WO2019230766A1 - Tomato fruit shape control method - Google Patents

Tomato fruit shape control method Download PDF

Info

Publication number
WO2019230766A1
WO2019230766A1 PCT/JP2019/021230 JP2019021230W WO2019230766A1 WO 2019230766 A1 WO2019230766 A1 WO 2019230766A1 JP 2019021230 W JP2019021230 W JP 2019021230W WO 2019230766 A1 WO2019230766 A1 WO 2019230766A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
tomato fruit
nanobubble
tomato
control method
Prior art date
Application number
PCT/JP2019/021230
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 貴志
Original Assignee
株式会社アクアソリューション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アクアソリューション filed Critical 株式会社アクアソリューション
Priority to JP2020522235A priority Critical patent/JPWO2019230766A1/en
Publication of WO2019230766A1 publication Critical patent/WO2019230766A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/05Fruit crops, e.g. strawberries, tomatoes or cucumbers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/06Treatment of growing trees or plants, e.g. for preventing decay of wood, for tingeing flowers or wood, for prolonging the life of plants

Definitions

  • the present invention relates to a shape control method for tomato fruit.
  • This low-stage dense planting method is a method of growing tomatoes by concentrating strains (for example, about 15 cm between the strains) and harvesting about 3 to 5 harvest stages, and can increase the cultivation density, and Since the number of harvests per year can be increased, the yield is expected to improve.
  • Patent Document 1 discloses that “a method of densely planting tomatoes using a long cultivation bed and cultivating them, in which the tufts are cultivated with respect to the main stem. In the state where the main stem of the seedling is positioned so as to be located in the longitudinal direction of the bed and the tuft is located in the longitudinal direction of the cultivation bed, leaves located on the opposite side of the tuft across the main stem "A method for low-density planting of tomatoes characterized in that it is removed" ([Claim 1]).
  • an object of the present invention is to provide a tomato fruit shape control method capable of controlling the shape at a high level.
  • the present inventor has found that the shape of the tomato fruit can be controlled by applying nanobubble water to the tomato produced by the tomato fruit, and the present invention has been completed. I let you. That is, the present inventor has found that the above problem can be achieved by the following configuration.
  • [1] A method for controlling the shape of tomato fruit, wherein nanobubble water is applied to the tomato produced by the tomato fruit.
  • the tomato fruit according to any one of [1] to [3], wherein the bubbles contained in the nanobubble water contain at least one gas selected from the group consisting of oxygen, nitrogen, carbon dioxide and ozone.
  • Shape control method [5] The tomato fruit shape control method according to any one of [1] to [4], wherein the nanobubble water has bubbles of 1 ⁇ 10 8 to 1 ⁇ 10 10 cells / mL.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the tomato fruit shape control method of the present invention (hereinafter also abbreviated as “the shape control method of the present invention”) is a tomato fruit shape control method in which nanobubble water is applied to tomatoes produced by tomato fruits.
  • tomato refers to a tomato as a plant belonging to fruit and vegetables
  • tomato fruit refers to a fruit that grows on the tomato.
  • the nanobubble water used in the shape control method of the present invention is water containing bubbles having a diameter of less than 1 ⁇ m, and is water in which the bubbles are mixed.
  • the “water mixed with bubbles” is intended to exclude water containing the bubbles inevitably included due to water used for the generation of nanobubble water (for example, well water containing impurities). It is.
  • the diameter (particle diameter) of the bubbles contained in the nanobubble water, the mode particle diameter of the bubbles and the number of bubbles, which will be described later, are determined using the nanoparticle tracking analysis method based on the Brownian movement speed of the bubbles in water.
  • the value measured by the nanoparticle analysis system Nanosite Series is adopted.
  • the diameter can be calculated from the speed of the Brownian motion of the particle, and the mode particle diameter exists.
  • the mode diameter can be confirmed from the particle size distribution of the nanoparticles.
  • the mode particle diameter of the bubbles contained in the nanobubble water is preferably 10 to 500 nm, more preferably 30 to 300 nm, because the shape of the tomato fruit can be more controlled (particularly uniform). Is more preferably 70 to 130 nm.
  • the gas constituting the bubbles contained in the nanobubble water is not particularly limited, but a gas other than hydrogen is preferable from the viewpoint of remaining in water for a long time, and specifically, for example, air, oxygen, nitrogen, fluorine, carbon dioxide And ozone.
  • a gas other than hydrogen is preferable from the viewpoint of remaining in water for a long time, and specifically, for example, air, oxygen, nitrogen, fluorine, carbon dioxide And ozone.
  • including oxygen means containing at a concentration higher than the oxygen concentration in the air.
  • nitrogen and carbon dioxide is about the density
  • the nano-bubble water preferably has 1 ⁇ 10 8 to 1 ⁇ 10 10 bubbles / mL of bubbles for the purpose of more control of the shape of the tomato fruit (particularly uniformization). reasons survivability balance of time and bubbles are good, 1 ⁇ 10 more than 8 / mL, and more preferably has less bubbles than 1 ⁇ 10 10 cells / mL, 5 ⁇ 10 8 ⁇ More preferably, it has 5 ⁇ 10 9 bubbles / mL.
  • the method for producing nanobubble water examples include a static mixer method, a venturi method, a cavitation method, a vapor agglomeration method, an ultrasonic method, a swirling flow method, a pressure dissolution method, and a micropore method.
  • the shape control method of the present invention may have a generation step of generating the nanobubble water before applying the nanobubble water. That is, the shape control method of the present invention includes, for example, a generation step of taking water from a water source such as a water storage tank, a well, or agricultural water into a nanobubble generation device to generate nanobubble water, and an application step of applying the generated nanobubble water.
  • a method of taking water from the water source into the nano bubble generating device for example, a method of supplying water pumped up from the water source using a dredger or a pump to the nano bubble generating device, and between the water source and the nano bubble generating device
  • a method may be used in which the laid channel is connected to a nanobubble generator and water is directly sent from the channel to the nanobubble generator.
  • the method for producing the nanobubble water a production method using an apparatus that does not intentionally generate radicals is preferable. [0100] and a method of generating using the nanobubble generating device described in the paragraph. The above contents are incorporated herein.
  • the gas mixer includes the liquid ejector and the liquid dispenser.
  • the fine bubble generating device characterized in that gas is pressurized and mixed in the liquid flowing toward the fine bubble generator in a pressurized state between the fine bubble generators.
  • the 1 includes a liquid discharger 30, a gas mixing device 40, and a nanobubble generating nozzle 50 therein.
  • the liquid discharger 30 is comprised with a pump, takes in raw water (for example, well water) of nano bubble water, and discharges it.
  • the gas mixing device 40 includes a container 41 in which compressed gas is sealed and a substantially cylindrical gas mixing device main body 42. While flowing water discharged from the liquid discharge device 30 into the gas mixing device main body 42, The compressed gas in the container 41 is introduced into the gas mixing machine main body 42. As a result, gas-containing water is generated in the gas-mixing machine main body 42.
  • the nanobubble generating nozzle 50 generates nanobubbles in the gas-containing water according to the principle of pressure dissolution by passing the gas-containing water through the inside, and the structure thereof is disclosed in JP-A-2018-15715.
  • the same structure as the nanobubble generating nozzle described in 1) can be adopted.
  • the nanobubble water generated in the nanobubble generating nozzle 50 is ejected from the tip of the nanobubble generating nozzle 50, then flows out from the nanobubble generating device 10, and is sent toward a predetermined usage destination through a flow path (not shown).
  • the gas mixing device 40 is compressed into water (raw water) flowing toward the nanobubble generating nozzle 50 in a pressurized state between the liquid discharger 30 and the nanobubble generating nozzle 50.
  • Mix gas thereby, it is possible to avoid problems such as cavitation that occur when gas is mixed into water on the suction side (suction side) of the liquid discharger 30.
  • the gas since the gas is mixed in the water in a pressurized (compressed) state, the gas can be mixed against the pressure of the water at the gas mixing location. For this reason, it becomes possible to mix gas into water appropriately, without generating a negative pressure especially in a gas mixing location.
  • a flow path of water supplied from a water source such as a well or a water supply is connected to the suction side of the liquid discharger 30 and flows into the liquid discharger 30 from the upstream side of the liquid discharger 30 in the flow path.
  • the water pressure (that is, the water pressure on the suction side) may be positive.
  • the above configuration becomes more meaningful. That is, when the water pressure (suction pressure) on the upstream side of the liquid discharger 30 is a positive pressure, the gas is mixed into the water on the downstream side of the liquid discharger 30.
  • the configuration of the nanobubble generating apparatus 10 that can appropriately mix the gas into water becomes more prominent.
  • generation of the said nano bubble water is not specifically limited, For example, rain water, tap water, well water, agricultural water, distilled water, etc. can be used. Such water may have been subjected to other treatments before being used for generation of nanobubble water. Examples of other treatments include pH adjustment, precipitation, filtration, and sterilization (sterilization). Specifically, for example, when agricultural water is used, typically, agricultural water after at least one of precipitation and filtration may be used.
  • the mode of applying the nanobubble water to the tomatoes where tomato fruit grows is not particularly limited because it differs depending on the tomato cultivation method.
  • the mode of sprinkling the nanobubble water in soil cultivation, soil In an aspect of spraying the agricultural chemical diluted with the nano-bubble water in the cultivation, diluted with the nano-bubble water in the hydroponics (hydroponic, spray plowing or solid medium plowing) or the hydroponic cultivation (simultaneous irrigation cultivation)
  • the aspect which supplies a culture solution to a culture medium the aspect which waters (irrigates) the said nano bubble water independently in hydroponics soil cultivation, etc. are mentioned.
  • the method of "watering" which is one mode of application is not particularly limited.
  • the cultivation method is soil cultivation, for example, a method of spraying water over the entire plant body, a part of the plant body ( For example, a method of spraying water on stems or leaves) and a method of spraying water on soil in which plants are planted.
  • the cultivation method is hydroponics cultivation, as mentioned above, watering by irrigation may be used.
  • the time to apply the nano bubble water to the tomatoes where the tomato fruit grows is not particularly limited because it differs depending on the tomato cultivation method. For example, when hydroponically cultivating, from installation to harvesting It is preferable to apply in the whole period.
  • the nanobubble water may further contain other components.
  • the other components include agricultural chemicals, fertilizers, surfactants, antifreezing agents, antifoaming agents, antiseptics, antioxidants, and thickeners.
  • the kind and content of other components are not particularly limited and can be selected according to the purpose.
  • radicals are not substantially contained in the nanobubble water as the other component.
  • substantially free of radicals is intended to exclude the inevitable inclusion of radicals due to water (for example, well water containing impurities) used to generate the nanobubble water. The intention is to exclude the incorporation of radicals generated by some operation.
  • the variety of tomatoes to which the nanobubble water is applied is not particularly limited, and may be any variety such as a mini tomato, a medium tomato, and a large tomato.
  • Test of the test was conducted in the following categories in an agricultural house of tomato (variety: grace) grown in Sagamihara City, Kanagawa Prefecture from February to July 2017.
  • Test plot I Nanobubble water produced by the following method was used for dilution of the culture solution in hydroponic cultivation of tomato (medium: water).
  • Test Zone II Tap water was used for dilution of the culture solution in hydroponic cultivation of tomato (medium: water), and nanobubble water was not used.
  • Each test zone was divided in one agricultural house, 500 tomatoes were grown in test zone I, and 14500 tomatoes were grown in test zone II.
  • the culture solution and amount were appropriately changed according to the growth conditions of tomatoes, weather, and the like according to a conventional method, but were adjusted to be substantially the same in both test sections.
  • Nanobubble water generates bubbles (nanobubbles) in water using a nanobubble generator [Kakuichi Seisakusho Aqua Solution Division (currently Aqua Solution Co., Ltd., 200 V, 10 L / min type)] under pressure and dissolution. It was generated by letting. Note that tap water was used as the water used for generating the nanobubble water, and oxygen (industrial oxygen, concentration: 99.5% by volume) was used as the gas constituting the bubbles. Moreover, the conditions for generating nanobubbles using the nanobubble generator described above were performed under the condition that the analysis result by the nanoparticle analysis system Nanosite LM10 (manufactured by NanoSight) is as follows. ⁇ Number of bubbles per mL of water: 5 ⁇ 10 8 / mL ⁇ Mode of bubble particle size: 100 nm

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Botany (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Hydroponics (AREA)
  • Cultivation Of Plants (AREA)

Abstract

The present invention addresses the problem of providing a tomato fruit shape control method that makes it possible to achieve high-level shape control. A tomato fruit shape control method in which nano-bubble water is applied to a tomato that bears tomato fruit.

Description

トマト果実の形状制御方法Tomato fruit shape control method
 本発明は、トマト果実の形状制御方法に関する。 The present invention relates to a shape control method for tomato fruit.
 近年、トマトの需要が増加する中、栽培施設の進歩に伴い、太陽光を利用した栽培ハウス内で1年を通してトマトを栽培することができるようになってきている。
 また、栽培ハウス内での栽培方法としては、収穫量の増加が期待されている低段密植栽培法が注目を集めている。
 この低段密植栽培法は、株を密集(例えば、株間が15cm程度)させ、かつ収穫段数を3~5段程度にしてトマトを栽培する方法であり、栽培密度を増加させることができ、かつ年間の収穫回数を増加させることができるので、収穫量の向上が期待されている。
In recent years, as the demand for tomatoes increases, it has become possible to cultivate tomatoes throughout the year in a cultivation house using sunlight with the progress of cultivation facilities.
Further, as a cultivation method in the cultivation house, a low-stage dense planting method, which is expected to increase the harvest amount, is attracting attention.
This low-stage dense planting method is a method of growing tomatoes by concentrating strains (for example, about 15 cm between the strains) and harvesting about 3 to 5 harvest stages, and can increase the cultivation density, and Since the number of harvests per year can be increased, the yield is expected to improve.
 しかし、この低段密植栽培方法では、隣接する株の葉同士が重なった状態となり、光合成に必要な量の光が不足状態となるため、色付き不良(着色不良)または外観上確認しにくい空洞化現象などの生育障害も多発してしまう問題がある。特に、空洞化現象が発生した場合には、果実の形状が不均一なものとなるという問題が生じている。 However, in this low-stage dense planting method, the leaves of adjacent strains overlap each other, and the amount of light necessary for photosynthesis is insufficient. There is a problem that growth disorders such as phenomena occur frequently. In particular, when the hollowing phenomenon occurs, there is a problem that the shape of the fruit becomes uneven.
 このような問題に対して、例えば、特許文献1には、「長尺な栽培ベッドを用いてトマトを密植して栽培する方法であって、各苗において、主茎に対して房が前記栽培ベッドの長手方向に位置するように該苗の主茎を配置し、前記房が前記栽培ベッドの長手方向に位置している状態において、主茎を挟んで房と略反対側に位置する葉を除去することを特徴とするトマトの低段密植栽培方法。」が記載されている([請求項1])。 For such a problem, for example, Patent Document 1 discloses that “a method of densely planting tomatoes using a long cultivation bed and cultivating them, in which the tufts are cultivated with respect to the main stem. In the state where the main stem of the seedling is positioned so as to be located in the longitudinal direction of the bed and the tuft is located in the longitudinal direction of the cultivation bed, leaves located on the opposite side of the tuft across the main stem "A method for low-density planting of tomatoes characterized in that it is removed" ([Claim 1]).
特許第6132451号公報Japanese Patent No. 6132451
 本発明者は、特許文献1に記載された栽培方法などの従来公知のトマトの栽培方法について検討したところ、トマト果実の形状の制御(例えば、均一化および良品化など)については、いずれの栽培方法においても改善の余地があることを明らかとした。 When this inventor examined the conventionally well-known cultivation method of tomatoes, such as the cultivation method described in patent document 1, any cultivation is carried out about control (for example, equalization, quality improvement, etc.) of a tomato fruit. It was clarified that there is room for improvement in the method.
 そこで、本発明は、高いレベルで形状を制御することができるトマト果実の形状制御方法を提供することを課題とする。 Therefore, an object of the present invention is to provide a tomato fruit shape control method capable of controlling the shape at a high level.
 本発明者は、上記課題を達成すべく鋭意検討した結果、トマト果実が生るトマトに対してナノバブル水を施用することにより、トマト果実の形状を制御することができることを見出し、本発明を完成させた。
 すなわち、本発明者は、以下の構成により上記課題を達成することができることを見出した。
As a result of intensive studies to achieve the above-mentioned problems, the present inventor has found that the shape of the tomato fruit can be controlled by applying nanobubble water to the tomato produced by the tomato fruit, and the present invention has been completed. I let you.
That is, the present inventor has found that the above problem can be achieved by the following configuration.
 [1] トマト果実が生るトマトに対し、ナノバブル水を施用する、トマト果実の形状制御方法。
 [2] 上記ナノバブル水を用いた散水、および、上記ナノバブル水を用いて希釈した培養液の培地への供給のうち、少なくとも一方を実施する、[1]に記載のトマト果実の形状制御方法。
 [3] 上記ナノバブル水に含まれる気泡の最頻粒子径が10~500nmである、[1]または[2]に記載のトマト果実の形状制御方法。
 [4] 上記ナノバブル水に含まれる気泡が、酸素、窒素、二酸化炭素およびオゾンからなる群から選択される少なくとも1種の気体を含む、[1]~[3]のいずれかに記載のトマト果実の形状制御方法。
 [5] 上記ナノバブル水が、1×10~1×1010個/mLの気泡を有する、[1]~[4]のいずれかに記載のトマト果実の形状制御方法。
[1] A method for controlling the shape of tomato fruit, wherein nanobubble water is applied to the tomato produced by the tomato fruit.
[2] The shape control method for tomato fruit according to [1], wherein at least one of watering using the nanobubble water and supply of the culture solution diluted with the nanobubble water to the medium is performed.
[3] The shape control method for tomato fruit according to [1] or [2], wherein the mode particle diameter of bubbles contained in the nanobubble water is 10 to 500 nm.
[4] The tomato fruit according to any one of [1] to [3], wherein the bubbles contained in the nanobubble water contain at least one gas selected from the group consisting of oxygen, nitrogen, carbon dioxide and ozone. Shape control method.
[5] The tomato fruit shape control method according to any one of [1] to [4], wherein the nanobubble water has bubbles of 1 × 10 8 to 1 × 10 10 cells / mL.
 本発明によれば、高いレベルで形状を制御することができるトマト果実の形状制御方法を提供することができる。 According to the present invention, it is possible to provide a tomato fruit shape control method capable of controlling the shape at a high level.
ナノバブル生成装置の一例を示す模式図である。It is a schematic diagram which shows an example of a nano bubble production | generation apparatus. 特A品のトマト果実のサンプルを表す画像である。It is an image showing the sample of the tomato fruit of a special A product. A品のトマト果実のサンプルを表す画像である。It is an image showing the sample of A tomato fruit. B品のトマト果実のサンプル(小判型)を表す画像である。It is an image showing the sample (oval type) of the tomato fruit of B goods. B品のトマト果実のサンプル(もみじ饅頭型)を表す画像である。It is an image showing the sample of B tomato fruit (maple bun type). B品のトマト果実のサンプル(とんがり型)を表す画像である。It is an image showing the sample (pointer type) of the tomato fruit of B goods. C品のトマト果実のサンプル(チャック型)を表す画像である。It is an image showing the sample (chuck type) of the tomato fruit of C goods.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
Hereinafter, the present invention will be described in detail.
The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
 本発明のトマト果実の形状制御方法(以下、「本発明の形状制御方法」とも略す。)は、トマト果実が生るトマトに対し、ナノバブル水を施用する、トマト果実の形状制御方法である。
 本明細書において、「トマト」とは、果菜類に属する植物体としてのトマトをいい、「トマト果実」とは、トマトに生る果実のことをいう。
 以下に、本発明の形状制御方法で用いるナノバブル水および任意の成分について詳述する。
The tomato fruit shape control method of the present invention (hereinafter also abbreviated as “the shape control method of the present invention”) is a tomato fruit shape control method in which nanobubble water is applied to tomatoes produced by tomato fruits.
In the present specification, “tomato” refers to a tomato as a plant belonging to fruit and vegetables, and “tomato fruit” refers to a fruit that grows on the tomato.
Below, the nanobubble water and arbitrary component which are used with the shape control method of this invention are explained in full detail.
 〔ナノバブル水〕
 本発明の形状制御方法で用いるナノバブル水は、直径が1μm未満の気泡を含む水であって、上記気泡を混入させた水である。なお、「上記気泡を混入させた水」とは、ナノバブル水の生成に使用する水(例えば、不純物を含む井水)などに起因して不可避的に含まれる上記気泡を含む水を除外する意図である。
 ここで、ナノバブル水に含まれる気泡の直径(粒子径)、ならびに、後述する気泡の最頻粒子径および気泡の個数は、水中の気泡のブラウン運動移動速度を、ナノ粒子トラッキング解析法を用いて測定した値であり、本明細書においては、ナノ粒子解析システム ナノサイトシリーズ(NanoSight社製)により測定した数値を採用する。
 なお、ナノ粒子解析システム ナノサイトシリーズ(NanoSight社製)では、直径(粒子径)は、粒子のブラウン運動の速度を計測し、その速度から算出することができ、最頻粒子径は、存在するナノ粒子の粒子径分布から、モード径として確認することができる。
[Nano bubble water]
The nanobubble water used in the shape control method of the present invention is water containing bubbles having a diameter of less than 1 μm, and is water in which the bubbles are mixed. The “water mixed with bubbles” is intended to exclude water containing the bubbles inevitably included due to water used for the generation of nanobubble water (for example, well water containing impurities). It is.
Here, the diameter (particle diameter) of the bubbles contained in the nanobubble water, the mode particle diameter of the bubbles and the number of bubbles, which will be described later, are determined using the nanoparticle tracking analysis method based on the Brownian movement speed of the bubbles in water. In this specification, the value measured by the nanoparticle analysis system Nanosite Series (manufactured by NanoSight) is adopted.
In the nanoparticle analysis system Nanosite Series (manufactured by NanoSight), the diameter (particle diameter) can be calculated from the speed of the Brownian motion of the particle, and the mode particle diameter exists. The mode diameter can be confirmed from the particle size distribution of the nanoparticles.
 本発明においては、トマト果実の形状の制御(特に均一化)がより図れる理由から、上記ナノバブル水に含まれる気泡の最頻粒子径が10~500nmであることが好ましく、30~300nmであることがより好ましく、70~130nmであることが更に好ましい。 In the present invention, the mode particle diameter of the bubbles contained in the nanobubble water is preferably 10 to 500 nm, more preferably 30 to 300 nm, because the shape of the tomato fruit can be more controlled (particularly uniform). Is more preferably 70 to 130 nm.
 上記ナノバブル水に含まれる気泡を構成する気体は特に限定されないが、水中に長時間残存させる観点から、水素以外の気体が好ましく、具体的には、例えば、空気、酸素、窒素、フッ素、二酸化炭素、および、オゾンなどが挙げられる。
 これらのうち、トマト果実の形状の制御(特に均一化)がより図れる理由から、酸素、窒素、二酸化炭素およびオゾンからなる群から選択される少なくとも1種の気体を含むことが好ましく、特に、植物体の生育が良好となり、また、気泡がより長時間残存することができる理由から、酸素を含むことがより好ましい。
 ここで、酸素を含むこととは、空気中の酸素濃度よりも高い濃度で含むことをいう。窒素、および、二酸化炭素も同様である。なお、酸素の濃度については、気泡中の30体積%以上であることが好ましく、50体積%超100体積%以下であることが好ましい。
The gas constituting the bubbles contained in the nanobubble water is not particularly limited, but a gas other than hydrogen is preferable from the viewpoint of remaining in water for a long time, and specifically, for example, air, oxygen, nitrogen, fluorine, carbon dioxide And ozone.
Among these, it is preferable to contain at least one gas selected from the group consisting of oxygen, nitrogen, carbon dioxide, and ozone, because the control (particularly homogenization) of the shape of tomato fruit can be achieved. It is more preferable to contain oxygen because the growth of the body becomes good and the bubbles can remain for a longer time.
Here, including oxygen means containing at a concentration higher than the oxygen concentration in the air. The same applies to nitrogen and carbon dioxide. In addition, about the density | concentration of oxygen, it is preferable that it is 30 volume% or more in a bubble, and it is preferable that it is more than 50 volume% and 100 volume% or less.
 上記ナノバブル水は、トマト果実の形状の制御(特に均一化)がより図れる理由から、1×10~1×1010個/mLの気泡を有していることが好ましく、特に、気泡の生成時間と気泡の残存性のバランスが良好となる理由から、1×10個/mLより多く、1×1010個/mLより少ない気泡を有していることがより好ましく、5×10~5×10個/mLの気泡を有していることが更に好ましい。 The nano-bubble water preferably has 1 × 10 8 to 1 × 10 10 bubbles / mL of bubbles for the purpose of more control of the shape of the tomato fruit (particularly uniformization). reasons survivability balance of time and bubbles are good, 1 × 10 more than 8 / mL, and more preferably has less bubbles than 1 × 10 10 cells / mL, 5 × 10 8 ~ More preferably, it has 5 × 10 9 bubbles / mL.
 上記ナノバブル水の生成方法としては、例えば、スタティックミキサー法、ベンチュリ法、キャビテーション法、蒸気凝集法、超音波法、旋回流法、加圧溶解法、および、微細孔法等が挙げられる。
 ここで、本発明の形状制御方法は、上記ナノバブル水を施用する前に、上記ナノバブル水を生成させる生成工程を有していてもよい。すなわち、本発明の形状制御方法は、例えば、貯水タンク、井戸または農業用水などの水源から水をナノバブル生成装置に取り込み、ナノバブル水を生成させる生成工程と、生成したナノバブル水を施用する施用工程とを有する防除方法であってもよい。なお、水源からの水をナノバブル生成装置に取り込む手法としては、例えば、桶またはポンプ等を用いて水源から汲み上げた水をナノバブル生成装置に供給する手法、および、水源とナノバブル生成装置との間に敷設された流路をナノバブル生成装置に繋いで流路からナノバブル生成装置へ水を直接送り込む手法などが挙げられる。
Examples of the method for producing nanobubble water include a static mixer method, a venturi method, a cavitation method, a vapor agglomeration method, an ultrasonic method, a swirling flow method, a pressure dissolution method, and a micropore method.
Here, the shape control method of the present invention may have a generation step of generating the nanobubble water before applying the nanobubble water. That is, the shape control method of the present invention includes, for example, a generation step of taking water from a water source such as a water storage tank, a well, or agricultural water into a nanobubble generation device to generate nanobubble water, and an application step of applying the generated nanobubble water. It may be a control method having In addition, as a method of taking water from the water source into the nano bubble generating device, for example, a method of supplying water pumped up from the water source using a dredger or a pump to the nano bubble generating device, and between the water source and the nano bubble generating device For example, a method may be used in which the laid channel is connected to a nanobubble generator and water is directly sent from the channel to the nanobubble generator.
 また、上記ナノバブル水の生成方法としては、意図的にラジカルを発生させることがない装置を用いた生成方法が好ましく、具体的には、例えば、特開2018-15715号公報の[0080]~[0100]段落に記載されたナノバブル生成装置を用いて生成する方法が挙げられる。なお、上記の内容は本明細書に組み込まれる。 Further, as the method for producing the nanobubble water, a production method using an apparatus that does not intentionally generate radicals is preferable. [0100] and a method of generating using the nanobubble generating device described in the paragraph. The above contents are incorporated herein.
 意図的にラジカルを発生させることがない他のナノバブル生成装置としては、例えば、水を吐出する液体吐出機と、上記液体吐出機から吐出された水に、気体を加圧して混入させる気体混入機と、気体を混入させた水を内部に通すことにより、水中に微細気泡を生成する微細気泡生成器と、を有する微細気泡生成装置であって、上記気体混入機が、上記液体吐出機と上記微細気泡生成器の間において、加圧された状態で上記微細気泡生成器に向かって流れる液体に、気体を加圧して混入させることを特徴とする微細気泡生成装置が挙げられる。具体的には、図1に示すナノバブル生成装置を用いて生成する方法が挙げられる。
 ここで、図1に示すナノバブル生成装置10は、その内部に液体吐出機30、気体混入機40、および、ナノバブル生成ノズル50を備える。
 また、液体吐出機30は、ポンプによって構成され、ナノバブル水の原水(例えば、井戸水)を取り込んで吐出する。気体混入機40は、圧縮ガスが封入された容器41と、略筒状の気体混入機本体42とを有し、液体吐出機30から吐出された水を気体混入機本体42内に流しつつ、気体混入機本体42内に容器41内の圧縮ガスを導入する。これにより、気体混入機本体42内で気体混入水が生成されることになる。
 また、ナノバブル生成ノズル50は、その内部に気体混入水が通過することにより、加圧溶解の原理に従って気体混入水中にナノバブルを発生させるものであり、その構造としては、特開2018-15715号公報に記載されたナノバブル生成ノズルと同じ構造が採用できる。ナノバブル生成ノズル50内に生成されたナノバブル水は、ナノバブル生成ノズル50の先端から噴出した後、ナノバブル生成装置10から流出し、不図示の流路内を通じて所定の利用先に向けて送水される。
 以上のようにナノバブル生成装置10では、気体混入機40が、液体吐出機30とナノバブル生成ノズル50の間において、加圧された状態でナノバブル生成ノズル50に向かって流れる水(原水)に、圧縮ガスを混入させる。これにより、液体吐出機30の吸込み側(サクション側)で気体を水に混入させるときに生じるキャビテーション等の不具合を回避することができる。また、ガスが加圧(圧縮)された状態で水に混入されるので、ガス混入箇所での水の圧力に抗してガスを混入させることができる。このため、ガス混入箇所において特に負圧を発生させなくとも、ガスを適切に水に混入させることが可能となる。
 さらに、液体吐出機30のサクション側に、井戸または水道等の水源から供給される水の流路が繋ぎ込まれており、その流路において液体吐出機30の上流側から液体吐出機30に流れ込む水の圧力(すなわち、サクション側の水圧)が正圧であるとよい。この場合には、上記の構成がより有意義なものとなる。すなわち、液体吐出機30の上流側の水圧(サクション圧)が正圧となる場合には、液体吐出機30の下流側でガスを水に混入させることになるため、液体吐出機30の下流側でもガスを適切に水に混入させることができるナノバブル生成装置10の構成がより際立つことになる。
Examples of other nanobubble generation devices that do not intentionally generate radicals include, for example, a liquid discharger that discharges water and a gas mixing device that pressurizes and mixes gas into water discharged from the liquid discharger. And a fine bubble generator for generating fine bubbles in water by passing water mixed with gas inside, wherein the gas mixer includes the liquid ejector and the liquid dispenser. There is a fine bubble generating device characterized in that gas is pressurized and mixed in the liquid flowing toward the fine bubble generator in a pressurized state between the fine bubble generators. Specifically, a method of generating using the nanobubble generating device shown in FIG.
Here, the nanobubble generating device 10 shown in FIG. 1 includes a liquid discharger 30, a gas mixing device 40, and a nanobubble generating nozzle 50 therein.
Moreover, the liquid discharger 30 is comprised with a pump, takes in raw water (for example, well water) of nano bubble water, and discharges it. The gas mixing device 40 includes a container 41 in which compressed gas is sealed and a substantially cylindrical gas mixing device main body 42. While flowing water discharged from the liquid discharge device 30 into the gas mixing device main body 42, The compressed gas in the container 41 is introduced into the gas mixing machine main body 42. As a result, gas-containing water is generated in the gas-mixing machine main body 42.
Further, the nanobubble generating nozzle 50 generates nanobubbles in the gas-containing water according to the principle of pressure dissolution by passing the gas-containing water through the inside, and the structure thereof is disclosed in JP-A-2018-15715. The same structure as the nanobubble generating nozzle described in 1) can be adopted. The nanobubble water generated in the nanobubble generating nozzle 50 is ejected from the tip of the nanobubble generating nozzle 50, then flows out from the nanobubble generating device 10, and is sent toward a predetermined usage destination through a flow path (not shown).
As described above, in the nanobubble generating device 10, the gas mixing device 40 is compressed into water (raw water) flowing toward the nanobubble generating nozzle 50 in a pressurized state between the liquid discharger 30 and the nanobubble generating nozzle 50. Mix gas. Thereby, it is possible to avoid problems such as cavitation that occur when gas is mixed into water on the suction side (suction side) of the liquid discharger 30. Further, since the gas is mixed in the water in a pressurized (compressed) state, the gas can be mixed against the pressure of the water at the gas mixing location. For this reason, it becomes possible to mix gas into water appropriately, without generating a negative pressure especially in a gas mixing location.
Further, a flow path of water supplied from a water source such as a well or a water supply is connected to the suction side of the liquid discharger 30 and flows into the liquid discharger 30 from the upstream side of the liquid discharger 30 in the flow path. The water pressure (that is, the water pressure on the suction side) may be positive. In this case, the above configuration becomes more meaningful. That is, when the water pressure (suction pressure) on the upstream side of the liquid discharger 30 is a positive pressure, the gas is mixed into the water on the downstream side of the liquid discharger 30. However, the configuration of the nanobubble generating apparatus 10 that can appropriately mix the gas into water becomes more prominent.
 また、上記ナノバブル水の生成に使用する水は特に限定されず、例えば、雨水、水道水、井水、農業用水、および、蒸留水等を使用することができる。
 このような水は、ナノバブル水の発生に供される前に他の処理を施されたものであってもよい。他の処理としては、例えば、pH調整、沈殿、ろ過、および、滅菌(殺菌)等が挙げられる。具体的には、例えば、農業用水を使用する場合、典型的には、沈殿、および、ろ過のうちの少なくとも一方を施した後の農業用水を使用してもよい。
Moreover, the water used for the production | generation of the said nano bubble water is not specifically limited, For example, rain water, tap water, well water, agricultural water, distilled water, etc. can be used.
Such water may have been subjected to other treatments before being used for generation of nanobubble water. Examples of other treatments include pH adjustment, precipitation, filtration, and sterilization (sterilization). Specifically, for example, when agricultural water is used, typically, agricultural water after at least one of precipitation and filtration may be used.
 本発明においては、トマト果実が生るトマトに対して上記ナノバブル水を施用する態様は、トマトの栽培方法により異なるため特に限定されないが、例えば、土耕栽培において上記ナノバブル水を散水する態様、土耕栽培において上記ナノバブル水によって希釈された農薬を散布する態様、養液栽培(水耕、噴霧耕もしくは固形培地耕)または養液土耕栽培(灌水同時施肥栽培)において上記ナノバブル水によって希釈された培養液を培地に供給する態様、および、養液土耕栽培において上記ナノバブル水をそれ単独で散水(灌水)する態様などが挙げられる。
 これらのうち、簡便な操作によってトマト果実の形状の制御(特に均一化)が図れる理由から、上記ナノバブル水を用いた散水、および、上記ナノバブル水を用いて希釈した培養液の供給のうち、少なくとも一方を実施する態様が好ましい。
 なお、施用の一態様である「散水」の方法は特に限定されず、栽培方法が土耕栽培である場合には、例えば、植物体の全体に水を散布する方法、植物体の一部(例えば、茎または葉など)に水を散布する方法、および、植物体が植えられた土壌に水を散布する方法などが挙げられる。また、栽培方法が養液土耕栽培である場合は、上述したように、灌水による散水であってもよい。
In the present invention, the mode of applying the nanobubble water to the tomatoes where tomato fruit grows is not particularly limited because it differs depending on the tomato cultivation method. For example, the mode of sprinkling the nanobubble water in soil cultivation, soil In an aspect of spraying the agricultural chemical diluted with the nano-bubble water in the cultivation, diluted with the nano-bubble water in the hydroponics (hydroponic, spray plowing or solid medium plowing) or the hydroponic cultivation (simultaneous irrigation cultivation) The aspect which supplies a culture solution to a culture medium, the aspect which waters (irrigates) the said nano bubble water independently in hydroponics soil cultivation, etc. are mentioned.
Among these, for the reason that control of the shape of tomato fruit (particularly homogenization) can be achieved by a simple operation, at least of watering using the nanobubble water and supply of the culture solution diluted using the nanobubble water, One embodiment is preferred.
In addition, the method of "watering" which is one mode of application is not particularly limited. When the cultivation method is soil cultivation, for example, a method of spraying water over the entire plant body, a part of the plant body ( For example, a method of spraying water on stems or leaves) and a method of spraying water on soil in which plants are planted. Moreover, when the cultivation method is hydroponics cultivation, as mentioned above, watering by irrigation may be used.
 また、本発明においては、トマト果実が生るトマトに対して上記ナノバブル水を施用する時期は、トマトの栽培方法により異なるため特に限定されないが、例えば、水耕栽培する場合は、設置から収穫までの全期間で施用することが好ましい。 Further, in the present invention, the time to apply the nano bubble water to the tomatoes where the tomato fruit grows is not particularly limited because it differs depending on the tomato cultivation method. For example, when hydroponically cultivating, from installation to harvesting It is preferable to apply in the whole period.
 <他の成分>
 上記ナノバブル水は、更に他の成分を含んでいてもよい。
 上記他の成分としては、例えば、農薬、肥料、界面活性剤、凍結防止剤、消泡剤、防腐剤、酸化防止剤、および、増粘剤等が挙げられる。他の成分の種類、および、含有量は特に限定されず、目的に応じて選択可能である。
 ただし、本発明においては、上記他の成分として、上記ナノバブル水中においてラジカルを実質的に含まないことが好ましい。なお、「ラジカルを実質的に含まない」とは、上記ナノバブル水の生成に使用する水(例えば、不純物を含む井水)などに起因して不可避的にラジカルが含まれることを除外する意図ではなく、何らかの操作で生成させたラジカルを混入させることを除外する意図である。
<Other ingredients>
The nanobubble water may further contain other components.
Examples of the other components include agricultural chemicals, fertilizers, surfactants, antifreezing agents, antifoaming agents, antiseptics, antioxidants, and thickeners. The kind and content of other components are not particularly limited and can be selected according to the purpose.
However, in the present invention, it is preferable that radicals are not substantially contained in the nanobubble water as the other component. Note that “substantially free of radicals” is intended to exclude the inevitable inclusion of radicals due to water (for example, well water containing impurities) used to generate the nanobubble water. The intention is to exclude the incorporation of radicals generated by some operation.
 〔トマト〕
 本発明においては、上記ナノバブル水を施用するトマトの品種は特に限定されず、例えば、ミニトマト、中玉トマト、および、大玉トマトなどのいずれの品種であってもよい。
〔Tomato〕
In the present invention, the variety of tomatoes to which the nanobubble water is applied is not particularly limited, and may be any variety such as a mini tomato, a medium tomato, and a large tomato.
 以下に、実施例を挙げて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、および、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. The materials, amounts used, ratios, processing contents, processing procedures, and the like shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the following examples.
 <試験の内容>
 試験は、2017年2月~7月にかけて神奈川県相模原市で栽培したトマト(品種:優美)の農業ハウスにおいて、以下の区分により実施した。
 試験区I:トマトの水耕栽培(培地:水)における培養液の希釈に、以下の方法で生成したナノバブル水を用いた。
 試験区II:トマトの水耕栽培(培地:水)における培養液の希釈に、水道水を使用し、ナノバブル水を用いなかった。
 各試験区は、1つの農業ハウス内で区画し、試験区Iでは500株のトマトを栽培し、試験区IIでは14500株のトマトを栽培した。
 なお、培養液および量は、常法に従い、トマトの生育状況、および、天候等に応じて適宜変更したが、両試験区で概ね同様となるように調整した。
<Content of the test>
The test was conducted in the following categories in an agricultural house of tomato (variety: grace) grown in Sagamihara City, Kanagawa Prefecture from February to July 2017.
Test plot I: Nanobubble water produced by the following method was used for dilution of the culture solution in hydroponic cultivation of tomato (medium: water).
Test Zone II: Tap water was used for dilution of the culture solution in hydroponic cultivation of tomato (medium: water), and nanobubble water was not used.
Each test zone was divided in one agricultural house, 500 tomatoes were grown in test zone I, and 14500 tomatoes were grown in test zone II.
The culture solution and amount were appropriately changed according to the growth conditions of tomatoes, weather, and the like according to a conventional method, but were adjusted to be substantially the same in both test sections.
 <ナノバブル水の生成方法>
 ナノバブル水は、ナノバブル生成装置〔株式会社カクイチ製作所 アクアソリューション事業部(現:株式会社アクアソリューション)製、200V,10L/minタイプ〕を用いて加圧溶解方式にて水中に気泡(ナノバブル)を発生させることで生成した。
 なお、ナノバブル水の生成用に使用した水には、水道水を用い、気泡を構成する気体には、酸素(工業用酸素、濃度:99.5体積%)を用いた。
 また、上記のナノバブル生成装置を用いてナノバブルを発生させる条件は、ナノ粒子解析システム ナノサイトLM10(NanoSight社製)による解析結果が以下となる条件で行った。
 ・水1mL当たりの気泡の数:5×10個/mL
 ・気泡の最頻粒子径:100nm
<Nano bubble water generation method>
Nanobubble water generates bubbles (nanobubbles) in water using a nanobubble generator [Kakuichi Seisakusho Aqua Solution Division (currently Aqua Solution Co., Ltd., 200 V, 10 L / min type)] under pressure and dissolution. It was generated by letting.
Note that tap water was used as the water used for generating the nanobubble water, and oxygen (industrial oxygen, concentration: 99.5% by volume) was used as the gas constituting the bubbles.
Moreover, the conditions for generating nanobubbles using the nanobubble generator described above were performed under the condition that the analysis result by the nanoparticle analysis system Nanosite LM10 (manufactured by NanoSight) is as follows.
・ Number of bubbles per mL of water: 5 × 10 8 / mL
・ Mode of bubble particle size: 100 nm
 <形状制御の評価>
 各試験区において、収穫した全量のトマトを目視で確認し、以下に示す基準で評価した。結果を以下に示す。
 (評価基準)
 特A品:図2に示すトマト果実のサンプルと同等品
 A品:図3に示すトマト果実のサンプルと同等品
 B品:図4A~図4Cに示すトマト果実のサンプルと同等品
 C品:図5に示すトマト果実のサンプルと同等品
 (評価結果)
 試験区I:特A品およびA品評価のトマトが、収穫した全個数に対して90%存在していた。
 試験区II:B品およびC品評価のトマトが散見され、特A品およびA品評価のトマトが、収穫した全個数に対して83%にとどまった。
 これらの結果から、トマト果実が生るトマトに対し、ナノバブル水を施用することにより、評価Aを満たすトマトの形状に高いレベルで均一化できることが分かった。
<Evaluation of shape control>
In each test section, the whole amount of harvested tomatoes was visually confirmed and evaluated according to the following criteria. The results are shown below.
(Evaluation criteria)
Special A product: Equivalent to the sample of tomato fruit shown in FIG. 2 A product: Equivalent to the sample of tomato fruit shown in FIG. 3 B product: Equivalent to the sample of tomato fruit shown in FIGS. 4A to 4C C product: FIG. Equivalent to tomato fruit sample shown in 5 (Evaluation result)
Test plot I: Special A product and A product evaluation tomato were present in 90% of the total number of harvested items.
Test area II: B and C evaluated tomatoes were found occasionally, and special A and A evaluated tomatoes remained at 83% of the total number of harvested tomatoes.
From these results, it was found that by applying nano bubble water to tomatoes where tomato fruits grow, the shape of tomatoes satisfying evaluation A can be made uniform at a high level.
10 ナノバブル生成装置
30 液体吐出機
40 気体混入機
41 容器
42 気体混入機本体
50 ナノバブル生成ノズル
DESCRIPTION OF SYMBOLS 10 Nano bubble production | generation apparatus 30 Liquid discharge machine 40 Gas mixing machine 41 Container 42 Gas mixing machine main body 50 Nano bubble production | generation nozzle

Claims (5)

  1.  トマト果実が生るトマトに対し、ナノバブル水を施用する、トマト果実の形状制御方法。 Tomato fruit shape control method, applying nano bubble water to tomato fruit.
  2.  前記ナノバブル水を用いた散水、および、前記ナノバブル水を用いて希釈した培養液の培地への供給のうち、少なくとも一方を実施する、請求項1に記載のトマト果実の形状制御方法。 The method for controlling the shape of tomato fruit according to claim 1, wherein at least one of watering using the nanobubble water and supply of a culture solution diluted with the nanobubble water to the medium is performed.
  3.  前記ナノバブル水に含まれる気泡の最頻粒子径が10~500nmである、請求項1または2に記載のトマト果実の形状制御方法。 The method for controlling the shape of tomato fruit according to claim 1 or 2, wherein the mode diameter of bubbles contained in the nanobubble water is 10 to 500 nm.
  4.  前記ナノバブル水に含まれる気泡が、酸素、窒素、二酸化炭素およびオゾンからなる群から選択される少なくとも1種の気体を含む、請求項1~3のいずれかに記載のトマト果実の形状制御方法。 The tomato fruit shape control method according to any one of claims 1 to 3, wherein the bubbles contained in the nanobubble water contain at least one gas selected from the group consisting of oxygen, nitrogen, carbon dioxide and ozone.
  5.  前記ナノバブル水が、1×10~1×1010個/mLの気泡を有する、請求項1~4のいずれかに記載のトマト果実の形状制御方法。 The tomato fruit shape control method according to any one of claims 1 to 4, wherein the nanobubble water has bubbles of 1 x 10 8 to 1 x 10 10 cells / mL.
PCT/JP2019/021230 2018-05-30 2019-05-29 Tomato fruit shape control method WO2019230766A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020522235A JPWO2019230766A1 (en) 2018-05-30 2019-05-29 Tomato fruit shape control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018103010 2018-05-30
JP2018-103010 2018-05-30

Publications (1)

Publication Number Publication Date
WO2019230766A1 true WO2019230766A1 (en) 2019-12-05

Family

ID=68698255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021230 WO2019230766A1 (en) 2018-05-30 2019-05-29 Tomato fruit shape control method

Country Status (3)

Country Link
JP (1) JPWO2019230766A1 (en)
TW (1) TW202002767A (en)
WO (1) WO2019230766A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042785A (en) * 2004-08-07 2006-02-16 Nanoplanet Kenkyusho:Kk Plant activation apparatus, plant activation method and water purification apparatus using the same
JP2010094117A (en) * 2008-10-16 2010-04-30 Gunjiro Higashitani Method of cultivating crop without using agricultural chemical, and soil improvement agent for use therefor
JP2010179266A (en) * 2009-02-06 2010-08-19 Kochi Univ Of Technology Fine bubbles-containing liquid producing apparatus, plant cultivation apparatus using the apparatus and liquid for plant cultivation
JP2013078761A (en) * 2012-11-14 2013-05-02 National Institute Of Advanced Industrial Science & Technology Ultrafine air bubble-containing water or aqueous solution, method for producing them, and their use
JP2015097509A (en) * 2013-11-19 2015-05-28 サンスター技研株式会社 Plant cultivation method using superfine particles
JP2018007646A (en) * 2016-07-15 2018-01-18 株式会社アースプロジェクト Nutrient circulation system, soil conditioner, and nutrient circulation method
JP2018069193A (en) * 2016-11-01 2018-05-10 株式会社スイッチ・オン・ライフ Method for producing mineral water

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042785A (en) * 2004-08-07 2006-02-16 Nanoplanet Kenkyusho:Kk Plant activation apparatus, plant activation method and water purification apparatus using the same
JP2010094117A (en) * 2008-10-16 2010-04-30 Gunjiro Higashitani Method of cultivating crop without using agricultural chemical, and soil improvement agent for use therefor
JP2010179266A (en) * 2009-02-06 2010-08-19 Kochi Univ Of Technology Fine bubbles-containing liquid producing apparatus, plant cultivation apparatus using the apparatus and liquid for plant cultivation
JP2013078761A (en) * 2012-11-14 2013-05-02 National Institute Of Advanced Industrial Science & Technology Ultrafine air bubble-containing water or aqueous solution, method for producing them, and their use
JP2015097509A (en) * 2013-11-19 2015-05-28 サンスター技研株式会社 Plant cultivation method using superfine particles
JP2018007646A (en) * 2016-07-15 2018-01-18 株式会社アースプロジェクト Nutrient circulation system, soil conditioner, and nutrient circulation method
JP2018069193A (en) * 2016-11-01 2018-05-10 株式会社スイッチ・オン・ライフ Method for producing mineral water

Also Published As

Publication number Publication date
JPWO2019230766A1 (en) 2021-07-08
TW202002767A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP7210570B2 (en) How to improve soil
WO2019230788A1 (en) Fertilizer absorption improvement method
WO2019230766A1 (en) Tomato fruit shape control method
WO2019230776A1 (en) Method of suppressing clubroot
US20230357095A1 (en) Hydrogen nanobubbles infused water for industrial crop irrigation
JP7324747B2 (en) Method for controlling bacterial spot
WO2019230754A1 (en) Magnesium deficiency prevention method
WO2019230753A1 (en) Whitefly eradication method
WO2019230777A1 (en) Method for extending harvesting period
JP7402930B2 (en) How to control spider mites
WO2019230786A1 (en) Ginger cultivation method
JPWO2019230779A1 (en) How to control Spodoptera frugiperda
WO2019230764A1 (en) Antifungal method for fruit and antifungal composition for fruit
Carazo et al. The effect of oxygenation on the root hydraulic conductivity of container-grown roses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810110

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020522235

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810110

Country of ref document: EP

Kind code of ref document: A1