JP2010167465A - Metal filler and solder paste - Google Patents

Metal filler and solder paste Download PDF

Info

Publication number
JP2010167465A
JP2010167465A JP2009013344A JP2009013344A JP2010167465A JP 2010167465 A JP2010167465 A JP 2010167465A JP 2009013344 A JP2009013344 A JP 2009013344A JP 2009013344 A JP2009013344 A JP 2009013344A JP 2010167465 A JP2010167465 A JP 2010167465A
Authority
JP
Japan
Prior art keywords
mass
metal particles
metal
temperature
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009013344A
Other languages
Japanese (ja)
Other versions
JP5188999B2 (en
Inventor
Norihito Tanaka
軌人 田中
Go Shiratori
剛 白鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2009013344A priority Critical patent/JP5188999B2/en
Publication of JP2010167465A publication Critical patent/JP2010167465A/en
Application granted granted Critical
Publication of JP5188999B2 publication Critical patent/JP5188999B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead-free solder material which can be melted and joined at lower temperature conditions (peak temperature:≥150°C) than the mounting temperature (reflow heat treatment temperature)of Sn-37Pb eutectic solder, and can be repaired under the temperature conditions same as those of Sn-37Pb eutectic solder after the mounting. <P>SOLUTION: The metal filler includes: first metal grains composed of an alloy having a composition containing, by mass, 5 to 15% Ag, 15 to 25% Bi, 10 to 20% Cu, 15 to 25% In and 15 to 55% Sn; and second metal grains composed of an alloy having a composition containing 25 to 40% Ag, 2 to 8% Bi, 5 to 15% Cu, 2 to 8% In and 29 to 66% Sn, and in which regarding the mixing ratio between the first metal grains and the second metal grains to the first metal grains 100 pts.mass, the ratio of the second metal grains is 90 to 110 pts.mass. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電子機器の接続に用いられる金属フィラーに関する。本発明は、特に鉛フリーはんだペースト、及び導電性接着剤に関する。   The present invention relates to a metal filler used for connecting electronic devices. The present invention particularly relates to a lead-free solder paste and a conductive adhesive.

エレクトロニクス実装に用いられるはんだ材料は、Pbを含有するSn−37Pb共晶はんだ(融点183℃)が、一般的であったが、Pbによる環境汚染、人体に対する有害性が問題視されるようになり、2006年7月には、欧州共同体(EU)でRoHS指令が施行されるなど、世界的にPb規制強化の動きが高まり、Pbを含まないはんだ材料の開発が進められている。   Sn-37Pb eutectic solder containing Pb (melting point: 183 ° C) is generally used as the solder material used for electronics mounting, but environmental pollution caused by Pb and harmfulness to the human body have become a problem. In July 2006, the RoHS Directive was enforced in the European Community (EU), and the movement to strengthen Pb regulations worldwide increased, and the development of solder materials that do not contain Pb is being promoted.

Sn−37Pb共晶はんだに代わる鉛フリーはんだ材料としては、現在、Sn−3.0Ag−0.5Cu(融点217℃)はんだ(以下、特許文献1参照)が、主流となっているが、Sn−37Pb共晶はんだに比べ融点が高く、実装温度、即ちリフロー熱処理温度も高いため、熱的負荷が大きく、耐熱性の低い電子デバイスには適用できないことから、低温で実装可能な低融点の鉛フリーはんだの開発が求められている。
尚、リフロー熱処理温度は、はんだ合金融点+10〜50℃の範囲で設定されるのが、一般的である。
As a lead-free solder material replacing Sn-37Pb eutectic solder, Sn-3.0Ag-0.5Cu (melting point: 217 ° C.) solder (hereinafter referred to as Patent Document 1) is mainly used. Low melting point lead that can be mounted at low temperatures because it has a higher melting point and higher mounting temperature, ie, reflow heat treatment temperature, and is not applicable to electronic devices with high thermal load and low heat resistance. Development of free solder is required.
In general, the reflow heat treatment temperature is set within the range of the melting point of the solder alloy +10 to 50 ° C.

これに対し、低融点の鉛フリーはんだとしては、Sn、In、Biを主成分としたSn−52In(融点117℃)はんだ、Sn−58Bi(融点139℃)はんだ(以下、特許文献2、3参照)などがある。これらは、Sn−37Pb共晶はんだよりも融点が低く、実装温度も150〜180℃の範囲の低温で使用できる利点があるが、Sn−52Inはんだでは、Inが希少資源であり、また非常に高価な金属であるため、安定供給やコスト面での課題があり、一方、Sn−58Biはんだでは、材料自体が硬くて脆く、延性が低いなどの機械的性質に加え、熱疲労強度が低く、接続信頼性に課題がある。   On the other hand, as a low melting point lead-free solder, Sn-52In (melting point: 117 ° C.) solder composed mainly of Sn, In, Bi, Sn-58Bi (melting point: 139 ° C.) solder (hereinafter, Patent Documents 2, 3) See). These have the advantage that the melting point is lower than that of Sn-37Pb eutectic solder and the mounting temperature can be used at a low temperature in the range of 150 to 180 ° C. However, in Sn-52In solder, In is a scarce resource. Since it is an expensive metal, there are problems in terms of stable supply and cost. On the other hand, in Sn-58Bi solder, in addition to mechanical properties such as the material itself being hard and brittle and having low ductility, thermal fatigue strength is low, There is a problem in connection reliability.

本発明者らは、以前、上記問題の解決手段の一つとして、Sn−37Pb共晶はんだより低い実装温度で接続可能な鉛フリーはんだを提案した(以下、特許文献4、5参照)。しかしながら、これらのはんだ材料は、実装後260℃でも接合強度を保持することを特徴とするものであり、リペア性を有するものではなかった。   The present inventors have previously proposed lead-free solder that can be connected at a lower mounting temperature than Sn-37Pb eutectic solder as one of means for solving the above problems (see Patent Documents 4 and 5 below). However, these solder materials are characterized by maintaining the bonding strength even at 260 ° C. after mounting, and have no repairability.

特開平05−050286号公報Japanese Patent Laid-Open No. 05-050286 特開平08−252688号公報Japanese Patent Application Laid-Open No. 08-252688 特開平11−221694号公報JP-A-11-221694 特開2006−281292号公報JP 2006-281292 A 特開2008−183582号公報JP 2008-183582 A

本発明は、上記課題を鑑みて成されたものであり、Sn−37Pb共晶はんだの実装温度(リフロー熱処理温度)よりも低温条件(ピーク温度150℃以上)で溶融接合でき、実装後は、Sn−37Pb共晶はんだと同等の温度条件でリペア可能な鉛フリーはんだ材料を提供することを目的とする。   The present invention has been made in view of the above problems, and can be melt-bonded at a temperature lower than the mounting temperature (reflow heat treatment temperature) of Sn-37Pb eutectic solder (peak temperature of 150 ° C. or higher). It is an object to provide a lead-free solder material that can be repaired under a temperature condition equivalent to that of Sn-37Pb eutectic solder.

本発明者らは、上記課題を解決すべく検討を行った結果、本発明を完成するに至った。
具体的には、本発明は、以下の[1]〜[3]である:
[1]Ag5〜15質量%、Bi15〜25質量%、Cu10〜20質量%、In15〜25質量%、及びSn15〜55質量%の組成を有する合金からなる第1金属粒子と、Ag25〜40質量%、Bi2〜8質量%、Cu5〜15質量%、In2〜8質量%、及びSn29〜66質量%の組成を有する合金からなる第2金属粒子とを含み、該第1金属粒子と該第2金属粒子の混合比が、該第1金属粒子100質量部に対して、該第2金属粒子90〜110質量部であることを特徴とする金属フィラー。
As a result of studies to solve the above problems, the present inventors have completed the present invention.
Specifically, the present invention is the following [1] to [3]:
[1] First metal particles made of an alloy having a composition of Ag 5 to 15 mass%, Bi 15 to 25 mass%, Cu 10 to 20 mass%, In 15 to 25 mass%, and Sn 15 to 55 mass%, and Ag 25 to 40 mass %, Bi 2-8 mass%, Cu 5-15 mass%, In 2-8 mass%, and second metal particles made of an alloy having a composition of Sn 29-66 mass%, the first metal particles and the second A metal filler, wherein a mixing ratio of metal particles is 90 to 110 parts by mass of the second metal particles with respect to 100 parts by mass of the first metal particles.

[2]Ag5〜15質量%、Bi2〜8質量%、Cu49〜81質量%、In2〜8質量%、及びSn10〜20質量%の組成を有する合金からなる第3金属粒子と、Snからなる第4金属粒子とをさらに含み、該第1〜4金属粒子の混合比が、該第1金属粒子100質量部に対して、該第2金属粒子90〜110質量部、該第3金属粒子4〜2120質量部、そして該第4金属粒子5〜2505質量部である、前記[1]に記載の金属フィラー。   [2] Third metal particles made of an alloy having a composition of Ag 5 to 15% by mass, Bi 2 to 8% by mass, Cu 49 to 81% by mass, In 2 to 8% by mass, and Sn 10 to 20% by mass, and Sn 4 metal particles, and the mixing ratio of the first to fourth metal particles is 90 to 110 parts by mass of the second metal particles and 4 to 3 parts of the third metal particles with respect to 100 parts by mass of the first metal particles. The metal filler according to the above [1], which is 2120 parts by mass and 5 to 2505 parts by mass of the fourth metal particles.

[3]前記[1]又は[2]に記載の金属フィラーを含有するはんだペースト。   [3] A solder paste containing the metal filler according to [1] or [2].

本発明の金属フィラーは、Sn−37Pb共晶はんだの実装温度(リフロー熱処理温度)よりも低温条件(ピーク温度150℃以上)で溶融接合でき、実装後は、Sn−37Pb共晶はんだと同等の温度条件でリペアできるので、実装時の熱的負担が小さく、耐熱性の低い電子デバイスにも適用できると共に、製造コスト、環境負荷を低減できるという利点がある。   The metal filler of the present invention can be melt-bonded at a temperature lower than the mounting temperature (reflow heat treatment temperature) of Sn-37Pb eutectic solder (peak temperature 150 ° C. or higher), and after mounting, it is equivalent to Sn-37Pb eutectic solder. Since repair can be performed under temperature conditions, there is an advantage that the thermal burden during mounting is small, and it can be applied to an electronic device with low heat resistance, and the manufacturing cost and environmental load can be reduced.

実施例1で造粒分級した第1金属粒子の示差走査熱量測定により得られたDSCチャートである。2 is a DSC chart obtained by differential scanning calorimetry of the first metal particles granulated and classified in Example 1. FIG. 実施例1で造粒分級した第2金属粒子の示差走査熱量測定により得られたDSCチャートである。2 is a DSC chart obtained by differential scanning calorimetry of second metal particles granulated and classified in Example 1. FIG. 実施例1で造粒分級した第3金属粒子の示差走査熱量測定により得られたDSCチャートである。2 is a DSC chart obtained by differential scanning calorimetry of third metal particles granulated and classified in Example 1. FIG.

本発明の金属フィラーは、Ag5〜15質量%、Bi15〜25質量%、Cu10〜20質量%、In15〜25質量%、及びSn15〜55質量%の組成を有する合金からなる第1金属粒子と、Ag25〜40質量%、Bi2〜8質量%、Cu5〜15質量%、In2〜8質量%、及びSn29〜66質量%の組成を有する合金からなる第2金属粒子とを含み、該第1金属粒子と該第2金属粒子の混合比が、該第1金属粒子100質量部に対して、該第2金属粒子90〜110質量部であることを特徴とする。   The metal filler of the present invention is composed of first metal particles made of an alloy having a composition of Ag 5 to 15% by mass, Bi 15 to 25% by mass, Cu 10 to 20% by mass, In 15 to 25% by mass, and Sn 15 to 55% by mass; Second metal particles made of an alloy having a composition of Ag 25 to 40% by mass, Bi 2 to 8% by mass, Cu 5 to 15% by mass, In 2 to 8% by mass, and Sn 29 to 66% by mass, the first metal particles The mixing ratio of the second metal particles is 90 to 110 parts by mass of the second metal particles with respect to 100 parts by mass of the first metal particles.

また、本発明の金属フィラーは、Ag5〜15質量%、Bi15〜25質量%、Cu10〜20質量%、In15〜25質量%、及びSn15〜55質量%の組成を有する合金からなる第1金属粒子と、Ag25〜40質量%、Bi2〜8質量%、Cu5〜15質量%、In2〜8質量%、及びSn29〜66質量%の組成を有する合金からなる第2金属粒子に加え、Ag5〜15質量%、Bi2〜8質量%、Cu49〜81質量%、In2〜8質量%、及びSn10〜20質量%の組成を有する合金からなる第3金属粒子と、Snからなる第4金属粒子とをさらに含み、該第1〜4金属粒子の混合比が、該第1金属粒子100質量部に対して、該第2金属粒子90〜110質量部、該第3金属粒子4〜2120質量部、そして該第4金属粒子5〜2505質量部であることが好ましい。   Further, the metal filler of the present invention is composed of an alloy having a composition of Ag 5 to 15% by mass, Bi 15 to 25% by mass, Cu 10 to 20% by mass, In 15 to 25% by mass, and Sn 15 to 55% by mass. In addition to the second metal particles made of an alloy having a composition of Ag25-40 mass%, Bi2-8 mass%, Cu5-15 mass%, In2-8 mass%, and Sn29-66 mass%, Ag5-15 mass% %, Bi2-8% by mass, Cu49-81% by mass, In2-8% by mass, and third metal particles made of an alloy having a composition of Sn10-20% by mass, and fourth metal particles made of Sn. The mixing ratio of the first to fourth metal particles is 90 to 110 parts by mass of the second metal particles, 4 to 2120 parts by mass of the third metal particles, and 100 parts by mass of the first metal particles. 4 metal grains Is preferably 5 to 2,505 parts by weight.

ピーク温度150℃以上の熱履歴が与えられると、第1金属粒子が溶融し、周囲の金属粒子と接合する。これにより金属粒子間の熱拡散反応が加速的に進み、新たな合金相が形成される。この時、準安定合金相を有する金属粒子が存在することが好ましい。準安定合金相は、新たな合金相を形成し易いので、熱拡散反応を助長する効果がある。   When a heat history having a peak temperature of 150 ° C. or higher is given, the first metal particles are melted and joined to surrounding metal particles. As a result, the thermal diffusion reaction between the metal particles proceeds at an accelerated rate, and a new alloy phase is formed. At this time, it is preferable that metal particles having a metastable alloy phase exist. Since the metastable alloy phase is easy to form a new alloy phase, it has the effect of promoting the thermal diffusion reaction.

前記第1金属粒子は、示差走査熱量測定(DSC)において、吸熱ピークとして観測される融点を50〜95℃の範囲に少なくとも1つ有することが好ましい。
また、このような熱特性を発現する金属粒子としては、Ag8〜12質量%、Bi17〜23質量%、Cu12〜18質量%、In17〜23質量%、そして残部Snの組成を有する合金がより好ましい。
The first metal particles preferably have at least one melting point observed as an endothermic peak in the range of 50 to 95 ° C. in differential scanning calorimetry (DSC).
Moreover, as a metal particle which expresses such a thermal characteristic, the alloy which has composition of Ag8-12 mass%, Bi17-23 mass%, Cu12-18 mass%, In17-23 mass%, and remainder Sn is more preferable. .

前記第2金属粒子は、示差走査熱量測定(DSC)において、発熱ピークとして観測される準安定合金相を110〜140℃の範囲に少なくとも1つと、吸熱ピークとして観測される融点を165〜200℃の範囲と320〜380℃の範囲の2箇所に少なくとも1つずつ有することが好ましい。示差走査熱量測定(DSC)における発熱は、新たな合金相が形成される際に発生する潜熱の検出であり、金属粒子に準安定合金相が存在することを示す。
また、このような熱特性を発現する金属粒子としては、Ag30〜35質量%、Bi3〜7質量%、Cu8〜12質量%、In3〜7質量%、そして残部Snの組成を有する合金がより好ましい。
In the differential scanning calorimetry (DSC), the second metal particles have at least one metastable alloy phase observed as an exothermic peak in a range of 110 to 140 ° C. and a melting point observed as an endothermic peak of 165 to 200 ° C. It is preferable to have at least one each at two locations in the range of 320 to 380 ° C. Heat generation in differential scanning calorimetry (DSC) is detection of latent heat generated when a new alloy phase is formed, indicating that a metastable alloy phase is present in the metal particles.
Moreover, as a metal particle which expresses such a thermal characteristic, the alloy which has composition of Ag30-35 mass%, Bi3-7 mass%, Cu8-12 mass%, In3-7 mass%, and remainder Sn is more preferable. .

準安定合金相を有する金属粒子の製造法としては、急冷凝固法が好ましい。急冷凝固法による微粉末の製造法としては、水噴霧法、ガス噴霧法、遠心噴霧法等が挙げられ、粒子の酸素含有量を抑えることができる点から、ガス噴霧法、遠心噴霧法がより好ましい。   As a method for producing metal particles having a metastable alloy phase, a rapid solidification method is preferable. Examples of the method for producing fine powder by the rapid solidification method include a water spray method, a gas spray method, and a centrifugal spray method. From the viewpoint of suppressing the oxygen content of particles, the gas spray method and the centrifugal spray method are more preferable. preferable.

ガス噴霧法では、通常、窒素ガス、アルゴンガス、ヘリウムガス等の不活性ガスを使用することができるが、ガス噴霧時の線速を高くし、冷却速度を速くするため、比重の軽いヘリウムガスを用いることが好ましい。冷却速度は、500〜5,000℃/秒の範囲であることが好ましい。遠心噴霧法では、回転ディスク上面に均一な溶融膜を形成する観点から、材質は、サイアロンであることが好ましく、ディスク回転速度は、6万〜12万rpmの範囲であることが好ましい。   In the gas spraying method, inert gas such as nitrogen gas, argon gas, helium gas, etc. can be usually used. Is preferably used. The cooling rate is preferably in the range of 500 to 5,000 ° C./second. In the centrifugal spray method, from the viewpoint of forming a uniform molten film on the upper surface of the rotating disk, the material is preferably sialon, and the disk rotation speed is preferably in the range of 60,000 to 120,000 rpm.

第1金属粒子と第2金属粒子の混合比は、第1金属粒子100質量部に対して、第2金属粒子90〜110質量部であることが好ましく、更には、第1金属粒子100質量部に対して、第2金属粒子100〜105質量部であることがより好ましい。   The mixing ratio of the first metal particles and the second metal particles is preferably 90 to 110 parts by mass of the second metal particles with respect to 100 parts by mass of the first metal particles, and further, 100 parts by mass of the first metal particles. On the other hand, it is more preferable that it is 100-105 mass parts of 2nd metal particles.

前記金属フィラーの粒子サイズとしては、平均粒径で2〜30μmの範囲が好ましく、更に好ましくは、5〜30μmの範囲である。平均粒径が2μm以上であると、粒子の比表面積が小さくなるため、フラックスとの反応が少なく、ペーストの寿命が長くなり、リフロー熱処理においては、フラックスによる還元(粒子酸化膜除去)で発生するガスも少なくなるので、接続内部にボイドが発生し難くなる点から好ましく、更には、5μm以上が好ましい。平均粒径の上限は、ペースト特性の観点から30μm以下が好ましい。粒子サイズが大きくなると、粒子間の隙間が大きくなるので、粘着力が損なわれ易くなる。   The particle size of the metal filler is preferably in the range of 2 to 30 μm as an average particle size, and more preferably in the range of 5 to 30 μm. When the average particle size is 2 μm or more, the specific surface area of the particles becomes small, so there is little reaction with the flux, the life of the paste is lengthened, and reflow heat treatment occurs due to reduction by flux (particle oxide film removal). Since the amount of gas is reduced, it is preferable from the viewpoint that voids hardly occur inside the connection, and more preferably 5 μm or more. The upper limit of the average particle diameter is preferably 30 μm or less from the viewpoint of paste characteristics. When the particle size is increased, the gap between the particles is increased, so that the adhesive force is easily impaired.

前記金属フィラーの粒度分布は、ペースト用途に応じて定めることができる。例えば、スクリーン印刷用途では、版抜け性を重視して、粒度分布はブロードにするのが好ましく、ディスペンス用途では、吐出流動性を重視して、ビア充填用途では、穴埋め性を重視して、粒度分布はシャープにするのが好ましい。   The particle size distribution of the metal filler can be determined according to the paste application. For example, for screen printing applications, emphasis is placed on the plate slippage and the particle size distribution is preferably broad.For dispensing applications, emphasis is placed on discharge fluidity. The distribution is preferably sharp.

また、更に好ましい金属フィラーは、例えば、前記第1金属粒子及び第2金属粒子に加え、Ag5〜15質量%、Bi2〜8質量%、Cu49〜81質量%、In2〜8質量%、及びSn10〜20質量%の組成を有する合金からなる第3金属粒子と、Snからなる第4金属粒子とをさらに混合した混合体である。
前記第3金属粒子は、示差走査熱量測定(DSC)において、発熱ピークとして観測される準安定合金相を240〜300℃の範囲に少なくとも1つと、吸熱ピークとして観測される融点を475〜525℃の範囲に少なくとも1つずつ有することが好ましい。
Further, more preferable metal fillers are, for example, Ag 5 to 15% by mass, Bi 2 to 8% by mass, Cu 49 to 81% by mass, In 2 to 8% by mass, and Sn10 to 10% in addition to the first metal particles and the second metal particles. It is a mixture in which third metal particles made of an alloy having a composition of 20% by mass and fourth metal particles made of Sn are further mixed.
In the differential scanning calorimetry (DSC), the third metal particles have at least one metastable alloy phase observed as an exothermic peak in the range of 240 to 300 ° C. and a melting point observed as an endothermic peak of 475 to 525 ° C. It is preferable to have at least one each in the range.

また、このような熱特性を発現する第3金属粒子としては、Ag8〜12質量%、Bi3〜7質量%、Cu60〜70質量%、In3〜7質量%、残部Snの組成を有する合金がより好ましい。第3金属粒子の主成分は、Cuである。これに対し、第1金属粒子、第2金属粒子、及び第4金属粒子の主成分は、Snである。CuとSnは、反応性が良く、熱拡散により、容易に金属間化合物を形成する。   Further, as the third metal particles that exhibit such thermal characteristics, an alloy having a composition of Ag 8 to 12% by mass, Bi 3 to 7% by mass, Cu 60 to 70% by mass, In 3 to 7% by mass, and the remaining Sn is more. preferable. The main component of the third metal particles is Cu. On the other hand, the main component of the first metal particles, the second metal particles, and the fourth metal particles is Sn. Cu and Sn have good reactivity and easily form an intermetallic compound by thermal diffusion.

第1金属粒子、第2金属粒子、第3金属粒子、及び第4金属粒子の混合比は、第1金属粒子100質量部に対して、第2金属粒子90〜110質量部、第3金属粒子4〜2120質量部、そして第4金属粒子5〜2505質量部が好ましく、更には、第1金属粒子100質量部に対して、第2金属粒子100〜105質量部、第3金属粒子4〜446質量部、そして第4金属粒子5〜527質量部がより好ましい。   The mixing ratio of the first metal particles, the second metal particles, the third metal particles, and the fourth metal particles is 90 to 110 parts by mass of the second metal particles and 100 parts by mass of the third metal particles with respect to 100 parts by mass of the first metal particles. 4 to 2120 parts by mass, and 5 to 2505 parts by mass of the fourth metal particles are preferable, and further, 100 to 105 parts by mass of the second metal particles and 4 to 446 of the third metal particles with respect to 100 parts by mass of the first metal particles. Mass parts and 5 to 527 parts by mass of the fourth metal particles are more preferable.

本発明のはんだペーストは、金属フィラーとフラックス成分を含むことが好ましく、金属フィラーの含有率は、ペースト特性の観点からはんだペースト100質量%に対し、84〜94質量%の範囲であることが好ましく、更に好ましくは、ペースト用途に応じて定めることができる。   The solder paste of the present invention preferably contains a metal filler and a flux component, and the content of the metal filler is preferably in the range of 84 to 94% by mass with respect to 100% by mass of the solder paste from the viewpoint of paste characteristics. More preferably, it can be determined according to the paste application.

例えば、スクリーン印刷用途では、版抜け性を重視して、金属フィラーの含有率は、87〜91質量%の範囲であることが好ましく、更に好ましくは、88〜90質量%の範囲である。
ディスペンス用途では、吐出流動性を重視して金属フィラーの含有率は、85〜89質量%の範囲が好ましく、更に好ましくは、86〜88質量%の範囲である。
For example, in screen printing applications, emphasizing plate slipping out, the metal filler content is preferably in the range of 87 to 91 mass%, more preferably in the range of 88 to 90 mass%.
In dispensing applications, the metal filler content is preferably in the range of 85 to 89% by mass, more preferably in the range of 86 to 88% by mass, with emphasis on ejection fluidity.

前記フラックス成分は、変性ロジン、溶剤、活性剤、及びチクソ剤を含むことが好ましい。フラックスは、金属フィラーの表面処理に最適で、リフロー熱処理時に金属フィラーの酸化膜を除去し、金属の溶融、及び熱拡散による合金化を促進する。フラックスとしては、公知の材料を使用することができる。
また、はんだペーストによる接続方法としては、基板電極にペーストを塗布した後に搭載部品を載せてリフロー熱処理で接続する方法や、搭載部品電極又は基板電極にペーストを塗布し、リフロー熱処理にてバンプ形成した後、部品と基板を合せて、再度リフロー熱処理で接続する方法等が挙げられる。
The flux component preferably contains a modified rosin, a solvent, an activator, and a thixotropic agent. The flux is optimal for the surface treatment of the metal filler, removes the oxide film of the metal filler during the reflow heat treatment, and promotes melting of the metal and alloying by thermal diffusion. A known material can be used as the flux.
In addition, as a connection method using a solder paste, a paste is applied to the substrate electrode, and then a mounting component is mounted and connected by reflow heat treatment, or a paste is applied to the mounted component electrode or the substrate electrode and bumps are formed by reflow heat treatment. Thereafter, a method of connecting the component and the substrate and connecting them again by reflow heat treatment may be used.

以下、本発明を実施例によって具体的に説明する。
[実施例1]
(1)第1金属粒子の製造
Ag1.0kg(純度99質量%以上)、Bi2.0kg(純度99質量%以上)、Cu1.5kg(純度99質量%以上)、In2.0kg(純度99質量%以上)、及びSn3.5kg(純度99質量%以上)を、黒鉛坩堝に入れ、99体積%以上のヘリウム雰囲気中で、高周波誘導加熱装置により1400℃まで加熱、融解した。
次に、この溶融金属を坩堝の先端より、ヘリウムガス雰囲気の噴霧槽内に導入した後、坩堝先端付近に設けられたガスノズルから、ヘリウムガス(純度99体積%以上、酸素濃度0.1体積%未満、圧力2.5MPa)を噴出してアトマイズを行い、金属粒子を作製した。この時の冷却速度は、2600℃/秒であった。
Hereinafter, the present invention will be specifically described by way of examples.
[Example 1]
(1) Production of first metal particles Ag 1.0 kg (purity 99 mass% or more), Bi 2.0 kg (purity 99 mass% or more), Cu 1.5 kg (purity 99 mass% or more), In 2.0 kg (purity 99 mass%) Above), and 3.5 kg of Sn (purity 99% by mass or more) were placed in a graphite crucible and heated and melted to 1400 ° C. with a high-frequency induction heating apparatus in a helium atmosphere of 99% by volume or more.
Next, after this molten metal is introduced from the tip of the crucible into a spray tank in a helium gas atmosphere, helium gas (purity 99 vol% or more, oxygen concentration 0.1 vol%) is supplied from a gas nozzle provided near the crucible tip. (Pressure less than 2.5 MPa) was atomized to produce metal particles. The cooling rate at this time was 2600 ° C./second.

得られた金属粒子を走査型電子顕微鏡(日立製作所:S−3400N)で観察したところ球状であった。
この金属粒子を気流式分級機(日清エンジニアリング:TC−15N)にて、5μm設定で分級し、大粒子側を回収後、もう一度20μm設定で分級し、小粒子側を回収した。回収した金属粒子をレーザー回折式粒子径分布測定装置(HELOS&RODOS)で測定したところ、平均粒径は、6.3μmであった。
次に金属粒子を示差走査熱量計(島津製作所:DSC−50)で、窒素雰囲気下、昇温速度10℃/分の条件で、40〜580℃の範囲において測定した。得られたDSCチャートを図1に示す。
図1に示すように、65℃、88℃、383℃に吸熱ピークを検出し、複数の融点の存在から、複数の合金相の存在を確認した。
When the obtained metal particles were observed with a scanning electron microscope (Hitachi, Ltd .: S-3400N), they were spherical.
The metal particles were classified with an airflow classifier (Nisshin Engineering: TC-15N) at a setting of 5 μm, the large particle side was collected, and then again classified at a setting of 20 μm, and the small particle side was collected. When the recovered metal particles were measured with a laser diffraction particle size distribution analyzer (HELOS & RODOS), the average particle size was 6.3 μm.
Next, the metal particles were measured with a differential scanning calorimeter (Shimadzu Corporation: DSC-50) in the range of 40 to 580 ° C. under a nitrogen atmosphere under a temperature rising rate of 10 ° C./min. The obtained DSC chart is shown in FIG.
As shown in FIG. 1, endothermic peaks were detected at 65 ° C., 88 ° C., and 383 ° C., and the presence of a plurality of alloy phases was confirmed from the presence of a plurality of melting points.

(2)第2金属粒子の製造
Ag3.2kg(純度99質量%以上)、Bi0.5kg(純度99質量%以上)、Cu1.0kg(純度99質量%以上)、In0.5kg(純度99質量%以上)、及びSn4.8kg(純度99質量%以上)を、黒鉛坩堝に入れ、99体積%以上のヘリウム雰囲気中で、高周波誘導加熱装置により1400℃まで加熱、融解した。
次に、この溶融金属を坩堝の先端より、ヘリウムガス雰囲気の噴霧槽内に導入した後、坩堝先端付近に設けられたガスノズルから、ヘリウムガス(純度99体積%以上、酸素濃度0.1体積%未満、圧力2.5MPa)を噴出してアトマイズを行い、金属粒子を作製した。この時の冷却速度は、2600℃/秒であった。
(2) Production of second metal particles Ag 3.2 kg (purity 99 mass% or more), Bi 0.5 kg (purity 99 mass% or more), Cu 1.0 kg (purity 99 mass% or more), In 0.5 kg (purity 99 mass%) Above) and Sn 4.8 kg (purity 99 mass% or more) were put in a graphite crucible and heated and melted to 1400 ° C. with a high-frequency induction heating apparatus in a helium atmosphere of 99 volume% or more.
Next, after this molten metal is introduced from the tip of the crucible into a spray tank in a helium gas atmosphere, helium gas (purity 99 vol% or more, oxygen concentration 0.1 vol%) is supplied from a gas nozzle provided near the crucible tip. (Pressure less than 2.5 MPa) was atomized to produce metal particles. The cooling rate at this time was 2600 ° C./second.

得られた金属粒子を走査型電子顕微鏡(日立製作所:S−3400N)で観察したところ球状であった。
この金属粒子を気流式分級機(日清エンジニアリング:TC−15N)にて、5μm設定で分級し、大粒子側を回収後、もう一度30μm設定で分級し、小粒子側を回収した。回収した金属粒子をレーザー回折式粒子径分布測定装置(HELOS&RODOS)で測定したところ平均粒径は、6.6μmであった。
次に金属粒子を示差走査熱量計(島津製作所:DSC−50)で、窒素雰囲気下、昇温速度10℃/分の条件で、40〜580℃の範囲において測定した。得られたDSCチャートを図2に示す。
When the obtained metal particles were observed with a scanning electron microscope (Hitachi, Ltd .: S-3400N), they were spherical.
The metal particles were classified with an airflow classifier (Nisshin Engineering: TC-15N) at a setting of 5 μm, the large particles were collected, and then classified again at a setting of 30 μm, and the small particles were collected. The recovered metal particles were measured with a laser diffraction particle size distribution analyzer (HELOS & RODOS), and the average particle size was 6.6 μm.
Next, the metal particles were measured with a differential scanning calorimeter (Shimadzu Corporation: DSC-50) in the range of 40 to 580 ° C. under a nitrogen atmosphere under a temperature rising rate of 10 ° C./min. The obtained DSC chart is shown in FIG.

図2に示すように197℃、363℃、及び416℃で吸熱ピークを検出し、複数の融点の存在から、複数の合金相の存在を確認した。また、131℃では発熱ピークが検出されたので、準安定合金相の存在を確認することができた。   As shown in FIG. 2, endothermic peaks were detected at 197 ° C., 363 ° C., and 416 ° C., and the presence of multiple alloy phases was confirmed from the presence of multiple melting points. In addition, since an exothermic peak was detected at 131 ° C., the presence of a metastable alloy phase could be confirmed.

(3)第3金属粒子の製造
Ag1.0kg(純度99質量%以上)、Bi0.5kg(純度99質量%以上)、Cu6.5kg(純度99質量%以上)、In0.5kg(純度99質量%以上)、及びSn1.5kg(純度99質量%以上)を、黒鉛坩堝に入れ、99体積%以上のヘリウム雰囲気で、高周波誘導加熱装置により1400℃まで加熱、融解した。
次に、この溶融金属を坩堝の先端より、ヘリウムガス雰囲気の噴霧槽内に導入した後、坩堝先端付近に設けられたガスノズルから、ヘリウムガス(純度99体積%以上、酸素濃度0.1体積%未満、圧力2.5MPa)を噴出してアトマイズを行い、金属粒子を作製した。この時の冷却速度は、2600℃/秒であった。
得られた金属粒子を走査型電子顕微鏡(日立製作所:S−3400N)で観察したところ球状であった。
(3) Production of third metal particles Ag 1.0 kg (purity 99 mass% or more), Bi 0.5 kg (purity 99 mass% or more), Cu 6.5 kg (purity 99 mass% or more), In 0.5 kg (purity 99 mass%) Above) and 1.5 kg of Sn (purity 99% by mass or more) were placed in a graphite crucible and heated and melted to 1400 ° C. with a high-frequency induction heating device in a helium atmosphere of 99% by volume or more.
Next, after this molten metal is introduced from the tip of the crucible into a spray tank in a helium gas atmosphere, helium gas (purity 99 vol% or more, oxygen concentration 0.1 vol%) is supplied from a gas nozzle provided near the crucible tip. (Pressure less than 2.5 MPa) was atomized to produce metal particles. The cooling rate at this time was 2600 ° C./second.
When the obtained metal particles were observed with a scanning electron microscope (Hitachi, Ltd .: S-3400N), they were spherical.

この金属粒子を気流式分級機(日清エンジニアリング:TC−15N)にて、1.6μm設定で分級し、大粒子側を回収後、もう一度10μm設定で分級し、小粒子側を回収した。回収した金属粒子をレーザー回折式粒子径分布測定装置(HELOS&RODOS)で測定したところ平均粒径は、2.7μmであった。
次に金属粒子を示差走査熱量計(島津製作所:DSC−50)で、窒素雰囲気下、昇温速度10℃/分の条件で、40〜580℃の範囲において測定した。得られたDSCチャートを図3に示す。
The metal particles were classified with an airflow classifier (Nisshin Engineering: TC-15N) at a setting of 1.6 μm, the large particle side was collected, and then again classified at a setting of 10 μm, and the small particle side was collected. The recovered metal particles were measured with a laser diffraction particle size distribution analyzer (HELOS & RODOS), and the average particle size was 2.7 μm.
Next, the metal particles were measured with a differential scanning calorimeter (Shimadzu Corporation: DSC-50) in the range of 40 to 580 ° C. under a nitrogen atmosphere under a temperature rising rate of 10 ° C./min. The obtained DSC chart is shown in FIG.

図3に示すように499℃、及び519℃で吸熱ピークを検出し、複数の融点の存在から、複数の合金相の存在を確認した。また、255℃に発熱ピークを検出し、準安定合金相の存在を確認することができた。   As shown in FIG. 3, endothermic peaks were detected at 499 ° C. and 519 ° C., and the presence of a plurality of alloy phases was confirmed from the presence of a plurality of melting points. Further, an exothermic peak was detected at 255 ° C., and the presence of a metastable alloy phase could be confirmed.

(4)第4金属粒子の製造
Sn10.0kg(純度99質量%以上)を、黒鉛坩堝に入れ、99体積%以上のヘリウム雰囲気で、高周波誘導加熱装置により1400℃まで加熱、融解した。
次に、この溶融金属を坩堝の先端より、ヘリウムガス雰囲気の噴霧槽内に導入した後、坩堝先端付近に設けられたガスノズルから、ヘリウムガス(純度99体積%以上、酸素濃度0.1体積%未満、圧力2.5MPa)を噴出してアトマイズを行い、Sn粒子を作製した。この時の冷却速度は、2600℃/秒であった。
得られたSn粒子を走査型電子顕微鏡(日立製作所:S−3400N)で観察したところ球状であった。
(4) Manufacture of 4th metal particle Sn 10.0kg (purity 99 mass% or more) was put into the graphite crucible, and it heated and melted to 1400 degreeC with the high frequency induction heating apparatus in 99 volume% or more helium atmosphere.
Next, after this molten metal is introduced from the tip of the crucible into a spray tank in a helium gas atmosphere, helium gas (purity 99 vol% or more, oxygen concentration 0.1 vol%) is supplied from a gas nozzle provided near the crucible tip. Less than the pressure of 2.5 MPa) was atomized to produce Sn particles. The cooling rate at this time was 2600 ° C./second.
When the obtained Sn particles were observed with a scanning electron microscope (Hitachi, Ltd .: S-3400N), they were spherical.

このSn粒子を気流式分級機(日清エンジニアリング:TC−15N)にて、5μm設定で分級し、大粒子側を回収後、もう一度40μm設定で分級し、小粒子側を回収した。回収したSn粒子をレーザー回折式粒子径分布測定装置(HELOS&RODOS)で測定したところ平均粒径は、6.9μmであった。
次に金属粒子を示差走査熱量計(島津製作所:DSC−50)で、窒素雰囲気下、昇温速度10℃/分の条件で、40〜580℃の範囲において測定した。この結果、242℃で吸熱ピークを検出、融点232℃(融解開始温度:固相線温度)を有することが確認できた。尚、特徴的な発熱ピークは、検出されなかった。
The Sn particles were classified with an airflow classifier (Nisshin Engineering: TC-15N) at a setting of 5 μm, the large particles were collected, and then classified again at a setting of 40 μm, and the small particles were collected. The collected Sn particles were measured with a laser diffraction particle size distribution analyzer (HELOS & RODOS), and the average particle size was 6.9 μm.
Next, the metal particles were measured with a differential scanning calorimeter (Shimadzu Corporation: DSC-50) in the range of 40 to 580 ° C. under a nitrogen atmosphere under a temperature rising rate of 10 ° C./min. As a result, an endothermic peak was detected at 242 ° C., and it was confirmed that it had a melting point of 232 ° C. (melting start temperature: solidus temperature). A characteristic exothermic peak was not detected.

(5)はんだペーストの製造
前記第1〜4金属粒子を重量比100:103:112:91で混合し、金属フィラーとした。次に金属フィラー89.5質量%とロジン系フラックス10.5質量%を混合し、ソルダーソフナー(マルコム:SPS−1)、脱泡混練機(松尾産業:SNB−350)に順次かけてはんだペーストを作製した。
(5) Production of solder paste The first to fourth metal particles were mixed at a weight ratio of 100: 103: 112: 91 to obtain a metal filler. Next, 89.5% by mass of the metal filler and 10.5% by mass of the rosin flux are mixed and solder paste is sequentially applied to a solder softener (Malcom: SPS-1) and a defoaming kneader (Matsuo Sangyo: SNB-350). Was made.

(6)接合強度の確認(剪断強度(MPa))
次に前記はんだペーストをサイズ25mm×25mm、厚み0.25mmのCu基板上に印刷塗布し、サイズ2mm×2mm、厚み0.5mmのCuチップを搭載後、窒素雰囲気下で、ピーク温度150℃でリフロー熱処理してサンプルを作製した。
熱処理装置として、リフローシミュレータ(マルコム:SRS−1C)を使用した。温度プロファイルは、熱処理開始(常温)から65℃までを1.0℃/秒で昇温し、65℃から115℃までを120秒かけて徐々に昇温後、115℃から150℃までを1.5℃/秒で昇温し、ピーク温度150℃で20秒間保持する条件を採用した。印刷パターン形成は、スクリーン印刷機(マイクロテック:MT−320TV)を用い、版は、メタル製で、スキージは、ウレタン製のものを用いた。マスク開口サイズは、2mm×3.5mmで、厚みは、0.1mmである。印刷条件は、速度50mm/秒、印圧0.1MPa、スキージ圧0.2MPa、背圧0.1MPa、アタック角度20°、クリアランス0mm、印刷回数1回とした。
次に常温(25℃)で前記作製サンプルの剪断方向のチップ接合(剪断)強度をプッシュ・プルゲージにより、押し速度10mm/分で測定し、単位面積換算したところ4.8MPaであった。
(6) Confirmation of bonding strength (shear strength (MPa))
Next, the solder paste is printed and applied onto a Cu substrate having a size of 25 mm × 25 mm and a thickness of 0.25 mm, and after mounting a Cu chip having a size of 2 mm × 2 mm and a thickness of 0.5 mm, under a nitrogen atmosphere at a peak temperature of 150 ° C. A sample was prepared by reflow heat treatment.
A reflow simulator (Malcom: SRS-1C) was used as the heat treatment apparatus. The temperature profile is as follows: from the start of heat treatment (normal temperature) to 65 ° C. at a rate of 1.0 ° C./second, gradually increasing from 65 ° C. to 115 ° C. over 120 seconds, then from 115 ° C. to 150 ° C. The temperature was raised at a rate of 5 ° C./second, and a condition of holding at a peak temperature of 150 ° C. for 20 seconds was adopted. For the printing pattern formation, a screen printer (Microtech: MT-320TV) was used, the plate was made of metal, and the squeegee was made of urethane. The mask opening size is 2 mm × 3.5 mm, and the thickness is 0.1 mm. The printing conditions were a speed of 50 mm / second, a printing pressure of 0.1 MPa, a squeegee pressure of 0.2 MPa, a back pressure of 0.1 MPa, an attack angle of 20 °, a clearance of 0 mm, and a printing frequency of once.
Next, the chip bonding (shearing) strength in the shearing direction of the produced sample was measured at a pressing speed of 10 mm / min with a push-pull gauge at room temperature (25 ° C.), and the unit area was 4.8 MPa.

(7)リペア性の確認(180℃リペア)
前記作製サンプルを180℃に加熱したホットプレートに載せた。数秒後、はんだの部分的溶融を確認した。Cuチップは、ピンセットで軽く押すだけで取外すことができた。
(7) Confirmation of repairability (180 ° C repair)
The prepared sample was placed on a hot plate heated to 180 ° C. After a few seconds, partial melting of the solder was confirmed. The Cu chip could be removed by simply pressing it with tweezers.

[実施例2〜7]
実施例1に記載した第1〜4金属粒子の混合比を変えた混合体を金属フィラーとして、実施例1と同様の方法で、ペースト化、リフロー熱処理した後、チップ接合強度を測定したものを、以下の表1に実施例2〜7として示す。
[Examples 2 to 7]
A mixture in which the mixing ratio of the first to fourth metal particles described in Example 1 was changed to a metal filler, and after pasting and reflow heat treatment in the same manner as in Example 1, chip bonding strength was measured. Table 1 below shows as Examples 2-7.

[比較例1〜3]
また、表1に、比較例1、2として、金属フィラーが、第3金属粒子と第4金属粒子のみの混合体の場合を、そして比較例3として、Sn−37Pb共晶はんだの場合の結果を示す。
表1の結果から明らかなように、本発明の金属フィラーを用いれば、ピーク温度150℃ではんだ接続でき、接続後は、180℃でリペア可能である。
[Comparative Examples 1-3]
Also, in Table 1, as Comparative Examples 1 and 2, the case where the metal filler is a mixture of only the third metal particles and the fourth metal particles, and as Comparative Example 3 is the result in the case of Sn-37Pb eutectic solder. Indicates.
As apparent from the results in Table 1, when the metal filler of the present invention is used, solder connection can be performed at a peak temperature of 150 ° C., and after connection, repair can be performed at 180 ° C.

[実施例8、9]
実施例1でガスアトマイズにより製造した分級前の第3金属粒子を気流式分級機(日清エンジニアリング:TC−15N)用いて、20μm設定で分級し、大粒子側を回収後、もう一度30μm設定で分級し、小粒子側を回収して得られた平均粒径13.9μmの金属粒子を用いて、実施例1と同様に第1金属粒子、第2金属粒子、及び第4金属粒子と混合し、ペースト化し、リフロー熱処理した後、剪断方向のチップ接合強度(剪断強度)と180℃リペアを確認した。結果を以下の表2に示す。
表2の結果から明らかなように、同じ組成の第3金属粒子でも、粒子サイズが大きいと接合強度が向上することが確認できた。
[Examples 8 and 9]
The third metal particles before classification produced by gas atomization in Example 1 were classified using an airflow classifier (Nisshin Engineering: TC-15N) at a setting of 20 μm, and after collecting the large particles, classification was performed again at a setting of 30 μm. Then, using the metal particles having an average particle diameter of 13.9 μm obtained by collecting the small particle side, similarly to Example 1, mixed with the first metal particles, the second metal particles, and the fourth metal particles, After pasting and reflow heat treatment, the chip bonding strength (shear strength) in the shear direction and 180 ° C. repair were confirmed. The results are shown in Table 2 below.
As is clear from the results in Table 2, it was confirmed that even with the third metal particles having the same composition, the bonding strength was improved when the particle size was large.

Figure 2010167465
Figure 2010167465

Figure 2010167465
Figure 2010167465

本発明は、Sn−37Pb共晶はんだの実装温度(リフロー熱処理温度)よりも低温条件(ピーク温度150℃以上)で溶融接合でき、実装後は、Sn−37Pb共晶はんだと同等の温度条件でリペア可能な鉛フリーはんだ材料として適用できる。   The present invention can be melt-bonded at a temperature lower than the mounting temperature (reflow heat treatment temperature) of Sn-37Pb eutectic solder (peak temperature of 150 ° C. or higher), and after mounting, at a temperature condition equivalent to Sn-37Pb eutectic solder. It can be applied as a repairable lead-free solder material.

Claims (3)

Ag5〜15質量%、Bi15〜25質量%、Cu10〜20質量%、In15〜25質量%、及びSn15〜55質量%の組成を有する合金からなる第1金属粒子と、Ag25〜40質量%、Bi2〜8質量%、Cu5〜15質量%、In2〜8質量%、及びSn29〜66質量%の組成を有する合金からなる第2金属粒子とを含み、該第1金属粒子と該第2金属粒子の混合比が、該第1金属粒子100質量部に対して、該第2金属粒子90〜110質量部であることを特徴とする金属フィラー。   1st metal particle which consists of an alloy which has composition of Ag5-15 mass%, Bi15-25 mass%, Cu10-20 mass%, In15-25 mass%, and Sn15-55 mass%, Ag25-40 mass%, Bi2 Second metal particles made of an alloy having a composition of ˜8 mass%, Cu 5-15 mass%, In 2-8 mass%, and Sn 29-66 mass%, the first metal particles and the second metal particles The metal filler, wherein the mixing ratio is 90 to 110 parts by mass of the second metal particles with respect to 100 parts by mass of the first metal particles. Ag5〜15質量%、Bi2〜8質量%、Cu49〜81質量%、In2〜8質量%、及びSn10〜20質量%の組成を有する合金からなる第3金属粒子と、Snからなる第4金属粒子とをさらに含み、該第1〜4金属粒子の混合比が、該第1金属粒子100質量部に対して、該第2金属粒子90〜110質量部、該第3金属粒子4〜2120質量部、そして該第4金属粒子5〜2505質量部である、請求項1に記載の金属フィラー。   3rd metal particle which consists of an alloy which has composition of Ag5-15 mass%, Bi2-8 mass%, Cu49-81 mass%, In2-8 mass%, and Sn10-20 mass%, and 4th metal particle which consists of Sn The mixing ratio of the first to fourth metal particles is 90 to 110 parts by mass of the second metal particles and 4 to 2120 parts by mass of the third metal particles with respect to 100 parts by mass of the first metal particles. And the metal filler of Claim 1 which is 5-2505 mass parts of this 4th metal particle. 請求項1又は2に記載の金属フィラーを含有するはんだペースト。   A solder paste containing the metal filler according to claim 1.
JP2009013344A 2009-01-23 2009-01-23 Metal filler and solder paste Active JP5188999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009013344A JP5188999B2 (en) 2009-01-23 2009-01-23 Metal filler and solder paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009013344A JP5188999B2 (en) 2009-01-23 2009-01-23 Metal filler and solder paste

Publications (2)

Publication Number Publication Date
JP2010167465A true JP2010167465A (en) 2010-08-05
JP5188999B2 JP5188999B2 (en) 2013-04-24

Family

ID=42700089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009013344A Active JP5188999B2 (en) 2009-01-23 2009-01-23 Metal filler and solder paste

Country Status (1)

Country Link
JP (1) JP5188999B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111872595A (en) * 2020-07-29 2020-11-03 昆山市宏嘉焊锡制造有限公司 Low-temperature solder of Sn, in, Ag and Bi
CN112538580A (en) * 2020-12-10 2021-03-23 浙江工业大学之江学院 Preparation process of low-melting-point high-voltage-resistant tin-lead alloy material
JP2021141068A (en) * 2018-03-23 2021-09-16 株式会社タムラ製作所 Solder containing conductive composition and method for manufacturing electronic substrate
CN113423850A (en) * 2019-03-29 2021-09-21 千住金属工业株式会社 Flux and solder paste
JP2022506217A (en) * 2018-10-31 2022-01-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Mixed alloy solder paste, its manufacturing method, and soldering method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006109573A1 (en) * 2005-04-01 2006-10-19 Asahi Kasei Emd Corporation Conductive filler and solder material
WO2008001740A1 (en) * 2006-06-30 2008-01-03 Asahi Kasei Emd Corporation Conductive filler
JP2008183582A (en) * 2007-01-30 2008-08-14 Asahi Kasei Electronics Co Ltd Electrically conductive filler, and solder paste

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006109573A1 (en) * 2005-04-01 2006-10-19 Asahi Kasei Emd Corporation Conductive filler and solder material
WO2008001740A1 (en) * 2006-06-30 2008-01-03 Asahi Kasei Emd Corporation Conductive filler
JP2008183582A (en) * 2007-01-30 2008-08-14 Asahi Kasei Electronics Co Ltd Electrically conductive filler, and solder paste

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021141068A (en) * 2018-03-23 2021-09-16 株式会社タムラ製作所 Solder containing conductive composition and method for manufacturing electronic substrate
JP7181964B2 (en) 2018-03-23 2022-12-01 株式会社タムラ製作所 Conductive composition containing solder and method for manufacturing electronic substrate
JP2022506217A (en) * 2018-10-31 2022-01-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Mixed alloy solder paste, its manufacturing method, and soldering method
CN113423850A (en) * 2019-03-29 2021-09-21 千住金属工业株式会社 Flux and solder paste
CN111872595A (en) * 2020-07-29 2020-11-03 昆山市宏嘉焊锡制造有限公司 Low-temperature solder of Sn, in, Ag and Bi
CN112538580A (en) * 2020-12-10 2021-03-23 浙江工业大学之江学院 Preparation process of low-melting-point high-voltage-resistant tin-lead alloy material

Also Published As

Publication number Publication date
JP5188999B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
JP5166261B2 (en) Conductive filler
TWI292355B (en)
JP5643972B2 (en) Metal filler, low-temperature connection lead-free solder, and connection structure
JP5584909B2 (en) Connection structure
JP2005319470A (en) Lead-free solder material, electronic circuit board and their production method
JP5188999B2 (en) Metal filler and solder paste
JP4667103B2 (en) Conductive filler and low-temperature solder material
JP6002947B2 (en) Metal filler, solder paste, and connection structure
JP2011147982A (en) Solder, electronic component, and method for manufacturing the electronic component
JP4703581B2 (en) Conductive filler and solder paste
JP5975377B2 (en) Metal filler, solder paste, and connection structure
JP5147349B2 (en) Bump forming paste and bump structure
JP5724088B2 (en) Metal filler and lead-free solder containing the same
JP2014072398A (en) Semiconductor device and manufacturing method of the same
JP5609774B2 (en) Ternary alloy particles
JP4662483B2 (en) Conductive filler and medium temperature solder material
JP2017177122A (en) HIGH-TEMPERATURE Pb-FREE SOLDER PASTE AND MANUFACTURING METHOD THEREOF
JP5652689B2 (en) Manufacturing method of electronic component bonded structure and electronic component bonded structure obtained by the manufacturing method
JP2011041979A (en) Lead-free joining material, and method for producing the same
JP2011062752A (en) Conductive filler, and low-temperature solder material
JP2004216403A (en) Bta derivative for solder, solder using the same, flux using the same, and solder paste using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5188999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250