JP2010171348A - Wiring board and stacked ceramic capacitor - Google Patents

Wiring board and stacked ceramic capacitor Download PDF

Info

Publication number
JP2010171348A
JP2010171348A JP2009014783A JP2009014783A JP2010171348A JP 2010171348 A JP2010171348 A JP 2010171348A JP 2009014783 A JP2009014783 A JP 2009014783A JP 2009014783 A JP2009014783 A JP 2009014783A JP 2010171348 A JP2010171348 A JP 2010171348A
Authority
JP
Japan
Prior art keywords
hole conductor
conductor
hole
wiring
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009014783A
Other languages
Japanese (ja)
Other versions
JP5171664B2 (en
Inventor
Naoki Otaka
直樹 大鷹
Daisuke Nakada
大介 中田
Motohiko Sato
元彦 佐藤
Atsushi Otsuka
淳 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2009014783A priority Critical patent/JP5171664B2/en
Publication of JP2010171348A publication Critical patent/JP2010171348A/en
Application granted granted Critical
Publication of JP5171664B2 publication Critical patent/JP5171664B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board for obtaining a low-loss and small-delay signal wiring using a through-hole conductor of a built-in component built in the wiring board as a signal wiring. <P>SOLUTION: The wiring board 10 includes a semiconductor chip 200 (mounting component) is mounted. A core material 11 whose accommodation hole section 11a is opened, a condenser 100 (built-in component) that is accommodated in the accommodation hole section 11a and in which a through-hole conductor 60 is formed, and wiring lamination sections 12 and 13 in which an insulation layer and a conductor layer are laminated and formed at the upper and lower sides of the core material 11. The through-hole conductor 60 is used as the signal wiring that is connected with the semiconductor chip 200 via a first wiring lamination section 12, and its inside area is filled with a choke object 62 (material) while its outside neighboring area is filled with a choke object 63 (material). The choke objects 62 and 63 have lower dielectric constants than the material of the capacitor 100. Thus, the signal wiring having high-conductivity and low-dielectric constant is configured and low-loss, small-delay, and excellent transmission performance is obtained. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、コア材に開口された収容穴部に内蔵部品を収容した配線基板と、この配線基板の収容穴部に収容可能な内蔵部品としての積層セラミックコンデンサに関するものである。   The present invention relates to a wiring board that houses a built-in component in a housing hole that is opened in a core material, and a multilayer ceramic capacitor as a built-in component that can be housed in a housing hole of the wiring board.

従来から、多数の回路素子を形成した半導体チップを載置するためのパッケージが広く用いられている。パッケージの構造としては、例えば、コア材を配置し、その上下に導体層及び絶縁層を交互に積層した配線積層部を形成した配線基板が知られている。このような配線基板には、載置される半導体チップに対して電源供給のための電源配線、グランド配線、データや制御信号の送受信のための信号配線などの配線構造を設ける必要がある。半導体チップが載置された配線基板は、プリント基板等の外部基材に実装され、半導体チップの多数の端子と外部基材が配線基板の配線構造を経由して電気的に接続される。   Conventionally, a package for mounting a semiconductor chip on which a large number of circuit elements are formed has been widely used. As a package structure, for example, a wiring board is known in which a core material is disposed and a wiring laminated portion in which conductor layers and insulating layers are alternately laminated above and below the core material is formed. Such a wiring board needs to be provided with a wiring structure such as a power supply wiring for supplying power to the semiconductor chip to be mounted, a ground wiring, and a signal wiring for transmitting and receiving data and control signals. The wiring board on which the semiconductor chip is placed is mounted on an external base material such as a printed board, and a large number of terminals of the semiconductor chip and the external base material are electrically connected via the wiring structure of the wiring board.

一方、半導体チップに供給される電源を安定化させるために、パッケージにコンデンサを配置して電源配線に接続することが望ましい。この場合、コンデンサを配線基板上に搭載する構成では、コンデンサの配置領域を確保するために他の搭載部品の配置の自由度が低下するとともに、コンデンサや半導体チップとの配線距離が他の配線等に制限されるために長くなる。そのため、信号配線の配線抵抗やインダクタンスが大きくなるので、半導体チップに供給される電源電圧の降下などの特性劣化を招くとともに、配線基板の完成後にコンデンサを搭載する必要があるため製造工程が複雑になる。これらの欠点を是正すべく、配線基板の内部にコンデンサを内蔵する手法が提案されている(例えば、特許文献1参照)。このようにコンデンサを配線基板に内蔵すれば、配線基板上に搭載する場合に比べて搭載部品に近接してコンデンサを配置することができる。   On the other hand, in order to stabilize the power supplied to the semiconductor chip, it is desirable to place a capacitor in the package and connect it to the power supply wiring. In this case, in the configuration in which the capacitor is mounted on the wiring board, the degree of freedom of placement of other mounted parts is reduced to secure the capacitor placement area, and the wiring distance from the capacitor and the semiconductor chip is reduced to other wiring. To be limited to become longer. As a result, the wiring resistance and inductance of the signal wiring increase, leading to characteristics deterioration such as a drop in power supply voltage supplied to the semiconductor chip, and the manufacturing process is complicated because it is necessary to mount a capacitor after the wiring board is completed. Become. In order to correct these drawbacks, a method of incorporating a capacitor inside the wiring board has been proposed (see, for example, Patent Document 1). If the capacitor is built in the wiring board in this way, the capacitor can be arranged closer to the mounted component than when mounted on the wiring board.

しかし、配線基板にコンデンサを内蔵する場合、配線基板の中央上部に載置された半導体チップの信号端子から延伸される信号配線は、直下のコンデンサの領域を避けて引き回す配置にせざるを得ない。そのため、半導体チップから周辺領域を経由して信号配線を延伸し、それをビア導体で積層方向に接続する配線構造となるため、配線の自由度が小さくなり、さらにはパッケージサイズの増大につながる。   However, when a capacitor is built in the wiring board, the signal wiring extended from the signal terminal of the semiconductor chip placed at the upper center of the wiring board must be arranged to avoid the area of the capacitor immediately below. For this reason, the signal wiring is extended from the semiconductor chip via the peripheral region and connected in the stacking direction with via conductors, so that the degree of freedom of wiring is reduced and the package size is further increased.

一方、ビアアレイタイプのコンデンサを配線基板に内蔵する場合、正極用の配線と負極用の配線に加えて、信号配線として用いる配線構造を付加することが考えられる。一般に、積層セラミックにて構成されるビアアレイタイプのコンデンサにおいて、一部のビア導体を信号配線として用いる場合、コンデンサの材料の誘電率が比較的大きいために信号配線の伝送遅延の増大やインピーダンスの不整合を生じる懸念がある。よって、コンデンサ部を取り囲む低誘電率部を設け、この低誘電率部に信号配線を形成する手法が提案されている(例えば、特許文献2参照)。   On the other hand, when a via array type capacitor is built in a wiring board, it is conceivable to add a wiring structure used as a signal wiring in addition to a positive wiring and a negative wiring. Generally, in a via array type capacitor composed of multilayer ceramic, when some via conductors are used as signal wiring, the dielectric constant of the capacitor material is relatively large, which increases signal line transmission delay and impedance. There are concerns about inconsistencies. Therefore, a method has been proposed in which a low dielectric constant portion surrounding the capacitor portion is provided, and a signal wiring is formed in the low dielectric constant portion (see, for example, Patent Document 2).

特開2004−228190号公報JP 2004-228190 A 特開2005−39006号公報JP 2005-39006 A

上記特許文献2に開示された手法では、低誘電率部を貫通する信号配線は、コンデンサ部を貫通する正極用のビア導体及び負極用のビア導体と同様の構造で形成される。積層セラミックコンデンサを用いる場合、焼結温度が高いセラミックの焼結体を前提にすると、信号配線の材料及び正極及び負極用の各ビア導体の材料は、ニッケル等の比較的導電率が低い金属が用いられる。一方、焼結温度が低いセラミックの焼結体は、一般に誘電率が低くなり、コンデンサの容量を大きくすることが難しい。よって、コンデンサ部に形成される信号配線の抵抗成分が大きくなり、伝送信号の損失の増加を招き、これにより信号伝送エラーや発熱等が生じるという問題がある。   In the method disclosed in Patent Document 2, the signal wiring that penetrates the low dielectric constant portion is formed with the same structure as the positive and negative via conductors that penetrate the capacitor portion. When using a multilayer ceramic capacitor, assuming a ceramic sintered body with a high sintering temperature, the material of the signal wiring and the material of each via conductor for the positive electrode and the negative electrode are made of a metal having a relatively low conductivity such as nickel. Used. On the other hand, a ceramic sintered body having a low sintering temperature generally has a low dielectric constant, and it is difficult to increase the capacitance of the capacitor. Therefore, there is a problem that the resistance component of the signal wiring formed in the capacitor portion is increased, leading to an increase in transmission signal loss, thereby causing a signal transmission error, heat generation, and the like.

本発明はこれらの問題を解決するためになされたものであり、載置された搭載部品の直下の領域に内蔵部品を収容した配線基板において、内蔵部品の領域を避けることなく半導体チップと外部基材との間に導電率の高い信号配線を配置し、その周囲に低誘電率の材料を設け、低損失かつ遅延の小さい信号配線を実現可能で小型化に適した配線基板を提供することを目的とする。   The present invention has been made to solve these problems, and in a wiring board that accommodates a built-in component in a region immediately below the mounted component, a semiconductor chip and an external substrate are avoided without avoiding the region of the built-in component. Providing a wiring board suitable for miniaturization by arranging signal wiring with high conductivity between the materials and providing low-permittivity material around it to realize signal wiring with low loss and small delay Objective.

上記課題を解決するために、本発明の配線基板は、搭載部品を載置し、当該搭載部品と外部基材との間を電気的に接続する配線基板であって、上面及び下面を貫通する収容穴部が開口されたコア材と、前記収容穴部に収容され、上面及び下面を貫通する一又は複数の第1スルーホール導体が形成された内蔵部品と、前記コア材の上面側に絶縁層及び導体層を交互に積層形成した第1配線積層部と、前記コア材の下面側に絶縁層及び導体層を交互に積層形成した第2配線積層部とを備え、前記第1スルーホール導体を、前記第1配線積層部を介して前記搭載部品に接続される信号配線として用い、前記第1スルーホール導体の内側の領域に前記内蔵部品の材料の誘電率よりも低い誘電率を有する材料を充填し、かつ前記第1スルーホール導体の外側の近傍領域を前記内蔵部品の材料の誘電率よりも低い誘電率を有する材料で覆った構造を有している。   In order to solve the above problems, a wiring board according to the present invention is a wiring board on which a mounting component is placed and electrically connected between the mounting component and an external base material, and penetrates through an upper surface and a lower surface. Insulated on the upper surface side of the core material, the core material having an opening in the housing hole, the built-in component accommodated in the housing hole portion and formed with one or more first through-hole conductors penetrating the upper surface and the lower surface A first wiring laminated portion in which layers and conductor layers are alternately laminated; and a second wiring laminated portion in which insulating layers and conductor layers are alternately laminated on the lower surface side of the core material; Is used as a signal wiring connected to the mounting component via the first wiring laminated portion, and a material having a dielectric constant lower than the dielectric constant of the material of the built-in component in the region inside the first through-hole conductor And the first through-hole conductor It has a structure covering the area near the side of a material having a dielectric constant lower than that of the internal parts of the material.

なお、本明細書において「スルーホール導体」の文言は、配線基板もしくは内蔵部品の層間を導通させる管状の導体の意味で用いるものとする。   In this specification, the term “through-hole conductor” is used to mean a tubular conductor that conducts between layers of a wiring board or a built-in component.

本発明の配線基板によれば、コア材の収容穴部に内蔵部品を収容し、内蔵部品を上下に貫通する第1スルーホール導体を形成し、これを搭載部品に接続される信号配線として用いる構造を実現した。これにより、搭載部材から外部基材に信号配線を延伸する場合、コンデンサの配置に制約されることなく直下の経路を活用できるとともに、信号配線の周囲の材料を低い誘電率で形成することができる。よって、配線基板のパッケージの小型化を実現しつつ、搭載部品に入出力される伝送信号の遅延を防止して良好な伝送特性を確保することができる。   According to the wiring board of the present invention, the built-in component is housed in the housing hole of the core material, the first through-hole conductor penetrating the built-in component vertically is formed, and this is used as the signal wiring connected to the mounted component. Realized the structure. As a result, when the signal wiring is extended from the mounting member to the external base material, it is possible to use the path immediately below without being restricted by the placement of the capacitor, and to form the material around the signal wiring with a low dielectric constant. . Therefore, it is possible to prevent the delay of the transmission signal input / output to / from the mounted component and ensure good transmission characteristics while realizing a reduction in the size of the wiring board package.

本発明において、前記第1スルーホール導体は、前記内蔵部品の内部導体の導電率よりも高い導電率を有する金属を用いて形成することが望ましい。これにより、第1スルーホール導体を用いた信号配線は、周囲の材料が低い誘電率であることに加え、それ自体が高い導電率の材料で形成されるので、信号配線の低損失化を図るとともに、伝送信号の遅延を一層抑制することができる。   In the present invention, the first through-hole conductor is preferably formed using a metal having a conductivity higher than that of the inner conductor of the built-in component. Accordingly, the signal wiring using the first through-hole conductor is formed of a material having a high conductivity in addition to the surrounding material having a low dielectric constant, so that the loss of the signal wiring is reduced. At the same time, the delay of the transmission signal can be further suppressed.

本発明において、前記内蔵部品として、セラミック焼結体を用いて構成されたコンデンサを用いることができる。この場合、前記内蔵部品には、前記信号配線をシールドするための第2スルーホール導体を前記第1スルーホール導体の側面を取り囲むように形成し、前記第1スルーホール導体と前記第2スルーホール導体とに挟まれた領域に前記内蔵部品の材料の誘電率よりも低い誘電率を有する材料を充填してもよい。さらに、前記第1スルーホール導体及び前記第2スルーホール導体は、前記搭載部品の中央部の直下の位置に形成してもよい。ここで、前記搭載部品が所定の平面形状(例えば、正方形)を有する場合において、その「中央部」は、前記搭載部品の平面形状の中心から、その平面形状の略半分のサイズの形状部分の範囲内であることが望ましい。   In the present invention, a capacitor configured using a ceramic sintered body can be used as the built-in component. In this case, a second through-hole conductor for shielding the signal wiring is formed in the built-in component so as to surround a side surface of the first through-hole conductor, and the first through-hole conductor and the second through-hole are formed. A region sandwiched between the conductors may be filled with a material having a dielectric constant lower than that of the material of the built-in component. Furthermore, the first through-hole conductor and the second through-hole conductor may be formed at a position directly below the center portion of the mounting component. Here, when the mounting component has a predetermined planar shape (for example, a square), the “central portion” is a shape portion having a size approximately half the planar shape from the center of the planar shape of the mounting component. It is desirable to be within the range.

上記課題を解決するために、本発明の積層セラミックコンデンサは、セラミック誘電体層と内部電極層とを交互に積層し、前記内部電極層に接続された複数のビア導体をアレイ状に配置した積層セラミックコンデンサであって、前記複数のビア導体が配置されていない領域の上面及び下面を貫通し、前記内部電極層及び前記ビア導体の導電率よりも高い導電率を有する金属を用いて形成された一又は複数の第1スルーホール導体を備え、前記第1スルーホール導体の内側の領域に前記セラミック誘電体層の誘電率よりも低い誘電率を有する材料を充填し、かつ前記第1スルーホール導体の外側の近傍領域を前記内蔵部品の材料の誘電率よりも低い誘電率を有する材料で覆った構造を有している。   In order to solve the above-mentioned problems, a multilayer ceramic capacitor according to the present invention is a multilayer ceramic capacitor in which ceramic dielectric layers and internal electrode layers are alternately stacked, and a plurality of via conductors connected to the internal electrode layers are arranged in an array. A ceramic capacitor, which is formed using a metal that penetrates an upper surface and a lower surface of a region where the plurality of via conductors are not disposed and has a conductivity higher than that of the internal electrode layer and the via conductor. One or a plurality of first through-hole conductors, a material having a dielectric constant lower than a dielectric constant of the ceramic dielectric layer is filled in a region inside the first through-hole conductor, and the first through-hole conductor The region near the outside is covered with a material having a dielectric constant lower than that of the material of the built-in component.

本発明の積層セラミックコンデンサにおいて、前記第1スルーホール導体の側面を取り囲むように形成された第2スルーホール導体をさらに設け、前記第1スルーホール導体と前記第2スルーホール導体とに挟まれた領域に前記セラミック誘電体層の誘電率よりも低い誘電率を有する材料を充填してもよい。この場合、前記第1スルーホール導体及び前記第2スルーホール導体は、銅めっきにより形成してもよい。さらに、前記第2スルーホール導体は、前記内部電極層の正極又は負極と同じ電位に接続してもよい。   The multilayer ceramic capacitor of the present invention further includes a second through-hole conductor formed so as to surround a side surface of the first through-hole conductor, and is sandwiched between the first through-hole conductor and the second through-hole conductor. The region may be filled with a material having a dielectric constant lower than that of the ceramic dielectric layer. In this case, the first through-hole conductor and the second through-hole conductor may be formed by copper plating. Furthermore, the second through-hole conductor may be connected to the same potential as the positive electrode or the negative electrode of the internal electrode layer.

本発明によれば、搭載部品を載置する配線基板にコンデンサ等の内蔵部品を収容する場合、内蔵部品を貫通する一又は複数の第1スルーホール導体を形成し、これを信号配線として用い、その内側の領域および外側近傍の領域を低誘電率の材料を用いて形成する構造を採用したので、配線基板上で直下のコンデンサを避けることなく信号配線を引き回すとともに、信号配線を経由して入出力される伝送信号の遅延を防止して伝送性能の向上が可能となる。また、第1スルーホール導体を高導電率の金属で形成し、その周囲に低誘電率の材料を設けることができるので、低損失かつ伝送遅延を一層抑制可能な信号配線を構成し、信号伝送エラーや発熱等の問題が生じることを防止し得る配線基板を実現することができる。   According to the present invention, when a built-in component such as a capacitor is accommodated in a wiring board on which the mounted component is placed, one or a plurality of first through-hole conductors penetrating the built-in component are formed, and this is used as a signal wiring. Since the inner region and the region near the outer side are formed using a low dielectric constant material, the signal wiring is routed on the wiring board without avoiding the capacitor directly below, and is input via the signal wiring. The transmission performance can be improved by preventing the delay of the output transmission signal. In addition, since the first through-hole conductor is made of a metal with high conductivity and a low dielectric constant material can be provided around the first through-hole conductor, a signal wiring that can further reduce transmission loss and reduce transmission loss can be configured. A wiring board that can prevent problems such as errors and heat generation can be realized.

本実施形態の配線基板の概略の断面構造を示す図である。It is a figure which shows the general | schematic cross-section of the wiring board of this embodiment. 図1のコンデンサの断面図である。It is sectional drawing of the capacitor | condenser of FIG. 図1のコンデンサの上面図である。FIG. 2 is a top view of the capacitor of FIG. 1. 本実施形態の配線基板の製造方法を説明する第1の図である。It is a 1st figure explaining the manufacturing method of the wiring board of this embodiment. 本実施形態の配線基板の製造方法を説明する第2の図である。It is a 2nd figure explaining the manufacturing method of the wiring board of this embodiment. 本実施形態の配線基板の製造方法を説明する第3の図である。It is a 3rd figure explaining the manufacturing method of the wiring board of this embodiment. 本実施形態の配線基板の製造方法を説明する第4の図である。It is a 4th figure explaining the manufacturing method of the wiring board of this embodiment. 本実施形態の配線基板の製造方法を説明する第5の図である。It is a 5th figure explaining the manufacturing method of the wiring board of this embodiment. 本実施形態の配線基板の製造方法を説明する第6の図である。It is a 6th figure explaining the manufacturing method of the wiring board of this embodiment. 本実施形態の変形例として、スルーホール導体及び閉塞体の形成方法を変更した場合の配線基板の概略の断面構造を示す図である。It is a figure which shows the general | schematic cross-section of a wiring board at the time of changing the formation method of a through-hole conductor and a closure as a modification of this embodiment.

以下、本発明を適用した配線基板の好適な実施形態について、図面を参照しながら説明する。   Hereinafter, a preferred embodiment of a wiring board to which the present invention is applied will be described with reference to the drawings.

図1は、本実施形態の配線基板の概略の断面構造を示す図である。図1に示す配線基板10は、コア材11と、コア材11の上面側の第1配線積層部12と、コア材11の下面側の第2配線積層部13とを含む構造を有している。本実施形態の配線基板10は、その内部に内蔵部品としてのコンデンサ100が内蔵されているとともに、上部に搭載部品としての半導体チップ200が載置されている。   FIG. 1 is a diagram showing a schematic cross-sectional structure of the wiring board of the present embodiment. The wiring board 10 shown in FIG. 1 has a structure including a core material 11, a first wiring laminated portion 12 on the upper surface side of the core material 11, and a second wiring laminated portion 13 on the lower surface side of the core material 11. Yes. The wiring board 10 of the present embodiment includes a capacitor 100 as a built-in component therein, and a semiconductor chip 200 as a mounted component mounted thereon.

コア材11は、例えば、SiOなどのフィラー材を含有するエポキシ樹脂からなる。コア材11の上面には導体層21が形成され、コア材11の下面には導体層22が形成されている。コア材11には、中央を矩形状に貫通する収容穴部11aが開口され、この収容穴部11aにコンデンサ100が埋め込まれた状態で収容されている。コア材11の収容穴部11aとコンデンサ100の側面との間隙部には、樹脂充填材50が充填されている。樹脂充填材50としては、例えば高分子材料からなる熱硬化性樹脂が用いられる。樹脂充填材50はコンデンサ100を固定する役割を有し、コンデンサ100及びコア材11の変形を樹脂充填材50が吸収するように作用する。 The core material 11 is made of an epoxy resin containing a filler material such as SiO 2 , for example. A conductor layer 21 is formed on the upper surface of the core material 11, and a conductor layer 22 is formed on the lower surface of the core material 11. The core material 11 has an accommodation hole 11a that passes through the center in a rectangular shape, and is accommodated in a state in which the capacitor 100 is embedded in the accommodation hole 11a. A resin filler 50 is filled in a gap between the accommodation hole 11 a of the core material 11 and the side surface of the capacitor 100. As the resin filler 50, for example, a thermosetting resin made of a polymer material is used. The resin filler 50 has a role of fixing the capacitor 100 and acts so that the resin filler 50 absorbs deformation of the capacitor 100 and the core material 11.

コンデンサ100は、ビアアレイタイプの積層セラミックコンデンサであり、その中央部に信号配線及びシールド構造を形成した点が特徴的である。すなわち、コンデンサ100の中央部には、所定箇所を積層方向に貫通する2重構造の複数のスルーホール導体60、61が形成されている。各々のスルーホール導体60の内部は閉塞体62で埋められるとともに、各々のスルーホール導体60、61に挟まれた領域は閉塞体63で埋められている。内周側のスルーホール導体60(本発明の第1スルーホール導体)は、半導体チップ200と外部基材(不図示)の間の信号配線として用いられ、外周側のスルーホール導体61(本発明の第2スルーホール導体)は、信号配線を取り囲むシールド構造として用いられる。それぞれのスルーホール導体60、61は例えば銅メッキにより形成され、それぞれの閉塞体62、63は例えば低誘電率のエポキシ樹脂など、コンデンサ100の材料の誘電率よりも低い誘電率を有する材料からなる。なお、コンデンサ100の詳細な構造については後述する。   The capacitor 100 is a via array type multilayer ceramic capacitor, and is characterized in that a signal wiring and a shield structure are formed at the center thereof. That is, a plurality of double-hole through-hole conductors 60 and 61 are formed in the central portion of the capacitor 100 so as to penetrate predetermined locations in the stacking direction. The inside of each through-hole conductor 60 is filled with a closing body 62, and the region sandwiched between the through-hole conductors 60 and 61 is filled with a closing body 63. The inner peripheral side through-hole conductor 60 (first through-hole conductor of the present invention) is used as signal wiring between the semiconductor chip 200 and an external substrate (not shown), and the outer peripheral side through-hole conductor 61 (the present invention). The second through-hole conductor) is used as a shield structure surrounding the signal wiring. Each through-hole conductor 60, 61 is formed by, for example, copper plating, and each closing body 62, 63 is made of a material having a dielectric constant lower than that of the capacitor 100, such as a low dielectric constant epoxy resin. . The detailed structure of the capacitor 100 will be described later.

コア材11には、所定箇所を積層方向に貫通する複数のスルーホール導体30が形成されている。スルーホール導体30の内部は、例えばエポキシ樹脂からなる閉塞体31で埋められている。スルーホール導体30は、各導体層21、22における任意の配線パターンを積層方向に接続導通する役割を有する。   The core material 11 is formed with a plurality of through-hole conductors 30 penetrating predetermined portions in the stacking direction. The inside of the through-hole conductor 30 is filled with a closing body 31 made of, for example, an epoxy resin. The through-hole conductor 30 has a role of connecting and conducting an arbitrary wiring pattern in each of the conductor layers 21 and 22 in the stacking direction.

第1配線積層部12は、コア材11の上面側に積層形成された樹脂絶縁層14、16と、樹脂絶縁層14の上面に形成された導体層23と、樹脂絶縁層16の上面に形成された複数の端子パッド25と、樹脂絶縁層16の上面を覆うソルダーレジスト層18とからなる構造を有する。樹脂絶縁層14の所定位置には、各導体層21、23を積層方向に接続導通する複数のビア導体32が設けられ、樹脂絶縁層16の所定位置には、導体層23と端子パッド25を積層方向に接続導通する複数のビア導体34が設けられている。ソルダーレジスト層18は、複数箇所が開口されて複数の端子パッド25が露出し、そこに複数の半田バンプ40が形成されている。各々の半田バンプ40は、配線基板10に載置される半導体チップ200の各パッド201に接続される。   The first wiring laminated portion 12 is formed on the resin insulating layers 14 and 16 formed on the upper surface side of the core material 11, the conductor layer 23 formed on the upper surface of the resin insulating layer 14, and the upper surface of the resin insulating layer 16. The plurality of terminal pads 25 and a solder resist layer 18 covering the top surface of the resin insulating layer 16 are provided. A plurality of via conductors 32 are provided at predetermined positions on the resin insulating layer 14 to connect and conduct the conductor layers 21 and 23 in the laminating direction. The conductor layers 23 and the terminal pads 25 are provided at predetermined positions on the resin insulating layer 16. A plurality of via conductors 34 that are conductively connected in the stacking direction are provided. The solder resist layer 18 is opened at a plurality of locations to expose a plurality of terminal pads 25, and a plurality of solder bumps 40 are formed there. Each solder bump 40 is connected to each pad 201 of the semiconductor chip 200 placed on the wiring substrate 10.

第2配線積層部13は、コア材11の下面側に積層形成された樹脂絶縁層15、17と、樹脂絶縁層15の下面に形成された導体層24と、樹脂絶縁層17の下面に形成された複数のBGA用パッド26と、樹脂絶縁層17の下面を覆うソルダーレジスト層19とからなる構造を有する。樹脂絶縁層15の所定位置には、各導体層22、24を積層方向に接続導通する複数のビア導体33が設けられ、樹脂絶縁層17の所定位置には、導体層24とBGA用パッド26を積層方向に接続導通する複数のビア導体35が設けられている。ソルダーレジスト層19は、複数箇所が開口されて複数のBGA用パッド26が露出し、そこに複数の半田ボール41が接続される。配線基板10をBGAパッケージとして用いる場合、複数の半田ボール41を介して、外部基材と配線基板10の各部との電気的接続が可能となる。   The second wiring laminated portion 13 is formed on the lower surface of the resin insulating layer 17, the resin insulating layers 15 and 17 formed on the lower surface side of the core material 11, the conductor layer 24 formed on the lower surface of the resin insulating layer 15. The plurality of BGA pads 26 and a solder resist layer 19 covering the lower surface of the resin insulating layer 17 are provided. A plurality of via conductors 33 are provided at predetermined positions of the resin insulating layer 15 to connect and conduct the conductor layers 22 and 24 in the laminating direction. At predetermined positions of the resin insulating layer 17, the conductor layer 24 and the BGA pad 26 are provided. A plurality of via conductors 35 are provided which are connected in the laminating direction. The solder resist layer 19 is opened at a plurality of locations to expose a plurality of BGA pads 26 to which a plurality of solder balls 41 are connected. When the wiring board 10 is used as a BGA package, the external base material and each part of the wiring board 10 can be electrically connected via the plurality of solder balls 41.

上述したように、本実施形態の配線基板10の構造上の特徴は、内蔵されるコンデンサ100を貫通するスルーホール導体60を信号配線として用いる点である。本来、コンデンサ100には、電源とグランドを内部電極層に供給するためのビア導体のみが積層方向の配線として形成されるが、本実施形態の構造によればコンデンサ100自体には供給されない信号配線を配線基板10の中央領域に配置することができる。そのため、半導体チップ200のパッド201から半田ボール41に至る信号経路は、スルーホール導体60を含む最短の経路を構成することができる。また、コンデンサ100に形成されるビア導体は誘電率が高いセラミックに囲まれるのに比べ、スルーホール導体60の近傍の閉塞体62、63は、コンデンサ100の材料(例えば、チタン酸バリウム)に比べて誘電率を低くすることができる。さらに、コンデンサ100のビア導体には導電率が比較的低いニッケルが用いられるのに対し、スルーホール導体60は、銅などの高い導電率の金属材料を用いることができる。従って、本実施形態の信号配線により高導電率かつ低誘電率の伝送路を構成できるので、信号の遅延を防止して良好な伝送性能を確保できるとともに、抵抗成分の増加による信号伝送エラーや発熱などの不具合を防止することができる。   As described above, the structural feature of the wiring board 10 of the present embodiment is that the through-hole conductor 60 penetrating the built-in capacitor 100 is used as the signal wiring. Originally, in the capacitor 100, only via conductors for supplying power and ground to the internal electrode layer are formed as wiring in the stacking direction. However, according to the structure of this embodiment, signal wiring that is not supplied to the capacitor 100 itself. Can be arranged in the central region of the wiring board 10. Therefore, the signal path from the pad 201 of the semiconductor chip 200 to the solder ball 41 can form the shortest path including the through-hole conductor 60. In addition, the closing conductors 62 and 63 near the through-hole conductor 60 are compared to the material of the capacitor 100 (for example, barium titanate), compared to the via conductor formed in the capacitor 100 surrounded by ceramic having a high dielectric constant. Thus, the dielectric constant can be lowered. Further, nickel having a relatively low conductivity is used for the via conductor of the capacitor 100, whereas a metal material having a high conductivity such as copper can be used for the through-hole conductor 60. Therefore, since the signal wiring of this embodiment can constitute a transmission path with high conductivity and low dielectric constant, it is possible to prevent signal delay and ensure good transmission performance, as well as signal transmission errors and heat generation due to increased resistance components. And other problems can be prevented.

また、コンデンサ100には、信号配線となるスルーホール導体60の周囲に、閉塞体63を挟んでシールド構造となるスルーホール導体61が形成されているので、信号配線への電磁的干渉を有効に抑制することができる。この場合、信号配線と外部との間の電磁的干渉を抑制する効果に加え、複数の信号配線の各々に対し個別にシールド構造が形成されるので、信号配線同士の電磁的干渉を抑制する効果がある。さらに、スルーホール導体61をグランドに接続して信号配線のグランドを強化することも可能であり、これにより信号の遅延を一層抑えることができる。   In addition, since the capacitor 100 is provided with a through-hole conductor 61 having a shield structure around the through-hole conductor 60 serving as a signal wiring with a closing body 63 interposed therebetween, electromagnetic interference with the signal wiring is effectively prevented. Can be suppressed. In this case, in addition to the effect of suppressing the electromagnetic interference between the signal wiring and the outside, the shield structure is individually formed for each of the plurality of signal wirings, so the effect of suppressing the electromagnetic interference between the signal wirings There is. Further, it is possible to strengthen the signal wiring ground by connecting the through-hole conductor 61 to the ground, thereby further suppressing signal delay.

なお、本実施形態では簡単のため、コンデンサ100に4本の信号配線(2×2)を貫通させる場合を例にとって説明するが、信号配線の本数は適宜に変更できる。この場合、4本の信号配線を取り囲む4つのシールド構造を形成する場合に限らず、1つのシールド構造で4本の信号配線を取り囲む構造としてもよい。また、コンデンサ100に、信号配線となるスルーホール導体60及びその内部の閉塞体62のみを形成し、シールド構造となるスルーホール導体61及びその内部の閉塞体63を設けない構造を採用することができる。   In the present embodiment, for the sake of simplicity, a case where four signal wires (2 × 2) are passed through the capacitor 100 will be described as an example. However, the number of signal wires can be changed as appropriate. In this case, the invention is not limited to the formation of four shield structures that surround the four signal wirings, and a structure in which the four signal wirings are surrounded by one shield structure may be employed. Further, it is possible to adopt a structure in which only the through-hole conductor 60 serving as the signal wiring and the closed body 62 inside thereof are formed in the capacitor 100 and the through-hole conductor 61 serving as the shield structure and the closed body 63 inside thereof are not provided. it can.

次に、図1のコンデンサ100の構造について、図2及び図3を参照して説明する。それぞれ、図2にコンデンサ100の断面図を示し、図3にコンデンサ100の上面図を示している。本実施形態のコンデンサ100は、上述したようにビアアレイタイプのコンデンサであり、セラミック焼結体101を用いて複数のセラミック誘電体層102を積層形成した構造を有する。セラミック焼結体101は、例えばチタン酸バリウム等の高誘電率セラミックからなる。各々のセラミック誘電体層102の間には、第1内部電極層110aと第2内部電極層110bが交互に配置されている。第1内部電極層110aは電源用の電極として機能し、第2内部電極層110bはグランド用の電極として機能し、両電極が絶縁体である各セラミック誘電体層102を挟んで対向配置されることで所定の容量が形成される。   Next, the structure of the capacitor 100 of FIG. 1 will be described with reference to FIGS. FIG. 2 shows a cross-sectional view of the capacitor 100, and FIG. 3 shows a top view of the capacitor 100. The capacitor 100 of the present embodiment is a via array type capacitor as described above, and has a structure in which a plurality of ceramic dielectric layers 102 are laminated using a ceramic sintered body 101. The ceramic sintered body 101 is made of a high dielectric constant ceramic such as barium titanate. Between the ceramic dielectric layers 102, the first internal electrode layers 110a and the second internal electrode layers 110b are alternately arranged. The first internal electrode layer 110a functions as an electrode for power supply, the second internal electrode layer 110b functions as an electrode for ground, and both electrodes are disposed to face each other with each ceramic dielectric layer 102 being an insulator interposed therebetween. Thus, a predetermined capacity is formed.

図3に示すように、セラミック焼結体101の上面の周辺領域には、複数の第1端子電極107a及び複数の第2端子電極107bがアレイ状に配置されている。一方、セラミック焼結体の中央領域には、上述の4つのスルーホール導体60の上端の位置に4つの端子電極107cが配置されるとともに、これらの各端子電極107cは閉塞体62(図1)を挟んで4つのスルーホール導体61により取り囲まれている。なお、セラミック焼結体101の下面には、図3と同様の配置で、複数の第1端子電極108aと、複数の第2端子電極108bと、4つの端子電極108cが形成されている。   As shown in FIG. 3, a plurality of first terminal electrodes 107 a and a plurality of second terminal electrodes 107 b are arranged in an array in the peripheral region on the upper surface of the ceramic sintered body 101. On the other hand, in the central region of the ceramic sintered body, four terminal electrodes 107c are arranged at the upper end positions of the above-described four through-hole conductors 60, and each of these terminal electrodes 107c is closed by a closing body 62 (FIG. 1). Is surrounded by four through-hole conductors 61. A plurality of first terminal electrodes 108a, a plurality of second terminal electrodes 108b, and four terminal electrodes 108c are formed on the lower surface of the ceramic sintered body 101 in the same arrangement as in FIG.

また、セラミック焼結体101には、全てのセラミック誘電体層102を貫通する多数のビアホールにニッケル等を埋め込んだ複数の第1ビア導体109a及び複数の第2ビア導体109bが形成されている。そして、各々の第1ビア導体109aは、上方の第1端子電極107aと下方の第1端子電極108aとを積層方向に接続導通している。また、各々の第2ビア導体109bは、上方の第2端子電極107bと下方の第2端子電極108bとを積層方向に接続導通している。   Further, the ceramic sintered body 101 is formed with a plurality of first via conductors 109 a and a plurality of second via conductors 109 b in which a large number of via holes penetrating all the ceramic dielectric layers 102 are embedded. Each first via conductor 109a connects and connects the upper first terminal electrode 107a and the lower first terminal electrode 108a in the stacking direction. In addition, each second via conductor 109b connects and connects the upper second terminal electrode 107b and the lower second terminal electrode 108b in the stacking direction.

図1及び図2において、半導体チップ200における電源用のパッド201は、半田バンプ40、端子パッド25、ビア導体34、導体層23、ビア導体32、第1端子電極107a、第1ビア導体109aを経由して第1内部電極層110aに接続されるとともに、さらに第1端子電極108a、ビア導体33、導体層24、ビア導体35、BGA用パッド26を経由して、電源用の半田ボール41に接続される。また、半導体チップ200におけるグランド用のパッド201は、上記のような経路を経て、第2端子電極107b、第2ビア導体109b、第2内部電極層110bに接続され、最終的にグランド用の半田ボール41に接続される。   1 and 2, the power supply pad 201 in the semiconductor chip 200 includes a solder bump 40, a terminal pad 25, a via conductor 34, a conductor layer 23, a via conductor 32, a first terminal electrode 107a, and a first via conductor 109a. And connected to the first internal electrode layer 110a via the first terminal electrode 108a, the via conductor 33, the conductor layer 24, the via conductor 35, and the BGA pad 26 to the power supply solder ball 41. Connected. Further, the ground pad 201 in the semiconductor chip 200 is connected to the second terminal electrode 107b, the second via conductor 109b, and the second internal electrode layer 110b through the above-described path, and finally, the ground solder. Connected to the ball 41.

本実施形態のコンデンサ100において、スルーホール導体60を用いて信号配線を構成することは、ビア導体を用いるよりも伝送性能の面で有利である。すなわち、一般に、エポキシ樹脂からなる閉塞体62、63の誘電率は、コンデンサ100の材料であるチタン酸バリウム等と比べて十分に低いため、スルーホール導体60を用いた信号配線は、コンデンサ100のビア導体に比べて、伝送信号の遅延を抑制することができる。また、コンデンサ100を同時焼成する場合の制約からビア導体はニッケル等の材料を用いて形成せざるを得ないが、スルーホール導体60は、導電率の高い銅めっきを用いて形成できるので、信号配線の抵抗成分を小さくすることができる。   In the capacitor 100 of the present embodiment, it is more advantageous in terms of transmission performance than using a via conductor to configure a signal wiring using the through-hole conductor 60. That is, generally, the dielectric constant of the closures 62 and 63 made of epoxy resin is sufficiently lower than that of the capacitor 100 such as barium titanate. Compared with via conductors, transmission signal delay can be suppressed. In addition, the via conductors must be formed using a material such as nickel due to restrictions when the capacitors 100 are fired simultaneously, but the through-hole conductors 60 can be formed using copper plating with high conductivity. The resistance component of the wiring can be reduced.

なお、コンデンサ100に形成される第1ビア導体109a及び第2ビア導体109bのサイズと間隔は適宜に変更することができ、それに伴い第1端子電極107a、108a及び第2端子電極107b、108bの配置も変化する。また、信号配線として用いられるスルーホール導体60、61の個数や位置も適宜に変更することができる。なお、コンデンサ100におけるスルーホール導体60、61の位置は、必ずしも中央部に限られないが、信号配線の引き回しの自由度を高くする観点からコンデンサ100の中央付近であることが好ましい。   Note that the size and interval of the first via conductor 109a and the second via conductor 109b formed in the capacitor 100 can be changed as appropriate, and accordingly, the first terminal electrodes 107a and 108a and the second terminal electrodes 107b and 108b can be changed. The arrangement also changes. In addition, the number and position of the through-hole conductors 60 and 61 used as signal wirings can be changed as appropriate. Note that the positions of the through-hole conductors 60 and 61 in the capacitor 100 are not necessarily limited to the center, but are preferably near the center of the capacitor 100 from the viewpoint of increasing the degree of freedom in routing signal wiring.

また、コンデンサ100において、シールド構造となるスルーホール導体61は、正極又は負極と同電位に保つことが望ましい。例えば、図3において、スルーホール導体61と近傍のグランド用の第2端子電極107bとの間を接続する配線パターンを設ければよい。これにより、信号配線に対するシールドの効果が向上する。なお、スルーホール導体61を他の配線には接続せずにフローティング状態に保ってもよい。   In the capacitor 100, it is desirable that the through-hole conductor 61 having a shield structure is kept at the same potential as the positive electrode or the negative electrode. For example, in FIG. 3, a wiring pattern may be provided for connecting between the through-hole conductor 61 and the nearby second terminal electrode 107b for ground. Thereby, the effect of the shield with respect to signal wiring improves. The through-hole conductor 61 may be kept in a floating state without being connected to other wiring.

次に、本実施形態の配線基板10の製造方法について、図4〜図9を参照して説明する。まず、図4に示すように、収容穴部11aを有するコア材11を作製して準備する。コア材11の作製に際しては、例えば、一辺が400mm程度の正方形の平面形状と厚さ0.8mm程度の基材の両面に銅箔が貼付された銅張積層板を用意する。そして銅張積層板にルータを用いて穴あけ加工を施し、収容穴部11aとなる貫通孔を所定位置にあらかじめ形成しておく。   Next, the manufacturing method of the wiring board 10 of this embodiment is demonstrated with reference to FIGS. First, as shown in FIG. 4, the core material 11 having the accommodation hole 11a is prepared and prepared. When producing the core material 11, for example, a copper-clad laminate in which a copper foil is attached to both sides of a square planar shape having a side of about 400 mm and a base material having a thickness of about 0.8 mm is prepared. Then, the copper-clad laminate is subjected to drilling using a router, and a through hole that becomes the accommodation hole portion 11a is formed in advance at a predetermined position.

一方、配線基板10に内蔵するコンデンサ100を作製して準備する。コンデンサ100の作製に際しては、セラミックのグリーンシートにニッケルペーストをスクリーン印刷し、第1内部電極層110aとなる塗布膜及び第2内部電極層110bとなる塗布膜をそれぞれ形成する。そして、第1内部電極層110aとなる塗布膜が形成されたグリーンシートと第2内部電極層110bとなる塗布膜が形成されたグリーンシートとを交互に積層し、積層方向に押圧力を付与して各グリーンシートを一体化し、積層体を形成する。続いて、レーザー加工機を用いて積層体に複数のビアホールを貫通形成し、ニッケルペーストを各ビアホールに充填して第1ビア導体109aとなる充填体及び第2ビア導体109bとなる充填体を形成する。そして、積層体の上面にペーストを印刷し、第1端子電極107a及び第2端子電極107bのメタライズ層を形成する。同様に、積層体の下面にペーストを印刷し、第1端子電極108a及び第2端子電極108bのメタライズ層を形成する。   On the other hand, the capacitor 100 built in the wiring board 10 is prepared and prepared. In manufacturing the capacitor 100, nickel paste is screen-printed on a ceramic green sheet to form a coating film to be the first internal electrode layer 110a and a coating film to be the second internal electrode layer 110b. And the green sheet in which the coating film used as the 1st internal electrode layer 110a and the green sheet formed in the coating film used as the 2nd internal electrode layer 110b are laminated | stacked alternately, and pressing force is given to the lamination direction. The green sheets are integrated to form a laminate. Subsequently, a plurality of via holes are formed through the laminate using a laser processing machine, and a nickel paste is filled in each via hole to form a filler that becomes the first via conductor 109a and a filler that becomes the second via conductor 109b. To do. Then, a paste is printed on the upper surface of the stacked body to form a metallized layer of the first terminal electrode 107a and the second terminal electrode 107b. Similarly, a paste is printed on the lower surface of the multilayer body to form a metallized layer of the first terminal electrode 108a and the second terminal electrode 108b.

次いで、ドリル機を用いた孔あけ加工により、シールド構造となるスルーホール導体61の形成位置に貫通孔(例えば、直径0.6mm)を形成する。なお、ドリル機の代わりに、レーザー加工機やパンチング機を用いて貫通孔を形成してもよい。積層体を乾燥させた後に脱脂し、積層体を所定温度で所定時間焼成すると、チタン酸バリウム及びペースト中のニッケルが同時焼結してセラミック焼結体101が得られる。その後、貫通孔に対して無電解銅めっき及び電解銅めっきを施すことによりスルーホール導体61を形成する。また、貫通孔形成後に、ニッケル等のペーストのスルーホール印刷を行い、焼成することによりスルーホール導体61を形成してもよい。さらに、スルーホール導体61の空洞部にエポキシ樹脂を主成分とするペーストを印刷した後、硬化することにより閉塞体63を形成する。そして、セラミック焼結体101の第1端子電極107a、108a、第2端子電極107b、108bのそれぞれに対し、例えば、厚さ10μm程度の電解銅めっきを施して銅めっき層を形成し、コンデンサ100が完成する。   Next, a through-hole (for example, a diameter of 0.6 mm) is formed at a position where the through-hole conductor 61 serving as a shield structure is formed by drilling using a drill machine. In addition, you may form a through-hole using a laser processing machine and a punching machine instead of a drill machine. When the laminated body is dried and degreased, and the laminated body is fired at a predetermined temperature for a predetermined time, barium titanate and nickel in the paste are simultaneously sintered to obtain a ceramic sintered body 101. Thereafter, the through-hole conductor 61 is formed by performing electroless copper plating and electrolytic copper plating on the through hole. Alternatively, the through-hole conductor 61 may be formed by performing through-hole printing of a paste such as nickel and firing after forming the through-hole. Furthermore, after the paste which has an epoxy resin as a main component is printed in the cavity part of the through-hole conductor 61, the obstruction | occlusion body 63 is formed by hardening. Then, each of the first terminal electrodes 107a and 108a and the second terminal electrodes 107b and 108b of the ceramic sintered body 101 is subjected to, for example, electrolytic copper plating with a thickness of about 10 μm to form a copper plating layer, and the capacitor 100 Is completed.

次に図5に示すように、収容穴部11aの底部に、剥離可能な粘着テープ70を密着配置する。この粘着テープ70は支持台71により支持される。そして、マウント装置を用いて、収容穴部11a内にコンデンサ100を収容し、粘着テープ70にコンデンサ100を貼り付けて仮固定する。なお、図5においては、図1のコア材11及びコンデンサ100の各上面を下方に向けた状態を示している(図6も同様)。   Next, as shown in FIG. 5, a peelable adhesive tape 70 is placed in close contact with the bottom of the accommodation hole 11 a. This adhesive tape 70 is supported by a support base 71. Then, using the mounting device, the capacitor 100 is accommodated in the accommodation hole 11a, and the capacitor 100 is attached to the adhesive tape 70 and temporarily fixed. FIG. 5 shows a state in which the upper surfaces of the core material 11 and the capacitor 100 in FIG. 1 are directed downward (the same applies to FIG. 6).

続いて図6に示すように、ディスペンサ装置を用いて、収容穴部11aとコンデンサ100の側面との間隙部に樹脂充填材50を充填する。樹脂充填材50は熱硬化性樹脂からなるので加熱処理により硬化する。コンデンサ100は、硬化した樹脂充填材50により収容穴部11aの内部で固定され、コア材11と一体化される。このとき、コア材11の導体層21と、コンデンサ100の第1端子電極107a、第2端子電極107bが粘着テープ70と接するので、積層方向で位置が揃ったフラットな面に形成される。なお、樹脂充填材50を充填する方法はディスペンサ装置に限られず、例えば、フィルム状絶縁樹脂材料を押圧して充填する方法を用いてもよい。   Subsequently, as shown in FIG. 6, the resin filler 50 is filled into the gap between the accommodation hole 11 a and the side surface of the capacitor 100 using a dispenser device. Since the resin filler 50 is made of a thermosetting resin, it is cured by heat treatment. The capacitor 100 is fixed inside the accommodation hole 11 a by the cured resin filler 50 and integrated with the core material 11. At this time, since the conductor layer 21 of the core material 11 and the first terminal electrode 107a and the second terminal electrode 107b of the capacitor 100 are in contact with the adhesive tape 70, they are formed on a flat surface whose positions are aligned in the stacking direction. The method of filling the resin filler 50 is not limited to the dispenser device, and for example, a method of pressing and filling a film-like insulating resin material may be used.

次いで、コンデンサ100の固定後に粘着テープ70を剥離する。その後、コア材11の上面とコンデンサ100の上面に対し酸性脱脂で溶剤洗浄を施してから研磨することにより、剥離した粘着テープ70の残存する粘着剤を除去する。続いて、第1端子電極107a、第2端子電極107bの上部の銅めっき層の表面を粗化するとともに、コア材11の上部の導体層21の表面を粗化する。粗化の終了後には、コア材11及びコンデンサ100を洗浄する。   Next, the adhesive tape 70 is peeled after the capacitor 100 is fixed. Thereafter, the upper surface of the core material 11 and the upper surface of the capacitor 100 are subjected to solvent cleaning by acid degreasing and then polished, whereby the remaining adhesive of the peeled adhesive tape 70 is removed. Subsequently, the surface of the copper plating layer above the first terminal electrode 107 a and the second terminal electrode 107 b is roughened, and the surface of the conductor layer 21 above the core material 11 is roughened. After finishing the roughening, the core material 11 and the capacitor 100 are washed.

その後、図7に示すように、ドリル機を用いた孔あけ加工により、コア材11のスルーホール導体30の形成位置に貫通孔を形成するとともに、コンデンサ100の閉塞体63の中央付近におけるスルーホール導体60の形成位置に貫通孔(例えば、直径0.3mm)を形成する。スルーホール導体30、60となるそれぞれの貫通孔に対し、無電解銅めっき及び電解銅めっきを施すことによりスルーホール導体30、60を形成する。また、スルーホール導体30、60のそれぞれの空洞部にエポキシ樹脂を主成分とするペーストを印刷した後、硬化することにより閉塞体31、62を形成する。   Thereafter, as shown in FIG. 7, a through hole is formed in the formation position of the through hole conductor 30 of the core material 11 by drilling using a drill machine, and a through hole in the vicinity of the center of the closing body 63 of the capacitor 100. A through hole (for example, a diameter of 0.3 mm) is formed at the position where the conductor 60 is formed. Through-hole conductors 30 and 60 are formed by applying electroless copper plating and electrolytic copper plating to the respective through-holes that become through-hole conductors 30 and 60. In addition, the plugs 31 and 62 are formed by printing a paste mainly composed of an epoxy resin in the hollow portions of the through-hole conductors 30 and 60 and then curing the paste.

さらに、コンデンサ100と一体化されたコア材11の両面の銅箔にエッチングを行い、例えばサブトラクティブ法を用いて、上下の導体層21、22、端子電極107c、108cを形成する。具体的には、無電解銅めっきを施し、その部分を共通電極として電解銅めっきを施した後、ドライフィルムをラミネートして露光及び現像を行うことにより、所定パターンのドライフィルムを形成する。この状態で、不要な電解銅めっき層、無電解銅めっき層、銅箔をエッチングでそれぞれ除去した後、ドライフィルムを剥離する。   Further, the copper foils on both surfaces of the core material 11 integrated with the capacitor 100 are etched, and the upper and lower conductor layers 21 and 22 and the terminal electrodes 107c and 108c are formed by using, for example, a subtractive method. Specifically, after electroless copper plating is performed and the portion is subjected to electrolytic copper plating as a common electrode, a dry film having a predetermined pattern is formed by laminating a dry film and performing exposure and development. In this state, unnecessary electrolytic copper plating layers, electroless copper plating layers, and copper foils are removed by etching, and then the dry film is peeled off.

次に、コア材11及びコンデンサ100の上下の各面に、それぞれエポキシ樹脂を主成分とするフィルム状絶縁樹脂材料を積層する。そして、真空下にて加圧加熱することにより絶縁樹脂材料を硬化させ、図8に示すように、上面側の樹脂絶縁層14と下面側の樹脂絶縁層15とを形成する。続いて、図9に示すように、樹脂絶縁層14には複数のビア導体32を形成するとともに、樹脂絶縁層15には複数のビア導体33を形成する。このとき、レーザー加工により樹脂絶縁層14、15に複数のビアホールを形成し、その中のスミアを除去するデスミア処理を施した後、各ビアホール内にビア導体32、33を形成する。なお、図7〜図9においては、コア材11及びコンデンサ100の各上面を上方に向けた状態を示している。   Next, film-like insulating resin materials mainly composed of epoxy resin are laminated on the upper and lower surfaces of the core material 11 and the capacitor 100, respectively. Then, the insulating resin material is cured by applying pressure under vacuum to form a resin insulating layer 14 on the upper surface side and a resin insulating layer 15 on the lower surface side as shown in FIG. Subsequently, as shown in FIG. 9, a plurality of via conductors 32 are formed in the resin insulating layer 14, and a plurality of via conductors 33 are formed in the resin insulating layer 15. At this time, a plurality of via holes are formed in the resin insulating layers 14 and 15 by laser processing, and after desmear processing for removing smears therein, via conductors 32 and 33 are formed in the via holes. 7 to 9 show states in which the upper surfaces of the core material 11 and the capacitor 100 are directed upward.

その後、図1に示すように、樹脂絶縁層14、15の表面にパターニングを施し、導体層23、24をそれぞれ形成する。次いで、樹脂絶縁層14の上面と樹脂絶縁層15の下面に、それぞれ上述のフィルム状絶縁樹脂材料を積層し、真空下にて加圧加熱することにより絶縁樹脂材料を硬化させ、樹脂絶縁層16、17を形成する。そして、樹脂絶縁層16、17には、上述のビア導体32、33と同様の手法で、複数のビア導体34、35を形成する。続いて、樹脂絶縁層16の上部に複数の端子パッド25を形成し、樹脂絶縁層17の下部に複数のBGA用パッド26を形成する。次に、樹脂絶縁層16の上面と樹脂絶縁層17の下面に、それぞれ感光性エポキシ樹脂を塗布して硬化させることにより、ソルダーレジスト層18、19を形成する。その後、ソルダーレジスト層18に開口部をパターニングし、複数の端子パッド25に接続される複数の半田バンプ40を形成する。また、ソルダーレジスト層19に開口部をパターニングし、複数のBGA用パッド26に接続される複数の半田ボール41を形成する。以上の手順により本実施形態の配線基板10が完成する。   Thereafter, as shown in FIG. 1, the surfaces of the resin insulating layers 14 and 15 are patterned to form conductor layers 23 and 24, respectively. Next, the above-described film-like insulating resin materials are laminated on the upper surface of the resin insulating layer 14 and the lower surface of the resin insulating layer 15, respectively, and the insulating resin material is cured by applying pressure and heating under vacuum, whereby the resin insulating layer 16 , 17 are formed. Then, a plurality of via conductors 34 and 35 are formed in the resin insulating layers 16 and 17 by the same method as the above-described via conductors 32 and 33. Subsequently, a plurality of terminal pads 25 are formed on the top of the resin insulating layer 16, and a plurality of BGA pads 26 are formed on the bottom of the resin insulating layer 17. Next, solder resist layers 18 and 19 are formed by applying and curing a photosensitive epoxy resin on the upper surface of the resin insulating layer 16 and the lower surface of the resin insulating layer 17, respectively. Thereafter, openings are patterned in the solder resist layer 18 to form a plurality of solder bumps 40 connected to the plurality of terminal pads 25. Also, openings are patterned in the solder resist layer 19 to form a plurality of solder balls 41 connected to the plurality of BGA pads 26. The wiring board 10 of this embodiment is completed by the above procedure.

なお、図4〜図9に基づく配線基板10の製造方法は一例であって、異なる手順に従って配線基板10を製造可能である。例えば、上述の例では、配線基板10の収容穴部11aに収容する前のコンデンサ100には、予めシールド構造となるスルーホール導体61及び閉塞体63のみが形成されているが、信号配線となるスルーホール導体60及び閉塞体62を併せて予め形成してもよい。また例えば、信号配線の周囲にシールド構造が不要である場合は、スルーホール導体60及び閉塞体62のみが予め形成されたコンデンサ100を用いてもよい。   Note that the method of manufacturing the wiring board 10 based on FIGS. 4 to 9 is an example, and the wiring board 10 can be manufactured according to different procedures. For example, in the above-described example, the capacitor 100 before being accommodated in the accommodation hole portion 11a of the wiring board 10 is formed with only the through-hole conductor 61 and the closing body 63 having a shield structure in advance. The through-hole conductor 60 and the closing body 62 may be formed in advance. For example, when a shield structure is unnecessary around the signal wiring, the capacitor 100 in which only the through-hole conductor 60 and the closing body 62 are formed in advance may be used.

以上、本実施形態に基づき本発明の内容を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の変更を施すことができる。図10は、本実施形態の変形例として、図1のスルーホール導体30、60及び閉塞体31、62の形成方法を変更した場合の配線基板10の概略の断面構造を示している。図10に示す配線基板10は、図1のスルーホール導体30、60及び閉塞体31、62と比べると、積層方向に延伸されて上下の樹脂絶縁層14、15を貫くスルーホール導体30a、60a及び閉塞体31a、62aを形成した点で相違する。よって、配線基板10の製造時には、コア材11の上下に樹脂絶縁層14、15を形成した後に、スルーホール導体30a、60a及び閉塞体31a、62aを形成する必要がある。なお、図10の配線基板10において、スルーホール導体30a、60a及び閉塞体31a、62a以外の構造は図1と同様である。   The contents of the present invention have been specifically described above based on the present embodiment, but the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention. FIG. 10 shows a schematic cross-sectional structure of the wiring board 10 when the method of forming the through-hole conductors 30 and 60 and the closing bodies 31 and 62 in FIG. 1 is changed as a modification of the present embodiment. The wiring substrate 10 shown in FIG. 10 has through-hole conductors 30a and 60a extending in the laminating direction and penetrating the upper and lower resin insulation layers 14 and 15 as compared to the through-hole conductors 30 and 60 and the closing bodies 31 and 62 of FIG. And the point which formed the obstruction | occlusion bodies 31a and 62a differs. Therefore, when manufacturing the wiring substrate 10, it is necessary to form the through-hole conductors 30 a and 60 a and the closing bodies 31 a and 62 a after forming the resin insulating layers 14 and 15 on and under the core material 11. In the wiring board 10 of FIG. 10, the structure other than the through-hole conductors 30a and 60a and the closing bodies 31a and 62a is the same as that of FIG.

10…配線基板
11…コア材
11a…収容穴部
12…第1配線積層部
13…第2配線積層部
14、15、16、17…樹脂絶縁層
18、19…ソルダーレジスト層
21、22、23、24…導体層
25…端子パッド
26…BGA用パッド
30、30a、60、60a、61…スルーホール導体
31、31a、62、62a、63…閉塞体
32、33、34、35…ビア導体
40…半田バンプ
41…半田ボール
50…樹脂充填材
100…コンデンサ
200…半導体チップ
201…パッド
DESCRIPTION OF SYMBOLS 10 ... Wiring board 11 ... Core material 11a ... Accommodating hole part 12 ... 1st wiring laminated part 13 ... 2nd wiring laminated part 14, 15, 16, 17 ... Resin insulation layers 18, 19 ... Solder resist layers 21, 22, 23 24 ... conductor layer 25 ... terminal pad 26 ... BGA pads 30, 30a, 60, 60a, 61 ... through-hole conductors 31, 31a, 62, 62a, 63 ... closed bodies 32, 33, 34, 35 ... via conductors 40 ... Solder bump 41 ... Solder ball 50 ... Resin filler 100 ... Capacitor 200 ... Semiconductor chip 201 ... Pad

Claims (9)

搭載部品を載置し、当該搭載部品と外部基材との間を電気的に接続する配線基板であって、
上面及び下面を貫通する収容穴部が開口されたコア材と、
前記収容穴部に収容され、上面及び下面を貫通する一又は複数の第1スルーホール導体が形成された内蔵部品と、
前記コア材の上面側に絶縁層及び導体層を交互に積層形成した第1配線積層部と、
前記コア材の下面側に絶縁層及び導体層を交互に積層形成した第2配線積層部と、
を備え、前記第1スルーホール導体は、前記第1配線積層部を介して前記搭載部品に接続される信号配線として用いられ、前記第1スルーホール導体の内側の領域には前記内蔵部品の材料の誘電率よりも低い誘電率を有する材料が充填され、かつ前記第1スルーホール導体の外側の近傍領域は前記内蔵部品の材料の誘電率よりも低い誘電率を有する材料で覆われていることを特徴とする配線基板。
A wiring board for placing a mounting component and electrically connecting the mounting component and an external base material,
A core material in which an accommodation hole penetrating the upper surface and the lower surface is opened;
A built-in component that is housed in the housing hole and in which one or a plurality of first through-hole conductors penetrating the upper surface and the lower surface are formed;
A first wiring laminated portion in which insulating layers and conductor layers are alternately laminated on the upper surface side of the core material;
A second wiring laminated portion in which insulating layers and conductor layers are alternately laminated on the lower surface side of the core material;
The first through-hole conductor is used as a signal wiring connected to the mounting component via the first wiring laminated portion, and a material of the built-in component is disposed in an area inside the first through-hole conductor. A material having a dielectric constant lower than that of the first through-hole conductor is filled with a material having a dielectric constant lower than that of the built-in component. A wiring board characterized by.
前記第1スルーホール導体は、前記内蔵部品の内部導体の導電率よりも高い導電率を有する金属を用いて形成されていることを特徴とする請求項1に記載の配線基板。   The wiring board according to claim 1, wherein the first through-hole conductor is formed using a metal having a conductivity higher than that of an internal conductor of the built-in component. 前記内蔵部品は、セラミック焼結体を用いて構成されたコンデンサであることを特徴とする請求項1又は2に記載の配線基板。   The wiring board according to claim 1, wherein the built-in component is a capacitor configured using a ceramic sintered body. 前記内蔵部品には、前記信号配線をシールドするための第2スルーホール導体が前記第1スルーホール導体の側面を取り囲むように形成され、前記第1スルーホール導体と前記第2スルーホール導体とに挟まれた領域には前記内蔵部品の材料の誘電率よりも低い誘電率を有する材料が充填されていることを特徴とする請求項1から3のいずれかに記載の配線基板。   In the built-in component, a second through-hole conductor for shielding the signal wiring is formed so as to surround a side surface of the first through-hole conductor, and the first through-hole conductor and the second through-hole conductor are connected to each other. 4. The wiring board according to claim 1, wherein the sandwiched region is filled with a material having a dielectric constant lower than that of the material of the built-in component. 前記第1スルーホール導体及び前記第2スルーホール導体は、前記搭載部品の中央部の直下に位置することを特徴とする請求項4に記載の配線基板。   The wiring board according to claim 4, wherein the first through-hole conductor and the second through-hole conductor are located immediately below a central portion of the mounting component. セラミック誘電体層と内部電極層とを交互に積層し、前記内部電極層に接続された複数のビア導体をアレイ状に配置した積層セラミックコンデンサであって、
前記複数のビア導体が配置されていない領域の上面及び下面を貫通し、前記内部電極層及び前記ビア導体の導電率よりも高い導電率を有する金属を用いて形成された一又は複数の第1スルーホール導体を備え、
前記第1スルーホール導体の内側の領域には前記セラミック誘電体層の誘電率よりも低い誘電率を有する材料が充填され、かつ前記第1スルーホール導体の外側の近傍領域は前記内蔵部品の材料の誘電率よりも低い誘電率を有する材料で覆われているが充填されていることを特徴とする積層セラミックコンデンサ。
A multilayer ceramic capacitor in which ceramic dielectric layers and internal electrode layers are alternately stacked, and a plurality of via conductors connected to the internal electrode layers are arranged in an array,
One or a plurality of first electrodes formed using a metal having a conductivity higher than the conductivity of the internal electrode layer and the via conductor, penetrating the upper surface and the lower surface of the region where the plurality of via conductors are not disposed. With through-hole conductors,
A region inside the first through-hole conductor is filled with a material having a dielectric constant lower than that of the ceramic dielectric layer, and a region near the outside of the first through-hole conductor is a material of the built-in component. A multilayer ceramic capacitor characterized in that it is covered with a material having a dielectric constant lower than that of the multilayer ceramic capacitor.
前記第1スルーホール導体の側面を取り囲むように形成された第2スルーホール導体をさらに備え、前記第1スルーホール導体と前記第2スルーホール導体とに挟まれた領域には前記セラミック誘電体層の誘電率よりも低い誘電率を有する材料が充填されていることを特徴とする請求項6に記載の積層セラミックコンデンサ。   The ceramic dielectric layer is further provided in a region sandwiched between the first through-hole conductor and the second through-hole conductor, further comprising a second through-hole conductor formed so as to surround a side surface of the first through-hole conductor. The multilayer ceramic capacitor according to claim 6, which is filled with a material having a dielectric constant lower than that of the multilayer ceramic capacitor. 前記第1スルーホール導体及び前記第2スルーホール導体は、銅めっきにより形成されていることを特徴とする請求項7に記載の積層セラミックコンデンサ。   The multilayer ceramic capacitor according to claim 7, wherein the first through-hole conductor and the second through-hole conductor are formed by copper plating. 前記第2スルーホール導体は、前記内部電極層の正極又は負極と同じ電位に接続されていることを特徴とする請求項7又は8に記載の積層セラミックコンデンサ。   The multilayer ceramic capacitor according to claim 7, wherein the second through-hole conductor is connected to the same potential as the positive electrode or the negative electrode of the internal electrode layer.
JP2009014783A 2009-01-26 2009-01-26 Wiring board and multilayer ceramic capacitor Expired - Fee Related JP5171664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009014783A JP5171664B2 (en) 2009-01-26 2009-01-26 Wiring board and multilayer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009014783A JP5171664B2 (en) 2009-01-26 2009-01-26 Wiring board and multilayer ceramic capacitor

Publications (2)

Publication Number Publication Date
JP2010171348A true JP2010171348A (en) 2010-08-05
JP5171664B2 JP5171664B2 (en) 2013-03-27

Family

ID=42703153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009014783A Expired - Fee Related JP5171664B2 (en) 2009-01-26 2009-01-26 Wiring board and multilayer ceramic capacitor

Country Status (1)

Country Link
JP (1) JP5171664B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020004815A (en) * 2018-06-27 2020-01-09 株式会社村田製作所 Manufacturing method of chip-type electronic component
CN113474883A (en) * 2019-02-28 2021-10-01 京瓷株式会社 Package for mounting electronic component and electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244636A (en) * 2000-03-01 2001-09-07 Ibiden Co Ltd Printed wiring board
JP2003332752A (en) * 2002-05-14 2003-11-21 Shinko Electric Ind Co Ltd Metal core substrate and its manufacturing method
JP2009004457A (en) * 2007-06-19 2009-01-08 Taiyo Yuden Co Ltd Multi-layer substrate having capacitor therein

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244636A (en) * 2000-03-01 2001-09-07 Ibiden Co Ltd Printed wiring board
JP2003332752A (en) * 2002-05-14 2003-11-21 Shinko Electric Ind Co Ltd Metal core substrate and its manufacturing method
JP2009004457A (en) * 2007-06-19 2009-01-08 Taiyo Yuden Co Ltd Multi-layer substrate having capacitor therein

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020004815A (en) * 2018-06-27 2020-01-09 株式会社村田製作所 Manufacturing method of chip-type electronic component
JP7155662B2 (en) 2018-06-27 2022-10-19 株式会社村田製作所 Method for manufacturing chip-type electronic component
CN113474883A (en) * 2019-02-28 2021-10-01 京瓷株式会社 Package for mounting electronic component and electronic device
CN113474883B (en) * 2019-02-28 2023-11-03 京瓷株式会社 Package for mounting electronic component and electronic device

Also Published As

Publication number Publication date
JP5171664B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
US9119322B2 (en) Wiring board and method for manufacturing the same
US7889509B2 (en) Ceramic capacitor
US7821795B2 (en) Multilayer wiring board
US9883592B2 (en) Wiring board and method for manufacturing the same
JP5111342B2 (en) Wiring board
US6764931B2 (en) Semiconductor package, method of manufacturing the same, and semiconductor device
US9232656B2 (en) Wiring board and method for manufacturing the same
US9215805B2 (en) Wiring board with built-in electronic component and method for manufacturing the same
JP6626697B2 (en) Wiring board and method of manufacturing the same
US20080121417A1 (en) Package substrate having embedded capacitor
US8362369B2 (en) Wiring board
JP5160052B2 (en) Wiring board, capacitor
JP2008028188A (en) Printed wiring board, method for manufacturing the same, and electronic apparatus
JP5286072B2 (en) Wiring board and manufacturing method thereof
JP5171664B2 (en) Wiring board and multilayer ceramic capacitor
JP2009004457A (en) Multi-layer substrate having capacitor therein
JP4508540B2 (en) Wiring board and electronic device
JPWO2017183135A1 (en) Circuit board, method of manufacturing circuit board and electronic device
JP4814129B2 (en) Wiring board with built-in components, Wiring board built-in components
JP2008244029A (en) Wiring board with built-in component, and component used therefor
JP5283492B2 (en) Wiring board
JP4558257B2 (en) Solid electrolytic capacitor
JP4772586B2 (en) Circuit board manufacturing method
KR100653247B1 (en) Printed circuit board having embedded electric components and fabricating method therefore
JP2008270776A (en) Wiring board having built-in component and manufacturing method thereof, and capacitor to be built in wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121225

R150 Certificate of patent or registration of utility model

Ref document number: 5171664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees