioreactor.
- a carbon dioxide source is coupled to the bioreactor.
- Some embodiments include a second controller coupled to the probe and configured to regulate release of carbon dioxide from the carbon dioxide source to the bioreactor based at least in part on one or more measurements from the probe, and further, where the carbon dioxide is injected into the culture solution a carbon source enabling propagation of the at least one selected target species of microbe.
- Some embodiments include delivering at least a portion of the at least one target species of microbe to at least a portion of the at least one location, where at least a portion of the at least one target species of microbe being delivered comprises at least one live microbe.
- the at least one live microbe is selected to be a well-adapted endemic species.
- the water conditioning assembly includes an ozone generator coupled to an ozone contactor, where the ozone generator is configured to generate ozone and deliver the ozone to at least partially ozonate the supply water.
- a solids filter is positioned upstream from an inlet of the ozone contactor.
- a carbon filter and/or a UV light system are positioned immediately downstream from the solids filter, where the carbon filter and/or the UV light system are configured and arranged to at least partially de-ozonate the ozonated supply water.
- at least one pressurized air supply is coupled to the bioreactor, where the at least one pressurized air supply can generate gas bubbles to at least partially aerate and/or agitate the culture solution in the bioreactor.
- Some embodiments of the method further comprise delivering at least a portion of the at least one target species of microbe to at least a portion of the at least one location.
- at least a portion of the at least one target species of microbe delivered comprises at least one live microbe.
- the at least one live microbe is an endemic species of algae to the delivery location.
- the at least one live microbe is a live species selected to restore a normal soil flora mix of a cropland.
- the live species of algae is selected for its specific desired properties for improving the soil in the delivery location.
- Some embodiments include a method comprising sampling the algal flora from an agricultural location, and selecting at least one desired algae species for propagation, where the at least one desired algae species is present in the agricultural location as an initial concentration. Some embodiments include propagating the at least one desired algae species in at least one bioreactor, and delivering the at least one desired species to the agricultural location to increase the concentration of the algae species to a concentration greater than the initial concentration.
- the at least one bioreactor is adapted to propagate at least one desired species in a culture solution using in combination at least one of natural and artificial light, and at least one nutrient comprising at least a carbon source, where at least one desired species are freely suspended in and form part of the culture solution.
- an algae nutrient supply is coupled to the at least one bioreactor and a controller for controlling flow between a water conditioning assembly and the at least one bioreactor.
- the water conditioning assembly is coupled as an input of supply water to the at least one bioreactor to condition the supply water to a specified purity that enables substantially unhindered growth of the microalgae in the culture solution to a specified concentration.
- the controller is configured to control supply of the algae nutrient supply to the at least one bioreactor.
- a carbon dioxide source coupled to the at least one bioreactor, where the carbon dioxide is injected into the culture solution as the carbon source.
- a second controller is coupled to a probe, the second controller configured to regulate release of carbon dioxide from the carbon dioxide source to the bioreactor based at least in part on one or more measurements from the probe.
- the water conditioning assembly includes an ozone generator coupled to an ozone contactor, where the ozone generator generates ozone and delivers the ozone to at least partially ozonate the supply water.
- a solids filter is positioned upstream from an inlet of the ozone contactor.
- the carbon filter and/or a UV light system are positioned downstream from the solids filter, where the at least one of the carbon filter and the UV light system at least partially de-ozonates the ozonated supply water.
- the pressurized air supply is coupled to the bioreactor, where the pressurized air supply generates gas bubbles to at least partially aerate and/or agitate the culture solution in the at least one bioreactor.
- FIG. 1 depicts a first embodiment of the microalgae-based soil inoculating system of the invention.
- FIG. 2 depicts a front-perspective view of a second embodiment of the microalgae- based soil inoculating system of the invention.
- FIG. 3 depicts a side elevation view of a third embodiment of the microalgae-based soil inoculating system of the invention.
- FIG. 4A depicts a field, five weeks after a crop of melons were planted and treated according to the method and with the system of the invention.
- FIG. 4B depicts the same field of FIG. 4A at nine weeks after a crop of melons were planted and treated according to the method and with the system of the invention.
- FIG. 5A depicts a melon plant in a section of field not treated according to the invention.
- FIG. 5B depicts melon plants in a section of field treated according to the invention.
- FIG. 6A depicts a melon growing in plant after nine weeks in a section of field not treated according to the invention.
- FIG. 6B depicts a melon growing in plant after nine weeks in a section of field treated according to the invention.
- FIG. 7 depicts a fourth embodiment of the microalgae-based soil inoculating system of the invention.
- FIG. 8 depicts a fifth embodiment of the microalgae-based soil inoculating system of the invention.
- FIG. 9 illustrates a soil enrichment system in accordance with some further embodiments of the invention.
- the terms“mounted,”“connected,”“supported,” and“coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further,“connected” and“coupled” are not restricted to physical or mechanical connections or couplings.
- Some embodiments of the invention include a system capable of delivering a full range of micronutrients within microalgae to soil.
- microalgae containing water effluent
- the system can be placed within an irrigation system between the water source and the water ports, through which irrigation water can be applied to crops.
- the system can produce biofertilizers that are immediately bioavailable to crops, such that negligible runoff pollution occurs. Using this system, inorganic agricultural chemicals can be used more efficiently after being converted into a bioavailable form by the algae; therefore, the amount of chemicals needed is reduced.
- the system can be used to build soil organics with nutrient- rich algae biomass to recover depleted (nutrient poor) soils.
- the system can facilitate and accelerate the transformation of a chemicals-based farm to an organic farm.
- the system can deliver microalgae to the soil that dissolve soil carbonates, build polysaccharide content in the topsoil, and improve soil porosity up to 500% or more.
- the system also provides for use of specific algal biotoxins in place of conventional chemical fungicides and other chemical poisons/toxins to manage nematodes and other harmful pests.
- Some embodiments include a system that can comprise one or more bioreactors.
- the system can comprise plural bioreactors.
- the bioreactors can be the same or different.
- the contents of the bioreactor can be the same or different.
- the culture medium in a bioreactor of the system can comprise one or more types of microalgae.
- Some embodiments of the invention include those wherein: a) all of the microalgae are of the same type; b) two or more different types of microalgae are present; and/or c) one or more bioreactors contain one or more types of microalgae, and one or more other bioreactors contain one or more other types of microalgae.
- the microalgae in the bioreactor can propagate so an initial microalgae inoculant placed into the bioreactor can provide an endless supply of microalgae.
- microalgae feed and water can be loaded into the bioreactor and a sufficient amount of microalgae biomass can be removed from the bioreactor periodically so as to keep the conditions within the bioreactor suitable for microalgae culture.
- the system and its method of use can improve overall crop production 5% to 30% or higher as compared to untreated crops.
- the system and method of use can improve the texture, taste, size, nutrient content and/or yield of a crop as compared to untreated crop.
- the system and its method of use can reduce total energy consumption, and/or reduce ecological pollution, and/or reduce greenhouse gas emission, and/or increase bioavailability of micronutrients and macronutrients, and/or reduce the use of chemical fertilizers, and/or reduce overall crop production cost, and/or reduce tillage cost, and/or reduce the need for and use of fungicides, herbicides and/or pesticides, and/or reduce soil compaction, and/or improve soil porosity, and/or increase microbial content of soil, and/or increase the organics content of soil, and/or reduce the amount of irrigation water needed to grow a crop, and/or reduce the occurrence of over fertilization, and/or reduce run-off and soil erosion, and/or improve plant characteristics and/or improve water/moisture retention by soil, all as compared to untreated crop and croplands.
- the system can be used to reduce or eliminate the buildup of carbonates in irrigation equipment by flowing microalgae-containing water through the irrigation equipment. In some embodiments, the system can also be used to reduce or eliminate buildup of carbonates in soil by inoculating the soil with microalgae-containing water.
- microalgae samples can be obtained from repositories at Arizona State University, University of California at Berkeley, University of Texas at Austin, Woods Hole Oceanographic Research Institute, Scripps Institute of Oceanography or other repositories.
- indigenous microalgae species can possess properties that make it optimal for growth under the environmental conditions of the target geographic location.
- algae from non-indigenous locations or algal collections may be used to inoculate the soil of the target geographic location in order to maximize specific bioavailable compounds.
- Some embodiments include a method of inoculating soil that can comprise: obtaining a sample of soil from a target geographic location, and/or isolating a robust indigenous microalgae species from the sample, and/or culturing the microalgae to form a first inoculate.
- the method can include inoculating a portable microalgae-based soil inoculating system with the first inoculate, and/or culturing the microalgae in the inoculating system to form a second inoculate, and/or inoculating soil of the target geographic location one or more times with the second inoculate. Further details are disclosed below.
- the system of the invention can employ various different types of water as the water source, including, but not limited to, wastewater, and/or well water, and/or lake water, and/or creek water, and/or pond water, and/or rainwater, and/or river water and/or freshwater. Since the water is intended for crop growth, it is preferred that the water source has low salinity and is free from heavy metals.
- the inoculate-containing water can be delivered to a crop by any conventional irrigation means or system used in agriculture, for example, by flood, sprinklers or drip type of irrigation systems or by sprayer or aerial application. If applied by sprayer or aerial application, the treatment can be followed by sufficient water to drive the algae into the soil.
- the system and method can provide for continuous, semi- continuous, repeated or periodic treatment of soil with microalgae-containing inoculate.
- the soil can be treated with microalgae-containing inoculate daily, or every other day, or every third day, or semi-weekly, or every fourth day, or every fifth day, or every sixth day, or weekly, or biweekly, or every third week, or every fourth week, or monthly, or bimonthly, or quarterly, each trimester, or semiannually, or annually.
- the soil can be treated with water not containing the microalgae and then with water containing microalgae inoculate, or vice versa.
- Some embodiments include a dilute, semi-concentrated and concentrated algal cultures with a single algal species or two or more different algal species.
- additional crop nutrients can be included in the irrigation water.
- the nutrients such as calcium may be incorporated into the algal species for transport and uptake by the crops.
- the following table includes example macronutrients and micronutrients.
- Biotin Thiamin Vitamin B12 Vitamin B6 [0062] Algae operate symbiotically with other organisms, both microorganisms and macro-organisms. While the primary object of the invention focuses on culturing algae, culturing algae in a diverse community of multiple microorganisms may offer useful solutions. Nitrogen-fixing microbes, called diazotrophs, fall into two main groups, free-living and symbiotic. Aerobic diazotrophs, of which there are over 50 genera, including Azotobacter, methane-oxidizing bacteria, and cyanobacteria, require oxygen for growth and fix nitrogen into soil when oxygen is present.
- Azotobacter, some related bacteria, and some cyanobacteria fix nitrogen in ordinary air, but most members of this group fix nitrogen only when the oxygen concentration is low.
- Aphanizomenon flosaquae reduces acetylene and fixes nitrogen in algal cultures.
- Some symbiotic bacteria belong to the genus Rhizobium such as Bradyrhizobium and Sinorhizobium, which colonize the roots of leguminous plants and stimulate the formation of nodules within which they fix nitrogen micro-aerobically.
- Green microalgae provide nitrogen, phosphorous, potassium, calcium and various other micronutrients. Accordingly, some embodiments include embodiments wherein one or more microalgae are co-cultured with or are inoculated into soil along with one or more diazotrophs.
- suitable microorganisms that can be co-cultured with or inoculated into soil along with the microalgae and/or algae can include actinomycetes, bacteria, fungi, and/or mycorrhizae.
- actinomycetes which are thread-like bacteria that look like fungi. While not as numerous as bacteria, they perform vital roles in the soil, where they help decompose organic matter into humus, which slowly releases nutrients. They also produce antibiotics to fight root diseases. The same antibiotics can be used to treat human diseases. Actinomycetes create the sweet, earthy smell of biologically active soil when a field is tilled.
- Some embodiments can include the use of bacteria which can break down complex molecules and enable plants to take up nutrients. Some species release N, S, P and trace elements from organic matter. Others break down soil minerals and release K, P, Mg, Ca and Fe. Other species make and release natural plant growth hormones, which stimulate root growth. A few bacteria fix N in the roots of legumes while others fix N independently of plant association. Bacteria are responsible for converting N from ammonium to nitrate and back again depending on soil conditions. Various bacteria species increase the solubility of nutrients, improve soil structure, fight root diseases, and detoxify soil. In some embodiments, bacteria suitable for co-culture with the microalgae and for use in the system of the invention are disclosed in United States Patent No. 7,736,508 to Limcaco (Jun. 15, 2010), the relevant disclosure of which is hereby incorporated by reference.
- Some embodiments can include the use of fungi, some species of which can appear as thread-like colonies, while others are one-celled yeasts. Slime molds and mushrooms are also fungi. Many fungi aid plants by breaking down organic matter or by releasing nutrients from soil minerals. Fungi are generally early to colonize larger pieces of organic matter and begin the decomposition process. Some fungi produce plant hormones, while others produce antibiotics including penicillin. Several fungi species trap harmful plant-parasitic nematodes.
- Some embodiments can include the use of mycorrhizae, a group of fungi that lives either on or in plant roots and act to extend the reach of root hairs into the soil.
- Mycorrhizae increase the uptake of water and nutrients especially in less fertile soils. Roots colonized by mycorrihizae are less likely to be penetrated by root-feeding nematodes since the pest cannot pierce the thick fungal network.
- Mycorrhizae also produce hormones and antibiotics, which enhance root growth and provide disease suppression. The fungi benefit from plant association by taking nutrients and carbohydrates from the plant roots where they live.
- some embodiments of the system and method can also be used in place of or to reduce the need for conventional herbicides, pesticides, fungicides and nematocides.
- an algal species with specially selected toxins may be applied to manage nematodes and other soil predators.
- the algae with toxins are naturally occurring and typically die out after killing the nematodes. While it is possible for algae to mutate, indigenous algae will be far more robust and quickly crowd out any remaining toxic algae.
- Microalgae suitable for use as pesticides include algae from the genera Nostoc, Scytonema, and Hapalosiphon.
- Some embodiments can include the use of the system and methods in places such as soil-based farms, parks, hydroponic farms, aquaponics, nurseries, golf-courses, sporting fields, orchards, gardens, zoos and other such places where crops or plants are grown.
- Some embodiments can include the use of additional phytotoxins obtainable from microbes are described by Duke et al. (“Chemicals from Nature for Weed Management”, Weed Science, (2002) vol. 50, pg. 138- 151).
- phytotoxins include actinonin, brefeldin, carbocyclic coformycin, cerulenin cochlioquinone, coronatine, 1,4-cineole, fischerellin, fumosin, fusicoccin, gabaculin, gostatin, grandinol, hydantocidin, leptospermone, phaseolotoxin, phosphinothricin, podophyllotoxin, prehelminthosporol, pyridazocidin, quassinoid, rhizobitoxin, tagetitoxin, sorgoleone syringotoxin, tentoxin, tricolorin A, thiolactomycin and usnic acid.
- Some embodiments can include the use of a bioreactor adapted to receive and use natural and/or artificial light.
- the bioreactor can be adapted to permit exposure of microalgae to a light source.
- the wall of the bioreactor can comprise a light-permeable material to permit exposure of the microalgae to light. If an artificial light source is used, the light source can be placed within or at the exterior of the bioreactor, e.g. according to United States Patent No. 8,033,047, the entire disclosure of which is hereby incorporated by reference.
- the system can comprise water conduit having through which microalgae-containing water in the bioreactor can be circulated to expose the microalgae to light.
- Some embodiments can include the use of a water conduit adapted to employ sunlight, reflected, bent, fiber optic or artificial light.
- the system can be run continuously, semi-continuously or in a batch-type operation.
- the system can further comprise one or more monitors or sensors adapted to monitor: a) growing conditions within the bioreactor; and/or b) microalgae cell titer/cell count in the water; and/or c) pH of the water; and/or d) salinity of the water; and/or e) the presence of undesired microbes in the bioreactor; and/or 1) water level; and/or g) water pressure; and/or h) level of microalgae nutrients; and/or i) level of solids in the filtered water; and/or j) the level of undesired compounds in the water; and/or k) oxygen, ozone and/or CC content in the water; and/or 1) level of nitrogen compounds in the water; and/or m) clarity or opacity of the water; and/or n) level of desired compound(s) in the water; and/or o) water flow- rate; and/or p)
- the monitor or sensors can be used to control operation of the system, such as by feedback regulation.
- a monitor may generate one or more signals to controllers, which control the flow of materials into and/or out of the system.
- a microalgae cell titer monitor may send one or more signals to one or more flow controllers that the flow of source water or microalgae- containing water into and/or out of the system.
- a pH monitor may send one or more signals to a CO2 flow controller that controls the amount of, or rate at which, CO2 is added to the system.
- a water level monitor may send one or more signals to a water flow controller that controls the amount of or rate of water flow into and/or out of the system.
- a pH monitor may send one or more signals to an acid or base titrating unit that controls the amount of or rate of acid or base flowing into and/or out of the system.
- a water pressure monitor may send one or more signals to a water pressure regulator that controls the amount of or rate of water flow into and/or out of the system.
- an ozone monitor may send one or more signals to an ozone flow controller that controls the amount of or rate at which ozone is added to the system.
- a clarity monitor may send one or more signals to a water clarity controller that controls the efficiency of filtration of water in the system.
- a nutrient monitor may send one or more signals to a nutrient source flow controller that controls the amount of or rate at which nutrient for the microalgae is added to the system.
- plants and microalgae need nutrients such oxygen, carbon, nitrogen, phosphorus, potassium, magnesium, sulfur, boron, copper, chloride, iron, silicon, sodium, manganese, molybdenum, zinc, cobalt, vanadium, bismuth, iodine, water, carbon dioxide, air and/or others.
- the profile of macronutrients and micronutrients provided by the microalgae will depend upon the strain or species of microalgae used. Plants may require a different spectrum of micronutrients and macronutrients during the different stages of the life cycle of the plant. Some embodiments provide a method of growing crops where the macronutrient and micronutrient profile of microalgae is matched with particular phases in the life cycle of a plant. In some embodiments, a field may receive regular nutrient feedings during crop growth and development with different species used depending on the needs of the crop.
- microalgae A provides a nutrient profile A
- microalgae B provides a nutrient profile B
- a target crop requires a nutrient profile A during the early stages of growth and a nutrient profile B ring of the latter stages of growth.
- the soil in which the crop is planted will be inoculated first with microalgae A during the early stages of growth of the target crop and will be inoculated then with microalgae B during the latter stages of growth of the target crop.
- Some embodiments include a method of producing a crop comprising: planting a crop into soil and inoculating the soil with a first microalgae that provides a first nutrient profile; and/or allowing the plant to pass from a first stage of growth into a second stage of growth; and/or inoculating the soil with a second microalgae that provides a different second nutrient profile.
- the first nutrient profile will be optimal for plant growth during the first stage
- the second nutrient profile will be optimal for plant growth during the second stage.
- FIG. 1 depicts a first embodiment of a portable microalgae-based soil-inoculating system 1 of the invention.
- the system comprises a water source 7, an ozone source 2, a carbon filter/UV light system, 3, a water pump 8, a solids filter 9, microalgae nutrient source 4a, 4b, bioreactors 6a, 6b, 6c, a carbon dioxide source 5, a pressurized air supply/air pump 10 and various and water conduits.
- the pressurized air supply may be a blower, and/or air compressor, and/or rocker pump, and/or any other conventional producer or source of pressurized air.
- air is taken from the atmosphere or a tank via the inlet 11, which optionally includes an air filter.
- the air passes through the air pump 10 to an ozone source 2, whereby ozone- treated air is formed and conducted into a water source 7 to form ozone-treated water.
- the air is also injected with a carbon dioxide source 5 to form carbon dioxide- treated air that is conducted into the bioreactors 6a-6c or into water entering the bioreactors.
- the ozone treated water is filtered through a solids filter 9 a carbon filter and/or a UV light system 3 to form filtered water to which microalgae feed is added by the microalgae feed source 4a, 4b to form feed water, which is conducted into the bioreactor.
- the bioreactors 6a, 6b, 6c are filled with water containing microalgae nutrients and are then inoculated with a first inoculate containing microalgae.
- the carbon dioxide-containing air is injected into the microalgae-containing water in the bioreactors 6a, 6b, 6c.
- the water in the bioreactors 6a, 6b, 6c is recirculated for a period of time until the microalgae cell titer/cell count has reached a target level suitable for use as an inoculant.
- the water from the system 1 is then flowed into irrigation water to form a microalgae-containing inoculate as the effluent, which is applied to the soil from an irrigation system 99.
- one or more heaters are optionally included in the system to heat water conducted through the system and/or heat the culture medium in the bioreactor, thereby permitting culture of microalgae and use of the system even during cold weather.
- the volume of system water and its flow rate into the irrigation water of the irrigation system 99 can be adjusted as needed to provide the appropriate level of inoculation and water penetration into the soil.
- a 200-acre field might receive a total daily volume of 500 to 1 thousand gallons of water at a delivery rate of about 21 gallons/hour to 42 gallons/hour.
- the inoculate obtained from the bioreactor e.g., such as one or more of the bioreactors 6a, 6b, 6c
- the system 1 can be operated such that all water used for irrigation flows through the bioreactor. Otherwise, in some embodiments, the system 1 can be operated such that the inoculate, the effluent of the bioreactors 6a, 6b, 6c, is diluted with additional irrigation water prior to application to the soil.
- the microalgae cell titer (the cell count) in a bioreactor fluctuates over time; therefore, the cell titer of the effluent varies as well.
- the titer provides important metrics regarding the unit’s health and productivity.
- the titer in the effluent can be at least 1,000,000 cells per ml up to 30,000,000 cells per ml.
- the titer is also species specific, and can be higher or lower than the range stated above.
- the ozone can be used to destroy unwanted microbes present in the irrigation water prior to entering the bioreactor. Any organic contaminants present in the system can be removed by ozonolysis as described in United States Patent No. 5,947,057 and United States Patent No. 5,732,654 to Perez et al. Organic contaminants include herbicides, pesticides, and fungicides among other things.
- the ozone source can be an ozone generator. Ozone generators may include the model 01 by Pacific Ozone, the Nano by Absolute Ozone, and the OZ8PC20 by Ozotech.
- the water is treated with ozone as required according to the quality of the water entering the system.
- the concentration of ozone in the water and prior to filtration through a carbon filter will vary with water quality but have an ozone level sufficient to sterilize the water.
- the treatment of the water with ozone may be improved by employing a mixer that mixes the water and ozone.
- the carbon filters and UV light systems are used to remove ozone from the irrigation water prior to entering the bioreactor.
- the carbon filter generally employs a minimum of 0.75 ft 3 of activated carbon.
- the carbon filter and UV light systems are flow-through systems.
- the suitable carbon filters include the 0.75 ft 3 “Upflow Carbon Filter System” from Affordable Water (www.affordablewater.us).
- UV systems may include the“CSL Series” by Aquafine, and the“UVS3XX Series” by UV Sciences (www.aquaneuv.com; Valencia, Calif.).
- the UV light system can be used to disinfect water prior to entering the bioreactor, and/or to destroy ozone, destroy chlorine or chloramines prior to entering the bioreactor.
- the UV light system can disinfect by inactivating or killing microorganisms in the water.
- a solids filter when a solids filter is present, it can be used to remove solids from the irrigation water prior to entering the bioreactor.
- the solids filter can be a flow-through filter.
- suitable solids and filters can include the “XI 00” bag filter from www.filterbag.com or the “FV1” bag filter from www. aquaticeco com.
- suitable carbon filters and/or solids filters can include, but not be limited to, media filters, disk filters, screen filters, microporous ceramic filters, carbon- block resin filters, membrane filters, ion-exchange filters, microporous media filters, reverse osmosis filters, slow-sand filter beds, rapid-sand filter beds, cloth filters, and/or any other conventional filter.
- carbon dioxide can be used as a carbon source for microalgae.
- the carbon dioxide can be added directly or indirectly to the bioreactor.
- carbon dioxide source can be a tank containing carbon dioxide, a carbon dioxide generator, a carbon dioxide sequestering device that sequesters carbon dioxide from the atmosphere, or a combination thereof.
- carbon dioxide captured from air can be used, e.g. United States Patent No. 8,083,836, the entire disclosure of which is hereby incorporated by reference.
- the carbon dioxide can be sourced from acetic acid and/or calcium carbonate.
- Atmospheric air contains approximately 0.035-0.04% wt, of carbon dioxide. While atmospheric air can serve as a source of carbon dioxide for the microalgae, the concentration of carbon dioxide is generally too low to sustain the rapid proliferation of microalgae in the bioreactor. Accordingly, in some embodiments, carbon dioxide can be added to the air that is fed into the culture medium. In some embodiments, the concentration of carbon dioxide in the air added to the culture medium can be generally in the range of about 1-3% wt., 1.5-2.5% wt., 1.8— '2.2% wt., or about 2% wt.
- a water pump can be included in the system. In some embodiments, when present, the water pump can facilitate the flow of water through the water conduits and/or bioreactors of the system. In some embodiments, if a water pump is not included, the pressure of the irrigation water entering can be sufficient to drive water through the system.
- an air pump or blower can be included in the system.
- air pump can facilitate the flow of air, which may or may not include carbon dioxide or ozone, through the air conduits, water source and/or bioreactors of the system.
- a portable system comprising a total bioreactor capacity of 500 gallons of culture medium can support 200 acres of land and will generally require the following minimum operating capacities for the indicated components: a) ozone source-1.5 g/hr; (dry air); b) solids filter-40 g/min maximum flow with a minimum 2 ft 2 surface area; c) carbon filter-0.75 ft 3 minimum; d) water pump- 10 gal/min minimum; e) air pressurized air supply/air pump-25 cfm at 60” H2O minimum; f) microalgae feed source- 1.0 x 10 6 cells/ml minimum; g) liquid carbon dioxide source-80 1/week.
- FIG. 2 depicts another embodiment comprising a portable system 51, where the components of the system 51 are mounted on a trailer.
- the system 51 comprises a water tank 52, a plurality of bioreactors 53, an ozone generator 54, a clarifier 55, a combination filter/UV light system 56, nutrient feed supply 57, CO2 source 58, a pressurized air supply 59 and a trailer 60.
- any of the water tank 52, plurality of bioreactors 53, ozone generator 54, clarifier 55, combination filter/UV light system 56, nutrient feed supply 57, CO2 source 58, and pressurized air supply 59 can be mounted onto the trailer 60.
- the system 51 can accommodate a flow-through capacity of about 0.35-0.7 gal/min and can be used to support a field in the range of 200-1000 acres.
- the water tank 52 can receive water from the on-site water source of a farm.
- the system 51 can comprise eight bioreactors (500-gallon total capacity), a water tank, air filter, solids filter, carbon filter, UV light system, ozone source, carbon dioxide source, microalgae nutrient source, pressurized air supply and water pump (not shown).
- the bioreactors 53 can have light-permeable walls such that sunlight is used as the light source.
- carbon dioxide and air can be bubbled into the lower part of the bioreactor 53 so the bubbles agitate the culture medium as they rise.
- the system 51 optionally comprises a mechanical agitator.
- the system 51 can provide a minimum of about 800,000 microalgae cells per second via the effluent, assuming a water flow rate of about 0.35 gal/min.
- FIG. 3 depicts a side elevation view of another system 65 of the invention comprising an elevated portable platform 66, water tank 67, pressurized air supply 68, ozone source 69, clarifier 70, water filter 71, nutrient source 72, carbon dioxide source 73 and bioreactors 74.
- one or more components can be mounted on the platform and one or more components can be placed on the ground or onto one or more other platforms.
- FIGS. 2 and 3 depict a water tank 52, 67 as the water supply
- a flowing water source can be used instead; therefore, in some embodiments, the system of the invention optionally includes one or more water tanks as the water supply or excludes a water tank as the water supply.
- the effluent of one or more bioreactors can be fed into the water flow of an irrigation system.
- the systems described herein can be placed within a partial or full enclosure even though the systems are portable.
- the performance of the system of FIG. 2 was evaluated in a crop study where melon crops were planted in 200 acres of land.
- the land was divided into control and sample sections (e.g., see FIGs. 5A-5B).
- the control sections only received irrigation water and were not treated with microalgae supplement.
- the sample sections received only irrigation water containing the microalgae supplement.
- Melon seeds were planted before irrigating with the algae supplement in the soil.
- the control plants were irrigated about every fourth day, depending on the heat.
- the sample plants were irrigated on the same schedule as the controls.
- Various aspects of plant and fruit growth were evaluated five weeks (shown in FIG. 4A) and nine weeks (shown in FIG. 4B) after planting.
- the crop grown according to the systems and methods disclosed herein produced larger and hardier plants. For example, compare FIG. 5A (showing a control plant) to FIG. 5B (showing a sample plant). Further, compare the larger melons of FIG. 6B to the control plant shown in FIG. 6A. Moreover, the sample plants produced more flowers per vine, had improved fruit texture and taste, improved sugar content, improved nutritional content, improved appearance, and improved Vitamin A content. The specific details and results are described in Example 1.
- the system can further comprise one or more monitoring devices for performing functions, including, but not limited to, measuring CCh flow rate, CCh content in the culture, O2 content in the culture, pH, cell density and temperature in the culture, measuring macronutrient content in the culture or effluent, measuring micronutrient content in the culture or effluent, or measuring the microalgae titer in the culture or effluent.
- FIG. 7 depicts an alternate embodiment of the system of the invention.
- the system 11 is suitable for low, medium and high-volume irrigation applications.
- the system 11 comprises an optional pump 18 adapted to receive water from a pressurized or unpressurized water source 11a.
- the water received from the water source 11a is ozonated within an ozone contactor 12 that receives ozone from an ozone generator 27 and conducted to a clarifier/filter 19 that removes precipitated solids from the water.
- the water is conducted to a carbon filter or UV light system 13, that removes the ozone, and through to a mixer 22 that mixes the water with algae feed material obtained from the algae nutrient supply 14.
- the algae/water mixture is mixed by use of air bubbles, which are produced by a pressurized air supply 30, which conducts air to an air diffuser in the base of the bioreactor 16.
- the water containing nutrient material is conducted into the bioreactor 16, wherein microalgae are cultured.
- the effluent containing the microalgae exits the bioreactor 16 and passes through a valve 26 that regulates the ratio of flow of water between the by-pass water source line 28 and the bioreactor effluent.
- the controller 29 controls the valve 26 to achieve the desired ratio of volume of flow between untreated source water (from by-pass line 28) and the effluent to provide an inoculant containing a desired or target microalgae titer.
- the system 11 can include one or more different controllers.
- the controller 20 can comprise an optional feedback loop where water that has been improperly ozonated can be fed back into the ozone contactor 12 for proper treatment.
- the controller 21 can comprise an optional feedback loop such that water that has been insufficiently clarified can be fed back into the clarifier 19 for proper clarification.
- the controller 23 can provide control over the algae nutrient supply 14 to regulate the amount of feed material that is charged into the water.
- the controller 25 by use of a pH probe 24, can provide control over the carbon dioxide source 15 that charges carbon dioxide into the bioreactor 16 to regulate the concentration of carbon dioxide in the water and ensure the water has the proper carbon dioxide concentration.
- the algae/water mixture can be mixed by use of air bubbles, which are produced by a pressurized air supply 30, which conducts air to an air diffuser in the base of the bioreactor.
- the system 11 can comprise a portable platform (or body or frame, not shown) onto which plural components of the system are mounted.
- the each of the individual components of the system can be individually replaceable. Although the components are indicated as single components, each of the components can be present in plurality independently of other components of the system.
- FIG. 8 depicts an alternate embodiment of the system of the invention.
- the system 41 as shown can be suitable for low, medium and high-volume irrigation applications or flowing to a distribution tank 37.
- the distribution tank 37 may sit on a trailer for portability.
- the system 41 comprises an optional pump 18 adapted to receive water from a pressurized or unpressurized water source 11a.
- the water from the water source 11a is ozonated within an ozone contactor 12 that receives ozone from an ozone generator 17.
- the ozonated water is conducted to a clarifier/filter 19 that removes precipitated solids from the water.
- the water is conducted to a carbon filter or UV light system 13, that removes the ozone, and through to a mixer 22 that mixes the water with algae fertilizer/additives obtained from the algae nutrient supply 14.
- the water containing nutrient material can be conducted into the bioreactor 16, where microalgae can be cultured.
- the algae/water mixture can be mixed by use of air bubbles, which are produced by the pressurized air supply 30, which conducts air to an air diffuser in the base of the bioreactor as discussed earlier with respect to the system 11 of FIG. 7.
- one or more probes 33 can be placed in the culture to measure the critical parameters including pH, temperature, cell density, water mixing velocity, dissolved gasses and nutrients.
- an optional telemetry device 34 can send the metrics from the probes (monitoring devices or controllers) to a computer server for remote monitoring.
- an optional telemetry capable microscope can assist the remote culture monitoring.
- the optional telemetry device 34 comprises the optional telemetry capable microscope.
- telemetry device 34 can be any device capable of facilitating communication between the system of the invention and a communications and/or control center remote from or at a different geographic locale than the system of the invention.
- the telemetry device 34 can employ any type of wireless communication system and can employ any frequency of light waves, radio waves, sound waves, infrared waves, hypersonic waves, ultraviolet waves, other such wavelengths/frequencies and combinations thereof.
- the telemetry device 34 employ an IP network (such as the Internet), GSM (global system for mobile communications) network, SMS (short message service) network, other such systems and combinations thereof.
- a flow imaging device 32 can create images of the algae, predators and contaminants in the culture for quality control (QC) purposes, and can send this data to the telemetry device 34.
- the effluent containing the microalgae can exit the bioreactor and pass through a valve 31 that regulates the flow of the bioreactor effluent.
- the optional dewatering device 35 can concentrate the algae into slurry of the desired density, which may flow to irrigation or portable containers 37.
- an optional microorganism mixer 36 can enable the user to blend the final product with, in addition to algae, beneficial bacteria, fungi or other organisms 38 that work symbiotically with algae.
- the system 41 can include one or more different controllers.
- the controller 20 can comprise an optional feedback loop such that water that has been improperly ozonated can be fed back into the ozone contactor 12 for proper treatment.
- the controller 21 comprises an optional feedback loop such that water that has been insufficiently clarified can be fed back into the clarifier 19 for proper clarification.
- the controller 23 provides control over the algae nutrient supply 14 in order to regulate the amount of feed material that is charged into the water.
- the controller 25, by use of a pH probe 24, can provide control over the carbon dioxide source 15 that charges carbon dioxide into the bioreactor in order to regulate the concentration of carbon dioxide in the water and ensure the water has the proper carbon dioxide concentration.
- the system 11 can comprise a portable platform (or body or frame, not shown) onto which plural components of the system are mounted.
- each of the individual components of the system can be individually replaceable. Although the components are indicated as single components, each of the components can be present in plurality independently of other components of the system.
- a system similar to the system 41 of FIG. 8 can be used to reclaim degraded or abandoned soil.
- an algae and microorganism mixture produced by the system may be applied though irrigation or spaying on the soil surface to restore vital nutrients. Algae and the other microorganisms continue to flourish in the soil as long as soil moisture is available. Algae deliver micronutrients, attract other microorganisms and add organic matter (humus) to the soil.
- the process can rehabilitate degraded or abandoned soil.
- a system similar to the system 41 of FIG. 8 can culture other microorganisms in the same culture or separate containers for blending before the culture flows into the irrigation or portable containers.
- FIG. 9 illustrates a soil enrichment system 900 in accordance with some further embodiments of the invention.
- Some embodiments include a solids filter 919, a water storage tank 912, a sterilization system 917, and a neutralization system 915.
- a growth priming system may comprise one or more nutrient solution feeds, such as first and second nutrient solution containers 920, 962 to add nutrient solutions to the treated water.
- a bioreactor system may comprise one or more bioreactors 916 to facilitate inoculation with and growth of the microorganism.
- the systems and methods may include various additional systems and subsystems, such as one or more nutrient solution containers, refrigerators, light sources, blowers (e.g., at least one pressurized air supply), carbon dioxide sources, pumps, valves, fluid conduits, air conduits, gas conduits, air filters, gas filters, control systems, sensors, air conditioning units, exhaust systems, portable housings, and/or exterior holding tanks.
- one or more pumps 918 such as peristaltic pumps, may propel irrigation water from the water source 95 through fluid conduits 910.
- the water source 95 supplies water to the soil enrichment system 900. Water flowing from the water source 95 may be referred to as“irrigation water.”
- the water source 95 may comprise any suitable source of irrigation water appropriate for irrigation of plants.
- the water source 95 may be under pressure, such as water from a well or a public utility in a city, town, or municipality. In some embodiments, the water source 95 may be substantially unpressurized.
- the water source 5 may comprise a stationary water reservoir, reclaimed wastewater, well water, lake water, creek water, pond water, rainwater, river water, and/or freshwater.
- Some embodiments of the soil enrichment system 900 may comprise an automated cleaning system 970 controlled by a control system.
- the automated cleaning system 970 may comprise a cleaning solution container 968 for holding the cleaning solution and a pump 918 for pumping the cleaning solution from the cleaning solution container 968 into the fluid conduit and/or the one or more bioreactors 916.
- each of the one or more bioreactors 916 may comprise a dedicated valve for connection of a fluid conduit leading to the cleaning solution container 968 for the cleaning solution.
- one or more bioreactors 916 may be inoculated with the microorganism inoculant by any suitable method, such as manual inoculation through a port 935 in the bioreactor 916.
- the neutralized irrigation water containing nutrient solution may be conducted into any one or more of the bioreactors 916 until it reaches a preselected fill level 940.
- a light source 945/950 may be configured to project light onto and/or into each of the one or more bioreactors 916.
- the light source 945/950 may comprise LED lights in any suitable configuration to provide light to the microorganism culture.
- a first light source 945 may be positioned within the one or more bioreactors 916.
- the first light source 945 may overlay an exterior surface of the one or more bioreactors 16.
- a second light source 950 may be outside of and adjacent to an exterior surface of the one or more bioreactors 916.
- a control system suitable for implementing one or more of the present embodiments may include a computer system communicatively linked to a PLC system 934.
- the PLC system 934 may be communicatively linked to the one or more sensors 933 and may provide measurements obtained by the one or more sensors 933 to a processor and/or database for remote monitoring, remote data access, and/or remote control of the soil enrichment system 900.
- the PLC system 934 may similarly be communicatively linked and configured to control pumps 918, valves, sterilization system 917, neutralization system 915, at least one pressurized air supply 930, lights 950, and/or any carbon dioxide source.
- a carbon dioxide source 966 can be used to supply a carbon source to the microorganism culture. Carbon dioxide may be added directly and/or indirectly to the one or more bioreactors.
- the carbon dioxide source 966 may be a tank containing carbon dioxide gas, a carbon dioxide generator, a carbon dioxide-sequester for sequestering and temporarily storing atmospheric carbon dioxide or a combination thereof.
- the microorganism culture may be released from the one or more bioreactors 916 through the outlets, flow through the one or more fluid conduits, and flow into the external holding tank 937 for storage.
- the external holding tank 937 may comprise an at least partially transparent material such as high or low-density polyethylene, polycarbonate, acrylic, and/or PVC to allow natural or artificial light to penetrate through the external holding tank 937 and into the microorganism culture.
- the external holding tank 937 may comprise a sterile aeration system to support the health of the microorganism culture.
- the external holding tank 937 may comprise a cone-shaped base to ensure complete drainage of the microorganism culture when it is released onto a target field 955.
- the exterior holding tank 937 may comprise a cooling system such as a refrigerator to cool the microorganism culture during storage.
- the refrigerated exterior holding tank may be configured to receive the microorganism culture and/or microorganism slurry, maintain its sterility, and store it at any suitable temperature.
- the dewatering device 964 may be configured to deliver the concentrated microorganism slurry to the target field 955 and/or the exterior holding tank 937.
- the dewatering device 964 may concentrate the microorganism culture through any suitable process such as, but not limited to: 1) flocculation and sedimentation; 2) flotation and collection; and/or 3) centrifugation. Further details and operational characteristics of the soil enrichment system 900 are described in United States Patent Application Serial No. 15/647,005, the entire contents of which are incorporated by reference.
- Some embodiments include methods of isolation, selection, and use of endemic microbes for agriculture production areas using any of the systems described herein.
- some embodiments of the invention include methods of selecting, collecting, and growing algae for delivery to an agricultural production area.
- the methods focus on collecting, isolating, and/or propagating endemic microbes, primarily algae, for mass delivery to the same biome from which the algae was collected.
- the agricultural production area comprising the biome may be a farm field, and/or a raised bed, and/or a greenhouse, and/or a golf course, and/or degraded land, and/or an indoor growing facility.
- Some further embodiments include collecting, isolating, and/or propagating, and delivering other endemic microbes in addition to, or separately from algae. For example, some embodiments include collecting, isolating, and/or propagating, and delivering a bacterial species. Other embodiments include collecting, isolating, and/or propagating, and delivering a fungal species.
- the algae may be delivered through a variety of means including, but not limited to, canal irrigation, flood irrigation, and/or drip irrigation, and/or various conventional overhead spray techniques, and/or various conventional hydroponic cultivation techniques.
- the effects of delivering algae to the agricultural production area may be an increase in soil organic matter, and/or improvement in soil structure, and/or reduction in water and fertilizer utilization, and/or increase in crop yield and the nutrient value of the product, and/or an overall improvement in soil health, and/or reduction in water and chemical runoff, and/or an increase in carbon dioxide sequestered from the air by the soil.
- Some embodiments of the invention include a method of obtaining a soil and/or water sample from an agricultural production area, and/or culturing microbes from the soil sample, and/or selecting a desirable species from the soil sample, and/or propagating the selected desirable species in greater numbers and concentration, and/or delivering live microbes back to the agricultural production area (e.g., such as dispersing the live microbes in solution over a soil area of a farm, or biome area).
- the following steps constitute a non-limiting embodiment of a method for collecting, selecting, and propagating endemic algae from an agricultural production area (e.g., such as a farm or other plant propagation facility):
- Some embodiments include a step of collecting one or more quantities of soil from one or more locations on the agricultural production area.
- each quantity or a total quantity of collected soil can be about 100 grams. In some other embodiments, the quantity can be less than 100 grams or more than 100 grams.
- Some embodiments include a step of collecting one or more quantities of water from one or more locations on the agricultural production area (e.g., such as from a surface water source).
- each quantity or a total quantity of collected water can be about 50 grams.
- the quantity can be less than 50 grams or more than 50 grams.
- at least some of the water can be collected from a sub-surface source, a run-off source, or a spring or well source.
- one or more of the water and/or the soil quantities can be refrigerated to 35°F to 40°F prior to subsequent processing locations, including, without limitation, a laboratory or facility.
- about 10 grams of soil or 10 ml of water from each sample can be added to a 100 ml culture jar containing 75 ml of AF6 (Watanabe) media. In some embodiments, more or less soil and/or water can be added to the culture jar. In some further embodiments, more or less AF6 (Watanabe) media can be used.
- the soil and/or water can be incubated in the culture jar. In some embodiments, the incubation can occur overnight while being exposed to a 100 to 200 PAR light source.
- the light source can comprise or emit wavelengths of about 450 nm to 485 nm and/or about 625 nm to 740 nm. In some embodiments, exposure can be approximately 12 to 24 hours per day.
- a portion of the incubated samples can be propagated in Agar-coated petri dishes.
- samples can be plated-out onto four 100 x 15 mm petri dishes with AF6 agar with 10 m ⁇ samples with loop sterilization in-between each streak to dilute the sample.
- the petri dishes can be at least partially closed (e.g., taped to 75% closed) and placed upside down in front of a 100 to 200 PAR light source for one to two weeks.
- the light source can comprise or emit wavelengths of about 450 nm to 485 nm and about 625 nm to 740 nm. In some embodiments, exposure can be about 12 to 24 hours per day.
- the algae colonies when isolated axenic algae colonies have grown to a specific size, the algae colonies can be harvested aseptically, and placed into a sterile test tube with sterile AF6 media.
- the algae colonies when isolated axenic algae colonies have grown to about 3 mm in diameter, the algae colonies can be harvested aseptically and placed into a sterile test tube with sterile AF6 media.
- Some embodiments can include an incubation time of one to two weeks, followed by selecting the tubes with the highest biomass.
- the incubation can occur while being exposed to a 100 to 200 PAR light source.
- the light source can contain wavelengths of about 450 nm to 485 nm and about 625 nm to 740 nm.
- exposure can be about 12 to 24 hours per day.
- temperatures can range between about 70 °F and 80 °F.
- Some embodiments include sub-culturing each tube into a new tube, followed by placing the contents of the original tube into a sterile 500 ml bottle with AF6 media outfitted with sterile air injection.
- the sub-culturing tubes can be exposed to a 100 to 200 PAR light source.
- the light source can contain wavelengths of about 450 nm to 485 nm and 625 nm to 740 nm. In some embodiments, exposure can be about 12 to 24 hours per day.
- Some embodiments include incubating the bottle for 3-5 days, and selecting the bottles with the fastest growth rate and highest biomass, and identifying with a new strain ID.
- the incubation can occur while being exposed to a 100 to 200 PAR light source.
- the light source can contain wavelengths of about 450 nm to 485 nm and about 625 nm to 740 nm.
- exposure can be about 12 to 24 hours per day.
- temperatures can range between about 70 °F and 80 °F.
- the strain IDs of the incubated samples can be recorded in the strain ID database with date time and location of collection along with any additional algal characteristics. Further, in some embodiments, new test tubes can be inoculated with each newly identified strain and place in algal library.
- a further step can include an artificial selection process to improve, growth rate, maximum density and other desired characteristics.
- the artificial selection process can contain algae strains that are exposed to preferred culture conditions.
- algae strains that have an improved growth rate, higher maximum density, or other desired characteristics can be selected over the inferior strains for future use.
- inferior algae strains may be put through the artificial selection process to further improve the growth rate, maximum density or other desired characteristics.
- one or more the steps can be performed in a laboratory or facility that is remote from the agricultural production area. In some embodiments of the invention, one or more the steps can be performed in a laboratory or facility that is proximate to or part of the agricultural production area. In some embodiments, all of the steps can be performed in the same location. In other embodiments, at least some of the steps can be performed in one location, and one or more other steps can be performed in another location.
- the system of the invention was used to grow the Yosemite variety of cantaloupe melons. About 200 acres were infused with microalgae-containing irrigation water. The crop was watered every five days during afternoons due to high ambient temperatures (120 °F). Microalgae were added to the irrigation water continuously with each watering. Algae from the phylum Chlorophyta and Cyanophyta were added to the irrigation water at a combined density of 6 billion cells per minute. The algae were cultured in media shown in the table below.
- the algae infused melon fields required 50% less N inorganic fertilizer and 40% less P and K. Micronutrient savings were on the order of 70%.
- Crop Growth Employing Two Different Microalgae Prior to planting the seeds of a crop in soil, the soil is irrigated repeatedly with an inoculate containing a first species from the phylum Chlorophyta of microalgae until the soil has achieved the desired properties of increased organics with polysaccharides in the soil to increase water retention Seeds are planted in the treated soil and irrigated repeatedly with an inoculate containing a different second species from the phylum Cyanophyta of microalgae to infuse the soil with nitrogen sequestered from the atmosphere until the crop has reached maturity. The crop is then harvested using known methods.
- a third species also from the phylum Cyanophyta is introduced into the irrigation water and delivered to the soil where it produces a biological toxin to kill unwanted pests in the soil.
- the first species of the phylum Chlorophyta of microalgae is used to enhance the fertility and other properties of the soil by increasing the organics in the soil which enhances the colonization by other micro and macro organisms which further enhance the soil by converting nutrients into forms more available to the crop and by increasing the porosity of the soil.
- the second species from the phylum Cyanophyta of microalgae is used to add nitrogen to the soil thereby reducing the amount of nitrogen fertilizer needed by the crop.
- the third species from the phylum Cyanophyta is used to eliminate or reduce the number of pests in the soil.
- a system containing a co-culture of two different microalgae strains are prepared by preparing a culture medium in one or more bioreactors and inoculating it with one or more blue-green algae (cyanobacteria or Cyanophyta) and one or more green algae (Chlorophyta). Both algae can be independently unicellular or colonial; however, unicellular species are preferred.
- Chlorophyta include those of the class Chlorophyceae, which includes those of the order Chaetopeltidales, Chaetophorales, Chlamydomonadales, Chlorococcales, Chlorocystidales, Dunaliella, Microsporales, Oedogoniales, Phaeophilales, Sphaeropleales, Tetrasporales or Volvocales.
- Chlorophyta species include Chlorella fusca, Chlorella zofingiensis, Chlorella spp., Chlorococcum citriforme, Chlorella stigmataphora, Chlorella vulgaris, Chlorella pyrenoidosa and others.
- Some Cyanophyta include those of the order Chroococcales, Gloeobaterales, Nostocales, Oscillatoriales, Pseudanabaenales, and Synechococcales.
- the algae are co-cultured with natural and/or artificial light.
- the titer of algae in the culture medium is allowed to increase to a target level of about 1 MM to 100 MM cells per ml.
- the culture medium is discharged from the bioreactor and mixed in with water for irrigation.
- the term“about” or“approximately” are taken to mean +-.10%, +-.5%, +-.2.5% or. +-.1% of a specified valued.
- the term“substantially” is taken to mean“to a large degree”,“at least a majority of, greater than 70%, greater than 85%, greater than 90%, greater than 95%, greater than 98% or greater than 99%.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Sustainable Development (AREA)
- Medicinal Chemistry (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- Botany (AREA)
- Cell Biology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Clinical Laboratory Science (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
Claims
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PE2021001341A PE20212119A1 (en) | 2019-02-15 | 2020-02-14 | SOIL INOCULATION SYSTEM BASED ON MICROALGAE AND METHODS OF USE |
AU2020223331A AU2020223331A1 (en) | 2019-02-15 | 2020-02-14 | Microalgae-based soil inoculating system and methods of use |
BR112021016060A BR112021016060A2 (en) | 2019-02-15 | 2020-02-14 | Microalgae-based soil inoculation system and methods of use |
CA3130211A CA3130211A1 (en) | 2019-02-15 | 2020-02-14 | Microalgae-based soil inoculating system and methods of use |
MX2021009815A MX2021009815A (en) | 2019-02-15 | 2020-02-14 | Microalgae-based soil inoculating system and methods of use. |
EP20756152.3A EP3924460A4 (en) | 2019-02-15 | 2020-02-14 | Microalgae-based soil inoculating system and methods of use |
CN202080023859.8A CN113661234A (en) | 2019-02-15 | 2020-02-14 | Soil inoculation system based on microalgae and using method |
IL285611A IL285611A (en) | 2019-02-15 | 2021-08-15 | Microalgae-based soil inoculating system and methods of use |
ECSENADI202167952A ECSP21067952A (en) | 2019-02-15 | 2021-09-15 | SOIL INOCULATION SYSTEM BASED ON MICROALGAE AND METHODS OF USE |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962806543P | 2019-02-15 | 2019-02-15 | |
US62/806,543 | 2019-02-15 | ||
US16/534,907 | 2019-08-07 | ||
US16/534,907 US20200008379A1 (en) | 2011-05-03 | 2019-08-07 | Microalgae-based soil inoculating system and methods of use |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2020168203A2 true WO2020168203A2 (en) | 2020-08-20 |
WO2020168203A3 WO2020168203A3 (en) | 2020-10-22 |
Family
ID=72044016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2020/018306 WO2020168203A2 (en) | 2019-02-15 | 2020-02-14 | Microalgae-based soil inoculating system and methods of use |
Country Status (11)
Country | Link |
---|---|
EP (1) | EP3924460A4 (en) |
CN (1) | CN113661234A (en) |
AU (1) | AU2020223331A1 (en) |
BR (1) | BR112021016060A2 (en) |
CA (1) | CA3130211A1 (en) |
CL (1) | CL2021002148A1 (en) |
EC (1) | ECSP21067952A (en) |
IL (1) | IL285611A (en) |
MX (1) | MX2021009815A (en) |
PE (1) | PE20212119A1 (en) |
WO (1) | WO2020168203A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023081975A1 (en) * | 2021-11-12 | 2023-05-19 | Hydrobe Pty Ltd | Production of biomass |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7635586B2 (en) * | 2003-11-26 | 2009-12-22 | Broadley-James Corporation | Integrated bio-reactor monitor and control system |
US8122637B2 (en) * | 2009-03-31 | 2012-02-28 | Core Intellectual Properties Holdings, Llc | Ecosystem and apparatus to increase crop yield by treating agricultural land with algal by-products |
US9206383B2 (en) * | 2009-12-07 | 2015-12-08 | The Trustees Of Columbia University In The City Of New York | Bioreactor, devices, systems and methods |
WO2012151382A1 (en) * | 2011-05-03 | 2012-11-08 | Algae Biosciences Inc. | Microalgae-based soil inoculating system and methods of use |
US20170305804A1 (en) * | 2011-05-03 | 2017-10-26 | NFusion Technologies, LLC | Soil enrichment systems and methods |
WO2014130362A1 (en) * | 2013-02-25 | 2014-08-28 | Heliae Development, Llc | Systems and methods for the continuous optimization of a microorganism culture profile |
WO2017019984A1 (en) * | 2015-07-29 | 2017-02-02 | Avespa Holdings, Llc | Light emitting diode photobioreactors and methods of use |
US10182524B2 (en) * | 2015-08-25 | 2019-01-22 | Netafim Ltd. | Method and apparatus for fertigation with wastewater |
-
2020
- 2020-02-14 CN CN202080023859.8A patent/CN113661234A/en active Pending
- 2020-02-14 CA CA3130211A patent/CA3130211A1/en active Pending
- 2020-02-14 MX MX2021009815A patent/MX2021009815A/en unknown
- 2020-02-14 AU AU2020223331A patent/AU2020223331A1/en active Pending
- 2020-02-14 WO PCT/US2020/018306 patent/WO2020168203A2/en active Application Filing
- 2020-02-14 BR BR112021016060A patent/BR112021016060A2/en unknown
- 2020-02-14 PE PE2021001341A patent/PE20212119A1/en unknown
- 2020-02-14 EP EP20756152.3A patent/EP3924460A4/en active Pending
-
2021
- 2021-08-13 CL CL2021002148A patent/CL2021002148A1/en unknown
- 2021-08-15 IL IL285611A patent/IL285611A/en unknown
- 2021-09-15 EC ECSENADI202167952A patent/ECSP21067952A/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023081975A1 (en) * | 2021-11-12 | 2023-05-19 | Hydrobe Pty Ltd | Production of biomass |
Also Published As
Publication number | Publication date |
---|---|
BR112021016060A2 (en) | 2021-11-09 |
CL2021002148A1 (en) | 2022-06-10 |
IL285611A (en) | 2021-09-30 |
PE20212119A1 (en) | 2021-11-05 |
EP3924460A2 (en) | 2021-12-22 |
EP3924460A4 (en) | 2023-10-04 |
CN113661234A (en) | 2021-11-16 |
MX2021009815A (en) | 2022-01-06 |
ECSP21067952A (en) | 2022-01-31 |
AU2020223331A1 (en) | 2021-09-09 |
WO2020168203A3 (en) | 2020-10-22 |
CA3130211A1 (en) | 2020-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190098850A1 (en) | Microalgae-based soil inoculating system and methods of use | |
US20220315501A1 (en) | Soil enrichment systems and methods | |
US20200008379A1 (en) | Microalgae-based soil inoculating system and methods of use | |
Roosta et al. | Effects of foliar application of some macro-and micro-nutrients on tomato plants in aquaponic and hydroponic systems | |
CN104396616B (en) | Water cycling cultivating device for fish and vegetables commensalism and water cycling cultivating method | |
CN104488686B (en) | Fish and vegetable co-existing system and use and control method thereof | |
US8122637B2 (en) | Ecosystem and apparatus to increase crop yield by treating agricultural land with algal by-products | |
CN105331556A (en) | Composite micro-ecological preparation and preparation method and application thereof | |
KR101727485B1 (en) | Plant cultivation water purification fish farming equipment of natural ecology environment | |
US20200060108A1 (en) | Indoor process and system for cultivating and harvesting duckweed | |
CN108358692A (en) | It is a kind of to utilize liquid fertilizer of livestock and poultry feces and preparation method thereof and its application process | |
CN102229893B (en) | High-efficiency high-yield production method of mycorrhizal fungi | |
Eid et al. | Impact of irrigation systems, fertigation rates and using drainage water of fish farms in irrigation of potato under arid regions conditions | |
US20220315502A1 (en) | Liquid fertilizer production method and highquality liquid fertilizer based on l f q c and chlorella microbiological fertilizer manufacture method | |
JP2021528082A (en) | Use of green microalgae to improve plant growth | |
Dasgan et al. | The effects of biofertilisers on soilless organically grown greenhouse tomato | |
WO2020168203A2 (en) | Microalgae-based soil inoculating system and methods of use | |
Chaudhary et al. | Soilless Cultivation: A Distinct Vision for Sustainable Agriculture | |
US20210403392A1 (en) | Microalgae-based soil non-electric inoculating system and methods of use | |
CN1580002A (en) | Method for preparing rich water compound bacteria and repairing aquaculture envionment | |
Abdelraouf et al. | Reuse of drainage water of fish ponds in Soybean cultivation under sprinkler irrigation system | |
CN110228849A (en) | A kind of organic villa garden pollution of area source processing method | |
RU2011139542A (en) | METHOD FOR BIOLOGICAL PROCESSING OF ANIMAL WASTE | |
KR102379717B1 (en) | Automatic plant production device using bioflock breeding water | |
AU2024216535A1 (en) | Soil enrichment systems and methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20756152 Country of ref document: EP Kind code of ref document: A2 |
|
ENP | Entry into the national phase |
Ref document number: 3130211 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112021016060 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2020223331 Country of ref document: AU Date of ref document: 20200214 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2020756152 Country of ref document: EP Effective date: 20210915 |
|
ENP | Entry into the national phase |
Ref document number: 112021016060 Country of ref document: BR Kind code of ref document: A2 Effective date: 20210813 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 521430061 Country of ref document: SA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 521430061 Country of ref document: SA |