JP2010173268A - 熱可逆記録媒体及びそれを用いた画像処理方法 - Google Patents

熱可逆記録媒体及びそれを用いた画像処理方法 Download PDF

Info

Publication number
JP2010173268A
JP2010173268A JP2009020912A JP2009020912A JP2010173268A JP 2010173268 A JP2010173268 A JP 2010173268A JP 2009020912 A JP2009020912 A JP 2009020912A JP 2009020912 A JP2009020912 A JP 2009020912A JP 2010173268 A JP2010173268 A JP 2010173268A
Authority
JP
Japan
Prior art keywords
thermoreversible recording
layer
recording medium
image
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009020912A
Other languages
English (en)
Inventor
敏明 ▲浅▼井
Toshiaki Asai
Masaya Kawahara
真哉 川原
Tomozo Iwami
知三 石見
Yoshihiko Hotta
吉彦 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2009020912A priority Critical patent/JP2010173268A/ja
Publication of JP2010173268A publication Critical patent/JP2010173268A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Electronic Switches (AREA)
  • Heat Sensitive Colour Forming Recording (AREA)

Abstract

【課題】高感度で繰り返し耐久性に優れる熱可逆記録媒体及び該熱可逆記録媒体を用いた画像処理方法の提供。
【解決手段】支持体と、該支持体上に、少なくとも、第1の熱可逆記録層と、特定波長の光を吸収して熱に変換する光熱変換材料を含む光熱変換層と、第2の熱可逆記録層とをこの順に有してなり、前記第1及び第2の熱可逆記録層が、いずれも温度に依存して透明度及び色調のいずれかが可逆的に変化するものであり、前記第1の熱可逆記録層の厚みをAとし、前記第2の熱可逆記録層の厚みをBとすると、比率〔B/(A+B)×100〕が55%〜75%である熱可逆記録媒体及び該熱可逆記録媒体を用いた画像処理方法である。
【選択図】図1

Description

本発明は、高感度で繰り返し耐久性に優れる熱可逆記録媒体及び該熱可逆記録媒体を用いた画像処理方法に関する。
現在まで、熱可逆記録媒体(以下、「記録媒体」、又は「媒体」と称することがある)への画像記録及び画像消去は、加熱源を記録媒体に接触させて該媒体を加熱する接触式で行われている。該加熱源としては、通常、画像記録にはサーマルヘッドが用いられ、画像消去には熱ローラ、セラミックヒータなどが用いられている。
このような接触式の記録方法は、熱可逆記録媒体がフィルム、紙等のフレキシブルなものである場合には、プラテンなどによって記録媒体を加熱源に均一に押し当てることにより、均一な画像記録及び画像消去を行うことができ、かつ従来の感熱紙用のプリンタの部品を転用することによって画像記録装置及び画像消去装置を安価に製造することができるという利点があった。しかし、熱可逆記録媒体が、特許文献1及び2に記載されているようなRF−IDタグなどを内蔵している場合には、熱可逆記録媒体の厚みが厚くなりフレキシブル性が低下して加熱源を均一に押し当てるためには高い圧力が必要となる。また、接触式であるために、印字と消去を繰り返すと記録媒体表面が削れて凹凸が生じ、サーマルヘッドやホットスタンプ等の加熱源に接触しない部分が出てきて均一に加熱されないため濃度低下や消去不良がおこるという問題がある(特許文献3及び4参照)。
更に、RF−IDタグが非接触で離れたところから記憶情報の読み取り及び書き換えが行われるのに対して、熱可逆記録媒体についても離れた位置から画像を書き換えたいという要望が生じてきている。例えば熱可逆記録媒体の表面に凹凸が生じた場合や離れたところから均一に画像記録及び画像消去する方法として、レーザを用いる方法が提案されている(特許文献5参照)。この方法は、物流ラインに用いる搬送用容器に熱可逆記録媒体を使用して非接触記録を行うものであり、書き込みはレーザで実施し、消去は熱風、温水、又は赤外線ヒータで行うと記載されている。
このようなレーザによる記録方法としては、高出力のレーザ光を熱可逆記録媒体に照射して、その位置をコントロール可能なレーザ記録装置(レーザマーカー)が提供されている。このレーザマーカーを用いると、レーザ光を熱可逆記録媒体に照射して、媒体が光を吸収して熱に変換し、その熱で記録及び消去を行うことが可能である。
また、これまでのレーザによる画像記録及び画像消去を行う方法として、ロイコ染料、可逆性顕色剤、及び種々の光熱変換材料を組み合わせて、近赤外レーザ光により記録する方法が提案されている(特許文献6参照)。
しかし、この提案のように、ロイコ染料等の熱可逆記録層組成物と光熱変換材料を同一層内に含有させて光を照射すると、両者の相互作用により経時的に分解が起こり近赤外領域の吸収が低下していき、記録感度及び消去感度が著しく低下するという問題がある。
そこで、熱可逆記録層と光熱変換層とに独立して分離させる種々の試みがなされてきた(特許文献7参照)。また、感度の向上を図るため、光熱変換層を熱可逆記録層で挟み込む構成が提案されている(特許文献8及び9参照)。しかし、前記特許文献8及び9においては、コントラスト向上、感度向上のための層構成に対する記載はあるものの、耐光性に関しての記載はなく、更には熱可逆記録層の厚みについてまでは記載されていない。熱可逆記録媒体においては、更なる高感度化が望まれており、高感度化を達成するには、熱可逆記録層の厚みについても検討する必要がある。
本発明は、従来における諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、高感度で繰り返し耐久性に優れる熱可逆記録媒体及び該熱可逆記録媒体を用いた画像処理方法を提供することを目的とする。
前記課題を解決するための手段としては、以下の通りである。
<1> 支持体と、該支持体上に、少なくとも、第1の熱可逆記録層と、特定波長の光を吸収して熱に変換する光熱変換材料を含む光熱変換層と、第2の熱可逆記録層とをこの順に有してなり、
前記第1及び第2の熱可逆記録層が、いずれも温度に依存して透明度及び色調のいずれかが可逆的に変化するものであり、
前記第1の熱可逆記録層の厚みをAとし、前記第2の熱可逆記録層の厚みをBとすると、比率〔B/(A+B)×100〕が55%〜75%であることを特徴とする熱可逆記録媒体である。
<2> 第1及び第2の熱可逆記録層が、いずれもロイコ染料及び可逆性顕色剤を含有する前記<1>に記載の熱可逆記録媒体である。
<3> 第1及び第2の熱可逆記録層が、いずれも樹脂及び有機低分子物質を含有する前記<1>から<2>のいずれかに記載の熱可逆記録媒体である。
<4> 光熱変換材料が、近赤外領域に吸収ピークを有する材料である前記<1>から<3>のいずれかに記載の熱可逆記録媒体である。
<5> 光熱変換材料が、700nm〜1,500nmの波長範囲内に吸収ピークを有する前記<1>から<4>のいずれかに記載の熱可逆記録媒体である。
<6> 光熱変換材料が、フタロシアニン系化合物である前記<1>から<5>のいずれかに記載の熱可逆記録媒体である。
<7> 支持体と第1の熱可逆記録層の間に、第1の酸素バリア層を有する前記<1>から<6>のいずれかに記載の熱可逆記録媒体である。
<8> 第2の熱可逆記録層上に、直接又は他の層を介して第2の酸素バリア層を有する前記<1>から<7>のいずれかに記載の熱可逆記録媒体である。
<9> 第1及び第2の酸素バリア層の酸素透過度が、いずれも20ml/m/day/MPa以下である前記<7>から<8>のいずれかに記載の熱可逆記録媒体である。
<10> 第2の熱可逆記録層と第2の酸素バリア層の間に、紫外線吸収層を有する前記<8>から<9>のいずれかに記載の熱可逆記録媒体である。
<11> 前記<1>から<10>のいずれかに記載の熱可逆記録媒体の光熱変換層に対し特定波長のレーザ光を照射して加熱することにより該熱可逆記録媒体に画像を記録する画像記録工程、及び、前記熱可逆記録媒体の光熱変換層に対し特定波長のレーザ光を照射して加熱することにより該熱可逆記録媒体に記録された画像を消去する画像消去工程の少なくともいずれかを含むことを特徴とする画像処理方法である。
<12> レーザ光源が、YAGレーザ光、ファイバーレーザ光、及び半導体レーザ光の少なくともいずれかである前記<11>に記載の画像処理方法である。
本発明によると、従来における問題を解決することができ、高感度で繰り返し耐久性に優れる熱可逆記録媒体及び該熱可逆記録媒体を用いた画像処理方法を提供することができる。
本発明の熱可逆記録媒体の層構成の一例を示す概略断面図である。 図2は、本発明の熱可逆記録媒体の層構成の他の一例を示す概略断面図である。 図3は、本発明の熱可逆記録媒体の層構成の更に他の一例を示す概略断面図である。 図4は、本発明の画像処理装置の一例を説明する図である。 図5Aは、熱可逆記録媒体の透明−白濁特性を示すグラフである。 図5Bは、熱可逆記録媒体の透明−白濁変化のメカニズムを表す概略説明図である。 図6Aは、熱可逆記録媒体の発色−消色特性を示すグラフである。 図6Bは、熱可逆記録媒体の発色−消色変化のメカニズムを表す概略説明図である。 図7は、RF−IDタグの一例を示す概略図である。
(熱可逆記録媒体)
本発明の熱可逆記録媒体は、支持体と、該支持体上に、第1の熱可逆記録層と、光熱変換層と、第2の熱可逆記録層とをこの順に有してなり、更に必要に応じて適宜選択した、第1の酸素バリア層、第2の酸素バリア層、紫外線吸収層、バック層、保護層、中間層、アンダーコート層、接着層、粘着層、着色層、空気層、光反射層等のその他の層を有してなる。これら各層は、単層構造であってもよいし、積層構造であってもよい。ただし、前記光熱変換層の上に設ける層においては、照射する特定波長のレーザ光のエネルギーロスを少なくするために該特定波長において吸収の少ない材料を用いて層を構成させることが好ましい。
ここで、本発明の熱可逆記録媒体100の層構成としては、図1に示すように、支持体101と、該支持体上に、第1の熱可逆記録層102と、光熱変換層103と、第2の熱可逆記録層104とをこの順に有する態様がある。
また、図2に示すように、支持体101と、該支持体上に、第1の酸素バリア層105、第1の熱可逆記録層102と、光熱変換層103と、第2の熱可逆記録層104と、第2の酸素バリア層106とをこの順に有する態様がある。
また、図3に示すように、支持体101と、該支持体上に、第1の酸素バリア層105、第1の熱可逆記録層102と、光熱変換層103と、第2の熱可逆記録層104と、紫外線吸収層107と、第2の酸素バリア層106とをこの順に有してなり、支持体101の第1酸素バリア層105等を有していない側の面にバック層108を有する態様がある。
なお、図示を省略しているが、図1の第2の熱可逆記録層104上、図2の第2の酸素バリア層106上、図3の第2の酸素バリア層106上の最表層に保護層を形成してもよい。
本発明においては、前記第2の熱可逆記録層の厚みが、前記第1及び第2の熱可逆記録層の合計厚みに対して55%〜75%である。即ち、前記第1の熱可逆記録層の厚みをAとし、前記第2の熱可逆記録層の厚みをBとすると、比率〔B/(A+B)×100〕が55%〜75%である。
ここで、前記比率〔B/(A+B)×100〕の下限は55%以上であり、58%以上が好ましく、60%以上がより好ましい。前記比率が55%未満であると、感度の低下が起こり、繰り返し耐久性が低下してしまうことがある。
一方、前記比率〔B/(A+B)×100〕の上限は75%以下であり、67%以下が好ましく、65%以下がより好ましい。前記比率が75%を超えると、第2の熱可逆記録層の厚みが第1の熱可逆記録層の厚みに比べて、過剰に厚くなりすぎてしまい、感度の低下が起こり、繰り返し耐久性が低下してしまう。これは、第2の熱可逆記録層の厚みが厚くなるにつれて、第1の熱可逆記録層/光熱変換層/第2の熱可逆記録層の順に積層した層構成が光熱変換層と熱可逆記録層を単純に分離した層構成に近づいてしまうためである。
前記第2の熱可逆記録層の厚みが、前記第1及び第2の熱可逆記録層の合計厚みに対して55%〜75%の範囲にあることで、光熱変換層で発生した熱を効率よく利用でき、感度が向上する。これは光熱変換層において、上部が下部よりも発生熱量が多いことに起因している。即ち、光熱変換層の上部は照射された光のほとんどを光熱変換材料が吸収し熱へと変換するが、下部は照射された光のうち上部で吸収されなかった光を吸収し熱へと変換することになるからである。よって上部の方が下部に比べて光の吸収量が多くなるため、光熱変換層上部において光熱変換層下部よりも発生熱量が多くなる。これより第2の熱可逆記録層の厚みが第1の熱可逆記録層の厚みよりも厚い熱可逆記録媒体の層構成とすることで、単純に分離しただけ、又は第2の熱可逆記録層の厚みが第1の熱可逆記録層の厚み以下の構成のときよりも、高感度化が可能となる。そして感度が上がることで、画像処理を高速に行うことが可能となる。
本発明の熱可逆記録媒体の層構成であると、高感度で画像処理することができるので、熱可逆記録媒体の光熱変換層、熱可逆記録層への負荷を軽減することもできる。これより第2の熱可逆記録層の厚みが、第1の熱可逆記録層の厚みよりも厚い熱可逆記録媒体の層構成とすることで、単純に分離しただけ、又は第2の熱可逆記録層の厚みが第1の熱可逆記録層の厚み以下の構成のときよりも、繰り返し画像処理することのできる回数を多くすることができる。
<支持体>
前記支持体としては、その形状、構造、大きさ等については、特に制限はなく、目的に応じて適宜選択することができ、前記形状としては、例えば、平板状などが挙げられ、前記構造としては、単層構造であってもよいし、積層構造であってもよく、前記大きさとしては、前記熱可逆記録媒体の大きさ等に応じて適宜選択することができる。
前記支持体の材料としては、例えば、無機材料、有機材料などが挙げられる。
前記無機材料としては、例えば、ガラス、石英、シリコン、酸化シリコン、酸化アルミニウム、SiO、金属などが挙げられる。
前記有機材料としては、例えば、紙、三酢酸セルロース等のセルロース誘導体、合成紙、ポリエチレンテレフタレート、ポリカーボネート、ポリスチレン、ポリメチルメタクリレート等のフィルムなどが挙げられる。
前記無機材料及び前記有機材料は、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、有機材料が好ましく、ポリエチレンテレフタレート、ポリカーボネート、ポリメチルメタクリレート等のフィルムが好ましく、ポリエチレンテレフタレートが特に好ましい。
前記支持体には、塗布層の接着性を向上させることを目的として、コロナ放電処理、酸化反応処理(クロム酸等)、エッチング処理、易接着処理、帯電防止処理、などを行うことにより表面改質するのが好ましい。
前記支持体に、酸化チタン等の白色顔料などを添加することにより、白色にするのが好ましい。
前記支持体の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、10μm〜2,000μmが好ましく、50μm〜1,000μmがより好ましい。
<第1及び第2の熱可逆記録層>
前記第1及び第2の熱可逆記録層(以下、単に「熱可逆記録層」と称することがある)は、温度に依存して透明度及び色調のいずれかが可逆的に変化する材料を少なくとも含み、更に必要に応じてその他の成分を含んでなる。
前記温度に依存して透明度及び色調のいずれかが可逆的に変化する材料は、温度変化により、目に見える変化を可逆的に生じる現象を発現可能な材料であり、加熱温度及び加熱後の冷却速度の違いにより、相対的に発色した状態と消色した状態とに変化可能である。この場合、目に見える変化は、色の状態の変化と形状の変化とに分けられる。該色の状態の変化は、例えば、透過率、反射率、吸収波長、散乱度などの変化に起因し、前記熱可逆記録媒体は、実際には、これらの変化の組合せにより色の状態が変化する。
前記温度に依存して透明度及び色調のいずれかが可逆的に変化する材料としては、特に制限はなく、公知のものの中から適宜選択することができ、例えば、ポリマーを2種以上混合し、その相溶状態の違いで透明及び白濁に変化するもの(特開昭61−258853号公報参照)、液晶高分子の相変化を利用したもの(特開昭62−66990号公報参照)、常温より高い第一の特定温度で第一の色の状態となり、該第一の特定温度よりも高い第二の特定温度で加熱し、その後冷却することにより第二の色の状態となるもの、等が挙げられる。これらの中でも、温度制御しやすく、高コントラストが得られる点で、前記第一の特定温度と第二の特定温度とで色の状態が変化するものが特に好ましい。例えば常温より高い第一の特定温度で第一の色の状態となり、該第一の特定温度よりも高い第二の特定温度で加熱し、その後冷却することにより第二の色の状態となるもの、更に前記第二の特定温度よりも高い第三の特定温度以上で加熱するもの等が挙げられる。
これらの例としては、第一の特定温度で透明状態となり、第二の特定温度で白濁状態となるもの(特開昭55−154198号公報参照)、第二の特定温度で発色し、第一の特定温度で消色するもの(特開平4−224996号公報、特開平4−247985号公報、特開平4−267190号公報等参照)、第一の特定温度で白濁状態となり、第二の特定温度で透明状態となるもの(特開平3−169590号公報参照)、第一の特定温度で黒、赤、青等に発色し、第二の特定温度で消色するもの(特開平2−188293号、特開平2−188294号公報等参照)などが挙げられる。
これらの中でも、樹脂母材と該樹脂母材中に分散させた高級脂肪酸等の有機低分子物質とからなる熱可逆記録媒体は、第二の特定温度及び第一の特定温度が比較的低く、低エネルギーでの消去記録が可能な点で有利である。また、発消色メカニズムが、樹脂の固化と有機低分子物質の結晶化とに依存する物理変化であるため、耐環境性に強い特性がある。
また、後述するロイコ染料と可逆性顕色剤とを用いた、第二の特定温度で発色し、第一の特定温度で消色する熱可逆記録媒体は、透明状態と発色状態とを可逆的に示し、発色状態では、黒、青、その他の色を示すため、高コントラストな画像を得ることができる。
前記熱可逆記録媒体における前記有機低分子物質(樹脂母材中に分散され、第一の特定温度で透明状態となり、第二の特定温度で白濁状態となるもの)としては、前記録層中で、熱により多結晶から単結晶に変化するものであれば、特に制限はなく、目的に応じて適宜選択することができ、一般に、融点が30〜200℃程度のものを使用することができ、融点が50〜150℃のものが好適である。
このような有機低分子物質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アルカノール;アルカンジオール;ハロゲンアルカノール又はハロゲンアルカンジオール;アルキルアミン;アルカン;アルケン;アルキン;ハロゲンアルカン;ハロゲンアルケン;ハロゲンアルキン;シクロアルカン;シクロアルケン;シクロアルキン;飽和又は不飽和モノ若しくはジカルボン酸及びこれらのエステル、アミド又はアンモニウム塩;飽和又は不飽和ハロゲン脂肪酸及びこれらのエステル、アミド又はアンモニウム塩;アリールカルボン酸及びそれらのエステル、アミド又はアンモニウム塩;ハロゲンアリルカルボン酸及びそれらのエステル、アミド又はアンモニウム塩;チオアルコール;チオカルボン酸及びそれらのエステル、アミン又はアンモニウム塩;チオアルコールのカルボン酸エステル;などが挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
これらの化合物の炭素数としては、10〜60が好ましく、10〜38がより好ましく、10〜30が特に好ましい。エステル中のアルコール基部分は、飽和していてもよいし飽和していなくてもよく、ハロゲン置換されていてもよい。
また、前記有機低分子物質は、その分子中に、酸素、窒素、硫黄及びハロゲンから選択される少なくとも1種、例えば、−OH、−COOH、−CONH−、−COOR、−NH−、−NH、−S−、−S−S−、−O−、ハロゲン原子等を含んでいるのが好ましい。
更に具体的には、これらの化合物としては、例えば、ラウリン酸、ドデカン酸、ミリスチン酸、ペンタデカン酸、パルミチン酸、ステアリン酸、ベヘン酸、ノナデカン酸、アラギン酸、オレイン酸等の高級脂肪酸;ステアリン酸メチル、ステアリン酸テトラデシル、ステアリン酸オクタデシル、ラウリン酸オクタデシル、パルミチン酸テトラデシル、ベヘン酸ドデシル等の高級脂肪酸のエステルなどが挙げられる。これらの中でも、前記画像処理方法の第3の態様で用いられる有機低分子物質としては、高級脂肪酸が好ましく、パルミチン酸、ステアリン酸、ベヘン酸、リグノセリン酸等の炭素数16以上の高級脂肪酸がより好ましく、炭素数16〜24の高級脂肪酸が更に好ましい。
前記熱可逆記録媒体を透明化することができる温度範囲の幅を拡げるためには、上述した各種有機低分子物質を適宜組み合わせて使用してもよいし、該有機低分子物質と融点の異なる他の材料とを組み合わせて使用してもよい。これらは、例えば、特開昭63−39378号公報、特開昭63−130380号公報、特許第2615200号公報などに開示されているが、これらに限定されるものではない。
前記樹脂母材は、前記有機低分子物質を均一に分散保持した層を形成すると共に、最大透明時の透明度に影響を与える。このため、該樹脂母材としては、透明性が高く、機械的安定性を有し、かつ成膜性の良好な樹脂であるのが好ましい。
このような樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリ塩化ビニル;塩化ビニル−酢酸ビニル共重合体、塩化ビニル−酢酸ビニル−ビニルアルコール共重合体、塩化ビニル−酢酸ビニル−マレイン酸共重合体、塩化ビニル−アクリレート共重合体等の塩化ビニル系共重合体;ポリ塩化ビニリデン;塩化ビニリデン−塩化ビニル共重合体、塩化ビニリデン−アクリロニトリル共重合体等の塩化ビニリデン系共重合体;ポリエステル;ポリアミド;ポリアクリレート又はポリメタクリレート若しくはアクリレート−メタクリレート共重合体;シリコーン樹脂;などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記熱可逆記録層における、前記有機低分子物質と前記樹脂(樹脂母材)との割合は、質量比で2:1〜1:16程度が好ましく、1:2〜1:8がより好ましい。
前記樹脂の比率が、2:1よりも小さいと、前記有機低分子物質を前記樹脂母材中に保持した膜を形成することが困難となることがあり、1:16よりも大きくなると、前記有機低分子物質の量が少ないため、前記記録層の不透明化が困難になることがある。
前記熱可逆記録層には、前記有機低分子物質及び前記樹脂のほか、透明画像の記録を容易にするために、高沸点溶剤、界面活性剤等のその他の成分を添加することができる。
前記熱可逆記録層の作製方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記樹脂母材及び前記有機低分子物質の2成分を溶解した溶液、又は、前記樹脂母材の溶液(溶剤としては、前記有機低分子物質から選択される少なくとも1種を不溶なもの)に前記有機低分子物質を微粒子状に分散させた分散液を、例えば、前記支持体に塗布及び乾燥させることにより行うことができる。
前記溶剤としては、特に制限はなく、前記樹脂母材及び前記有機低分子物質の種類に応じて適宜選択することができ、例えば、テトラヒドロフラン、メチルエチルケトン、メチルイソブチルケトン、クロロホルム、四塩化炭素、エタノール、トルエン、ベンゼンなどが挙げられる。なお、前記分散液を使用した場合はもちろん、前記溶液を使用した場合も、得られる記録層中では前記有機低分子物質は微粒子として析出し、分散状態で存在する。
前記熱可逆記録媒体における前記有機低分子物質は、前記ロイコ染料及び前記可逆性顕色剤からなり、第二の特定温度で発色し、第一の特定温度で消色するものであってもよい。
−ロイコ染料−
前記ロイコ染料は、それ自体無色又は淡色の染料前駆体である。該ロイコ染料としては、特に制限はなく、公知のものの中から適宜選択することができるが、例えば、トリフェニルメタンフタリド系、トリアリルメタン系、フルオラン系、フェノチアジン系、チオフェルオラン系、キサンテン系、インドフタリル系、スピロピラン系、アザフタリド系、クロメノピラゾール系、メチン系、ローダミンアニリノラクタム系、ローダミンラクタム系、キナゾリン系、ジアザキサンテン系、ビスラクトン系等のロイコ化合物が好適に挙げられる。これらの中でも、発消色特性、色彩、保存性等に優れる点で、フルオラン系又はフタリド系のロイコ染料が特に好ましい。これらは1種単独で使用してもよいし、2種以上を併用してもよく、異なる色調に発色する層を積層することにより、マルチカラー、フルカラーに対応させることもできる。
−可逆性顕色剤−
前記可逆性顕色剤としては、熱を因子として発消色を可逆的に行うことができるものであれば特に制限はなく、目的に応じて適宜選択することができるが、例えば、(1)前記ロイコ染料を発色させる顕色能を有する構造(例えば、フェノール性水酸基、カルボン酸基、リン酸基等)、及び、(2)分子間の凝集力を制御する構造(例えば、長鎖炭化水素基が連結した構造)、から選択される構造を分子内に1つ以上有する化合物が好適に挙げられる。なお、連結部分にはヘテロ原子を含む2価以上の連結基を介していてもよく、また、長鎖炭化水素基中にも、同様の連結基及び芳香族基の少なくともいずれかが含まれていてもよい。
前記(1)ロイコ染料を発色させる顕色能を有する構造としては、フェノールが特に好ましい。
前記(2)分子間の凝集力を制御する構造としては、炭素数8以上の長鎖炭化水素基が好ましく、該炭素数は11以上がより好ましく、また炭素数の上限としては、40以下が好ましく、30以下がより好ましい。
前記可逆性顕色剤の中でも、下記一般式(1)で表されるフェノール化合物が好ましく、下記一般式(2)で表されるフェノール化合物がより好ましい。
ただし、前記一般式(1)及び(2)中、Rは、単結合又は炭素数1〜24の脂肪族炭化水素基を表す。Rは、置換基を有していてもよい炭素数2以上の脂肪族炭化水素基を表し、該炭素数としては、5以上が好ましく、10以上がより好ましい。Rは、炭素数1〜35の脂肪族炭化水素基を表し、該炭素数としては、6〜35が好ましく、8〜35がより好ましい。これらの脂肪族炭化水素基は、1種単独で有していてもよいし、2種以上を併用して有していてもよい。
前記R、前記R、及び前記Rの炭素数の和としては、特に制限はなく、目的に応じて適宜選択することができるが、下限としては、8以上が好ましく、11以上がより好ましく、上限としては、40以下が好ましく、35以下がより好ましい。
前記炭素数の和が、8未満であると、発色の安定性や消色性が低下することがある。
前記脂肪族炭化水素基は、直鎖であってもよいし、分枝鎖であってもよく、不飽和結合を有していてもよいが、直鎖であるのが好ましい。また、前記炭化水素基に結合する置換基としては、例えば、水酸基、ハロゲン原子、アルコキシ基等が挙げられる。
X及びYは、それぞれ同一であってもよいし、異なっていてもよく、N原子又はO原子を含む2価の基を表し、具体例としては、酸素原子、アミド基、尿素基、ジアシルヒドラジン基、シュウ酸ジアミド基、アシル尿素基等が挙げられる。これらの中でも、アミド基、尿素基が好ましい。
nは、0〜1の整数を示す。
前記電子受容性化合物(顕色剤)は、消色促進剤として分子中に−NHCO−基、−OCONH−基を少なくとも一つ以上有する化合物を併用することにより、消色状態を形成する過程において消色促進剤と顕色剤の間に分子間相互作用が誘起され、発消色特性が向上するので好ましい。
前記消色促進剤としては、特に制限はなく、目的に応じて適宜選択することができる。
前記熱可逆記録層には、バインダー樹脂、更に必要に応じて熱可逆記録層の塗布特性や発色消色特性を改善、制御するための各種添加剤を用いることができる。これらの添加剤としては、例えば、界面活性剤、導電剤、充填剤、酸化防止剤、光安定化剤、発色安定化剤、消色促進剤などが挙げられる。
−バインダー樹脂−
前記バインダー樹脂としては、支持体上に熱可逆記録層を結着することができれば特に制限はなく、目的に応じて適宜選択することができるが、従来から公知の樹脂の中から1種又は2種以上を混合して用いることができる。これらの中でも、繰り返し時の耐久性を向上させるため、熱、紫外線、電子線などによって硬化可能な樹脂が好ましく用いられ、特にイソシアネート系化合物などを架橋剤として用いた熱硬化性樹脂が好適である。該熱硬化性樹脂としては、例えば、水酸基やカルボキシル基等の架橋剤と反応する基を持つ樹脂、又は水酸基やカルボキシル基等を持つモノマーとそれ以外のモノマーを共重合した樹脂などが挙げられる。このような熱硬化性樹脂としては、例えば、フェノキシ樹脂、ポリビニルブチラール樹脂、セルロースアセテートプロピオネート樹脂、セルロースアセテートブチレート樹脂、アクリルポリオール樹脂、ポリエステルポリオール樹脂、ポリウレタンポリオール樹脂、等が挙げられる。これらの中でも、アクリルポリオール樹脂、ポリエステルポリオール樹脂、ポリウレタンポリオール樹脂が特に好ましい。
前記熱可逆記録層中における前記発色剤とバインダー樹脂との混合割合(質量比)は、発色剤1に対して0.1〜10が好ましい。バインダー樹脂が少なすぎると、前記熱可逆記録層の熱強度が不足することがあり、一方、バインダー樹脂が多すぎると、発色濃度が低下して問題となることがある。
前記架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、イソシアネート類、アミノ樹脂、フェノール樹脂、アミン類、エポキシ化合物、等が挙げられる。これらの中でも、イソシアネート類が好ましく、特に好ましくはイソシアネート基を複数持つポリイソシアネート化合物である。
前記架橋剤のバインダー樹脂に対する添加量は、バインダー樹脂中に含まれる活性基の数に対する架橋剤の官能基の比は0.01〜2が好ましい。これ以下では熱強度が不足してしまい、また、これ以上添加すると発色及び消色特性に悪影響を及ぼす。
更に、架橋促進剤としてこの種の反応に用いられる触媒を用いてもよい。
前記熱架橋した場合の熱硬化性樹脂のゲル分率は、30%以上が好ましく、50%以上がより好ましく、70%以上が更に好ましい。前記ゲル分率が30%未満であると、架橋状態が十分でなく耐久性に劣ることがある。
前記バインダー樹脂が架橋状態にあるのか非架橋状態にあるのかを区別する方法としては、例えば、塗膜を溶解性の高い溶媒中に浸すことによって区別することができる。即ち、非架橋状態にあるバインダー樹脂は、溶媒中に該樹脂が溶けだし溶質中には残らなくなる。
前記熱可逆記録層におけるその他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、画像の記録を容易にする観点から、界面活性剤、可塑剤などが挙げられる。
前記熱可逆記録層用塗液に用いられる溶媒、塗液の分散装置、塗工方法、乾燥・硬化方法等は公知の方法を用いることができる。
なお、熱可逆記録層用塗布液は前記分散装置を用いて各材料を溶媒中に分散してもよいし、各々単独で溶媒中に分散して混ぜ合わせてもよい。更に加熱溶解して急冷又は徐冷によって析出させてもよい。
前記熱可逆記録層を形成する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、(1)前記樹脂、及び前記電子供与性呈色化合物及び電子受容性化合物を溶媒中に溶解乃至分散させた記録層用塗布液を支持体に塗布し、該溶媒を蒸発させてシート状等にするのと同時に又はその後に架橋する方法、(2)前記樹脂のみを溶解した溶媒に前記電子供与性呈色化合物及び電子受容性化合物を分散させた記録層用塗布液を支持体に塗布し、該溶媒を蒸発させてシート状等にすると同時に又はその後に架橋する方法、(3)溶媒を用いず、前記樹脂と前記電子供与性呈色化合物及び電子受容性化合物とを加熱溶融して互いに混合し、この溶融混合物をシート状等に成形して冷却した後に架橋する方法、などが好適に挙げられる。なお、これらにおいて、前記支持体を用いることなく、シート状の熱可逆記録媒体として成形することもできる。
前記(1)又は(2)において用いる溶剤としては、前記樹脂及び前記電子供与性呈色化合物及び電子受容性化合物の種類等によって異なり一概には規定することはできないが、例えば、テトラヒドロフラン、メチルエチルケトン、メチルイソブチルケトン、クロロホルム、四塩化炭素、エタノール、トルエン、ベンゼンなどが挙げられる。
なお、前記可逆性顕色剤は、前記熱可逆記録層中では粒子状に分散して存在している。
前記熱可逆記録層用塗布液には、コーティング材料用としての高度な性能を発現させる目的で、各種顔料、消泡剤、顔料、分散剤、スリップ剤、防腐剤、架橋剤、可塑剤等を添加してもよい。
前記熱可逆記録層の塗工方法としては、特に制限はなく、目的に応じて適宜選択することができ、ロール状で連続して、又はシート状に裁断した支持体を搬送し、該支持体上に、例えば、ブレード塗工、ワイヤーバー塗工、スプレー塗工、エアナイフ塗工、ビード塗工、カーテン塗工、グラビア塗工、キス塗工、リバースロール塗工、ディップ塗工、ダイ塗工等公知の方法で塗布する。
前記熱可逆記録層用塗布液の乾燥条件としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、室温〜140℃の温度で、10秒間〜10分間程度、などが挙げられる。
前記熱可逆記録層の厚みは、特に制限はなく、目的に応じて適宜選択することができ、例えば、1μm〜20μmが好ましく、3μm〜15μmがより好ましい。前記熱可逆記録層の厚みが薄すぎると発色濃度が低くなるため画像のコントラストが低くなることがあり、一方、厚すぎると層内での熱分布が大きくなり、発色温度に達せず発色しない部分が発生し、希望とする発色濃度を得ることができなくなることがある。
−光熱変換層−
前記光熱変換層は、前記レーザ光を高効率で吸収し発熱する役割を有する光熱変換材料を少なくとも含有してなる。また熱可逆記録層と光熱変換層の間に両層が相互作用を抑制する目的でバリア層を形成することがあり、材料として熱伝導性のよい層が好ましい。前記熱可逆記録層と光熱変換層の間に挟む層は、目的に応じて適宜選択することができ、これらに限定されるものではない。
前記光熱変換材料は、無機系材料と有機系材料とに大別できる。
前記無機系材料としては、例えば、カーボンブラックやGe、Bi、In、Te、Se、Cr等の金属又は半金属及びそれを含む合金が挙げられ、これらは、真空蒸着法や粒子状の材料を樹脂等で接着して層状に形成される。
前記有機系材料としては、吸収すべき光波長に応じて各種の染料を適宜用いることができるが、光源として半導体レーザを用いる場合には、700nm〜1,500nm付近に吸収ピークを有する近赤外吸収色素が用いられる。具体的には、シアニン色素、キノン系色素、インドナフトールのキノリン誘導体、フェニレンジアミン系ニッケル錯体、フタロシアニン系化合物などが挙げられる。繰返し画像処理を行うためには、耐熱性に優れた光熱変換材料を選択するのが好ましく、この点からフタロシアニン系化合物が特に好ましい。
前記近赤外吸収色素は、1種単独で使用してもよいし、2種以上を併用してもよい。
前記光熱変換層を設ける場合には、通常、前記光熱変換材料は、バインダー樹脂と併用して用いられる。該光熱変換層に用いられるバインダー樹脂としては、特に制限はなく、前記無機系材料及び有機系材料を保持できるものであれば、公知のものの中から適宜選択することができるが、熱可塑性樹脂、熱硬化性樹脂などが好ましく、前記記録層で用いられたバインダー樹脂と同様なものを好適に用いることができる。これらの中でも、繰り返し時の耐久性を向上させるため、熱、紫外線、電子線などによって硬化可能な樹脂が好ましく用いられ、特にイソシアネート系化合物などを架橋剤として用いた熱架橋樹脂が好ましい。前記バインダー樹脂において、その水酸基価は50mgKOH/g〜400mgKOH/gであることが好ましく、100mgKOH/g〜350mgKOH/gであることがより好ましい。
前記光熱変換層中における前記光熱変換材料とバインダー樹脂との混合割合(質量比)は、光熱変換材料による地肌の着色が少なく、記録感度が良好で、かつ十分な塗膜強度が得られることから、光熱変換材料0.1に対して0.1〜100が好ましい。バインダー樹脂が少なすぎると、前記光熱変換層の熱強度が不足することがあり、一方、バインダー樹脂が多すぎると、記録感度が低下して問題となることがある。
前記光熱変換層の厚みは、特に制限はなく、目的に応じて適宜選択することができ、0.1μm〜20μmであることが好ましい。
−第1及び第2の酸素バリア層−
第1及び第2の酸素バリア層は、熱可逆記録層に酸素が進入することを防ぐことにより、前記第1及び第2の熱可逆記録層中のロイコ染料の光劣化を防止する目的で、第1及び第2の熱可逆記録層の上下に酸素バリア層を設けることが好ましい。即ち支持体と第1の熱可逆記録層との間に第1の酸素バリア層を設け、第2の熱可逆記録層上に第2の酸素バリア層を設けることが好ましい。
前記第1及び第2の酸素バリア層には、可視部の透過率が大きく、酸素透過度が低い樹脂又は高分子フィルム等が挙げられる。該酸素バリア層は、その用途、酸素透過性、透明性、塗工のしやすさ、接着性等によって選択される。前記酸素バリア層の具体例としては、ポリアクリル酸アルキルエステル、ポリメタクリル酸アルキルエステル、ポリメタクリロニトリル、ポリアルキルビニルエステル、ポリアルキルビニルエーテル、ポリフッ素化ビニル、ポリスチレン、酢酸ビニル共重合体、酢酸セルロース、ポリビニルアルコール、ポリ塩化ビニリデン、アセトニトリル共重合体、塩化ビニリデン共重合体、ポリ(クロロトリフルオロエチレン)、エチレン−ビニルアルコール共重合体、ポリアクリロニトリル、アクリロニトリル共重合体、ポリエチレンテレフタレート、ナイロン−6及びポリアセタール等の樹脂、又はポリエチレンテレフタレートやナイロン等の高分子フィルム上に無機酸化物を蒸着したシリカ蒸着フィルム、アルミナ蒸着フィルム、シリカ/アルミナ蒸着フィルムなどが挙げられる。これらの中でも高分子フィルム上に無機酸化物を蒸着したフィルムが好ましい。
前記酸素バリア層の酸素透過度としては、20ml/m/day/MPa以下が好ましく、5ml/m/day/MPa以下がより好ましく、1ml/m/day/MPa以下が更に好ましい。前記酸素透過度が、20ml/m/day/MPaを超えると、前記第1及び第2の熱可逆記録層中のロイコ染料の光劣化を抑制できないことがある。
前記酸素透過度は、例えばJIS K7126 B法に準じた測定法により測定することができる。
前記酸素バリア層は前記熱可逆記録層の下側又は支持体の裏面など、前記酸素バリア層で熱可逆記録層を挟み込むように設けることもできる。これにより、熱可逆記録層への酸素侵入をより効果的に防ぐことができ、ロイコ染料の光劣化をより少なくすることができる。
前記第1及び第2の酸素バリア層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、溶融押出し法、コーティング法、ラミネート法、などが挙げられる。
前記第1及び第2の酸素バリア層の厚さは、樹脂又は高分子フィルムの酸素透過性によって異なるが、0.1μm〜100μmが好ましい。これより薄いと酸素バリアが不完全であり、厚いと透明性が低下するので好ましくない。
前記酸素バリア層と下層の間には、接着層を設けてもよい。前記接着層の形成方法は、特に制限なく通常のコーティング法、ラミネート法等を挙げることができる。接着層の厚さは特に制限ないが、0.1μm〜5μmが好ましい。前記接着層は、架橋剤により硬化してもよい。これらは前記熱可逆記録層で用いられたものと同様のものを好適に用いることができる。
−保護層−
本発明の熱可逆記録媒体には、前記熱可逆記録層を保護する目的で該熱可逆記録層上に保護層を設けることが好ましい。該保護層は、特に制限はなく、目的に応じて適宜選択することができ、例えば、1層以上に形成してもよく、露出している最表面に設けることが好ましい。
前記保護層は、バインダー樹脂、更に必要に応じて、フィラー、滑剤、着色顔料等のその他の成分を含有してなる。
前記保護層のバインダー樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、熱硬化性樹脂、紫外線(UV)硬化性樹脂、電子線硬化性樹脂、等が好ましく、これらの中でも、紫外線(UV)硬化性樹脂、熱硬化性樹脂が特に好ましい。
前記UV硬化性樹脂は、硬化後非常に硬い膜を形成することができ、表面の物理的な接触によるダメージやレーザ加熱による媒体変形を抑止することができるため繰り返し耐久性に優れた熱可逆記録媒体が得られる。
また、前記熱硬化性樹脂は、前記UV硬化性樹脂にはやや劣るが同様に表面を硬くすることができ、繰り返し耐久性に優れる。
前記UV硬化性樹脂としては、特に制限はなく、公知のものの中から目的に応じて適宜選択することができ、例えば、ウレタンアクリレート系、エポキシアクリレート系、ポリエステルアクリレート系、ポリエーテルアクリレート系、ビニル系、不飽和ポリエステル系のオリゴマーや各種単官能、多官能のアクリレート、メタクリレート、ビニルエステル、エチレン誘導体、アリル化合物等のモノマーが挙げられる。これらの中でも、4官能以上の多官能性のモノマー又はオリゴマーが特に好ましい。これらのモノマー又はオリゴマーを2種類以上混合することで樹脂膜の硬さ、収縮度、柔軟性、塗膜強度等を適宜調節することができる。
また、前記モノマー又はオリゴマーを、紫外線を用いて硬化させるためには、光重合開始剤、光重合促進剤を用いる必要がある。
前記光重合開始剤又は光重合促進剤の添加量は、前記保護層の樹脂成分の全質量に対し0.1質量%〜20質量%が好ましく、1質量%〜10質量%がより好ましい。
前記紫外線硬化樹脂を硬化させるための紫外線照射は、公知の紫外線照射装置を用いて行うことができ、該装置としては、例えば、光源、灯具、電源、冷却装置、搬送装置等を備えたものが挙げられる。
前記光源としては、例えば水銀ランプ、メタルハライドランプ、カリウムランプ、水銀キセノンランプ、フラッシュランプなどが挙げられる。該光源の波長は、前記熱可逆記録媒体用組成物に添加されている光重合開始剤及び光重合促進剤の紫外線吸収波長に応じて適宜選択することができる。
前記紫外線照射の条件としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記樹脂を架橋するために必要な照射エネルギーに応じてランプ出力、搬送速度等を決めればよい。
また、搬送性を良好にするため、重合性基を持つシリコーン、シリコーングラフトをした高分子、ワックス、ステアリン酸亜鉛等の離型剤、シリコーンオイル等の滑剤を添加することができる。これらの添加量としては、保護層の樹脂成分全質量に対して0.01質量%〜50質量%が好ましく、0.1質量%〜40質量%がより好ましい。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。また、静電気対策として導電性フィラーを用いることが好ましく、更に針状導電性フィラーを用いることが好ましい。
前記無機顔料の粒径としては、例えば、0.01μm〜10.0μmが好ましく、0.05μm〜8.0μmがより好ましい。前記無機顔料の添加量としては、前記耐熱性樹脂1質量部に対し、0.001質量部〜2質量部が好ましく、0.005質量部〜1質量部がより好ましい。
前記保護層には、添加剤として従来公知の界面活性剤、レベリング剤、帯電防止剤等を含有していてもよい。
また、熱硬化性樹脂としては例えば、前記熱可逆記録層で用いられたバインダー樹脂と同様なものを好適に用いることができる。
前記熱硬化性樹脂は架橋されていることが好ましい。従って熱硬化性樹脂としては、例えば水酸基、アミノ基、カルボキシル基等のような、硬化剤と反応する基を有しているものを用いることが好ましく、特に水酸基を有しているポリマーが好ましい。該紫外線吸収構造を持つポリマー含有層の強度を向上させるためには該ポリマーの水酸基価が10mgKOH/g以上のポリマーを用いると十分な塗膜強度が得られ、より好ましくは30mgKOH/g以上であり、更に好ましくは40mgKOH/g以上である。十分な塗膜強度を持たせることで繰り返し画像記録・消去を行っても熱可逆記録媒体の劣化が抑えることができる。
前記硬化剤としては例えば、前記熱可逆記録層で用いられた硬化剤と同様なものを好適に用いることができる。
前記保護層の塗液に用いられる溶媒、塗液の分散装置、保護層の塗工方法、乾燥方法等は前記記録層で用いられた公知の方法を用いることができる。紫外線硬化樹脂を用いた場合には塗布して乾燥を行った紫外線照射による硬化工程が必要となるが、紫外線照射装置、光源、照射条件については前記の通りである。
前記保護層の厚みは、0.1μm〜20μmが好ましく、0.5μm〜10μmがより好ましく、1.5μm〜6μmが更に好ましい。前記厚みが0.1μm未満であると、熱可逆記録媒体の保護層としての機能を十分に果たすことができず、熱による繰り返し履歴によりすぐに劣化し、繰り返し使用することができなくなってしまうことがあり、20μmを超えると、保護層の下層にある感熱に十分な熱を伝えることができなくなり、熱による画像記録と消去が十分にできなくなってしまうことがある。
−紫外線吸収層−
本発明においては、前記熱可逆記録層中のロイコ染料の紫外線による着色及び光劣化による消え残りを防止する目的で、支持体と反対側に位置する熱可逆記録層の支持体とは反対側に紫外線吸収層を設けることが好ましく、これによって前記記録媒体の耐光性が改善できる。特に紫外線吸収層が390nm以下の紫外線を吸収するように、紫外線吸収層の厚みを適宜選択することで、耐光性は大きく改善される。
前記紫外線吸収層は、少なくともバインダー樹脂と紫外線吸収剤を含有し、更に必要に応じて、フィラー、滑剤、着色顔料等のその他の成分を含有してなる。
前記バインダー樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、前記熱可逆記録層のバインダー樹脂や熱可塑性樹脂、熱硬化性樹脂等の樹脂成分を用いることができる。該樹脂成分としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリビニルアルコール、ポリビニルブチラール、ポリウレタン、飽和ポリエステル、不飽和ポリエステル、エポキシ樹脂、フェノール樹脂、ポリカーボネート、ポリアミドなどが挙げられる。
前記紫外線吸収剤としては、有機系及び無機系化合物のいずれでも用いることができる。
また、紫外線吸収構造を持つポリマー(以下、「紫外線吸収ポリマー」と称することもある)を用いることが好ましい。
ここで、前記紫外線吸収構造を持つポリマーとは、紫外線吸収構造(例えば、紫外線吸収性基)を分子中に有するポリマーを意味する。該紫外線吸収構造としては、例えば、サリシレート構造、シアノアクリレート構造、ベンゾトリアゾール構造、ベンゾフェノン構造などが挙げられ、これらの中でも、ロイコ染料の光劣化の原因である340〜400nmの紫外線を吸収することからベンゾトリアゾール構造、ベンゾフェノン構造が特に好ましい。
前記紫外線吸収ポリマーは架橋されていることが好ましい。従って紫外線吸収ポリマーとしては、例えば水酸基、アミノ基、カルボキシル基等のような、硬化剤と反応する基を有しているものを用いることが好ましく、特に水酸基を有しているポリマーが好ましい。該紫外線吸収構造を持つポリマー含有層の強度を向上させるためには該ポリマーの水酸基価が10mgKOH/g以上のポリマーを用いると十分な塗膜強度が得られ、より好ましくは30mgKOH/g以上であり、更に好ましくは40mgKOH/g以上である。十分な塗膜強度を持たせることで繰り返し消去印字を行っても記録媒体の劣化が抑えることができる。
前記紫外線吸収層の厚みは、0.1μm〜30μmが好ましく、0.5μm〜20μmがより好ましい。前記紫外線吸収層の塗液に用いられる溶媒、塗液の分散装置、紫外線吸収層の塗工方法、紫外線吸収層の乾燥・硬化方法等は、前記熱可逆記録層で用いられた公知の方法を用いることができる。
−中間層−
本発明においては、前記熱可逆記録層と前記保護層の接着性向上、保護層の塗布による熱可逆記録層の変質防止、保護層中の添加剤の熱可逆記録層への移行を防止する目的で、両者の間に中間層を設けることが好ましく、これによって発色画像の保存性が改善できる。
前記中間層は、少なくともバインダー樹脂を含有し、更に必要に応じて、フィラー、滑剤、着色顔料等のその他の成分を含有してなる。
前記バインダー樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、前記熱可逆記録層のバインダー樹脂や熱可塑性樹脂、熱硬化性樹脂等の樹脂成分を用いることができる。該樹脂成分としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリビニルアルコール、ポリビニルブチラール、ポリウレタン、飽和ポリエステル、不飽和ポリエステル、エポキシ樹脂、フェノール樹脂、ポリカーボネート、ポリアミドなどが挙げられる。
また、前記中間層には、紫外線吸収剤を含有させることが好ましい。該紫外線吸収剤としては、有機系及び無機系化合物のいずれでも用いることができる。
また、紫外線吸収ポリマーを用いてもよく、架橋剤により硬化してもよい。これらは前記保護層で用いられたものと同様のものを好適に用いることができる。
前記中間層の厚みは、0.1μm〜20μmが好ましく、0.5μm〜5μmがより好ましい。前記中間層の塗液に用いられる溶媒、塗液の分散装置、中間層の塗工方法、中間層の乾燥・硬化方法等は、前記記録層で用いられた公知の方法を用いることができる。
−アンダー層−
本発明においては、印加した熱を有効に利用し高感度化するため、又は支持体と熱可逆記録層の接着性の改善や支持体への記録層材料の浸透防止を目的として、前記熱可逆記録層と前記支持体の間にアンダー層を設けてもよい。
前記アンダー層は、少なくとも中空粒子を含有してなり、バインダー樹脂、更に必要に応じてその他の成分を含有してなる。
前記中空粒子としては、中空部が粒子内に一つ存在する単一中空粒子、中空部が粒子内に多数存在する多中空粒子、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記中空粒子の材質としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、熱可塑性樹脂などが好適に挙げられる。前記中空粒子は、適宜製造したものであってもよいし、市販品であってもよい。該市販品としては、例えば、マイクロスフェアーR−300(松本油脂株式会社製);ローペイクHP1055、ローペイクHP433J(いずれも、日本ゼオン株式会社製);SX866(JSR株式会社製)などが挙げられる。
前記中空粒子の前記アンダー層における添加量は、特に制限はなく、目的に応じて適宜選択することができ、例えば10質量%〜80質量%が好ましい。
前記バインダー樹脂としては、前記熱可逆記録層、又は前記紫外線吸収構造を持つポリマーを含有する層と同様の樹脂を用いることができる。
前記アンダー層には、炭酸カルシウム、炭酸マグネシウム、酸化チタン、酸化ケイ素、水酸化アルミニウム、カオリン、タルク等の無機フィラー及び各種有機フィラーの少なくともいずれかを含有させることができる。
なお、前記アンダー層には、その他、滑剤、界面活性剤、分散剤などを含有させることもできる。
前記アンダー層の厚みは、特に制限はなく、目的に応じて適宜選択することができ、0.1μm〜50μmが好ましく、2μm〜30μmがより好ましく、12μm〜24μmが更に好ましい。
−バック層−
本発明においては、前記熱可逆記録媒体のカールや帯電防止、搬送性の向上のために支持体の熱可逆記録層を設ける面と反対側にバック層を設けてもよい。
前記バック層は、少なくともバインダー樹脂を含有し、更に必要に応じて、フィラー、導電性フィラー、滑剤、着色顔料等のその他の成分を含有してなる。
前記バインダー樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、熱硬化性樹脂、紫外線(UV)硬化性樹脂、電子線硬化性樹脂、等が挙げられ、これらの中でも、紫外線(UV)硬化性樹脂、熱硬化性樹脂が特に好ましい。
前記紫外線硬化樹脂、前記熱硬化性樹脂、前記フィラー、前記導電性フィラー、及び前記滑剤については、前記熱可逆記録層、又は前記保護層で用いられたものと同様なものを好適に用いることができる。
−接着層又は粘着層−
本発明においては、支持体の記録層形成面の反対面に接着剤層又は粘着剤層を設けて熱可逆記録ラベルとすることができる。前記接着剤層又は粘着剤層の材料は一般的に使われているものが使用可能である。
前記接着剤層又は粘着剤層の材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えばユリア樹脂、メラミン樹脂、フェノール樹脂、エポキシ樹脂、酢ビ系樹脂、酢酸ビニル−アクリル系共重合体、エチレン−酢酸ビニル共重合体、アクリル系樹脂、ポリビニルエーテル系樹脂、塩化ビニル−酢酸ビニル系共重合体、ポリスチレン系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリアミド系樹脂、塩素化ポリオレフィン系樹脂、ポリビニルブチラール系樹脂、アクリル酸エステル系共重合体、メタクリル酸エステル系共重合体、天然ゴム、シアノアクリレート系樹脂、シリコーン系樹脂などが挙げられる。
前記接着剤層又は粘着剤層の材料はホットメルトタイプでもよい。剥離紙を用いてもよいし、無剥離紙タイプでもよい。このように接着剤層又は粘着剤層を設けることにより、記録層の塗布が困難な磁気ストライプ付塩ビカードなどの厚手の基板の全面若しくは一部に貼ることができる。これにより磁気に記憶された情報の一部を表示することができる等、この媒体の利便性が向上する。このような接着剤層又は粘着剤層を設けた熱可逆記録ラベルは、ICカードや光カード等の厚手カードにも適用できる。
前記熱可逆記録媒体には、前記支持体と前記熱可逆記録層との間に視認性を向上させる目的で、着色層を設けてもよい。前記着色層は、着色剤及び樹脂バインダーを含有する溶液、又は分散液を対象面に塗布し、乾燥するか、あるいは単に着色シートを貼り合せることにより形成することができる。
前記熱可逆記録媒体には、カラー印刷層を設けることもできる。前記カラー印刷層における着色剤としては、従来のフルカラー印刷に使用されるカラーインク中に含まれる各種の染料及び顔料等が挙げられ、前記樹脂バインダーとしては各種の熱可塑性、熱硬化性、紫外線硬化性又は電子線硬化性樹脂等が挙げられる。該カラー印刷層の厚みとしては、印刷色濃度に対して適宜変更されるため、所望の印刷色濃度に合わせて選択することができる。
前記熱可逆記録媒体は、非可逆性記録層を併用しても構わない。この場合、それぞれの記録層の発色色調は同じでも異なってもよい。また、本発明の熱可逆記録媒体の記録層と同一面の一部もしくは全面、又は/もしくは反対面の一部分に、オフセット印刷、グラビア印刷などの印刷、又はインクジェットプリンタ、熱転写プリンタ、昇華型プリンタなどによって任意の絵柄などを施した着色層を設けてもよく、更に着色層上の一部分もしくは全面に硬化性樹脂を主成分とするOPニス層を設けてもよい。前記任意の絵柄としては、文字、模様、図柄、写真、赤外線で検知する情報などが挙げられる。また、単純に構成する各層のいずれかに染料や顔料を添加して着色することもできる。
本発明の熱可逆記録媒体には、セキュリティのためにホログラムを設けることもできる。また、意匠性付与のためにレリーフ状、インタリヨ状に凹凸を付けて人物像や社章、シンボルマーク等のデザインを設けることもできる。
前記熱可逆記録媒体は、その用途に応じて所望の形状に加工することができ、例えば、カード状、タグ状、ラベル状、シート状、ロール状などに加工される。また、カード状に加工されたものについてはプリペイドカードやポイントカード、更にはクレジットカードなどへの応用が挙げられる。カードサイズよりも小さなタグ状のサイズでは値札等に利用できる。また、カードサイズよりも大きなタグ状のサイズでは工程管理や出荷指示書、チケット等に使用できる。ラベル状のものは貼り付けることができるために、様々な大きさに加工され、繰り返し使用する台車や容器、箱、コンテナ等に貼り付けて工程管理、物品管理等に使用することができる。また、カードサイズよりも大きなシートサイズでは画像記録する範囲が広くなるため一般文書や工程管理用の指示書等に使用することができる。
<熱可逆記録部材 RF−IDとの組み合わせ例>
本発明で用いられる熱可逆記録部材は、前記可逆表示可能な記録層と情報記憶部とを、同一のカードやタグに設け(一体化させ)、該情報記憶部の記憶情報の一部を記録層に表示することにより、特別な装置がなくてもカードやタグを見るだけで情報を確認することができ、利便性に優れる。また、情報記憶部の内容を書き換えた時には熱可逆記録部の表示を書き換えることで、熱可逆記録媒体を繰り返し何度も使用することができる。
前記情報記憶部としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、磁気記録層、磁気ストライプ、ICメモリー、光メモリー、RF−IDタグなどが好ましく用いられる。工程管理や物品管理等に使用する場合には特にRF−IDタグが好ましく用いられる。なお、前記RF−IDタグはICチップと、該ICチップに接続したアンテナとから構成されている。
前記熱可逆記録部材は、前記可逆表示可能な記録層と情報記憶部とを有し、該情報記憶部の好適なものとしてRF−IDタグが挙げられる。
ここで、図7は、RF−IDタグ85の概略図の一例を示す。このRF−IDタグ85はICチップ81と、該ICチップに接続したアンテナ82とから構成されている。前記ICチップ81は記憶部、電源調整部、送信部、受信部の4つに区分されており、それぞれが働きを分担して通信を行っている。通信はRF−IDタグとリーダライタのアンテナが電波により通信してデータのやり取りを行う。具体的には、RF−IDのアンテナがリーダライタからの電波を受信し共振作用により電磁誘導により起電力が発生する電磁誘導方式と放射電磁界により起動する電波方式の2種類がある。共に外部からの電磁界によりRF−IDタグ内のICチップが起動し、チップ内の情報を信号化し、その後、RF−IDタグから信号を発信する。この情報をリーダライタ側のアンテナで受信してデータ処理装置で認識し、ソフト側でデータ処理を行う。
前記RF−IDタグはラベル状又はカード状に加工されており、RF−IDタグを前記熱可逆記録媒体に貼り付けることができる。RF−IDタグは記録層面又はバック層面に貼ることができるが、バック層面に貼ることが好ましい。RF−IDタグと熱可逆記録媒体を貼り合わせるためには公知の接着剤又は粘着剤を使用することができる。
また、熱可逆記録媒体とRF−IDをラミネート加工等で一体化してカード状やタグ状に加工してもよい。
<画像記録及び画像消去メカニズム>
前記画像形成及び画像消去メカニズムには、温度に依存して透明度が可逆的に変化する態様と、温度に依存して色調が可逆的に変化する態様とがある。
前記透明度が可逆的に変化する態様では、前記熱可逆記録媒体における前記有機低分子が、前記樹脂中に粒子状に分散されてなり、前記透明度が、透明状態と白濁状態とに熱により可逆的に変化する。
前記透明度の変化の視認は、下記現象に由来する。即ち、(1)透明状態の場合、樹脂母材中に分散された前記有機低分子物質の粒子と、前記樹脂母材とは隙間なく密着しており、また、前記粒子内部にも空隙が存在しないため、片側から入射した光は散乱することなく反対側に透過し、透明に見える。一方、(2)白濁状態の場合、前記有機低分子物質の粒子は、前記有機低分子物質の微細な結晶で形成されており、該結晶の界面又は前記粒子と前記樹脂母材との界面に隙間(空隙)が生じ、片側から入射した光は前記空隙と前記結晶との界面、あるいは前記空隙と前記樹脂との界面において屈折し散乱するため、白く見える。
まず、図5Aに、前記樹脂中に前記有機低分子物質が分散されてなる熱可逆記録層(以下、「記録層」と称することがある)を有する熱可逆記録媒体について、その温度−透明度変化曲線の一例を示す。
前記記録層は、例えば、T以下の常温では、白濁不透明状態(A)である。これを加熱していくと、温度Tから徐々に透明になり始め、温度T〜Tに加熱すると透明(B)となり、この状態で再びT以下の常温に戻しても透明(D)のままである。これは、温度T付近から前記樹脂が軟化し始め、軟化が進むにつれて該樹脂が収縮し、該樹脂と前記有機低分子物質粒子との界面、あるいは前記粒子内の空隙を減少させるため、徐々に透明度が上がり、温度T〜Tでは、前記有機低分子物質が半溶融状態となり、残った空隙を、前記有機低分子物質が埋めることにより透明となり、種結晶が残ったまま冷却されると比較的高温で結晶化し、その際、前記樹脂がまだ軟化状態にあるため、結晶化に伴う粒子の堆積変化に前記樹脂が追随し、前記空隙が生じず、透明状態が維持されるためであると考えられる。
更にT以上の温度に加熱すると、最大透明度と最大不透明度との中間の半透明状態(C)になる。次に、この温度を下げていくと、再び透明状態になることなく、最初の白濁不透明状態(A)に戻る。これは、温度T以上で前記有機低分子物質が完全に溶融した後、過冷却状態となり、Tより少し高い温度で結晶化し、その際、前記樹脂が結晶化に伴う体積変化に追随することができず、空隙が発生するためであると考えられる。
ここで、図5Aにおいて、前記記録層を温度Tを大きく超えた温度Tに繰返し昇温すると、消去温度に加熱しても消去できない消去不良が発生したりする場合がある。これは、加熱されることによって溶融した前記有機低分子物質が前記樹脂中を移動することにより記録層の内部構造が変化するためと思われる。繰返しによる前記熱可逆記録媒体の劣化を抑えるためには、前記熱可逆記録媒体を加熱する際に図5Aの前記温度Tと前記温度Tの差を小さくする必要がある。
ただし、図5Aに示す温度−透明度変化曲線は、前記樹脂、前記有機低分子物質等の種類を変えると、その種類に応じて、各状態の透明度に変化が生じることがある。
また、透明状態と白濁状態とが熱により可逆的に変化する前記熱可逆記録媒体の透明度変化メカニズムを図5Bに示す。
図5Bでは、1つの長鎖低分子粒子と、その周囲の高分子とを取り出し、加熱及び冷却に伴う空隙の発生及び消失変化を図示している。白濁状態(A)では、高分子と低分子粒子との間(又は粒子内部)に空隙が生じ、光散乱状態となっている。これを加熱し、前記高分子の軟化点(Ts)を超えると、空隙は減少して透明度が増加する。更に加熱し、前記低分子粒子の融点(Tm)近くになると、該低分子粒子の一部が溶融し、溶融した低分子粒子の体積膨張のため、空隙に前記低分子粒子が充満して空隙が消失し、透明状態(B)となる。ここから冷却すると、融点直下で前記低分子粒子は結晶化し、空隙は発生せず、室温でも透明状態(D)が維持される。
次に、前記低分子粒子の融点以上に加熱すると、溶融した低分子粒子と周囲の高分子との屈折率にズレが生じ、半透明状態(C)となる。ここから室温まで冷却すると前記低分子粒子は過冷却現象を生じ高分子の軟化点以下で結晶化し、このとき前記高分子はガラス状態となっているため、前記低分子粒子の結晶化に伴う体積減少に、周囲の高分子が追随できず、空隙が発生して元の白濁状態(A)に戻る。
次に、温度に依存して色調が可逆的に変化する態様では、融解前の前記有機低分子物質が、ロイコ染料及び可逆性顕色剤(以下、「顕色剤」と称することがある)であり、かつ融解した後であって、結晶化する前の前記有機低分子物質が、前記ロイコ染料及び前記顕色剤であり、前記色調が、透明状態と発色状態とに熱により可逆的に変化する。
図6Aに、前記樹脂中に前記ロイコ染料及び前記顕色剤を含んでなる熱可逆記録層を有する熱可逆記録媒体について、その温度−発色濃度変化曲線の一例を示し、図6Bに、透明状態と発色状態とが熱により可逆的に変化する前記熱可逆記録媒体の発消色メカニズムを示す。
まず、初め消色状態(A)にある前記記録層を昇温していくと、溶融温度Tにて、前記ロイコ染料と前記顕色剤とが溶融混合し、発色が生じ溶融発色状態(B)となる。溶融発色状態(B)から急冷すると、発色状態のまま室温に下げることができ、発色状態が安定化されて固定された発色状態(C)となる。この発色状態が得られたかどうかは、溶融状態からの降温速度に依存しており、徐冷では降温の過程で消色が生じ、初期と同じ消色状態(A)、あるいは急冷による発色状態(C)よりも相対的に濃度の低い状態となる。一方、発色状態(C)から再び昇温していくと、発色温度よりも低い温度Tにて消色が生じ(DからE)、この状態から降温すると、初期と同じ消色状態(A)に戻る。
溶融状態から急冷して得た発色状態(C)は、前記ロイコ染料と前記顕色剤とが分子同士で接触反応し得る状態で混合された状態であり、これは固体状態を形成していることが多い。この状態では、前記ロイコ染料と前記顕色剤との溶融混合物(前記発色混合物)が結晶化して発色を保持した状態であり、この構造の形成により発色が安定化していると考えられる。一方、消色状態は、両者が相分離した状態である。この状態は、少なくとも一方の化合物の分子が集合してドメインを形成したり、結晶化した状態であり、凝集あるいは結晶化することにより前記ロイコ染料と前記顕色剤とが分離して安定化した状態であると考えられる。多くの場合、このように、両者が相分離して前記顕色剤が結晶化することにより、より完全な消色が生じる。
なお、図6Aに示す、溶融状態から徐冷による消色、及び発色状態からの昇温による消色はいずれもTで凝集構造が変化し、相分離や前記顕色剤の結晶化が生じている。
更に、図6Aにおいて、前記記録層を溶融温度T以上の温度Tに繰返し昇温すると消去温度に加熱しても消去できない消去不良が発生したりする場合がある。これは、前記顕色剤が熱分解を起こし、凝集あるいは結晶化しにくくなってロイコ染料と分離しにくくなるためと思われる。繰返しによる前記熱可逆記録媒体の劣化を抑えるためには、前記熱可逆記録媒体を加熱する際に図6Aの前記溶融温度Tと前記温度Tの差を小さくすることにより、繰返しによる前記熱可逆記録媒体の劣化を抑えられる。
(画像処理方法)
本発明の画像処理方法は、画像記録工程及び画像消去工程を少なくとも含み、更に必要に応じて適宜選択したその他の工程を含む。
−画像記録工程−
前記画像記録工程は、本発明の前記熱可逆記録媒体の光熱変換層に対し特定波長のレーザ光を照射して加熱することにより画像を記録する工程である。熱可逆記録媒体を加熱する方法としては、従来既知の加熱方法を挙げられるが、物流ラインを想定した場合、熱可逆記録媒体にレーザ光を照射して加熱する方法が非接触の状態で画像の形成を行うことができるため特に好ましい。
前記画像記録工程において照射されるレーザ光の出力としては、特に制限はなく、目的に応じて適宜選択することができるが、1W以上が好ましく、3W以上がより好ましく、5W以上が更に好ましい。前記レーザ光の出力が、1W未満であると、画像記録に時間がかかり、画像記録時間を短くしようとすると出力が不足して高濃度の画像が得られない。また、前記レーザ光の出力の上限としては、特に制限はなく、目的に応じて適宜選択することができるが、200W以下が好ましく、150W以下がより好ましく、100W以下が更に好ましい。前記レーザ光の出力が、200Wを超えると、レーザ装置の大型化を招くことがある。
レーザ光源としては、YAGレーザ光、ファイバーレーザ光、及び半導体レーザ光の少なくともいずれかであることが好ましい。
前記画像記録工程において照射されるレーザ光の走査速度としては、特に制限はなく、目的に応じて適宜選択することができるが、300mm/s以上が好ましく、500mm/s以上がより好ましく、700mm/s以上が更に好ましい。前記走査速度が、300mm/s未満であると、画像記録に時間がかかる。また、前記レーザ光の走査速度の上限としては、特に制限はなく、目的に応じて適宜選択することができるが、15,000mm/s以下が好ましく、10,000mm/s以下がより好ましく、8,000mm/s以下が更に好ましい。前記走査速度が、15,000mm/sを超えると、均一な画像が形成し難くなる。
前記画像記録工程において照射されるレーザ光のスポット径としては、特に制限はなく目的に応じて適宜選択することができるが、0.02mm以上が好ましく、0.1mm以上がより好ましく、0.15mm以上が更に好ましい。また、前記レーザ光のスポット径の上限としては、特に制限はなく、目的に応じて適宜選択することができるが、3.0mm以下が好ましく、2.5mm以下がより好ましく、2.0mm以下が更に好ましい。
前記スポット径が小さいと、画像の線幅が細くなり、コントラストが小さくなって視認性が低下する。また、スポット径が大きくなると、画像の線幅が太くなり、隣接する線が重なり、小さな文字の画像記録が不可能となる。
−画像消去工程−
前記画像消去工程は、本発明の前記熱可逆記録媒体の光熱変換層に対し特定波長のレーザ光を照射して加熱することにより該熱可逆記録媒体に記録された画像を消去する工程である。
熱可逆記録媒体を加熱する方法としては、従来既知の加熱方法(レーザ光照射、熱風、温水、赤外線ヒータなどの非接触加熱方法、サーマルヘッド、ホットスタンプ、ヒートブロック、ヒートローラーなどの接触加熱方法)を挙げられるが、物流ラインを想定した場合、熱可逆記録媒体にレーザ光を照射して加熱する方法が非接触の状態で画像の消去を行うことができるため特に好ましい。
前記熱可逆記録媒体に対し、レーザ光を照射して加熱することにより画像を消去する画像消去工程において照射される前記レーザ光の出力としては、特に制限はなく、目的に応じて適宜選択することができるが、5W以上が好ましく、7W以上がより好ましく、10W以上が更に好ましい。前記レーザ光の出力が、5W未満であると、画像消去に時間がかかり、画像消去時間を短くしようとすると出力が不足して画像の消去不良が発生する。また、前記レーザ光の出力の上限としては、特に制限はなく、目的に応じて適宜選択することができるが、200W以下が好ましく、150W以下がより好ましく、100W以下が更に好ましい。前記レーザ光の出力が、200Wを超えると、レーザ装置の大型化を招くおそれがある。
前記熱可逆記録媒体に対し、レーザ光を照射して加熱することにより画像を消去する画像消去工程において照射されるレーザ光の走査速度としては、特に制限はなく、目的に応じて適宜選択することができるが、100mm/s以上が好ましく、200mm/s以上がより好ましく、300mm/s以上が更に好ましい。前記走査速度が、100mm/s未満であると、画像消去に時間がかかる。また、前記レーザ光の走査速度の上限としては、特に制限はなく、目的に応じて適宜選択することができるが、20,000mm/s以下が好ましく、15,000mm/s以下がより好ましく、10,000mm/s以下が更に好ましい。前記走査速度が、20,000mm/sを超えると、均一な画像消去がし難くなることがある。
レーザ光源としては、YAGレーザ光、ファイバーレーザ光、及び半導体レーザ光の少なくともいずれかであることが好ましい。
前記熱可逆記録媒体に対し、レーザ光を照射して加熱することにより画像を消去する画像消去工程において照射されるレーザ光のスポット径としては、特に制限はなく目的に応じて適宜選択することができるが、0.5mm以上が好ましく、1.0mm以上がより好ましく、2.0mm以上が更に好ましい。また、前記レーザ光のスポット径の上限としては、特に制限はなく、目的に応じて適宜選択することができるが、14.0mm以下が好ましく、10.0mm以下がより好ましく、7.0mm以下が更に好ましい。
前記スポット径が小さいと、画像消去に時間がかかる。また、スポット径が大きくなると、出力が不足して画像の消去不良が発生することがある。
<画像処理装置>
前記画像処理装置は、本発明の前記画像処理方法に用いられ、レーザ光照射手段を少なくとも有してなり、更に必要に応じて適宜選択したその他の部材を有してなる。また本発明においては熱可逆記録媒体がレーザ光を高効率で吸収し発熱する役割を有する光熱変換材料を少なくとも含有してなる。よって含有させる光熱変換材料が他材料に比べ最も高効率でレーザ光を吸収するように、出射するレーザ光の波長を選択する必要がある。
−レーザ光出射手段−
前記レーザ光出射手段から出射されるレーザ光の波長としては、光熱変換材料の吸収がある範囲から適宜選択することができ、700nm以上が好ましく、720nm以上がより好ましく、750nm以上が更に好ましい。前記レーザ光の波長の上限としては、目的に応じて適宜選択することができるが、1500nm以下が好ましく、1300mm以下がより好ましく、1200nm以下が更に好ましい。
レーザ光の波長を700nmより短い波長にすると、可視光領域では熱可逆記録媒体の画像記録時のコントラストが低下したり、熱可逆記録媒体が着色してしまうという問題がある。更に短い波長の紫外光領域では、熱可逆記録媒体の劣化が起こりやすくなるという問題がある。また、熱可逆記録媒体に添加する光熱変換材料には、繰返し画像処理に対する耐久性を確保するために高い分解温度を必要とし、光熱変換材料に有機色素を用いる場合、分解温度が高く吸収波長が長い光熱変換材料を得るのは難しい。これよりレーザ光の波長としては1500nm以下が好ましい。
前記レーザ光出射手段としては、目的に応じて適宜選択することができ、例えばYAGレーザ、ファイバーレーザ、半導体レーザ(LD)が挙げられる。これらの中でも波長選択性が広いことで光熱変換材料の選択肢が増え、レーザ装置としては、レーザ光源自体が小さく、装置の小型化、更には低価格化が可能であるという点から、半導体レーザ光が特に好ましい。
前記画像処理装置は、前記レーザ光出射手段を少なくとも有している以外、その基本構成としては、通常レーザマーカーと呼ばれるものと同様であり、発振器ユニット、電源制御ユニット、及びプログラムユニットを少なくとも備えている。
ここで、図4に、本発明で用いられる画像処理装置の一例についてレーザ照射ユニットを中心に示す。
発振器ユニットは、レーザ発振器1、ビームエキスパンダ2、スキャンニングユニット5などで構成されている。
前記レーザ発振器1は、光強度が強く、指向性の高いレーザ光を得るために必要なものであり、例えば、レーザ媒質の両側にミラーを配置し、該レーザ媒質をポンピング(エネルギー供給)し、励起状態の原子数を増やし反転分布を形成させて誘導放出を起こさせる。そして、光軸方向の光のみが選択的に増幅されることにより、光の指向性が高まり出力ミラーからレーザ光が放出される。
前記スキャンニングユニット5は、ガルバノメータ4と、該ガルバノメータ4に取り付けられたミラー4Aとで構成されている。そして、前記レーザ発振器1から出力されたレーザ光を、前記ガルバノメータ4に取り付けられたX軸方向とY軸方向との2枚のミラー4Aで高速回転走査することにより、熱可逆記録媒体7上に、画像の形成又は消去を行うようになっている。
前記電源制御ユニットは、レーザ媒質を励起する光源の駆動電源、ガルバノメータの駆動電源、ペルチェ素子などの冷却用電源、画像処理装置全体の制御を司る制御部等などで構成されている。
前記プログラムユニットは、タッチパネル入力やキーボード入力により、画像の記録又は消去のために、レーザ光の強さ、レーザ走査の速度等の条件入力や、記録する文字等の作製及び編集を行うユニットである。
なお、前記レーザ照射ユニット、即ち、画像記録/消去用ヘッド部分は、画像処理装置に搭載されているが、該画像処理装置には、このほか、前記熱可逆記録媒体の搬送部及びその制御部、モニタ部(タッチパネル)等を有している。
本発明の前記画像処理方法は、ダンボールやプラスチックコンテナ等の容器に貼付したラベル等の熱可逆記録媒体に対して、非接触式にて、高いコントラストの画像を高速で繰返し形成及び消去可能で、しかも繰返しによる前記熱可逆記録媒体の地肌かぶりを抑制することができる。このため、物流・配送システムに特に好適に使用可能である。この場合、例えば、ベルトコンベアに載せた前記ダンボールやプラスチックコンテナを移動させながら、前記ラベルに画像を形成及び消去することができ、ラインの停止が不要な点で、出荷時間の短縮を図ることができる。また、前記ラベルが貼付されたダンボールやプラスチックコンテナは、該ラベルを剥がすことなく、そのままの状態で再利用し、再度、画像の消去及び形成を行うことができる。
以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
(実施例1)
<熱可逆記録媒体の作製>
熱により色調が可逆的に変化する熱可逆記録媒体を、以下のようにして作製した。
−支持体−
支持体として、厚み125μmの白濁ポリエステルフィルム(帝人デュポン株式会社製、テトロンフィルムU2L98W)を用いた。
−第1の熱可逆記録層の形成−
下記構造式(1)で表される可逆性顕色剤5質量部、下記構造式(2)及び(3)で表される2種類の消色促進剤をそれぞれ0.5質量部ずつ、アクリルポリオール50質量%溶液(水酸基価=200mgKOH/g)10質量部、及びメチルエチルケトン80質量部を、ボールミルを用いて平均粒径が約1μmになるまで粉砕分散した。
次に、前記可逆性顕色剤を粉砕分散させた分散液に、前記ロイコ染料としての2−アニリノ−3−メチル−6ジブチルアミノフルオラン1質量部、下記構造式(4)で表されるフェノール系酸化防止剤(チバ・スペシャルティ・ケミカルズ社製、IRGANOX565)0.2質量部、及びイソシアネート(日本ポリウレタン株式会社製、コロネートHL)5質量部を加え、よく撹拌して、熱可逆記録層用塗布液を調製した。
得られた熱可逆記録層用塗布液を、前記支持体上に、ワイヤーバーを用いて塗布し、100℃にて2分間乾燥した後、60℃にて24時間キュアーを行って、厚み5.4μmの第1の熱可逆記録層を形成した。
−光熱変換層の形成−
フタロシアニン系光熱変換材料(株式会社日本触媒製、IR−14、吸収ピーク波長:824nm)1質量%溶液を4質量部、アクリルポリオール50質量%溶液(水酸基価=200mgKOH/g)10質量部、及びメチルエチルケトン20質量部、架橋剤としてイソシアネート(商品名コロネートHL、日本ポリウレタン株式会社製)5質量部をよく攪拌し、光熱変換層塗布液を作製した。得られた光熱変換層用塗布液を、前記第1の熱可逆記録層上に、ワイヤーバーを用いて塗布し、90℃にて1分間乾燥した後、60℃にて24時間キュアーを行って、厚さ4μmの光熱変換層を形成した。
−第2の熱可逆記録層の形成−
前記第1の熱可逆記録層と同じ熱可逆記録層用組成物を、前記光熱変換層上に、ワイヤーバーを用いて塗布し、100℃にて2分間乾燥した後、60℃にて24時間キュアーを行って、厚み6.6μmの第2の熱可逆記録層を形成した。
−バック層の形成−
ペンタエリスリトールヘキサアクリレート(日本化薬株式会社製、KAYARAD DPHA)7.5質量部、ウレタンアクリレートオリゴマー(根上工業株式会社製、アートレジンUN−3320HA)2.5質量部、針状導電性酸化チタン(石原産業株式会社製、FT−3000、長軸=5.15μm、短軸=0.27μm、構成:アンチモンドープ酸化スズ被覆の酸化チタン)2.5質量部、光重合開始剤(日本チバガイギー株式会社製、イルガキュア184)0.5質量部、及びイソプロピルアルコール13質量部を加え、ボールミルにてよく攪拌してバック層用塗布液を調製した。
次に、前記第1の熱可逆記録層、前記光熱変換層、及び前記第2の熱可逆記録層が形成された支持体における、これらの層が形成されていない側の面上に、前記バック層用塗布液をワイヤーバーにて塗布し、90℃にて1分間加熱及び乾燥した後、80W/cmの紫外線ランプで架橋させて、厚み4μmのバック層を形成した。以上により、実施例1の熱可逆記録媒体を作製した。
(実施例2〜5及び比較例1〜3)
実施例1において、表1に示すように、第1の熱可逆記録層の厚み、及び第2の熱可逆記録層の厚みを変えた以外は、実施例1と同様にして、実施例2〜5及び比較例1〜3の熱可逆記録媒体を作製した。なお、比較例3は、第1の熱可逆記録層を形成していない。
次に、得られた実施例1〜5及び比較例1〜3の各熱可逆記録媒体について、以下のようにして、画像記録及び画像消去を行い、諸特性を評価した。結果を表1に示す。
<画像記録>
得られた各熱可逆記録媒体について、LIMO社製半導体レーザLIMO25−F100−DL808(中心波長:808nm)により、照射距離152mm、線速1,000mm/sとなるように調整して、熱可逆記録媒体の光熱変換層に対し、0.3mmの間隔で直線状にレーザ光を走査して画像を記録した。
このとき出力を発色開始から飽和濃度に達するまで上げて、画像濃度1.20が得られる出力を求めた。
−画像濃度の測定−
画像濃度の測定は、グレースケール(Kodak社製)をスキャナー(キャノン社製、Canoscan4400)で取り込み、得られたデジタル階調値と反射濃度計(マクベス社製、RD−914)で測定した濃度値との間で相関を取り、形成した画像及び消去した消去部を前記スキャナーで取り込んで得られたデジタル階調値を濃度値に変換して画像濃度値とした。
なお、前記熱可逆記録層が樹脂及び有機低分子物質を含有する熱可逆記録媒体では、背面に黒色紙(O.D.1.7)を敷いて測定した。
<画像消去>
各熱可逆記録媒体に対して、LIMO社製半導体レーザLIMO25−F100−DL808(中心波長:808nm)により出力15W、照射距離200mm、線速350mm/s、スポット径3.0mmとなるように調整して、熱可逆記録媒体の光熱変換層に対し、0.5mmの間隔で直線状にレーザ光を走査して画像を消去した。
<繰り返し画像処理>
上記画像記録消去条件で繰り返し画像処理を300回行い、下記基準により繰り返し耐久性を評価した。ここで画像処理は画像記録・画像消去の順に行い、画像記録・画像消去を1回ずつ行った時に繰り返し回数を1回とした。
−繰返し耐久性の評価−
繰返し画像処理後の消え残りの画像濃度を測定した。ここでは消え残り画像濃度が大きいほど繰返し耐久性が低く、消え残り画像濃度が小さいほど繰返し耐久性が高いことを示す。
<繰り返し画像処理後の消去性の評価>
各熱可逆記録媒体に対して繰り返し画像処理を行い、繰り返し後の消去性を評価した。ここでは画像の消去の可否は消去部を目視判定した。判定は、完全に消去できている場合に○、消し残りがある場合又は発色してしまう場合に×とした。
<光照射後の消去性の評価>
各熱可逆記録媒体に対して画像形成を行い、セリック株式会社製人工太陽光照射装置を用いて、30℃で80%RH、130klxの条件で18時間光照射した。光照射後の熱可逆記録媒体に画像消去を行い、消去性を評価した。ここでは画像の消去の可否は消去部を目視判定した。判定は、完全に消去できている場合に○、消し残りが少しある場合に△、消し残りが多くある場合に×とした。
表1の結果から、実施例1〜5、比較例1〜3をそれぞれ対比すると、第2の熱可逆記録層の厚みが、第1及び第2の熱可逆記録層の合計厚みの55%〜75%であることで、高感度で繰り返し耐久性に優れる熱可逆記録媒体を得ることができた。
(実施例6)
<熱可逆記録媒体の作製>
温度に依存して透明度が可逆的(透明状態−白濁状態)に変化する熱可逆記録媒体を、以下のようにして作製した。
−支持体−
支持体として、厚み175μmの透明PETフィルム(東レ株式会社製、ルミラー175−T12)を用いた。
−第1の熱可逆記録層の形成−
塩化ビニル系共重合体(日本ゼオン株式会社製、MR110)26質量部を、メチルエチルケトン210質量部に溶解させた樹脂溶解液中に、下記構造式(5)で表される有機低分子物質3質量部、及びベヘン酸ドコシル7質量部を加え、ガラス瓶中に直径2mmのセラミックビーズを入れて、ペイントシェーカー(浅田鉄工株式会社製)を用い48時間分散し、均一な分散液を調製した。
次に、得られた分散液に、イソシアネート化合物(日本ポリウレタン株式会社製、コロネート2298−90T)4質量部を加え、よく撹拌させて熱可逆記録層用塗布液を調製した。
次に、前記支持体に、得られた熱可逆記録層用塗布液を塗布し、加熱及び乾燥した後、更に65℃環境下で24時間キュアーを行って、厚み4.8μmの第1の熱可逆記録層を形成した。
−光熱変換層の形成−
フタロシアニン系光熱変換材料(株式会社日本触媒製、IR−14、吸収ピーク波長:824nm)1質量%溶液を4.5質量部、アクリルポリオール40質量%溶液(水酸基価=200mgKOH/g)3.6質量部、及びメチルエチルケトン3.8質量部、架橋剤としてイソシアネート(商品名コロネートHL、日本ポリウレタン株式会社製)1.7質量部をよく攪拌し、光熱変換層塗布液を作製した。得られた光熱変換層用塗布液を、前記第1の熱可逆記録層上に、ワイヤーバーを用いて塗布し、加熱及び乾燥した後、60℃にて24時間キュアーを行って、厚さ4μmの光熱変換層を形成した。
−第2の熱可逆記録層の形成−
前記第1の熱可逆記録層と同じ熱可逆記録層用組成物を、前記光熱変換層上に、ワイヤーバーを用いて塗布し、100℃にて2分間乾燥した後、60℃にて24時間キュアーを行って、厚み7.2μmの第2の熱可逆記録層を形成した。
−保護層の形成−
ウレタンアクリレート系紫外線硬化性樹脂の75質量%酢酸ブチル溶液10質量部(大日本インキ化学工業株式会社製、ユニディックC7−157)、及びイソプロピルアルコール10質量部よりなる溶液を、ワイヤーバーで前記第2の熱可逆記録層上に塗布し、加熱及び乾燥した後、80W/cmの高圧水銀灯で紫外線を照射して硬化させて、厚み3μmの保護層を形成した。以上により、実施例6の熱可逆記録媒体を作製した。
(比較例4〜5)
実施例6において、表2に示すように、第1の熱可逆記録層の厚み、及び第2の熱可逆記録層の厚みを変えた以外は、実施例6と同様にして、比較例4〜5の熱可逆記録媒体を作製した。
次に、得られた実施例6及び比較例4〜5の各熱可逆記録媒体について、以下のようにして、画像記録及び画像消去を行い、実施例1〜5及び比較例1〜3と同様にして諸特性を評価した。結果を表2に示す。
<画像記録>
得られた各熱可逆記録媒体について、LIMO社製半導体レーザLIMO25−F100−DL808(中心波長:808nm)により、照射距離152mm、線速1,000mm/sとなるように調整して、熱可逆記録媒体の光熱変換層に対し、0.3mmの間隔で直線状にレーザ光を走査して画像を記録した。
このとき出力を発色開始から飽和濃度に達するまで上げて、画像濃度0.80が得られる出力を求めた。
<画像消去>
各熱可逆記録媒体に対して、LIMO社製半導体レーザLIMO25−F100−DL808(中心波長:808nm)により出力15W、照射距離200mm、線速350mm/s、スポット径3.0mmとなるように調整して、熱可逆記録媒体の光熱変換層に対し、0.5mmの間隔で直線状にレーザ光を走査して画像を消去した。
表2の結果から、実施例6及び比較例4〜5をそれぞれ対比すると、第1及び第2の熱可逆記録層が、いずれも樹脂及び有機低分子物質を含有する場合にも、第2の熱可逆記録層の厚みが、第1及び第2の熱可逆記録層の合計厚みの55%〜75%であることで、高感度で繰り返し耐久性に優れる熱可逆記録媒体を得ることができた。
(実施例7)
<熱可逆記録媒体の作製>
実施例1において、光熱変換材料としてフタロシアニン系光熱変換材料の代わりにシアニン系光熱変換材料(株式会社山本化成製、YKR−2900、吸収ピーク波長:830nm)0.5質量%溶液を2質量部添加し、よく撹拌させて調製した光熱変換層用塗布液を用いた以外は、実施例1と同様にして、熱可逆記録媒体を作製した。なお、シアニン系光熱変換材料(株式会社山本化成製、YKR−2900)は実施例1と同様な感度になる添加量とした。
<画像記録>
実施例1及び7の熱可逆記録媒体に対して、LIMO社製半導体レーザLIMO25−F100−DL808(中心波長:808nm)により、照射距離152mm、線速1000mm/sとなるように調整して、熱可逆記録媒体の光熱変換層に対し、出力7.0W、0.3mmの間隔で直線状にレーザ光を走査して画像を形成した。
<画像消去>
実施例1及び7の熱可逆記録媒体に対して、LIMO社製半導体レーザLIMO25−F100−DL808(中心波長:808nm)により出力15W、照射距離200mm、線速350mm/s、スポット径3.0mmとなるように調整して、熱可逆記録媒体の光熱変換層に対し、0.5mmの間隔で直線状にレーザ光を走査して画像を消去した。
<繰り返し画像処理>
上記画像記録、画像消去条件で画像処理を行い、繰り返し画像処理300回後の消去性を下記基準で評価した。ここで画像処理は画像記録、画像消去の順に行い、画像記録及び画像消去を1回ずつ行った時に繰り返し回数を1回とした。
−画像繰り返し消去性の評価−
画像の消去の可否は消去部を目視観察して行った。判定は、完全に消去できている場合は○、少し消し残りがある又は少し発色してしまう場合は△、多く消し残りがある又は多く発色してしまう場合は×とした。結果を表3に示す。
表2の結果から、実施例1は実施例7に比べてフタロシアニン系光熱変換材料を用いることで、繰り返し画像処理を行っても光熱変換材料の劣化が起こらず、均一に画像消去可能となることが分かった。
(実施例8)
<熱可逆記録媒体の作製>
実施例1において、第2の熱可逆記録層上に、下記のようにして紫外線吸収層を積層した。
−紫外線吸収層の形成−
紫外線吸収ポリマーの40質量%溶液(株式会社日本触媒製、UV−G300)10質量部、イソシアネート(日本ポリウレタン株式会社製、コロネートHL)1.5質量部、及びメチルエチルケトン12質量部を加え、よく攪拌して紫外線吸収層用塗布液を調製した。
次に、前記第1の熱可逆記録層、前記光熱変換層、及び前記第2の熱可逆記録層が形成された支持体に、前記紫外線吸収層用塗布液をワイヤーバーにて塗布し、90℃にて1分間加熱及び乾燥した後、60℃にて24時間加熱し、厚み2μmの紫外線吸収層を形成した。
次に、前記紫外線吸収層上、及び前記第1の熱可逆記録層と支持体との間に、下記の第1及び第2の酸素バリア層を設けた以外は、実施例1と同様にして、実施例8の熱可逆記録媒体を作製した。
−第1及び第2の酸素バリア層の形成−
ウレタン系接着剤(東洋モートン株式会社製、TM−567)5質量部、イソシアネート(東洋モートン株式会社製、CAT−RT−37)0.5質量部、及び酢酸エチル5質量部を加え、よく攪拌して酸素バリア層用塗布液を調製した。
次に、シリカ蒸着PETフィルム(三菱樹脂株式会社製、テックバリアHX、酸素透過度:0.5ml/m/day/MPa)上に、上記酸素バリア層用塗布液をワイヤーバーにて塗布し、80℃にて1分間加熱及び乾燥した後、前記紫外線吸収層上、及び支持体上に貼合せ、50℃にて24時間加熱し、厚み12μmの第1及び第2の酸素バリア層を形成した。
<画像記録>
実施例1及び8の熱可逆記録媒体に対して、LIMO社製半導体レーザLIMO25−F100−DL808(中心波長:808nm)により、照射距離152mm、出力15W、線速1,000mm/sとなるように調整して、熱可逆記録媒体の光熱変換層に対し、0.3mmの間隔で直線状にレーザ光を走査して画像を形成し、画像濃度を測定した。
<画像消去>
実施例1及び8の熱可逆記録媒体に対して、LIMO社製半導体レーザLIMO25−F100−DL808(中心波長:808nm)により、照射距離200mm、スポット径3.0mmとなるように調整して、熱可逆記録媒体の光熱変換層に対し、0.5mmの間隔で直線状にレーザ光を走査して画像を消去した。
なお、実施例1では出力15W、線速350mm/s、実施例8では出力16W、線速188mm/sとした。
<光照射後の消去性の評価>
実施例1及び8の熱可逆記録媒体に対して画像形成を行い、セリック株式会社製人工太陽光照射装置を用いて、30℃で80%RH、130klxの条件で18時間光照射した。光照射後の熱可逆記録媒体に画像消去を行い、消去性を評価した。ここでは画像の消去の可否は消去部を目視判定した。判定は、完全に消去できている場合に○、消し残りが少しある場合に△、消し残りが多くある場合に×とした。結果を表4に示す。
表4の結果から、実施例8は実施例1に比べて、酸素バリア層と紫外線吸収層を組み合わせることで光照射によるロイコ染料の劣化が起こらず、均一に画像消去可能となることが分かった。
本発明の熱可逆記録媒体及び該熱可逆記録媒体を用いた画像処理方法は、非接触式にて繰返し画像記録及び消去可能で、しかも高感度で繰り返し耐久性に優れ、物流・配送システムに好適に使用可能である。
1 レーザ発振器
2 ビームエキスパンダ
3 マスク又は非球面レンズ
4 ガルバノメータ
4A ガルバノミラー
5 スキャニングユニット
6 fθレンズ
7 熱可逆記録媒体
81 ICチップ
82 アンテナ
85 RF−IDタグ
100 熱可逆記録媒体
101 支持体
102 第1の熱可逆記録層
103 光熱変換層
104 第2の熱可逆記録層
105 第1の酸素バリア層
106 第2の酸素バリア層
107 紫外線吸収層
108 バック層
特開2004−265247号公報 特開2004−265249号公報 特許第3161199号公報 特開平9−30118号公報 特開2000−136022号公報 特開平5−8537号公報 特開平4−296593号公報 特開平11−151856号公報 特開2000−015391号公報

Claims (12)

  1. 支持体と、該支持体上に、少なくとも、第1の熱可逆記録層と、特定波長の光を吸収して熱に変換する光熱変換材料を含む光熱変換層と、第2の熱可逆記録層とをこの順に有してなり、
    前記第1及び第2の熱可逆記録層が、いずれも温度に依存して透明度及び色調のいずれかが可逆的に変化するものであり、
    前記第1の熱可逆記録層の厚みをAとし、前記第2の熱可逆記録層の厚みをBとすると、比率〔B/(A+B)×100〕が55%〜75%であることを特徴とする熱可逆記録媒体。
  2. 第1及び第2の熱可逆記録層が、いずれもロイコ染料及び可逆性顕色剤を含有する請求項1に記載の熱可逆記録媒体。
  3. 第1及び第2の熱可逆記録層が、いずれも樹脂及び有機低分子物質を含有する請求項1から2のいずれかに記載の熱可逆記録媒体。
  4. 光熱変換材料が、近赤外領域に吸収ピークを有する材料である請求項1から3のいずれかに記載の熱可逆記録媒体。
  5. 光熱変換材料が、700nm〜1,500nmの波長範囲内に吸収ピークを有する請求項1から4のいずれかに記載の熱可逆記録媒体。
  6. 光熱変換材料が、フタロシアニン系化合物である請求項1から5のいずれかに記載の熱可逆記録媒体。
  7. 支持体と第1の熱可逆記録層の間に、第1の酸素バリア層を有する請求項1から6のいずれかに記載の熱可逆記録媒体。
  8. 第2の熱可逆記録層上に、直接又は他の層を介して第2の酸素バリア層を有する請求項1から7のいずれかに記載の熱可逆記録媒体。
  9. 第1及び第2の酸素バリア層の酸素透過度が、いずれも20ml/m/day/MPa以下である請求項7から8のいずれかに記載の熱可逆記録媒体。
  10. 第2の熱可逆記録層と第2の酸素バリア層の間に、紫外線吸収層を有する請求項8から9のいずれかに記載の熱可逆記録媒体。
  11. 請求項1から10のいずれかに記載の熱可逆記録媒体の光熱変換層に対し特定波長のレーザ光を照射して加熱することにより該熱可逆記録媒体に画像を記録する画像記録工程、及び、前記熱可逆記録媒体の光熱変換層に対し特定波長のレーザ光を照射して加熱することにより該熱可逆記録媒体に記録された画像を消去する画像消去工程の少なくともいずれかを含むことを特徴とする画像処理方法。
  12. レーザ光が、YAGレーザ光、ファイバーレーザ光、及び半導体レーザ光の少なくともいずれかである請求項11に記載の画像処理方法。
JP2009020912A 2009-01-30 2009-01-30 熱可逆記録媒体及びそれを用いた画像処理方法 Pending JP2010173268A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009020912A JP2010173268A (ja) 2009-01-30 2009-01-30 熱可逆記録媒体及びそれを用いた画像処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009020912A JP2010173268A (ja) 2009-01-30 2009-01-30 熱可逆記録媒体及びそれを用いた画像処理方法

Publications (1)

Publication Number Publication Date
JP2010173268A true JP2010173268A (ja) 2010-08-12

Family

ID=42704671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009020912A Pending JP2010173268A (ja) 2009-01-30 2009-01-30 熱可逆記録媒体及びそれを用いた画像処理方法

Country Status (1)

Country Link
JP (1) JP2010173268A (ja)

Similar Documents

Publication Publication Date Title
JP5326631B2 (ja) 画像処理方法及び画像処理装置
JP5515546B2 (ja) 熱可逆記録媒体の画像消去方法
JP5332412B2 (ja) 画像処理方法及び画像処理装置
JP5651935B2 (ja) 画像処理装置
JP5707830B2 (ja) 画像処理方法及び画像処理装置
JP5228471B2 (ja) 画像処理方法及び画像処理装置
JP5464263B2 (ja) 画像処理方法及び画像処理装置
JP5255218B2 (ja) 画像処理方法
JP5471219B2 (ja) 熱可逆記録媒体の画像消去方法
JP5971295B2 (ja) 熱可逆記録媒体及びそれを用いた画像処理方法
JP5736712B2 (ja) 画像消去方法及び画像消去装置
JP2008179131A (ja) 画像処理方法及び画像処理装置
JP6186869B2 (ja) 画像処理方法及び画像処理装置
JP2012035622A (ja) 画像処理方法及び画像処理装置
JP2012192731A (ja) 画像処理方法及び画像処理装置
JP5233273B2 (ja) 画像処理方法及び画像処理装置
JP4263228B2 (ja) 画像処理方法及び画像処理装置
JP5091653B2 (ja) 画像処理方法及び画像処理装置
JP5146350B2 (ja) 画像処理方法及び画像処理装置
JP2007069605A (ja) 画像処理方法及び画像処理装置
JP2010173266A (ja) 熱可逆記録媒体及びそれを用いた画像処理方法
JP2010201833A (ja) 熱可逆記録媒体及びそれを用いた画像処理方法
JP5169200B2 (ja) 画像処理方法及び画像処理装置
JP2011056910A (ja) 画像形成方法及び画像処理方法
JP2010069665A (ja) 画像処理方法