JP2010169364A - サーモサイフォン式蒸気発生装置 - Google Patents

サーモサイフォン式蒸気発生装置 Download PDF

Info

Publication number
JP2010169364A
JP2010169364A JP2009014395A JP2009014395A JP2010169364A JP 2010169364 A JP2010169364 A JP 2010169364A JP 2009014395 A JP2009014395 A JP 2009014395A JP 2009014395 A JP2009014395 A JP 2009014395A JP 2010169364 A JP2010169364 A JP 2010169364A
Authority
JP
Japan
Prior art keywords
refrigerant
gas
condenser
liquid separation
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009014395A
Other languages
English (en)
Inventor
Junichi Tsujii
潤一 辻井
Naoki Kashi
直樹 樫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP2009014395A priority Critical patent/JP2010169364A/ja
Publication of JP2010169364A publication Critical patent/JP2010169364A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】コンパクト化を維持することができ、蒸気利用装置での蒸気消費の減少や停止に対応し、優れた応答性で蒸発器および気液分離ドラム内の圧力上昇を抑えることができるサーモサイフォン式蒸気発生装置を提供することを目的とする。
【解決手段】蒸気発生装置1は、熱媒を流通させる伝熱コア6を有する蒸発器2と、水11を貯溜する気液分離ドラム3とが、互いの上部と下部をそれぞれ上部配管4と下部配管5で連通してなり、気液分離ドラム3の内部に、冷媒の流通およびその流通の停止が可能な凝縮器20が設けられている。蒸気利用装置での蒸気消費の減少や停止に対応し、凝縮器20に冷媒を流通させることにより、気液分離ドラム3に継続して供給される蒸気をその冷媒との熱交換で逐次冷却し凝縮させる。
【選択図】図2

Description

本発明は、熱媒を流通させる伝熱コアを有する蒸発器と、水を貯溜する気液分離ドラムとが、互いの上部と下部をそれぞれ上部配管と下部配管で連通してなり、サーモサイフォン現象を利用して蒸発器に水を循環供給し、蒸発器で生成した蒸気を気液分離ドラムから送り出すサーモサイフォン式蒸気発生装置に関する。
近年、発電設備や工業プラントなどの種々の産業分野において、エネルギーの有効利用という観点から、分散型エネルギーシステムが有望視され、小型ガスタービンなどの熱機関や、化学プロセスを経て燃料から直接発電を行う高温型燃料電池(SOFCと称される固体酸化物形燃料電池や、MCFCと称される溶融炭酸塩形燃料電池など)の開発が盛んに行われている。これらのエネルギーシステムでは、ガスタービンからの燃焼排ガスや燃料電池で使用された高温ガスなどを熱媒として利用し、蒸気を発生させる蒸気発生装置が採用されている。例えば、燃料電池においては、燃料として水素が必要とされ、この水素を生成するガス改質装置で天然ガスとともに蒸気が必要とされることから、蒸気発生装置が欠かせない。
分散型エネルギーシステムで用いられる蒸気発生装置は、熱媒との熱交換により水を蒸発させて蒸気を生成する蒸発器を必要とし、この蒸発器には、優れた熱交換効率でコンパクト化を実現できることが要求される。この要求に応えるには、蒸発器としてプレートフィン型熱交換器を採用するのが有効である。
蒸発器としてのプレートフィン型熱交換器は、熱媒を流通させる熱媒通路と、水を流通させる水通路とが、交互に積層配置された伝熱コアを有する。伝熱コアは、熱媒と水を流通させる両通路がチューブプレートで仕切られ、各通路内にコルゲートフィンが配置され、各通路の側部がスペーサーバーで封止された構成である。プレートフィン型熱交換器を採用した蒸発器では、伝熱コアの水通路を流通する水が、熱媒通路に流通させる熱媒と効率良く熱交換を行い、加熱されて蒸発し、これに伴い蒸気を生成することができる。
ところで、蒸発器、すなわちプレートフィン型熱交換器のみで蒸気発生装置を構成した場合、蒸発の進行に伴い伝熱コア内で水が完全に蒸発する事態が起こるため、伝熱コアに熱応力が発生し、伝熱コアが短期間で破損する。このため、分散型エネルギーシステムには、伝熱コア内で水が完全に蒸発するのを回避するため、サーモサイフォン現象を利用し、蒸発量以上の水を蒸発器に循環供給することができるサーモサイフォン式蒸気発生装置が採用されている。
図1は、従来のサーモサイフォン式蒸気発生装置の構成を示す模式図である。サーモサイフォン式蒸気発生装置1は、蒸発器2と気液分離ドラム3を並設し、蒸発器2と気液分離ドラム3とが互いの上部と下部をそれぞれ上部配管4と下部配管5で連通して構成される。
蒸発器2は、プレートフィン型熱交換器であり、伝熱コア6を有する。伝熱コア6は、熱媒を流通させる熱媒通路と、水を流通させる水通路とが、交互に積層配置され、鉛直方向に水通路が形成された構成である。伝熱コア6の下端には、水通路の入口に対応して入側ヘッダータンク7が連結され、上端には、水通路の出口に対応して出側ヘッダータンク8が連結されている。入側ヘッダータンク7には下部配管5が接続され、出側ヘッダータンク8には上部配管4が接続されている。
気液分離ドラム3は、鉛直方向に沿った円筒状であり、側壁に接続された給水管9から水が適宜補給され、水11を貯留する。気液分離ドラム3の下端壁には下部配管5が接続され、気液分離ドラム3の上部における側壁には上部配管4が接続されている。さらに、気液分離ドラム3の上端壁には、生成した蒸気をガス改質装置などの蒸気利用装置に送り出す蒸気送出管10が接続されている。
このような構成のサーモサイフォン式蒸気発生装置1では、サーモサイフォン現象により、気液分離ドラム3内の水11が下部配管5を通じ蒸発器2に供給される。蒸発器2に供給された水は、伝熱コア6の水通路を流通する過程で、熱媒通路を流通する熱媒との熱交換により加熱され、蒸発する。蒸発器2で生成した蒸気は、上部配管4を通じ気液分離ドラム3に供給される。気液分離ドラム3に供給された蒸気は、蒸気中に含まれる水分を気液分離ドラム3内で分離された後、蒸気送出管10から送り出される。このときに分離された水分は、気液分離ドラム3内に貯留され、再び下部配管5を通じ蒸発器2に供給される。
上述の通り、サーモサイフォン式蒸気発生装置は、蒸発器としてプレートフィン型熱交換器を採用することから、優れた熱交換効率で蒸気を生成し、コンパクト化を実現できる。しかも、サーモサイフォン現象を利用して蒸発器に水を循環供給できることから、伝熱コア内で水が完全に蒸発するのを回避できる。これらのことから、近年の分散型エネルギーシステムには、サーモサイフォン式蒸気発生装置が好適に用いられている。
通常、分散型エネルギーシステムでは日常的に起動と停止が行われる。また、運転中の負荷変動に伴い蒸気利用装置での蒸気の消費が減少することがある。蒸気利用装置での蒸気の消費が減少したり停止した場合、サーモサイフォン式蒸気発生装置においては、蒸発器で蒸気の生成が継続して行われるため、上部配管を通じ気液分離ドラムに蒸気が継続して供給される。このため、蒸発器および気液分離ドラム内に蒸気が充満し、その過剰な体積膨張により、蒸発器および気液分離ドラム内の圧力が著しく上昇し、気液分離ドラムや上部配管、さらに蒸発器の伝熱コアが破損するおそれがある。
蒸気利用装置での蒸気消費の減少や停止に対応し、蒸発器の伝熱コアに流通させる熱媒の供給を減少させたり停止させても、これに直ちに追従して蒸発を減少させることは困難であり、蒸発器および気液分離ドラム内の圧力上昇を回避できない。
このようなサーモサイフォン式蒸気発生装置に特有の問題を解消する技術として、特許文献1には、気液分離ドラムに相当する蒸気ドラムの外部に凝縮器を配設し、この凝縮器と蒸気ドラムとを、個々に弁を設けた蒸気側連絡管と水側連絡管で接続したボイラが開示されている。また、特許文献2には、気液分離ドラムに相当する気液分離器の外部に凝縮器を配設し、この凝縮器を、蒸気送出管から分岐し弁を設けたバイパス配管に接続するとともに、下部配管に相当する経路に接続した蒸気タービン発電装置が開示されている。
特許文献1、2に記載の技術では、凝縮器に接続された配管の弁を開き、気液分離ドラム内の過剰な蒸気を配管を介して凝縮器に導入し凝縮させることにより、気液分離ドラム内の圧力上昇の防止を図っている。
特開平10−246402号公報 特開2008−8217号公報
しかし、前記特許文献1、2に記載の技術では、気液分離ドラムの外部に凝縮器を配設した構成であるため、凝縮器を設置するスペースを外部に確保する必要があり、蒸気発生装置全体が大型化する。このため、サーモサイフォン式蒸気発生装置に要求されるコンパクト化が損なわれる。
また、前記特許文献1、2に記載の技術において、蒸気利用装置での蒸気消費の減少や停止に対応し、弁を開き配管を通じて蒸気を凝縮器に導入させても、蒸気が配管を経る時間の分凝縮の開始が遅れることから、優れた応答性で蒸発器および気液分離ドラム内の圧力上昇を抑えることが困難である。
本発明は、上記の問題に鑑みてなされたものであり、コンパクト化を維持することができ、蒸気利用装置での蒸気の消費が減少したり停止した場合であっても、優れた応答性で蒸発器および気液分離ドラム内の圧力上昇を抑えることができるサーモサイフォン式蒸気発生装置を提供することを目的とする。
本発明者らは、上記目的を達成するため、サーモサイフォン式蒸気発生装置の構成について鋭意検討を重ねた結果、気液分離ドラムの内部に凝縮器を配設するのが有効であることを知見した。
本発明は、上記の知見に基づいて完成させたものであり、その要旨は、下記のサーモサイフォン式蒸気発生装置にある。すなわち、熱媒を流通させる伝熱コアを有する蒸発器と、水を貯溜する気液分離ドラムとが、互いの上部と下部をそれぞれ上部配管と下部配管で連通してなり、下部配管を通じ気液分離ドラム内の水を蒸発器に供給し、蒸発器に供給された水を伝熱コアを流通する熱媒との熱交換により蒸発させ、蒸発器で生成した蒸気を上部配管を通じ気液分離ドラムに供給し、気液分離ドラムに供給され水分を分離した蒸気を気液分離ドラムから送り出すサーモサイフォン式蒸気発生装置において、気液分離ドラムの内部に、冷媒の流通およびその流通の停止が可能な凝縮器を設け、この凝縮器を流通する冷媒との熱交換により気液分離ドラム内の蒸気を凝縮させることを特徴とするサーモサイフォン式蒸気発生装置である。
この蒸気発生装置では、前記凝縮器が、前記気液分離ドラムにおける前記上部配管の連通口の下方に配置されていることが好ましい。
上記の蒸気発生装置は、前記凝縮器に流通させる冷媒として気体を用いることができる。
また、上記の蒸気発生装置は、前記凝縮器に流通させる冷媒として液体を用いることができ、この場合、冷媒の流通を停止した後に前記凝縮器の冷媒通路に滞留する冷媒を排出する冷媒排出機構を備えたり、冷媒の流通を停止した後に前記凝縮器の冷媒通路に滞留する冷媒を加圧する冷媒加圧機構を備えることが好ましい。
本発明のサーモサイフォン式蒸気発生装置によれば、蒸気利用装置での蒸気の消費が減少したり停止した場合、凝縮器に冷媒を流通させることにより、上部配管を通じて気液分離ドラムに継続して供給される蒸気が、凝縮器を流通する冷媒との熱交換で逐次冷却され凝縮するため、過剰な体積膨張は生じず、蒸発器および気液分離ドラム内の圧力上昇を防止することができる。このとき、凝縮器に冷媒を流通させれば、気液分離ドラム内で凝縮器の周囲に存在する蒸気を直ちに凝縮させることができるため、優れた応答性で蒸発器および気液分離ドラム内の圧力上昇を抑えることが可能になる。
また、本発明の蒸気発生装置は、気液分離ドラムの内部に凝縮器を配設した構成であるため、新たに凝縮器を設置するスペースの確保は不要であり、コンパクト化を維持することができる。
従来のサーモサイフォン式蒸気発生装置の構成を示す模式図である。 本発明のサーモサイフォン式蒸気発生装置の構成例を示す模式図である。 本発明のサーモサイフォン式蒸気発生装置の他の構成例を示す模式図である。 本発明のサーモサイフォン式蒸気発生装置で凝縮器に流通させる冷媒として液体を用いた場合に、凝縮器の破損を防止する構成例を示す模式図である。 本発明のサーモサイフォン式蒸気発生装置で凝縮器に流通させる冷媒として液体を用いた場合に、凝縮器の破損を防止する他の構成例を示す模式図である。
以下に、本発明のサーモサイフォン式蒸気発生装置の実施形態について、図面を参照しながら詳述する。
図2は、本発明のサーモサイフォン式蒸気発生装置の構成例を示す模式図である。同図に示す蒸気発生装置1は、前記図1に示す蒸気発生装置の構成を基本とし、それと同じ構成には同一の符号を付し、重複する説明は適宜省略する。
図2に示すように、本発明の蒸気発生装置1は、気液分離ドラム3の内部に凝縮器20を配設した構成である。具体的には、凝縮器20は、気液分離ドラム3に貯留される水11の液面の上方にあって、気液分離ドラム3の上部における側壁に接続された上部配管4の連通口4aの下方に配置されている。
凝縮器20は、冷媒の流通およびその流通の停止を可能とする熱交換器である。図2では、凝縮器20として、冷媒を流通させる冷媒通路が伝熱チューブからなる熱交換器を採用した例を示している。凝縮器20として、伝熱チューブにフィンを取り付けたフィンチューブ型熱交換器を採用しても構わない。
このような構成のサーモサイフォン式蒸気発生装置1において、蒸気利用装置での蒸気の消費が安定している場合は、凝縮器20への冷媒の供給を行わず、冷媒の流通を停止した状態にする。この場合、前記図1に示す蒸気発生装置と同様に、サーモサイフォン現象により、気液分離ドラム3内の水11が下部配管5を通じ蒸発器2に供給され、蒸発器2に供給された水は、伝熱コア6の水通路を流通する過程で、伝熱コア6の熱媒通路を流通する熱媒との熱交換により加熱され、蒸発する。蒸発器2で生成した蒸気は、上部配管4を通じ気液分離ドラム3に供給され、気液分離ドラム3内で蒸気中に含まれる水分を分離された後、蒸気送出管10から送り出される。このとき、凝縮器20は冷媒の流通が停止していることから、気液分離ドラム3内の蒸気に対し何ら影響しない。
一方、蒸気利用装置での蒸気の消費が減少したり停止した場合は、凝縮器20に冷媒を供給し流通させた状態に変更する。この場合、蒸発器2で蒸気の生成が継続して行われるため、上部配管4を通じ気液分離ドラム3に蒸気が継続して供給されるが、その蒸気は、凝縮器20を流通する冷媒との熱交換により、逐次冷却され、凝縮して水に戻る。このため、過剰な体積膨張は生じず、蒸発器2および気液分離ドラム3内の圧力が上昇するのを防止できる。
また、本発明の蒸気発生装置1は、気液分離ドラム3の内部に凝縮器20を配設した構成であるため、新たに凝縮器を設置するスペースの確保は不要であり、要求されるコンパクト化を維持することができる。
さらに、凝縮器20に冷媒を流通させれば、気液分離ドラム3内で凝縮器20の周囲に存在する蒸気を直ちに凝縮させることができるため、優れた応答性で蒸発器2および気液分離ドラム3内の圧力上昇を抑えることが可能になる。
図3は、本発明のサーモサイフォン式蒸気発生装置の他の構成例を示す模式図である。同図に示す蒸気発生装置1も、前記図2に示す蒸気発生装置と同様に、気液分離ドラム3の内部に凝縮器20を配設した構成である。図3では、凝縮器20としてプレートフィン型熱交換器を採用した例を示している。この凝縮器20は、冷媒通路と、蒸気を流通させる蒸気通路とが、交互に積層配置され、鉛直方向に蒸気通路が形成された伝熱コアを有する。
このサーモサイフォン式蒸気発生装置1でも、上述した図2に示す蒸気発生装置と同様の効果を得ることができる。
前記図2および図3に示す蒸気発生装置1では、凝縮器20に流通させる冷媒として、空気、またはHCFCやHFCなどのフロンガスといった気体を用いることができる。簡便には、空気を採用することが好ましい。
また、凝縮器20に流通させる冷媒は、気体に限られず、水などの液体を用いることもできる。ただし、冷媒として液体を用いる場合は、以下の留意が必要である。
凝縮器20に冷媒として液体を流通させ、その状態から液体の流通を停止させると、凝縮器20の冷媒通路には液体が滞留する状態になる。このとき、冷媒通路に滞留する液体は、気液分離ドラム3に供給される蒸気と熱交換を行うため、加熱されて気化し、これに伴う過剰な体積膨張により、凝縮器20が破損するおそれがある。このような事態を回避する構成を以下に説明する。
図4は、本発明のサーモサイフォン式蒸気発生装置で凝縮器に流通させる冷媒として液体を用いた場合に、凝縮器の破損を防止する構成例を示す図である。同図に示す蒸気発生装置は、凝縮器20に流通させる冷媒として液体を採用し、冷媒通路の上方から下方に冷媒を流通させるものであり、冷媒通路に冷媒を供給する冷媒供給管21と、冷媒通路を流通した冷媒を送り出す冷媒送出管22とを備える。冷媒供給管21と冷媒送出管22には、それぞれ冷媒の供給を停止させるときに経路を閉ざす入側弁23と出側弁24が設けられている。さらに、冷媒送出管22は出側弁24の上流で分岐した排出管25を備え、この排出管25には排出弁26が設けられている。
このような構成によれば、凝縮器20に冷媒として液体を流通させ、その状態から液体の流通を停止させる際、入側弁23および出側弁24を閉ざすと同時に排出弁26を開くことにより、凝縮器20の冷媒通路に滞留する液体が排出管25を通じて外部に排出される。これにより、冷媒通路に液体が存在しなくなるため、気液分離ドラム3に供給される蒸気との熱交換が行われても、体積膨張は生じず、凝縮器20が破損することはない。
図5は、本発明のサーモサイフォン式蒸気発生装置で凝縮器に流通させる冷媒として液体を用いた場合に、凝縮器の破損を防止する他の構成例を示す模式図である。同図に示す蒸気発生装置も、前記図4に示すものと同様に、冷媒供給管21と冷媒送出管22を備える。ただし、図5に示す蒸気発生装置では、前記図4に示す冷媒供給管21の入側弁23と、冷媒送出管22から分岐した排出管25に代えて、冷媒供給管21に送給ポンプ27が設けられている。
このような構成によれば、凝縮器20に冷媒として液体を流通させ、その状態から液体の流通を停止させる際、送給ポンプ27を駆動させたまま出側弁24を閉ざすことにより、凝縮器20の冷媒通路に滞留する液体が、送給ポンプ27の駆動に伴って加圧される。これにより、冷媒通路に滞留する液体の飽和温度が上昇するため、気液分離ドラム3に供給される蒸気との熱交換で加熱されても、気化することはない。このため、冷媒通路で体積膨張は生じず、凝縮器20の破損を防止できる。
その他本発明は上記の実施形態に限定されず、本発明の趣旨を逸脱しない範囲で、種々の変更が可能である。例えば、上記の実施形態では、凝縮器を気液分離ドラムにおける上部配管の連通口の下方に配置しているが、気液分離ドラムの内部である限り、その連通口の上方に凝縮器を配置することもできる。凝縮器を上部配管の連通口の上方に配置した場合、凝縮器が気液分離ドラムから蒸気送出管への蒸気の流路抵抗になるが、蒸気利用装置での蒸気消費の減少や停止に対応し、蒸発器および気液分離ドラム内の圧力上昇を防止できることに変わりはないからである。
本発明のサーモサイフォン式蒸気発生装置によれば、蒸気利用装置での蒸気の消費が減少したり停止した場合、凝縮器に冷媒を流通させることにより、気液分離ドラムに継続して供給される蒸気が、その冷媒との熱交換で逐次冷却され凝縮するため、蒸発器および気液分離ドラム内の圧力上昇を防止することができる。このとき、凝縮器に冷媒を流通させれば、凝縮器の周囲に存在する蒸気を直ちに凝縮させることができるため、蒸発器および気液分離ドラム内の圧力上昇の抑制を優れた応答性で行うことが可能になる。
また、本発明の蒸気発生装置は、気液分離ドラムの内部に凝縮器を配設した構成であるため、新たに凝縮器を設置するスペースの確保は不要であり、コンパクト化を維持することができる。従って、本発明のサーモサイフォン式蒸気発生装置は、分散型エネルギーシステムに極めて有用である。
1:サーモサイフォン式蒸気発生装置、 2:蒸発器、 3:気液分離ドラム、
4:上部配管、 4a:連通口、 5:下部配管、 6:伝熱コア、
7:入側ヘッダータンク、 8:出側ヘッダータンク、 9:給水管、
10:蒸気送出管、 11:水、
20:凝縮器、 21:冷媒供給管、 22:冷媒送出管、 23:入側弁、
24:出側弁、 25:排出管、 26:排出弁、 27:送給ポンプ

Claims (5)

  1. 熱媒を流通させる伝熱コアを有する蒸発器と、水を貯溜する気液分離ドラムとが、互いの上部と下部をそれぞれ上部配管と下部配管で連通してなり、下部配管を通じ気液分離ドラム内の水を蒸発器に供給し、蒸発器に供給された水を伝熱コアを流通する熱媒との熱交換により蒸発させ、蒸発器で生成した蒸気を上部配管を通じ気液分離ドラムに供給し、気液分離ドラムに供給され水分を分離した蒸気を気液分離ドラムから送り出すサーモサイフォン式蒸気発生装置において、
    気液分離ドラムの内部に、冷媒の流通およびその流通の停止が可能な凝縮器を設け、この凝縮器を流通する冷媒との熱交換により気液分離ドラム内の蒸気を凝縮させることを特徴とするサーモサイフォン式蒸気発生装置。
  2. 前記凝縮器が、前記気液分離ドラムにおける前記上部配管の連通口の下方に配置されていることを特徴とする請求項1に記載のサーモサイフォン式蒸気発生装置。
  3. 前記凝縮器に流通させる冷媒が気体であることを特徴とする請求項1または2に記載のサーモサイフォン式蒸気発生装置。
  4. 前記凝縮器に流通させる冷媒が液体であり、冷媒の流通を停止した後に前記凝縮器の冷媒通路に滞留する冷媒を排出する冷媒排出機構を備えたことを特徴とする請求項1または2に記載のサーモサイフォン式蒸気発生装置。
  5. 前記凝縮器に流通させる冷媒が液体であり、冷媒の流通を停止した後に前記凝縮器の冷媒通路に滞留する冷媒を加圧する冷媒加圧機構を備えたことを特徴とする請求項1または2に記載のサーモサイフォン式蒸気発生装置。
JP2009014395A 2009-01-26 2009-01-26 サーモサイフォン式蒸気発生装置 Pending JP2010169364A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009014395A JP2010169364A (ja) 2009-01-26 2009-01-26 サーモサイフォン式蒸気発生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009014395A JP2010169364A (ja) 2009-01-26 2009-01-26 サーモサイフォン式蒸気発生装置

Publications (1)

Publication Number Publication Date
JP2010169364A true JP2010169364A (ja) 2010-08-05

Family

ID=42701687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009014395A Pending JP2010169364A (ja) 2009-01-26 2009-01-26 サーモサイフォン式蒸気発生装置

Country Status (1)

Country Link
JP (1) JP2010169364A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5067746B1 (ja) * 2012-02-02 2012-11-07 岡本 應守 サイフォン型バイナリー発電装置
CN105953198A (zh) * 2016-06-05 2016-09-21 侴乔力 虹吸循环余热蒸汽锅炉
JP2017199537A (ja) * 2016-04-27 2017-11-02 株式会社デンソー 燃料電池装置
KR20190092989A (ko) * 2018-01-31 2019-08-08 엘지전자 주식회사 공조시스템

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07296836A (ja) * 1994-04-28 1995-11-10 Toshiba Corp 燃料電池余剰蒸気凝縮型気水分離器
JPH10246402A (ja) * 1997-03-06 1998-09-14 Babcock Hitachi Kk ボイラ及びその運転方法
JP2002051842A (ja) * 2000-08-09 2002-02-19 Mitsubishi Electric Building Techno Service Co Ltd 水冷式凝縮器の清掃具

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07296836A (ja) * 1994-04-28 1995-11-10 Toshiba Corp 燃料電池余剰蒸気凝縮型気水分離器
JPH10246402A (ja) * 1997-03-06 1998-09-14 Babcock Hitachi Kk ボイラ及びその運転方法
JP2002051842A (ja) * 2000-08-09 2002-02-19 Mitsubishi Electric Building Techno Service Co Ltd 水冷式凝縮器の清掃具

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5067746B1 (ja) * 2012-02-02 2012-11-07 岡本 應守 サイフォン型バイナリー発電装置
JP2017199537A (ja) * 2016-04-27 2017-11-02 株式会社デンソー 燃料電池装置
CN105953198A (zh) * 2016-06-05 2016-09-21 侴乔力 虹吸循环余热蒸汽锅炉
KR20190092989A (ko) * 2018-01-31 2019-08-08 엘지전자 주식회사 공조시스템
KR102110539B1 (ko) * 2018-01-31 2020-05-13 엘지전자 주식회사 공조시스템

Similar Documents

Publication Publication Date Title
JP5862133B2 (ja) 蒸気動力サイクルシステム
US9476325B2 (en) Method and apparatus of producing and utilizing thermal energy in a combined heat and power plant
JP2006138744A (ja) 原子炉の冷却装置
JP6870621B2 (ja) 燃料電池システム
US8073096B2 (en) Methods and apparatuses for removal and transport of thermal energy
JP5967315B2 (ja) 蒸気生成装置及び蒸気生成ヒートポンプ
JP2010164248A (ja) 吸収ヒートポンプ
JP5775267B2 (ja) 水処理システム
JP2010169364A (ja) サーモサイフォン式蒸気発生装置
JP2010223537A (ja) ヒートポンプ給湯システム
JP2008088892A (ja) 非共沸混合媒体サイクルシステム
JP4821457B2 (ja) 高機能水生成システム
JP2008082579A (ja) プレートフィン型熱交換器および燃料電池システム
JP4644631B2 (ja) 吸収式ヒートポンプ
JP2014182923A (ja) 燃料電池システム及びその運転方法
JP2006207883A (ja) 吸収ヒートポンプ
KR101528222B1 (ko) 혼합형 증기발생기 및 이를 구비하는 원전
WO2017007371A2 (ru) Парогенератор
KR20090021807A (ko) 냉방기능을 갖는 연료전지 시스템
JP2010113967A (ja) 燃料電池システム
EP3467288A1 (en) Thermoelectric power generation device
CN117537329A (zh) 一种蒸汽发生系统及用于产生高温蒸汽的方法
JP2019121578A (ja) 燃料電池システム
JP6003448B2 (ja) 蒸気発生装置
JP5543941B2 (ja) 吸収ヒートポンプ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130820