JP2010171836A - レーダ装置用アンテナ - Google Patents

レーダ装置用アンテナ Download PDF

Info

Publication number
JP2010171836A
JP2010171836A JP2009013850A JP2009013850A JP2010171836A JP 2010171836 A JP2010171836 A JP 2010171836A JP 2009013850 A JP2009013850 A JP 2009013850A JP 2009013850 A JP2009013850 A JP 2009013850A JP 2010171836 A JP2010171836 A JP 2010171836A
Authority
JP
Japan
Prior art keywords
antenna
radiation
ground plane
substrate
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009013850A
Other languages
English (en)
Other versions
JP5227820B2 (ja
Inventor
Shinkei Orime
晋啓 折目
Naotaka Uchino
直孝 内野
Daisuke Inoue
大輔 井上
Yoichi Iso
洋一 磯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2009013850A priority Critical patent/JP5227820B2/ja
Priority to US12/411,796 priority patent/US20100188309A1/en
Priority to EP09156469A priority patent/EP2211423A3/en
Publication of JP2010171836A publication Critical patent/JP2010171836A/ja
Application granted granted Critical
Publication of JP5227820B2 publication Critical patent/JP5227820B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/106Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces using two or more intersecting plane surfaces, e.g. corner reflector antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/32Vertical arrangement of element
    • H01Q9/36Vertical arrangement of element with top loading
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Waveguide Aerials (AREA)

Abstract

【課題】誘電体の放射基板に表面波の発生を抑制して一体化構造で形成され、広角度に測角可能なレーダ装置用アンテナを提供する。
【解決手段】レーダ装置用アンテナ400は、放射基板420に4×2の配列で合計8個のアンテナユニット410のパターンが形成されている。放射基板420の裏面には第1の地板401が形成され、さらに第1の地板401を挟んで線路基板405が設けられている。放射部402aは放射基板420上にパターンで形成されており、給電部402bはスルーホールで形成されて伝送線路404に接続されている。第2の地板403も、放射基板420上のパターンで形成されたランド403aとスルーホール403bで形成されている。
【選択図】図9

Description

本発明は、車載用レーダ装置に用いるアンテナに関するもので、特に広角度の指向性を有するレーダ装置用アンテナの技術分野に関するものである。
従来知られているアンテナの中でも、指向性が最も低い、あるいは無指向性ともいえるアンテナとして、半波長ダイポールアンテナが知られている。半波長ダイポールアンテナは、2本の直線状のアンテナ素子を一直線上に配置して形成されたアンテナであり、アンテナ素子に直交する方向にドーナツ状にゲイン(利得)を持つアンテナパターンとなる。
また、半波長ダイポールアンテナに類似したものとして、ダイポールの2本のアンテナ素子のうち一方のみを用い、これを導体板(地板)上に垂直に配置して形成された1/4波長モノポールアンテナも知られている。1/4波長モノポールアンテナでは、導体板上に配置された長さ1/4波長のアンテナ素子の鏡像が導体板に対し対称な位置に得られ、導体板が無限に広い場合には、1/4波長モノポールアンテナとその鏡像により半波長ダイポールアンテナと全く同じ特性が得られる。
このようなダイポールアンテナあるいはモノポールアンテナは、無指向性のアンテナとして従来から広く用いられており、例えば自動車の屋根の上に設置されるアンテナとして、また携帯電話用のアンテナとしてモノポールアンテナが広く用いられている。モノポールアンテナを実際に利用する形態として、例えば同軸線路の中心導体をアンテナ素子とし、外部導体を地板に接続した構造のものが広く用いられている。
一方、自動車に搭載されて進行方向の障害物等を検出するレーダ装置として、アンテナを複数配列して障害物等の方位角を測定するものが従来から知られている。例えば、特許文献1で開示されている図10に示すようなレーダ装置用アンテナ900では、アンテナ素子901がらせん状に形成されたアンテナユニット902を、地板903上に複数配列してアレイアンテナを形成し、これを用いて障害物の方位角を検出するアンテナが開示されている。
特開2006−258762号公報
しかしながら、特許文献1に記載のアンテナでは指向性が強く、アンテナ面に垂直な方向を中心に限られた角度範囲(例えば±30度程度)でしか方位角の測定ができず、いわゆる測角覆域が狭いといった問題があった。角度測定(測角)の範囲を拡げるためには指向性の広いアンテナを用いるのが好ましいが、例えばダイポールアンテナあるいはモノポールアンテナでは、無指向性のため今度は方角を特定できないといった問題がある。
また、プリント基板を用いてアンテナを誘電体の放射基板に一体化構造で形成すると、放射基板の寸法が適切でないと表面波が発生して放射パターンに歪みが生じるおそれがあった。放射パターンに歪みがあると、モノパルス測角で方位測定をするためのディスクリカーブにも曖昧性が生じてしまうといった問題がある。
そこで、本発明は上記問題を解決するためになされたものであり、誘電体の放射基板に表面波の発生を抑制して一体化構造で形成され、広角度に測角可能なレーダ装置用アンテナを提供することを目的とする。
本発明のレーダ装置用アンテナの第1の態様は、厚さd3の放射基板と、前記放射基板の一方の面上に形成された直線状の放射部と、前記放射基板の他方の面上に形成された第1の地板と、前記放射基板を垂直に貫通して前記放射部と電気的に接続され前記第1の地板とは非接触に形成されたスルーホールからなる給電部と、前記給電部と所定の間隔で平行に前記一方の面から前記第1の地板まで前記放射基板に形成された第2の地板と、を備え、前記放射部と前記給電部でアンテナ素子が構成されていることを特徴とする。
本発明のレーダ装置用アンテナの他の態様は、送受信波の自由空間波長をλ0とし、前記放射基板の比誘電率及び実効比誘電率をそれぞれεr及びεeffとし、前記放射部の幅をwとしたとき、前記放射部の長さLは、
Figure 2010171836
を満たすように決定されていることを特徴とする。
本発明のレーダ装置用アンテナの他の態様は、前記アンテナ素子と前記第2の地板とを1単位のアンテナユニットとして、前記アンテナユニットが前記放射基板に2つ配列されており、前記2つのアンテナ素子間の距離をDとしたとき、D/λ0<0.5であることを特徴とする。
本発明のレーダ装置用アンテナの他の態様は、前記2つのアンテナユニットの配列方向と直交する方向に、前記アンテナユニットが複数配列されてアレイ化されていることを特徴とする。
本発明のレーダ装置用アンテナの他の態様は、前記第1の地板の前記放射基板と接する面とは反対側の面に一方の面が接合された線路基板と、前記線路基板の他方の面に形成された伝送線路と、をさらに備え、前記給電部のスルーホールが、さらに前記線路基板を垂直に貫通して前記放射部と前記伝送線路とを電気的に接続していることを特徴とする。
本発明のレーダ装置用アンテナの他の態様は、前記放射基板の厚さd3が、
Figure 2010171836
を満たすように決定されていることを特徴とする。
本発明のレーダ装置用アンテナの他の態様は、前記放射基板の厚さd3を、
Figure 2010171836
と表したとき、βは1.6<β<1.7であることを特徴とする。
本発明のレーダ装置用アンテナの他の態様は、前記第2の地板は、前記放射基板の一方の面上に形成されたランドと、前記放射基板を貫通して前記ランドと前記第1の地板とを電気的に接続する複数のスルーホールからなるスルーホール列とで構成され、前記スルーホール列は、前記給電部から前記所定の間隔だけ離して配置されていることを特徴とする。
本発明のレーダ装置用アンテナの他の態様は、前記第2の地板は、前記スルーホール列から前記給電部より遠方側に環状に配列したさらに別の複数のスルーホールを有していることを特徴とする。
本発明のレーダ装置用アンテナの他の態様は、前記第2の地板は、前記放射基板の一方の面からさらに高さα(≧0)だけ形成されて前記第1の地板からの高さh=d3+αとなっていることを特徴とする。
本発明のレーダ装置用アンテナの他の態様は、前記放射基板と前記線路基板との間にさらに別の1以上の基板が積層されて層構造を形成し、前記層構造の基板にバイアス線路が形成されていることを特徴とする。
本発明のレーダ装置用アンテナの他の態様は、前記バイアス線路と前記アンテナ素子との間に簾状に形成された別のスルーホール列と、前記バイアス線路を配置したバイアス層の上部に位置する前記放射基板の表面を覆う面状金属と、をさらに備え、前記別のスルーホール列と前記面状金属とが電気的に接続されて、前記バイアス線路と前記アンテナ素子との間の干渉が低減されていることを特徴とする。
以上説明したように本発明によれば、誘電体の放射基板にアンテナ素子を好適に配置して一体化構造で形成することにより、表面波の発生を抑制して広角度に測角可能なレーダ装置用アンテナを提供することができる。
第1の比較例のレーダ装置用アンテナの斜視図である。 第1の比較例のレーダ装置用アンテナの他方の面の斜視図である。 第1の比較例のアンテナユニットの側面図である。 ダイポールアンテナを変形させて形成したアンテナの模式図である。 アンテナ素子単体、アンテナ素子の和信号及び差信号のそれぞれの受信パターンの一例を示す図である。 第2の比較例のレーダ装置用アンテナの斜視図である。 第3の比較例のレーダ装置用アンテナの斜視図である。 第2の地板の高さが放射パターンに与える影響を示す模式図である。 本発明の第1の実施形態に係るレーダ装置用アンテナの斜視図及び断面図である。 従来のレーダ装置用アンテナを示す平面図である。 第1の実施形態に係るレーダ装置用アンテナの放射パターンの一例である。 放射基板の比誘電率とd3/λ0との関係を示す図である。 本発明の第2の実施形態に係るレーダ装置用アンテナの1つのアンテナユニットの断面図である。 本発明の第3の実施形態に係るレーダ装置用アンテナの部分断面図である。
本発明の好ましい実施の形態におけるレーダ装置用アンテナについて、図面を参照して詳細に説明する。同一機能を有する各構成部については、図示及び説明簡略化のため、同一符号を付して示す。
第1の比較例のレーダ装置用アンテナの斜視図を、図1及び図2に示す。図1は、第1の比較例のレーダ装置用アンテナ100の一方の面の放射側の斜視図であり、図2は放射側とは反対側の他方の面の斜視図である。レーダ装置用アンテナ100の一方の面は、第1の地板101上にアンテナ素子102と第2の地板103とが一対に複数配列されて構成されている。第2の地板103は、第1の地板101に電気的に接続されている。
また、レーダ装置用アンテナ100の他方の面には、各アンテナ素子102に接続された伝送線路104が線路基板105上に形成されている。伝送線路104は、地板101と線路基板105とでマイクロストリップ線路を形成している。
図1に示すレーダ装置用アンテナ100は、第1の地板101の上方が車両の天井側、下方が車輪側、図面右側が車両の後方となる。本比較例では、各アンテナ素子102から車両の後方に電波が放射されるものとしている。1対のアンテナ素子102及び第2の地板103は、水平方向に2対配置され、これが高さ方向に4組配置されている。
本比較例では、車両の後方にある対象物の水平方向の方位角を測定するのに、位相比較モノパルス方式を用いて行うものとしている。位相比較モノパルス方式では、水平方向に配置された2つのアンテナで受信されたそれぞれの受信信号をもとに、両者の差信号を両者の和信号で規格化した値を、事前に設定されたディスクリカーブ(モノパルスカーブ)にあてはめることで、アンテナ面に垂直な方向からのズレ角度を求めている。本比較例では、高さ方向に配置された4つのアンテナ素子102の受信信号の総和を左右それぞれで求め、これをもとに両者の和と差を求めることで位相比較モノパルス方式による方位角の測定を行っている。
具体的には、図1における左側4つのアンテナ素子102の受信信号の総和が図2に示す伝送線路104上の線路分岐部104aに出力され、右側4つのアンテナ素子102の受信信号の総和が伝送線路104上の線路分岐部104bに出力される。線路分岐部104aから線路分岐部104cまでの線路長と、線路分岐部104bから線路分岐部104cまでの線路長とが等しくなるよう形成されており、線路分岐部104cに接続された出力線路104dからは、右側4つのアンテナ素子102の受信信号の総和と左側4つのアンテナ素子102の受信信号の総和との和信号が出力される。
一方、線路分岐部104aから線路分岐部104eまでの線路長と、線路分岐部104bから線路分岐部104eまでの線路長とで、位相差180°に相当する差が設定されており、これにより線路分岐部104eに接続された出力線路104fからは右側4つのアンテナ素子102の受信信号の総和と左側4つのアンテナ素子102の受信信号の総和との差信号が出力される。
本比較例のレーダ装置用アンテナ100では、図1に示すようなアンテナ素子102と第2の地板103とを用いることで、車両後方から左右両側への広い角度範囲で計測可能なアンテナを実現している(以下では、測定可能な角度範囲を覆域という)。以下では、1つのアンテナ素子102及び1つの第2の地板103との組み合わせをレーダ装置用アンテナ100のアンテナユニット110と称し、アンテナユニット110の動作について以下に説明する。
レーダ装置用アンテナ100のアンテナユニット110を図3に示す。図3は、図1に示す8組のアンテナユニット110のいずれか1つを右側から見た側面図である。アンテナ素子102は、L字状に屈曲された線状のアンテナに形成されており、一端が開放されており、他端が第1の地板101を非接触に貫通し、さらに線路基板105を貫通して伝送線路104に接続されている。
アンテナ素子102の開放端側は第1の地板101と平行になるよう配置されており、以下ではこの部分を放射部102aと呼ぶこととする。また、アンテナ素子102の伝送線路104に接続されている側の部分は、第2の地板103と平行に配置されており、以下ではこの部分を給電部102bと呼ぶこととする。
本比較例のレーダ装置用アンテナ100では、水平方向の角度測定が可能な覆域を広くするために、原理的には無指向性を有するダイポールアンテナをもとに、これを後方への指向性を持たせるように加工することで、レーダ装置としてのアンテナ素子の基本機能を実現している。以下では、図4に示すアンテナ形状の模式図を用いて、本比較例のアンテナ素子102の動作を説明する。
図4(a)は、ダイポールアンテナを示す模式図である。送受信電波の波長をλとするとき、ダイポールアンテナ120は、略λ/4の長さの線状導体からなるアンテナ素子121、122を一直線上に並べて構成されており、ダイポールアンテナ120の全長は略λ/2となる(半波長ダイポールアンテナ)。このようなダイポールアンテナ120の放射パターンは、ダイポールアンテナ120を中心としてこれと垂直な方向にドーナツ状に形成される。このように、ダイポールアンテナ120はこれと垂直な平面上で指向性のない放射パターンを形成する。
次に、モノポールアンテナの模式図を図4(b) に示す。モノポールアンテナ130は、ダイポールアンテナ120の一方のみのアンテナ素子(例えば121) を用いたものであり、アンテナ素子121と直交するように地板133を配置している。これにより、アンテナ素子121の鏡像132が形成されてダイポールアンテナ120とほぼ等価なアンテナ特性が得られる。従って、図4(b)に示すモノポールアンテナ130も、ダイポールアンテナ120と同様に、水平面上で指向性のない放射パターンを形成する。モノポールアンテナ130の全長は略λ/4であり(1/4波長モノポールアンテナ)、高さがダイポールアンテナ120の半分になって省スペース化が図れるといったメリットがある。
自動車に搭載して例えば後方の障害物等を検出するといったレーダ装置では、自動車の後方(走行方向とは逆方向)のみに電波が放射され前方には放射されない、といった指向性が必要となる。そこで、モノポールアンテナ130に対し後方への指向性を持たせるために、アンテナ素子121と平行に所定の距離(d1とする)だけ離して別の地板144を設けたものを図4(c)に示す。この場合、地板133と地板144とが電気的に接続されていることが重要であり、仮に地板133、144が電気的に接続されていないと、水平面内単方向の放射パターンにノッチ(ゲインが急減)が生成されてしまう。
地板144を設けることで、アンテナ素子121を中心にドーナツ状に形成されていた放射パターンが、地板144で反射されてこれより前方には放射されないようになる。その結果、モノポールアンテナを用いて後方への指向性を持つアンテナ特性を得ることができる。このように、地板144が電波を反射する反射板として機能していることから、以下では、図4(c)に示すアンテナ140を反射板付モノポールアンテナと称することとする。
図1に示す第1の比較例のレーダ装置用アンテナ100に備えられたアンテナユニット110に相当するものとして、図4(c)に示す反射板付モノポールアンテナ140を用いた場合には、反射板付モノポールアンテナ140の地板144が図1に示すレーダ装置用アンテナ100の第1の地板101に対応し、地板133が第2の地板103に対応することになる。
アンテナユニットに反射板付モノポールアンテナ140を用いた上記の第2の比較例のレーダ装置用アンテナでは、アンテナ素子121への給電を第2の地板である地板133から行う必要がある。しかしながら、伝送線路104は第1の地板101の他方の面に形成されていることから、伝送線路104から第2の地板103(地板133)を経由してアンテナ素子121に給電するための伝送線路を追加する必要がある。
そこで、伝送線路104からアンテナ素子に直接給電可能に加工したものを図4(d)に示す。図4(d)に示すアンテナ150のアンテナ素子151は、アンテナ素子121を地板133から所定の距離(d2とする)離れたところで地板144側に90度折り曲げ、折り曲げられた部分を地板133に平行に地板144の他方の面まで貫通させている。これにより、アンテナ素子151を地板144の他方の面に形成されている伝送線路に接続することが容易となる。
第1の比較例のレーダ装置用アンテナ装置100は、アンテナユニット110として図4(d)に示すアンテナ150を用いたものである。アンテナ素子151の地板144と平行な部分が図3に示す放射部102aに相当し、折り曲げられて地板133と平行な部分が給電部102bに相当している。
給電部102bは、伝送線路104から放射部102aまで高周波の信号を伝送できるよう、第2の地板103との距離d2を適切に設定して形成されることが重要である。すなわち、給電部102bと第2の地板103との間で伝送線路部が形成され、伝送線路104側から見た伝送線路部のインピーダンスが所定の大きさとなるように距離d2を調整することで、伝送線路104から放射部102aへの給電を効率的に行えるようにしている。
次に、放射部102aと第1の地板101との距離d1について説明する。地板101は、上記説明の通り、これより前方に電波が放射されないようにするための反射板としての機能を有している。そして、放射部102aとの距離d1によって放射部102aからの放射パターンに大きな影響を与える。
レーダ装置用アンテナ100では、後方への広い角度範囲(覆域)で所定の大きさ以上のゲインが得られる放射パターンを実現できることが好ましい。送受信波の自由空間波長をλ0とするとき、広い覆域で高いゲインの放射パターンを得るためには、距離d1をλ0/4、あるいはこれに近い値で好適なものを設定するのがよい。
以下では、レーダ装置用アンテナ100で計測される方位角を、第1の地板101に垂直な方向を基準(0度)としてそれからの角度変化で表わすものとする。距離d1を略λ0/4に設定したときには、方位角0度でゲインがピークとなり、方位角が左右に大きくなるにつれてゲインが低下するといった単峰性の利得パターンが得られる。また、距離d1をλ0/4からずらすことで、2峰性等に変化させて覆域を拡げることが可能となる。このように、距離d1をλ0/4あるいはこれに近い値とすることで広い覆域を得ることが可能となり、例えば3dBビーム幅で±50度以上の覆域を実現することができる。
次に、アンテナユニット110の配置について、以下に説明する。モノパルス方式では、水平方向の異なる2つの位置で測定された信号値をもとに、両者の和信号と差信号を算出して方位角を求めている。位相比較モノパルス方式を用いるアレーアンテナの指向性は、アンテナ素子自身の指向性とアンテナ素子の配列の指向性に依存しており、両者を合わせた合成指向性は次式で決定される。
合成指向性=アンテナ素子の指向性×無指向性点放射源の配列の指向性
上式より、合成指向性として例えば±90度の測角覆域を実現するためには、できるだけビーム幅の広いアンテナ素子を用い、かつアンテナ素子の配列の指向性についてもワイドなものが要求される。
レーダ装置用アンテナ100では、図3に示すような構造のアンテナユニット110を用いることで、アンテナ素子102そのものの指向性をワイドにしている。これに加えて、アンテナ素子102の配列の指向性をワイドなものにするために、アンテナユニット110をアンテナ素子102と同一直線上(垂直方向)に1つ以上(図1では4つ)配列したものをアレイとし、水平方向のアレイ間の間隔を図1に示すようにDとしたとき、D/λ0<0.5を満たすよう、アンテナ素子102(及びアンテナユニット110)を配置している。
本比較例では、アンテナ素子102間の間隔Dを、D/λ0<0.5を満たすよう設定することで、±90度の範囲で配列の指向性特性がゼロになるのを回避している。配列の指向性特性について、図5を用いて説明する。図5は、縦軸を受信レベル(dB)、横軸をアンテナ面に垂直な方向からの角度とし、アンテナ素子単体の受信パターンの一例を符号10で示し、2つのアレイアンテナの和信号(Σとする)及び差信号(Δとする)の一例をそれぞれ符号20及び30で示している。なお、ここではアンテナ素子単体のビーム幅を108度としている。
図5(a)と(b)では、アンテナ素子102間の間隔Dの大きさを変えており、(a)ではD/λ0=0.42とし、(b)ではD/λ0=0.5としている。D/λ0=0.42としてアンテナ素子102の間隔Dを小さくした(a)の場合には、和信号20の受信レベルは、0度を中心に±90度以上まで緩やかに減少する傾向を示す。これに対し、D/λ0=0.5とした(b)の場合には、和信号20の受信レベルは、角度が90度に近づくにつれて急激に低下する。
位相比較モノパルス方式では、差信号30を和信号20で除した値(Δ/Σ)から角度を求めているが、和信号20の受信レベルがゼロに近づくと、(Δ/Σ)の値が急激に大きくなって角度を求めることができなくなってしまう。これは、D/λ0が0.5以上のときには、2つのアレイアンテナの受信信号が干渉によってゼロとなる角度が±90度の範囲内に含まれてしまうためである。そこで、本比較例のレーダ装置用アンテナ100では、D/λ0<0.5を満たすようにアンテナ素子102を配置している。これにより、±90度の範囲内で和信号Σがゼロになることはなくなり、±90度以内の広角度範囲にわたって角度測定を行うことが可能となる。
第3の比較例について説明する。図1に示したレーダ装置用アンテナ100では、第2の地板103の形状を円柱上に形成された曲面としているが、これに限らず例えば角柱を用いて平面状の第2の地板を形成してもよい。平面状の第2の地板を角柱の上に形成した第3の比較例のレーダ装置用アンテナ200を図6に示す。同図では、角柱240の上に平面状の第2の地板203を形成している。
第4の比較例として、円柱または角柱を用いず、第1の地板101の一部を切り起こしたものを第2の地板としたレーダ装置用アンテナ300を図7に示す。同図では、第1の地板101の一部を切り起こし、これを第2の地板303としている。
また、第1の地板101に対し垂直な方向の第2の地板103の長さ、すなわち第1の地板101を底面とした第2の地板103の高さは、第1の地板101に垂直でアンテナ素子102を含む平面(すなわち図1における上下方向の平面)上で測定可能な角度範囲が所定の大きさとなるよう決定されている。
第2の地板103の高さが放射パターンに与える影響を、模式的に図8に示す。第2の地板103の高さは、図面下方向の放射パターンの拡がりに影響し、第2の地板103を高くしすぎると後下方の計測が行えなくなる可能性がある。従って、後下方の計測が所望の角度範囲で好適に行えるよう、第2の地板103の高さを決定するのがよい。
図1に示したレーダ装置用アンテナ100では、第2の地板103がアンテナ素子102の下側となるように上下方向を決定して用いているが、これとは逆に、第2の地板103がアンテナ素子102の上側となるように、図1に示したレーダ装置用アンテナ100の上下方向を逆転させて用いることも可能である。この場合には、第2の地板103の高さを高くすることで、上方への放射を抑制させることも可能となる。
本発明のレーダ装置用アンテナの第1の実施形態を、以下に説明する。上記の各比較例では、線状の導体を空中に配索したアンテナ素子102を用いていたが、本実施形態では複数のアンテナユニット110を所定の基板上にパターン化して一体的に形成している。アンテナユニット110を一体的にパターン形成できるようにすることで、レーダ装置用アンテナの作製を容易にすることができる。誘電体の基板を用いた本発明の第1の実施形態のレーダ装置用アンテナ400を図9に示す。図9では、(a)にレーダ装置用アンテナ400の透過斜視図を示し、(b)〜(d)には一つのアンテナユニット410についてそれぞれ断面図、(c)上面図、(d)断面図を簡略化した模式図、をそれぞれ示している。図9(b)、(d)に示す断面図は、アンテナ素子402の中心を通り第1の地板401に垂直な面における断面図である。
本実施形態のレーダ装置用アンテナ400は、比誘電率εrの誘電体からなる放射基板420に4×2の配列で合計8個のアンテナユニット410のパターンが形成されている。放射基板420の裏面には第1の地板401が形成され、さらに第1の地板401を挟んで線路基板405が設けられている。線路基板405上には伝送線路404が形成されている。
アンテナユニット410は、アンテナ素子402と第2の地板(反射柱)403とを備えており、さらにアンテナ素子402が放射部402aと給電部402bとで構成されている。放射部402aは放射基板420上にパターンで形成されており、給電部402bはスルーホールで形成されて伝送線路404に接続されている。給電部402bとなるスルーホールは、第1の地板401とは非接触に形成されている。第2の地板403も同様に、放射基板420上のパターンで形成されたランド403aとスルーホール403bで形成することができ、スルーホール403bが第1の地板401に接続されている。図9(b)、(c)に示すように、放射部402a上に形成されたスルーホールで給電部402bが形成されており、該スルーホールが伝送線路404に接続されている。また、ランド403a上に複数のスルーホール403bが形成されており、スルーホール403bが第1の地板401に接続されている。ランド403aは、複数のスルーホール403bを電気的に接続している。
上記のように、誘電体の放射基板420を用いてアンテナユニット410をプリント化して形成した場合、放射基板420の寸法が適切でないと表面波が発生して放射パターンに歪みが生じるおそれがあり、その場合にはモノパルス測角で方位測定をするためのディスクリカーブにも曖昧性が生じてしまう。送受信波の自由空間波長λ0で基板に表面波が発生するのを十分に抑制できるようにするためには、基板の厚さd3を好適に選定することが重要となる。なお、給電部402bと第2の地板403との距離d2は、伝送線路404と放射部402aとの間のインピーダンスを調整するためのマッチングパラメータとなる。
第1の比較例ではアンテナ素子102の放射部102aと第1の地板101との距離d1が略λ0/4に等しくなるように選定したが、これと同様に基板の厚さd3をλg/4近傍に選定すると表面波が発生してしまう。ここで、λgはTEMモード管内波長であり
Figure 2010171836
で与えられる。
以下では、基板に表面波が発生するのを原理的に抑制できる放射基板420の厚さd3の選定方法を説明する。
伝送路が導波管の場合には、帯域幅を伝播可能な周波数の上限と下限の比とすると、帯域幅が1.5程度となる。これに対し、伝送路が同軸ケーブルやマイクロストリップ線路の場合には、下限の遮断周波数が存在せず、また高次のモードが存在する。従って、放射基板420の厚さd3が大きくなると、高次のモードが現れてアンテナ特性やディスクリカーブに悪影響を与えることになる。マイクロストリップ線路の高次のモードとしてはTE表面波があり、放射基板420の表面波遮断周波数をfcとするとき、fcは次式で与えられる。
Figure 2010171836
ここで、cは光速を表す。一例として、εr=4.4のFR4材では、d3=1.3mmとするとfcが31.2GHzとなり、d3=0.9mmではfcが45.2GHzとなる。
アンテナ素子402に入力される送受信波のエネルギーにより表面波が発生するのは、使用周波数fが上記の表面波遮断周波数fc以上となる場合である。この場合にTE表面波が発生し、アンテナ素子402に入力されるエネルギーが表面波として放射基板420内を伝播して損失要因となり、利得などのアンテナの放射特性が劣化したり、モノパルス測角で方位測定をするためのディスクリカーブに曖昧性が生じて測角の精度が低下する。
そこで、表面波の発生を抑制するためには、使用周波数fを表面波遮断周波数fcより低くする(f<fc)ことが重要であり、
Figure 2010171836
を満たすように放射基板420の厚さd3を選定する必要がある。すなわち、式(6)、(7)より厚さd3は
Figure 2010171836
を満たす必要がある。
β=fc/fとしたとき、式(7)よりβ>1となり、式(6)、(7)より式(8)に代えて厚さd3は次式で示すことができる。
Figure 2010171836
β>1を満たす好適なβの値を以下に説明する。
βの値を大きくすると、式(9)よりd3が小さくなって放射部402aが第1の地板401に近接する。βの値を極端に大きくして放射部402aが第1の地板401に接近しすぎると、第1の地板401に鏡像電流が発生するため、利得などアンテナの放射特性が劣化する。一方、βを1に近づけると、表面波による影響が現れ始める。このような特性を考慮して、βの最適値を検討する必要がある。検討結果の一例として、第1の比較例のレーダ装置用アンテナ100と同様に、アンテナ素子402を水平2素子x垂直4素子としたモノパルスアンテナについて、放射パターンのシミュレーション結果を図11に示す。ここで、放射基板420にはFR4を用いている。
図11(a)、(b)は、それぞれd3=1.3mm、d3=0.9mmとしたときの放射パターンを示している。ここで、50、53は和パターン(Σ)を、51、54は差パターン(Δ)を、52、55はディスクリカーブを、それぞれ示している。放射基板420に用いているFR4の比誘電率εrを4.4、周波数f=26.5GHzとしたとき、λ0=11.3mmとなることから、式(9)よりβを算出することができる。すなわち、d3=1.3mmの場合にはβ=1.18となり、d3=0.9mmの場合にはβ=1.70となる。図11より、(a)d3=1.3mmの場合は、(b)d3=0.9mmの場合に比べて和パターン、差パターンともに対称性が劣化していることがわかる。これより、β=1.7程度が適切であることがわかる。
また、図11(a)に、差パターン51を和パターン50で除して求めたディスクリカーブ(Δ/Σ)52を、図11(b)に、差パターン54を和パターン53で除して求めたディスクリカーブ(Δ/Σ)55を、それぞれ示しているが、ディスクリカーブ52、55でも表面波の影響による違いが両者に見られる。すなわち、(a)d3=1.3mmの場合は、角度が20°〜40°付近、140°付近、−20°付近、及び−160°付近にリップル点が見られる。このようなリップル点近傍では、角度に対するΔ/Σの変化が小さい、あるいは1対1になっておらず、ディスクリカーブが角度に対し曖昧性を有している。これに対し、(b)d3=0.9mmの場合には、図11(a)のようなリップル点は見られず、滑らかな曲線を描いている。これより、d3=0.9mm、すなわちβ=1.7程度が適切であることがわかる。
また、放射基板420の比誘電率εrを変数とし、βをパラメータとしてd3/λ0を式(9)から算出した結果を図12に示す。同図では、β=1.5、1.7、1.9とした場合をそれぞれ符号56,57、58で示している。一例としてβ=1.7としたとき、放射基板420の比誘電率εrを4.4とすると、図12のグラフ57よりd3/λ0=0.08が得られる。ここで、使用周波数f=26.5GHzとすると、自由空間波長λ0=11.312mmとなり、放射基板420の厚さd3=0.08×11.312=0.904mmが得られる。図12を用いることで、放射基板420の比誘電率εrに対応して好適な厚さd3を選定することができる。βの好ましい値の範囲として、1.2以上とするのがよく、1.6以上1.8以下とするのが特に好ましい。βをさらに大きくしていくと、十分な利得が得られなくなってしまう。
次に、放射基板420上にパターンで形成された放射部402aの長さLの好適な値について説明する。長さLは、次式に示すように、マイクロストリップ線路として動作したときの等価波長λeffを用いてその1/4に略等しくなるように選定するのがよい。
Figure 2010171836
ここで、εeffは放射基板420を形成する誘電体の実効比誘電率であり、放射部402aの幅をwとすると次式で与えられる。
Figure 2010171836
一実施例として、アンテナ素子102の幅w=0.6mmとし、放射基板420の厚さd3=0.9mm、比誘電率εr=4.4としたとき、マイクロストリップ線路としての実効比誘電率εeffは、式(11)からεeff=3.571が得られる。これより、アンテナ素子402の放射部402aの長さLは、式(10)からL=1.496mm≒1.5mmが得られる。
線状の導体を空中に配索して形成されたアンテナ素子102を有する第1の比較例のレーダ装置用アンテナ100では、第2の地板(反射柱)103がグランドとして機能するためには、その高さを大きくする方が好ましいが、高くしすぎると下後方の計測ができなくなるおそれがあった。放射基板420にアンテナ素子402と第2の地板403を一体的にパターン化して形成した本実施形態のレーダ装置用アンテナ400においても、第2の地板403の高さを給電部402bよりも適当に高くするのが有効である。すなわち、第2の地板403の高さをhとしたとき、
Figure 2010171836
となるαを小さな値の範囲で適切に選択するのがよい。これによりアンテナ素子402の放射パターンの最適化を図ることができる。
第2の地板403の高さを給電部402bよりも高くした別の実施形態のレーダ装置用アンテナを、図13を用いて説明する。図13は、第2の実施形態のレーダ装置用アンテナの1つのアンテナユニット450の断面図であり、図9(b)と同様に、アンテナ素子402の中心を通り第1の地板401に垂直な面での断面図である。アンテナユニット450は、第1の実施形態のアンテナユニット410の第2の地板403の上面に反射体451が載置されている。放射基板420にプリント化して一体的に形成された第2の地板403に対し、その上部に反射体451を載置することで第2の地板403の高さをさらに高くすることができる。反射体451は、その高さが式(12)を満たすように選定することで、アンテナ素子402の放射パターンを最適化することが可能となる。
本発明のさらに別の実施形態のレーダ装置用アンテナを、図14を用いて説明する。図14は、第3の実施形態のレーダ装置用アンテナ500の部分断面図であり、アンテナ素子402の中心を通り第1の地板401に垂直な面における断面図である。上記の第1及び第2の実施形態のレーダ装置用アンテナでは、放射基板420が1層の誘電体基板で形成され、放射部402aが形成される面とは反対側の裏面に第1の地板401が形成されており、さらに第1の地板401を挟んで線路基板405が配置されていた。
これに対し、本実施形態のレーダ装置用アンテナ500では、放射基板420の裏面に別の誘電体基板501が1層以上配置されて、2層以上の誘電体基板からなる層構造の放射部基板502が形成されている。このような層構造の基板は、所定のシールド手段で分割して用いることができる。誘電体基板501には、パターンとスルーホールを形成して回路や線路等を設けることができ、例えばアンテナ素子402との間でノイズが伝播するのを所定のシールド手段を用いて防止することができる。このシールド手段もパターンとスルーホールで形成することができ、図14に示す実施形態では、放射基板420方向からの電磁的影響をシールドするためのパターン506と、アンテナ素子402と誘電体基板501に配置された線路等の間でノイズが伝播するのを防止するためのスルーホール507とで形成されている。このような層構造とすることにより、パターンとスルーホールで必要な素子や線路等を形成することができ、プリント配線技術を適用してレーダ装置用アンテナ500を容易に作製することができる。
本実施形態では、誘電体基板501を1層以上設けることにより、各層に所定の回路を形成するなどの回路設計の自由度を高めることが可能となっている。例えば、第2の地板403を形成するスルーホール403bを第1の地板401とは別の第3の地板505に接続するように構成することが可能である。また、図14では、誘電体基板501の層を利用してバイアス線路503が形成されており、これを利用して例えば別のマイクロストリップライン504を配設することも可能となる。バイアス線路503やマイクロストリップライン504は、パターン506とスルーホール507でアンテナ素子402からシールドされている。高周波の伝送線路404を備えた線路基板405には線路損失の少ないRogers基板等を用いる必要があるが、誘電体基板501には安価なFR4基板を用いることができる。また、放射基板420にはRogers基板またはFR4基板を用いることができる。
なお、本実施の形態における記述は、本発明に係るレーダ装置用アンテナの一例を示すものであり、これに限定されるものではない。本実施の形態におけるレーダ装置用アンテナの細部構成及び詳細な動作等に関しては、本発明の趣旨を逸脱しない範囲で適宜変更可能である。
100、400,500,900 レーダ装置用アンテナ
101、401 第1の地板
102、402、901 アンテナ素子
102a、4012a 放射部
102b、402b 給電部
103、203、303、403 第2の地板
104,404 伝送線路
105,405 線路基板
110、410、450、902 アンテナユニット
420 放射基板
451 反射体
501 誘電体基板
502 放射部基板
503 バイアス線路
504 マイクロストリップライン
505 第3の地板
506 パターン
507 スルーホール

Claims (12)

  1. 厚さd3の放射基板と、
    前記放射基板の一方の面上に形成された直線状の放射部と、
    前記放射基板の他方の面上に形成された第1の地板と、
    前記放射基板を垂直に貫通して前記放射部と電気的に接続され前記第1の地板とは非接触に形成されたスルーホールからなる給電部と、
    前記給電部と所定の間隔で平行に前記一方の面から前記第1の地板まで前記放射基板に形成された第2の地板と、を備え、
    前記放射部と前記給電部でアンテナ素子が構成されている
    ことを特徴とするレーダ装置用アンテナ。
  2. 送受信波の自由空間波長をλ0とし、前記放射基板の比誘電率及び実効比誘電率をそれぞれεr及びεeffとし、前記放射部の幅をwとしたとき、前記放射部の長さLは、
    Figure 2010171836
    を満たすように決定されている
    ことを特徴とする請求項1に記載のレーダ装置用アンテナ。
  3. 前記アンテナ素子と前記第2の地板とを1単位のアンテナユニットとして、前記アンテナユニットが前記放射基板に2つ配列されており、前記2つのアンテナ素子間の距離をDとしたとき、D/λ0<0.5である
    ことを特徴とする請求項1または2に記載のレーダ装置用アンテナ。
  4. 前記2つのアンテナユニットの配列方向と直交する方向に、前記アンテナユニットが複数配列されてアレイ化されている
    ことを特徴とする請求項3に記載のレーダ装置用アンテナ。
  5. 前記第1の地板の前記放射基板と接する面とは反対側の面に一方の面が接合された線路基板と、
    前記線路基板の他方の面に形成された伝送線路と、をさらに備え、
    前記給電部のスルーホールが、さらに前記線路基板を垂直に貫通して前記放射部と前記伝送線路とを電気的に接続している
    ことを特徴とする請求項1乃至3のいずれか1項に記載のレーダ装置用アンテナ。
  6. 前記放射基板の厚さd3が、
    Figure 2010171836
    を満たすように決定されている
    ことを特徴とする請求項1乃至5のいずれか1項に記載のレーダ装置用アンテナ。
  7. 前記放射基板の厚さd3を、
    Figure 2010171836
    と表したとき、βは1.6<β<1.7である
    ことを特徴とする請求項1乃至6のいずれか1項に記載のレーダ装置用アンテナ。
  8. 前記第2の地板は、前記放射基板の一方の面上に形成されたランドと、前記放射基板を貫通して前記ランドと前記第1の地板とを電気的に接続する複数のスルーホールからなるスルーホール列とで構成され、
    前記スルーホール列は、前記給電部から前記所定の間隔だけ離して配置されている
    ことを特徴とする請求項1乃至7のいずれか1項に記載のレーダ装置用アンテナ。
  9. 前記第2の地板は、前記スルーホール列から前記給電部より遠方側に環状に配列したさらに別の複数のスルーホールを有している
    ことを特徴とする請求項8に記載のレーダ装置用アンテナ。
  10. 前記第2の地板は、前記放射基板の一方の面からさらに高さα(≧0)だけ形成されて前記第1の地板からの高さh=d3+αとなっている
    ことを特徴とする請求項1乃至9のいずれか1項に記載のレーダ装置用アンテナ。
  11. 前記放射基板と前記線路基板との間にさらに別の1以上の基板が積層されて層構造を形成し、前記層構造の基板にバイアス線路が形成されている
    ことを特徴とする請求項1乃至10のいずれか1項に記載のレーダ装置用アンテナ。
  12. 前記バイアス線路と前記アンテナ素子との間に簾状に形成された別のスルーホール列と、
    前記バイアス線路を配置したバイアス層の上部に位置する前記放射基板の表面を覆う面状金属と、をさらに備え、
    前記別のスルーホール列と前記面状金属とが電気的に接続されて、前記バイアス線路と前記アンテナ素子との間の干渉が低減されている
    ことを特徴とする請求項11に記載のレーダ装置用アンテナ。
JP2009013850A 2009-01-26 2009-01-26 レーダ装置用アンテナ Active JP5227820B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009013850A JP5227820B2 (ja) 2009-01-26 2009-01-26 レーダ装置用アンテナ
US12/411,796 US20100188309A1 (en) 2009-01-26 2009-03-26 Radar antenna
EP09156469A EP2211423A3 (en) 2009-01-26 2009-03-27 Radar antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009013850A JP5227820B2 (ja) 2009-01-26 2009-01-26 レーダ装置用アンテナ

Publications (2)

Publication Number Publication Date
JP2010171836A true JP2010171836A (ja) 2010-08-05
JP5227820B2 JP5227820B2 (ja) 2013-07-03

Family

ID=41818945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009013850A Active JP5227820B2 (ja) 2009-01-26 2009-01-26 レーダ装置用アンテナ

Country Status (3)

Country Link
US (1) US20100188309A1 (ja)
EP (1) EP2211423A3 (ja)
JP (1) JP5227820B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050518A (ja) * 2013-08-30 2015-03-16 電気興業株式会社 アンテナ
JP2016034052A (ja) * 2014-07-30 2016-03-10 株式会社日立国際八木ソリューションズ アンテナ装置
JP2019102844A (ja) * 2017-11-28 2019-06-24 日本無線株式会社 方位探知アンテナ
JP2019140549A (ja) * 2018-02-13 2019-08-22 東芝テック株式会社 アンテナおよび読取システム
JP2022505696A (ja) * 2018-10-25 2022-01-14 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング レーダセンサ

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017184556A2 (en) * 2016-04-18 2017-10-26 University Of Florida Research Foundation, Inc. Glass interposer integrated antenna for intrachip, interchip and board communications
US11069980B2 (en) * 2017-02-28 2021-07-20 Toyota Motor Europe Layered waveguide system and method of forming a waveguide
US11289816B2 (en) * 2017-02-28 2022-03-29 Toyota Motor Europe Helically corrugated horn antenna and helically corrugated waveguide system
TWI662743B (zh) * 2018-01-15 2019-06-11 和碩聯合科技股份有限公司 天線裝置
KR102394616B1 (ko) * 2019-11-29 2022-05-06 주식회사 아모센스 안테나 모듈
US11239550B2 (en) * 2020-04-15 2022-02-01 Apple Inc. Electronic devices having compact ultra-wideband antennas
CN116031626B (zh) * 2023-02-15 2023-05-30 长沙莫之比智能科技有限公司 一种高增益毫米波天线

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567911A (ja) * 1991-09-09 1993-03-19 Mitsubishi Electric Corp 電子回路一体形平面アンテナ
JPH0927715A (ja) * 1995-07-11 1997-01-28 Oki Electric Ind Co Ltd 一体型マイクロ波回路を有する誘電体多層基板
JPH09307343A (ja) * 1996-05-15 1997-11-28 Nec Shizuoka Ltd マイクロストリップアンテナ装置
JP2002151940A (ja) * 2000-11-09 2002-05-24 Shigeo Kawasaki 低入力インピーダンスアンテナ
JP2002374116A (ja) * 2001-06-18 2002-12-26 Toyo Commun Equip Co Ltd プリントアンテナ
JP2003347841A (ja) * 2002-05-23 2003-12-05 Ntt Docomo Inc 導体反射板付きモノポールアンテナ
WO2006051947A1 (ja) * 2004-11-15 2006-05-18 Anritsu Corporation 円偏波アンテナ及びそれを用いるレーダ装置
JP2008219322A (ja) * 2007-03-02 2008-09-18 Murata Mfg Co Ltd パッチアンテナ装置
JP2009089212A (ja) * 2007-10-02 2009-04-23 Furukawa Electric Co Ltd:The レーダ装置用アンテナ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4131896A (en) * 1976-02-10 1978-12-26 Westinghouse Electric Corp. Dipole phased array with capacitance plate elements to compensate for impedance variations over the scan angle
ES8801066A1 (es) * 1984-12-20 1987-12-01 Marconi Co Ltd Una antena de dipolos dispuestos en filas y columnas para ondas electromagneticas.
EP0432647B1 (en) * 1989-12-11 1995-06-21 Kabushiki Kaisha Toyota Chuo Kenkyusho Mobile antenna system
AU2001271983A1 (en) * 2000-07-14 2002-01-30 Metawave Communications Corporation System and method for providing improved communication system component interfacing
JP3973402B2 (ja) * 2001-10-25 2007-09-12 株式会社日立製作所 高周波回路モジュール
JP2006258762A (ja) 2005-03-18 2006-09-28 Matsushita Electric Ind Co Ltd レーダ装置
US7812775B2 (en) * 2005-09-23 2010-10-12 California Institute Of Technology Mm-wave fully integrated phased array receiver and transmitter with on-chip antennas
JP4681614B2 (ja) * 2005-11-14 2011-05-11 アンリツ株式会社 直線偏波アンテナ及びそれを用いるレーダ装置
JP3883565B1 (ja) * 2006-02-28 2007-02-21 Tdk株式会社 チップアンテナ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567911A (ja) * 1991-09-09 1993-03-19 Mitsubishi Electric Corp 電子回路一体形平面アンテナ
JPH0927715A (ja) * 1995-07-11 1997-01-28 Oki Electric Ind Co Ltd 一体型マイクロ波回路を有する誘電体多層基板
JPH09307343A (ja) * 1996-05-15 1997-11-28 Nec Shizuoka Ltd マイクロストリップアンテナ装置
JP2002151940A (ja) * 2000-11-09 2002-05-24 Shigeo Kawasaki 低入力インピーダンスアンテナ
JP2002374116A (ja) * 2001-06-18 2002-12-26 Toyo Commun Equip Co Ltd プリントアンテナ
JP2003347841A (ja) * 2002-05-23 2003-12-05 Ntt Docomo Inc 導体反射板付きモノポールアンテナ
WO2006051947A1 (ja) * 2004-11-15 2006-05-18 Anritsu Corporation 円偏波アンテナ及びそれを用いるレーダ装置
JP2008219322A (ja) * 2007-03-02 2008-09-18 Murata Mfg Co Ltd パッチアンテナ装置
JP2009089212A (ja) * 2007-10-02 2009-04-23 Furukawa Electric Co Ltd:The レーダ装置用アンテナ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050518A (ja) * 2013-08-30 2015-03-16 電気興業株式会社 アンテナ
JP2016034052A (ja) * 2014-07-30 2016-03-10 株式会社日立国際八木ソリューションズ アンテナ装置
JP2019102844A (ja) * 2017-11-28 2019-06-24 日本無線株式会社 方位探知アンテナ
JP2019140549A (ja) * 2018-02-13 2019-08-22 東芝テック株式会社 アンテナおよび読取システム
JP7010719B2 (ja) 2018-02-13 2022-01-26 東芝テック株式会社 読取システム
JP2022505696A (ja) * 2018-10-25 2022-01-14 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング レーダセンサ
JP7130129B2 (ja) 2018-10-25 2022-09-02 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング レーダセンサ

Also Published As

Publication number Publication date
JP5227820B2 (ja) 2013-07-03
EP2211423A2 (en) 2010-07-28
EP2211423A3 (en) 2010-08-04
US20100188309A1 (en) 2010-07-29

Similar Documents

Publication Publication Date Title
JP5227820B2 (ja) レーダ装置用アンテナ
JP4974168B2 (ja) レーダ装置用アンテナ
US6008770A (en) Planar antenna and antenna array
US10530060B2 (en) Single-layered end-fire circularly polarized substrate integrated waveguide horn antenna
EP1418643A2 (en) Microstrip antenna array with periodic filters
US7319429B2 (en) Partially reflective surface antenna
US20180145420A1 (en) Wideband antenna radiating element and method for producing wideband antenna radiating element
JP2019527945A (ja) 偏波回転層を含むアンテナおよびレーダシステム
WO2022000351A1 (zh) 天线阵列、雷达和可移动平台
CN107946741B (zh) 用于自动车辆雷达系统的曲折型频率扫描式天线
KR101975332B1 (ko) 단벽 도파관 방사를 위한 폴드형 방사 슬롯들
JP2004516734A (ja) アンテナ装置
JP5420654B2 (ja) バラン非実装の単純な給電素子を用いた広帯域の長スロットアレイアンテナ
JP6490319B1 (ja) アレーアンテナ装置及び通信機器
JP2005523628A (ja) 漏洩波二重偏波スロット型のアンテナ
JP6571486B2 (ja) アンテナ装置およびセクタアンテナ装置
CN113471676B (zh) 一种应用于无源感知系统的Fabry-Perot谐振腔天线
JP2009100253A (ja) レーダ装置用アンテナ
JP2020039122A (ja) ホーンアンテナ、アンテナアレイおよびレーダ
CN113964543A (zh) 通信装置与毫米波全息天线
US11088444B2 (en) Antenna device
CN112106256A (zh) 天线阵列、雷达和可移动平台
WO2022097490A1 (ja) ホーンアンテナ
JP4027775B2 (ja) スロットアレーアンテナ
CN109950688B (zh) 微带型isgw圆极化缝隙行波天线

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

R151 Written notification of patent or utility model registration

Ref document number: 5227820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350