JP2010166741A - Rotating electrical machine - Google Patents

Rotating electrical machine Download PDF

Info

Publication number
JP2010166741A
JP2010166741A JP2009008312A JP2009008312A JP2010166741A JP 2010166741 A JP2010166741 A JP 2010166741A JP 2009008312 A JP2009008312 A JP 2009008312A JP 2009008312 A JP2009008312 A JP 2009008312A JP 2010166741 A JP2010166741 A JP 2010166741A
Authority
JP
Japan
Prior art keywords
rotors
rotor
axial
stator
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009008312A
Other languages
Japanese (ja)
Other versions
JP5515297B2 (en
Inventor
Yuichi Shibukawa
祐一 渋川
Masaki Nakano
正樹 中野
Tadayuki Hatsuda
匡之 初田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009008312A priority Critical patent/JP5515297B2/en
Publication of JP2010166741A publication Critical patent/JP2010166741A/en
Application granted granted Critical
Publication of JP5515297B2 publication Critical patent/JP5515297B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent such a state of affairs that a magnetic flux permeates mutually in three or more rotors and a magnetic resistance increases, even in providing a rotating electrical machine with three or more rotors to make it multiaxial. <P>SOLUTION: For axial rotors 1 and 2, permanent magnets 5 and 6, in which N and S poles are arranged alternately in its circumferential direction, are counterposed coaxially so as to face each other, and are supported so that they can rotate individually around a common axis O. A stator 7 is interposed with a specified axial gaps between the rotors 1 and 2 (between the permanent magnets 5 and 6), and the stator 7 is constituted in an annular form by toroidally winding armature coils 10 on many yokes 8 extending in the circumferential direction of the axial rotors 1 and 2. On the outer diametrical side of the stator 7, radial rotors 11 are arranged coaxially with a specified radial gap, and on the inner diametrical side of the stator 7, radial rotors 12 are arranged coaxially with a specified radial gap, and these rotors 11 and 12 are supported so that they can rotate individually around the axis O. Permanent magnets 13 and 14, in which N and S poles are arranged alternately in its circumferential direction, are provided on the inside periphery of the rotor 11 and the outside periphery of the rotor 12. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、1個のステータに複合電流を供給して複数のロータを個別に駆動するようにした、複合電流多層式回転電機に関するものである。   The present invention relates to a composite current multilayer rotating electrical machine in which a composite current is supplied to a single stator and a plurality of rotors are individually driven.

この複合電流多層式回転電機としては従来、例えば特許文献1に記載のようなものが知られている。
この複合電流多層式回転電機は、可動子側(ロータ)に永久磁石を設け、固定子側(ステータ)に界磁コイルを設け、1個のステータと2個のロータとの組み合わせにより構成したものである。
As this composite current multi-layer rotating electric machine, one as described in Patent Document 1, for example, is conventionally known.
This composite current multi-layer rotating electrical machine has a permanent magnet on the mover side (rotor), a field coil on the stator side (stator), and a combination of one stator and two rotors. It is.

回転電機の駆動に際しては、両ロータ駆動用電流の複合電流をステータに供給して2個のロータを個別に駆動するようになす。   When driving the rotating electrical machine, a composite current of both rotor driving currents is supplied to the stator to drive the two rotors individually.

特開平11−341785号公報JP 11-341785 A

しかし従来の複合電流多層式回転電機にあっては、ロータを3個以上設ける場合、ロータをお互いの磁束が透過するようになるため、
回転電機に3個以上のロータを設けて多軸化した場合、磁気抵抗が増大して効率が低下する懸念があった。
However, in the conventional combined current multilayer rotary electric machine, when three or more rotors are provided, the magnetic fluxes of the rotors are transmitted through the rotor.
When the rotary electric machine is provided with three or more rotors and multi-axis is used, there is a concern that the magnetic resistance increases and the efficiency decreases.

本発明はかかる問題に鑑み、回転電機に3個以上のロータを設けて多軸化した場合でも、ロータをお互いの磁束が透過することのないようして、磁気抵抗の増大による効率の低下を生ずることのないようにした回転電機を提供することを目的とする。   In view of such a problem, the present invention reduces the efficiency due to the increase in magnetic resistance so that the magnetic flux does not pass through the rotor even when three or more rotors are provided in the rotating electrical machine and the rotor is multi-axial. An object of the present invention is to provide a rotating electrical machine that does not occur.

この目的のため、本発明による回転電機は、請求項1に記載のごとく、
円周方向に延在するヨークを有した電機子鉄心、および、該ヨークにトロイダル巻きした電機子巻線よりなるステータを具え、
界磁磁極を有した3個以上のロータをそれぞれ、前記界磁磁極が前記トロイダル巻き電機子巻線の巻回中心に指向するよう配置して設け、
これら3個以上のロータをそれぞれ、前記トロイダル巻き電機子巻線に供給する複合電流で駆動するよう構成したことを特徴とするものである。
For this purpose, the rotating electrical machine according to the invention is as described in claim 1,
An armature core having a yoke extending in the circumferential direction, and a stator comprising an armature winding wound toroidally around the yoke;
Three or more rotors each having a field magnetic pole are provided so that the field magnetic poles are oriented toward the winding center of the toroidal winding armature winding,
Each of these three or more rotors is configured to be driven by a composite current supplied to the toroidal winding armature winding.

かかる本発明の回転電機によれば、各ロータの界磁磁極のうちN極から出た磁束が対応するヨークを透過して、同じロータ上のS極に達し、このときの磁束が対応するトロイダル巻き電機子巻線と鎖交して誘起電圧を発生させることにより、回転電機を作動させることができる。   According to the rotating electrical machine of the present invention, the magnetic flux emitted from the N pole among the field magnetic poles of each rotor passes through the corresponding yoke and reaches the S pole on the same rotor, and the magnetic flux at this time corresponds to the corresponding toroidal The rotating electric machine can be operated by generating an induced voltage in linkage with the wound armature winding.

よって、回転電機に3個以上のロータを設けて多軸化した場合においても、各磁束はヨークを透過するとき、相互に平行を保ってヨークを、ヨーク延在方向に透過することとなる。
このため、3個以上のロータをお互いの磁束が透過するようなことがなく、回転電機を多軸化した場合においても、磁気抵抗が増大して効率の低下を招くようなことはない。
Therefore, even when the rotary electric machine is provided with three or more rotors and multi-axial, when the magnetic flux passes through the yoke, the magnetic flux passes through the yoke in the extending direction of the yoke while keeping parallel to each other.
For this reason, mutual magnetic flux does not pass through three or more rotors, and even when the rotary electric machine is multi-axial, the magnetic resistance does not increase and the efficiency does not decrease.

本発明の第1実施例になる回転電機を、手前側のロータが外された状態で示す端面図である。FIG. 2 is an end view showing the rotating electrical machine according to the first embodiment of the present invention in a state where a front rotor is removed. 同実施例の回転電機を、図1のA-A線上で断面とし、矢の方向に見て示す、要部縦断側面図である。FIG. 2 is a longitudinal sectional side view of a main part of the rotating electrical machine of the same embodiment taken along the line AA in FIG. 1 and viewed in the direction of the arrow. 図1,2の回転電機を周方向に展開して、その要部を示す分解斜視図である。FIG. 3 is an exploded perspective view showing the main part of the rotating electrical machine of FIGS. 1 and 2 deployed in the circumferential direction. 図1〜3の回転電機に係わる磁気回路を説明するための磁気回路説明図である。FIG. 4 is a magnetic circuit explanatory diagram for explaining a magnetic circuit related to the rotating electrical machine of FIGS. 図1〜3に示す回転電機のロータ回転支持構造を例示する概略断面図である。FIG. 4 is a schematic cross-sectional view illustrating a rotor rotation support structure of the rotating electrical machine illustrated in FIGS. 本発明の第2実施例になる回転電機を示す、図3と同様な分解斜視図である。FIG. 4 is an exploded perspective view similar to FIG. 3, showing a rotating electrical machine according to a second embodiment of the present invention. 図6に示す回転電機のロータ回転支持構造を例示する概略断面図である。FIG. 7 is a schematic cross-sectional view illustrating a rotor rotation support structure of the rotating electrical machine shown in FIG.

以下、本発明の実施の形態を、図示の第1実施例〜第2実施例に基づき詳細に説明する。
<第1実施例>
図1〜3は、本発明の第1実施例になる回転電機を示し、図1は、同図の手前側にある第1アキシャルロータ1(図2参照)を外して回転電機の内部を軸線方向に見て示す端面図、図2は、図1のA-A線上で断面とし、矢の方向に見て示す要部縦断側面図、図3は、図1,2の回転電機を周方向に展開して、その要部を示す分解斜視図である。
Hereinafter, embodiments of the present invention will be described in detail based on illustrated first to second embodiments.
<First embodiment>
1 to 3 show a rotating electrical machine according to a first embodiment of the present invention, and FIG. 1 shows an axis line of the rotating electrical machine by removing the first axial rotor 1 (see FIG. 2) on the front side of the same figure. 2 is a cross-sectional view taken along the line AA in FIG. 1, and is a longitudinal side view of the main part as viewed in the direction of the arrow. FIG. 3 is a development of the rotating electrical machine in FIGS. 1 and 2 in the circumferential direction. And it is a disassembled perspective view which shows the principal part.

図2,3において、1,2はそれぞれ円板状の第1アキシャルロータおよび第2アキシャルロータを示し、これら第1アキシャルロータ1および第2アキシャルロータ2はそれぞれ、ベースプレート3,4の一方の面に界磁磁極としての永久磁石5,6を貼設した構成となす。   2 and 3, reference numerals 1 and 2 denote disc-shaped first axial rotor and second axial rotor, respectively. The first axial rotor 1 and the second axial rotor 2 are respectively provided on one surface of the base plates 3 and 4. In this configuration, permanent magnets 5 and 6 as field magnetic poles are attached.

第1アキシャルロータ1のベースプレート3に貼設する永久磁石5は、複数個1組として同一円周上に配列すると共に、N極の永久磁石とS極の永久磁石とを交互に配列する。
第2アキシャルロータ2のベースプレート4に貼設する永久磁石6も、永久磁石5と同数とし、永久磁石5の配列円と同径の同一円周上に配列すると共に、N極の永久磁石とS極の永久磁石とを交互に配列する。
The permanent magnets 5 to be affixed to the base plate 3 of the first axial rotor 1 are arranged on the same circumference as a plurality of sets, and N-pole permanent magnets and S-pole permanent magnets are alternately arranged.
The number of permanent magnets 6 to be affixed to the base plate 4 of the second axial rotor 2 is the same as the number of permanent magnets 5 and arranged on the same circumference as the arrangement circle of the permanent magnets 5. The pole permanent magnets are alternately arranged.

かかる第1アキシャルロータ1および第2アキシャルロータ2を、それぞれの永久磁石5,6が相互に向かい合うよう同軸に対向配置し、共通軸線Oの周りで個別に回転し得るよう、しかし軸線方向変位不能に支承する。   The first axial rotor 1 and the second axial rotor 2 are arranged coaxially facing each other so that the permanent magnets 5 and 6 face each other, and can rotate individually around the common axis O, but are not axially displaceable. To support.

上記した第1アキシャルロータ1および第2アキシャルロータ2間(詳しくは、永久磁石5,6間)に、所定の軸線方向エアギャップ(アキシャルギャップ)を持たせてステータ7を介在させる。
このステータ7は、第1アキシャルロータ1および第2アキシャルロータ2の周回方向へ延在する多数のヨーク8を有した電機子鉄心9、および、該ヨーク8にトロイダル巻きして巻装した電機子巻線10により、図1に示すごとき円環状に構成する。
A stator 7 is interposed between the first axial rotor 1 and the second axial rotor 2 described above (specifically, between the permanent magnets 5 and 6) with a predetermined axial air gap (axial gap).
The stator 7 includes an armature core 9 having a large number of yokes 8 extending in the circumferential direction of the first axial rotor 1 and the second axial rotor 2, and an armature wound around the yoke 8 by toroidal winding. The winding 10 forms an annular shape as shown in FIG.

円環状ステータ7の外径側に、所定の径方向ギャップ(ラジアルギャップ)を持たせて円環状の第1ラジアルロータ11を同心に配置する。
円環状ステータ7の内径側には、所定の径方向ギャップ(ラジアルギャップ)を持たせて円環状の第2ラジアルロータ12を同心に配置する。
これら第1,2ラジアルロータ11,12はそれぞれ、軸線Oの周りで個別に回転し得るよう、しかし軸線方向変位不能に支承する。
An annular first radial rotor 11 is concentrically disposed on the outer diameter side of the annular stator 7 with a predetermined radial gap (radial gap).
An annular second radial rotor 12 is concentrically disposed on the inner diameter side of the annular stator 7 with a predetermined radial gap (radial gap).
Each of the first and second radial rotors 11 and 12 is supported so as to be able to rotate individually around the axis O, but not axially displaceable.

外径側における第1ラジアルロータ11の内周面に永久磁石13を埋設し、この永久磁石13は複数個1組として、N極の永久磁石とS極の永久磁石とを円周方向へ交互に配列する。
内径側における第2ラジアルロータ12の外周面に永久磁石14を埋設し、この永久磁石14は複数個1組として、N極の永久磁石とS極の永久磁石とを円周方向へ交互に配列する。
Permanent magnets 13 are embedded in the inner peripheral surface of the first radial rotor 11 on the outer diameter side, and a plurality of permanent magnets 13 are set as one set, and N-pole permanent magnets and S-pole permanent magnets are alternately arranged in the circumferential direction. Array.
Permanent magnets 14 are embedded on the outer peripheral surface of the second radial rotor 12 on the inner diameter side, and a plurality of permanent magnets 14 are arranged in a circumferential direction in which N-pole permanent magnets and S-pole permanent magnets are arranged alternately. To do.

上記した本実施例になる回転電機の作用を以下に説明する。
回転電機の駆動に際しては、第1アキシャルロータ1の駆動電流と、第2アキシャルロータ2の駆動電流と、第1ラジアルロータ11の駆動電流と、第2ラジアルロータ12の駆動電流との複合電流を、トロイダル巻きした電機子巻線10に供給する。
The operation of the rotating electrical machine according to this embodiment will be described below.
When driving the rotating electrical machine, a combined current of the drive current of the first axial rotor 1, the drive current of the second axial rotor 2, the drive current of the first radial rotor 11, and the drive current of the second radial rotor 12 is calculated. , Supplied to the toroidal wound armature winding 10.

このとき、第1アキシャルロータ1に設けた永久磁石5のうちN極から出た磁束が図3,4にα1で示すごとく対応するヨーク8を透過して、同じ第1アキシャルロータ1上のS極に達し、このときの磁束α1が対応するトロイダル巻き電機子巻線10と鎖交して誘起電圧を発生させることにより、第1アキシャルロータ1を駆動させることができる。   At this time, the magnetic flux emitted from the N pole of the permanent magnet 5 provided in the first axial rotor 1 passes through the corresponding yoke 8 as indicated by α1 in FIGS. The first axial rotor 1 can be driven by reaching the pole and generating an induced voltage in which the magnetic flux α1 at this time is linked to the corresponding toroidal winding armature winding 10.

また第2アキシャルロータ2に設けた永久磁石6のうちN極から出た磁束が図3,4にα2で示すごとく対応するヨーク8を透過して、同じ第2アキシャルロータ2上のS極に達し、このときの磁束α2が対応するトロイダル巻き電機子巻線10と鎖交して誘起電圧を発生させることにより、第2アキシャルロータ2を駆動させることができる。   In addition, the magnetic flux emitted from the N pole among the permanent magnets 6 provided in the second axial rotor 2 passes through the corresponding yoke 8 as indicated by α2 in FIGS. 3 and 4 and passes to the S pole on the same second axial rotor 2. At this time, the magnetic flux α2 at this time is linked to the corresponding toroidal winding armature winding 10 to generate an induced voltage, whereby the second axial rotor 2 can be driven.

また第1ラジアルロータ11に設けた永久磁石13のうちN極から出た磁束が図3,4にα1で示すごとく対応するヨーク8を透過して、同じ第1ラジアルロータ11上のS極に達し、このときの磁束α1が対応するトロイダル巻き電機子巻線10と鎖交して誘起電圧を発生させることにより、第1ラジアルロータ11を駆動させることができる。   In addition, the magnetic flux emitted from the N pole among the permanent magnets 13 provided on the first radial rotor 11 passes through the corresponding yoke 8 as indicated by α1 in FIGS. 3 and 4, and reaches the S pole on the same first radial rotor 11. Thus, the first radial rotor 11 can be driven by generating an induced voltage by interlinking the magnetic flux α1 at this time with the corresponding toroidal winding armature winding 10.

更に第2ラジアルロータ12に設けた永久磁石14のうちN極から出た磁束が図3,4にα2で示すごとく対応するヨーク8を透過して、同じ第2ラジアルロータ12上のS極に達し、このときの磁束α2が対応するトロイダル巻き電機子巻線10と鎖交して誘起電圧を発生させることにより、第2ラジアルロータ12を駆動させることができる。   Further, the magnetic flux emitted from the N pole among the permanent magnets 14 provided on the second radial rotor 12 is transmitted through the corresponding yoke 8 as indicated by α2 in FIGS. 3 and 4 to the S pole on the same second radial rotor 12. At this time, the magnetic flux α2 at this time is linked to the corresponding toroidal winding armature winding 10 to generate an induced voltage, whereby the second radial rotor 12 can be driven.

ところで、4個のロータ1,2,11,12をそれぞれ、永久磁石5,6,13,14がトロイダル巻き電機子巻線10の巻回中心に指向するよう配置しているため、
上記のように第1,2アキシャルロータ1,2および第1,2ラジアルロータ11,12を個別に駆動させる磁束α1,α2は、ヨーク8を透過するとき、図4に明示するごとく相互に平行を保ってヨーク8を、ヨーク延在方向に透過することとなる。
このため、4個以上のロータ1,2,11,12をお互いの磁束α1,α2が透過するようなことがなく、回転電機を多軸化(図示例では4軸化)した場合においても、磁気抵抗が増大して効率の低下を招くようなことはない。
By the way, because the four rotors 1, 2, 11, 12 are arranged so that the permanent magnets 5, 6, 13, 14 are directed to the winding center of the toroidal winding armature winding 10, respectively.
As described above, the magnetic fluxes α1 and α2 that individually drive the first and second axial rotors 1 and 2 and the first and second radial rotors 11 and 12 are parallel to each other as clearly shown in FIG. Thus, the yoke 8 is transmitted in the yoke extending direction.
For this reason, the magnetic fluxes α1, α2 are not transmitted through the four or more rotors 1, 2, 11, 12, and even when the rotating electrical machine is multi-axis (4-axis in the illustrated example) The magnetic resistance does not increase and the efficiency is not reduced.

図5は、回転電機を上記のごとく多軸化(4軸化)した場合における各ロータ1,2,11,12の回転支承構造を例示するものである。
図5において、21は、回転電機のハウジングを示し、このハウジング21内に支持板22を介して円環状ステータ7を同心に吊架する。
FIG. 5 illustrates the rotational support structure of the rotors 1, 2, 11, and 12 when the rotating electrical machine is multi-axis (4-axis) as described above.
In FIG. 5, reference numeral 21 denotes a housing of a rotating electrical machine, and an annular stator 7 is concentrically suspended through a support plate 22 in the housing 21.

円環状ステータ7の軸線方向両側に同心配置する第1,2アキシャルロータ1,2のうち、第2アキシャルロータ2は、ベアリング23を介してハウジング21の内周に直接軸受し、第1アキシャルロータ1は、以下のようにしてハウジング21の内周に間接的に軸受する。   Of the first and second axial rotors 1 and 2 arranged concentrically on both sides in the axial direction of the annular stator 7, the second axial rotor 2 is directly bearing on the inner periphery of the housing 21 via the bearing 23, and the first axial rotor 1 indirectly bears on the inner periphery of the housing 21 as follows.

円環状ステータ7の外周に配置する第1ラジアルロータ11を、ベアリング24によりハウジング21の内周に直接軸受し、第1ラジアルロータ11の内周にベアリング25を介して第1アキシャルロータ1を軸受する。   The first radial rotor 11 disposed on the outer periphery of the annular stator 7 is directly bearing on the inner periphery of the housing 21 by the bearing 24, and the first axial rotor 1 is bearing on the inner periphery of the first radial rotor 11 via the bearing 25. To do.

そして、円環状ステータ7の内周に配置する第2ラジアルロータ12は、ベアリング26,27を介して第1アキシャルロータ1の内周および第2アキシャルロータ2の内周に軸受する。   The second radial rotor 12 disposed on the inner periphery of the annular stator 7 is bearing on the inner periphery of the first axial rotor 1 and the inner periphery of the second axial rotor 2 via bearings 26 and 27.

<第2実施例>
図6は、本発明の第2実施例になる回転電機の要部を示す分解斜視図である。
本実施例においては、基本的に図1〜3に示す第1実施例と同様な構成を踏襲するが、これを更に多軸化(6軸化)したものである。
<Second embodiment>
FIG. 6 is an exploded perspective view showing a main part of the rotating electrical machine according to the second embodiment of the present invention.
In this embodiment, the same configuration as that of the first embodiment shown in FIGS. 1 to 3 is basically followed, but this is further multi-axial (6-axis).

図6は、図3と同様な分解斜視図で、図3におけると同様な部分に同一符号を付して対応付けし、重複説明を避けた。
本実施例においては、上記の更なる多軸化(6軸化)のためにステータ7を、アキシャルロータ1,2の間隔方向に長大化させ、その分だけアキシャルロータ1,2の間隔を大きくする。
FIG. 6 is an exploded perspective view similar to FIG. 3, in which parts similar to those in FIG.
In this embodiment, the stator 7 is lengthened in the direction of the spacing between the axial rotors 1 and 2 for further multi-shaft (six-shaft) as described above, and the spacing between the axial rotors 1 and 2 is increased accordingly. To do.

そして、第1ラジアルロータ11と同様な第3ラジアルロータ31を、第1ラジアルロータ11の軸線方向横並びに配して、且つ単独で回転可能に、しかし軸線方向変位不能に設ける。
また第2ラジアルロータ12と同様な第4ラジアルロータ32を、第2ラジアルロータ12の軸線方向横並びに配して、且つ単独で回転可能に、しかし軸線方向変位不能に設ける。
A third radial rotor 31 similar to the first radial rotor 11 is arranged side by side in the axial direction of the first radial rotor 11, and is provided so as to be able to rotate independently but not to be displaced in the axial direction.
Further, a fourth radial rotor 32 similar to the second radial rotor 12 is arranged side by side in the axial direction of the second radial rotor 12 and is provided so as to be able to rotate independently but not to be displaced in the axial direction.

第3ラジアルロータ31の内周面には永久磁石33を埋設し、この永久磁石33は複数個1組として、N極の永久磁石とS極の永久磁石とを円周方向へ交互に配列する。
第4ラジアルロータ32の外周面に永久磁石34を埋設し、この永久磁石34は複数個1組として、N極の永久磁石とS極の永久磁石とを円周方向へ交互に配列する。
Permanent magnets 33 are embedded in the inner peripheral surface of the third radial rotor 31, and a plurality of permanent magnets 33 are arranged in a circumferential direction by arranging N-pole permanent magnets and S-pole permanent magnets in a circumferential direction. .
Permanent magnets 34 are embedded in the outer peripheral surface of the fourth radial rotor 32, and a plurality of permanent magnets 34 are arranged in a circumferential direction as N-pole permanent magnets and S-pole permanent magnets.

上記した本実施例になる回転電機は、追加した第3ラジアルロータ31および第4ラジアルロータ32がそれぞれ、第1実施例につき前述した第1ラジアルロータ11および第2ラジアルロータ12と同様に作用し、更なる多軸化(6軸化)によっても第1実施例と同様な作用効果を奏することができる。   In the rotating electrical machine according to the present embodiment described above, the added third radial rotor 31 and fourth radial rotor 32 operate in the same manner as the first radial rotor 11 and the second radial rotor 12 described above for the first embodiment, respectively. The same effects as those of the first embodiment can be obtained by further increasing the number of axes (six axes).

図7は、回転電機を上記のごとく更に多軸化(6軸化)した場合における各ロータ1,2,11,12,31,32の回転支承構造を例示するものである。
図7において、21は、回転電機のハウジングを示し、このハウジング21内に支持板22を介して円環状ステータ7を同心に吊架する。
FIG. 7 exemplifies the rotational support structure of each rotor 1, 2, 11, 12, 31, 32 when the rotating electrical machine is further multi-axial (6-axis) as described above.
In FIG. 7, reference numeral 21 denotes a housing of a rotating electrical machine, and an annular stator 7 is concentrically suspended through a support plate 22 in the housing 21.

円環状ステータ7の軸線方向両側に同心配置する第1,2アキシャルロータ1,2のうち、第2アキシャルロータ2は、ベアリング23を介してハウジング21の内周に直接軸受し、第1アキシャルロータ1は、以下のようにしてハウジング21の内周に間接的に軸受する。   Of the first and second axial rotors 1 and 2 arranged concentrically on both sides in the axial direction of the annular stator 7, the second axial rotor 2 is directly bearing on the inner periphery of the housing 21 via the bearing 23, and the first axial rotor 1 indirectly bears on the inner periphery of the housing 21 as follows.

円環状ステータ7の外周に配置する第1ラジアルロータ11および第3ラジアルロータ31のうち第3ラジアルロータ31を、ベアリング41によりハウジング21の内周に直接軸受し、第3ラジアルロータ31の内周にベアリング42を介して第1ラジアルロータ11を軸受する。
そして、第1ラジアルロータ11の内周にベアリング43を介して第1アキシャルロータ1を軸受する。
Of the first radial rotor 11 and the third radial rotor 31 disposed on the outer periphery of the annular stator 7, the third radial rotor 31 is directly supported on the inner periphery of the housing 21 by the bearing 41, and the inner periphery of the third radial rotor 31 is The first radial rotor 11 is supported through the bearing 42.
Then, the first axial rotor 1 is bearing on the inner periphery of the first radial rotor 11 via the bearing 43.

円環状ステータ7の内周に配置する第2ラジアルロータ12および第4ラジアルロータ32のうち第2ラジアルロータ12は、ベアリング44を介して第1アキシャルロータ1の内周の内周に軸受し、第4ラジアルロータ32はベアリング45を介して第2アキシャルロータ2の内周に軸受する。
また、第2ラジアルロータ12および第4ラジアルロータ32は同軸突き合わせ関係に配置し、この同軸突き合わせ部にベアリング46を介在させる。
Of the second radial rotor 12 and the fourth radial rotor 32 disposed on the inner periphery of the annular stator 7, the second radial rotor 12 is bearing on the inner periphery of the inner periphery of the first axial rotor 1 via the bearing 44, The fourth radial rotor 32 is bearing on the inner periphery of the second axial rotor 2 via a bearing 45.
The second radial rotor 12 and the fourth radial rotor 32 are arranged in a coaxial butt relationship, and a bearing 46 is interposed in the coaxial butt portion.

<他の実施例>
なお上記した第1,2実施例に代えて、4個(第1実施例)または6個(第2実施例)のロータ1,2,11,12,31,32は、永久磁石5,6,13,14,33,34およびトロイダル巻き電機子巻線間に、ステータ軸線方向両側のアキシャルギャップおよびステータ径方向内外のラジアルギャップを任意の組み合わせで形成するよう構成配置することができる。
この場合、上記した第1,2実施例によると同様な作用効果を奏し得るほか、設計の自由度が増すという作用効果を達成することができる。
<Other embodiments>
Instead of the first and second embodiments described above, four (first embodiment) or six (second embodiment) rotors 1, 2, 11, 12, 31, and 32 are provided with permanent magnets 5, 6 , 13, 14, 33, 34 and the toroidal winding armature windings, the axial gaps on both sides in the stator axial direction and the radial gaps in and out of the stator radial direction can be configured and arranged in any combination.
In this case, according to the first and second embodiments, the same operational effects can be achieved, and the operational effect of increasing the degree of freedom in design can be achieved.

1 第1アキシャルロータ
2 第2アキシャルロータ
3,4 ベースプレート
5,6 永久磁石(界磁磁極)
7 ステータ
8 ヨーク
9 電機子鉄心
10 電機子巻線
11 第1ラジアルロータ
12 第2ラジアルロータ
13,14 永久磁石(界磁磁極)
21 ハウジング
31 第3ラジアルロータ
32 第4ラジアルロータ
33,34 永久磁石(界磁磁極)
α1,α2 磁束
1 First axial rotor
2 Second axial rotor
3,4 Base plate
5,6 Permanent magnet (field magnetic pole)
7 Stator
8 York
9 Armature core
10 Armature winding
11 1st radial rotor
12 2nd radial rotor
13,14 Permanent magnet (field magnetic pole)
21 Housing
31 3rd radial rotor
32 4th radial rotor
33,34 Permanent magnet (field magnetic pole)
α1, α2 magnetic flux

Claims (2)

円周方向に延在するヨークを有した電機子鉄心、および、該ヨークにトロイダル巻きした電機子巻線よりなるステータを具え、
界磁磁極を有した3個以上のロータをそれぞれ、前記界磁磁極が前記トロイダル巻き電機子巻線の巻回中心に指向するよう配置して設け、
これら3個以上のロータをそれぞれ、前記トロイダル巻き電機子巻線に供給する複合電流で駆動するよう構成したことを特徴とする回転電機。
An armature core having a yoke extending in the circumferential direction, and a stator comprising an armature winding wound toroidally around the yoke;
Three or more rotors each having a field magnetic pole are provided so that the field magnetic poles are oriented toward the winding center of the toroidal winding armature winding,
A rotating electric machine characterized in that each of the three or more rotors is driven by a composite current supplied to the toroidal winding armature winding.
請求項1に記載の回転電機において、
前記3個以上のロータは、前記界磁磁極およびトロイダル巻き電機子巻線間に、ステータ軸線方向両側のアキシャルギャップおよびステータ径方向内外のラジアルギャップを任意の組み合わせで形成するよう構成配置したことを特徴とする回転電機。
In the rotating electrical machine according to claim 1,
The three or more rotors are configured and arranged so as to form an axial gap on both sides of the stator axial direction and a radial gap inside and outside the stator in any combination between the field magnetic pole and the toroidal winding armature winding. A rotating electric machine that is characterized.
JP2009008312A 2009-01-17 2009-01-17 Rotating electric machine Active JP5515297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009008312A JP5515297B2 (en) 2009-01-17 2009-01-17 Rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009008312A JP5515297B2 (en) 2009-01-17 2009-01-17 Rotating electric machine

Publications (2)

Publication Number Publication Date
JP2010166741A true JP2010166741A (en) 2010-07-29
JP5515297B2 JP5515297B2 (en) 2014-06-11

Family

ID=42582462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009008312A Active JP5515297B2 (en) 2009-01-17 2009-01-17 Rotating electric machine

Country Status (1)

Country Link
JP (1) JP5515297B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170036059A (en) * 2014-07-23 2017-03-31 클리어워터 홀딩스, 엘티디. Flux machine
WO2017070403A1 (en) 2015-10-20 2017-04-27 Linear Labs, Inc. A circumferential flux electric machine with field weakening mechanisms and methods of use
CN108321999A (en) * 2018-02-12 2018-07-24 山东大学 Seven phase disc type permanent magnet synchronous electric motors and method
JP2019527022A (en) * 2016-09-05 2019-09-19 リニア ラブズ リミテッド ライアビリティ カンパニー Improved multi-tunnel electric motor / generator
US10439452B2 (en) 2012-03-20 2019-10-08 Linear Labs, LLC Multi-tunnel electric motor/generator
US10447103B2 (en) 2015-06-28 2019-10-15 Linear Labs, LLC Multi-tunnel electric motor/generator
US10476362B2 (en) 2015-06-28 2019-11-12 Linear Labs, LLC Multi-tunnel electric motor/generator segment
CN111316536A (en) * 2017-10-17 2020-06-19 移动磁体技术公司 Annular multiphase motor
US11165307B2 (en) 2010-10-22 2021-11-02 Linear Labs, Inc. Magnetic motor and method of use
US11189434B2 (en) 2017-09-08 2021-11-30 Clearwater Holdings, Ltd. Systems and methods for enhancing electrical energy storage
US11190065B2 (en) 2013-01-24 2021-11-30 Clearwater Holdings, Ltd. Flux machine
US11218038B2 (en) 2012-03-20 2022-01-04 Linear Labs, Inc. Control system for an electric motor/generator
US11218046B2 (en) 2012-03-20 2022-01-04 Linear Labs, Inc. DC electric motor/generator with enhanced permanent magnet flux densities
US11218067B2 (en) 2010-07-22 2022-01-04 Linear Labs, Inc. Method and apparatus for power generation
US11277062B2 (en) 2019-08-19 2022-03-15 Linear Labs, Inc. System and method for an electric motor/generator with a multi-layer stator/rotor assembly
US11322995B2 (en) 2017-10-29 2022-05-03 Clearwater Holdings, Ltd. Modular electromagnetic machines and methods of use and manufacture thereof
US11387692B2 (en) 2012-03-20 2022-07-12 Linear Labs, Inc. Brushed electric motor/generator

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162772U (en) * 1988-04-28 1989-11-13
JP2002165426A (en) * 2000-09-14 2002-06-07 Denso Corp Multiple-rotor synchronous machine
JP2002369473A (en) * 2001-06-07 2002-12-20 Nippon Steel Corp Synchronous motor using permanent magnet
JP2003235221A (en) * 2002-02-12 2003-08-22 Nissan Motor Co Ltd Stator supporting structure of dynamo-electric machine
JP2006174639A (en) * 2004-12-17 2006-06-29 Nissan Motor Co Ltd Stator structure for dynamo-electric machine
JP2007509595A (en) * 2003-10-21 2007-04-12 ルノー・エス・アー・エス Electrical transmissions that transmit mechanical power, especially for automotive transmissions
JP2007282476A (en) * 2006-03-16 2007-10-25 Nissan Motor Co Ltd Rotating electric machine
JP2008113480A (en) * 2006-10-30 2008-05-15 Matsushita Electric Ind Co Ltd Motor
JP2008178189A (en) * 2007-01-17 2008-07-31 Mitsubishi Electric Corp Motor equipped with toroidal winding and hoist for elevators using it
WO2008126408A1 (en) * 2007-04-11 2008-10-23 Panasonic Corporation Drum type washing machine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162772U (en) * 1988-04-28 1989-11-13
JP2002165426A (en) * 2000-09-14 2002-06-07 Denso Corp Multiple-rotor synchronous machine
JP2002369473A (en) * 2001-06-07 2002-12-20 Nippon Steel Corp Synchronous motor using permanent magnet
JP2003235221A (en) * 2002-02-12 2003-08-22 Nissan Motor Co Ltd Stator supporting structure of dynamo-electric machine
JP2007509595A (en) * 2003-10-21 2007-04-12 ルノー・エス・アー・エス Electrical transmissions that transmit mechanical power, especially for automotive transmissions
JP2006174639A (en) * 2004-12-17 2006-06-29 Nissan Motor Co Ltd Stator structure for dynamo-electric machine
JP2007282476A (en) * 2006-03-16 2007-10-25 Nissan Motor Co Ltd Rotating electric machine
JP2008113480A (en) * 2006-10-30 2008-05-15 Matsushita Electric Ind Co Ltd Motor
JP2008178189A (en) * 2007-01-17 2008-07-31 Mitsubishi Electric Corp Motor equipped with toroidal winding and hoist for elevators using it
WO2008126408A1 (en) * 2007-04-11 2008-10-23 Panasonic Corporation Drum type washing machine

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11218067B2 (en) 2010-07-22 2022-01-04 Linear Labs, Inc. Method and apparatus for power generation
US11165307B2 (en) 2010-10-22 2021-11-02 Linear Labs, Inc. Magnetic motor and method of use
US10439452B2 (en) 2012-03-20 2019-10-08 Linear Labs, LLC Multi-tunnel electric motor/generator
US11387692B2 (en) 2012-03-20 2022-07-12 Linear Labs, Inc. Brushed electric motor/generator
US11374442B2 (en) 2012-03-20 2022-06-28 Linear Labs, LLC Multi-tunnel electric motor/generator
US11218046B2 (en) 2012-03-20 2022-01-04 Linear Labs, Inc. DC electric motor/generator with enhanced permanent magnet flux densities
US11218038B2 (en) 2012-03-20 2022-01-04 Linear Labs, Inc. Control system for an electric motor/generator
US11190065B2 (en) 2013-01-24 2021-11-30 Clearwater Holdings, Ltd. Flux machine
US11539252B2 (en) 2013-01-24 2022-12-27 Clearwater Holdings, Ltd. Flux machine
KR20170036059A (en) * 2014-07-23 2017-03-31 클리어워터 홀딩스, 엘티디. Flux machine
US11894739B2 (en) 2014-07-23 2024-02-06 Clearwater Holdings, Ltd. Flux machine
KR102540373B1 (en) * 2014-07-23 2023-06-05 클리어워터 홀딩스, 엘티디. Flux machine
JP7269978B2 (en) 2014-07-23 2023-05-09 クリアウォーター ホールディングス,リミテッド magnetic flux machine
JP2021100376A (en) * 2014-07-23 2021-07-01 クリアウォーター ホールディングス,リミテッド Flux machine
JP7149071B2 (en) 2014-07-23 2022-10-06 クリアウォーター ホールディングス,リミテッド magnetic flux machine
JP2017522848A (en) * 2014-07-23 2017-08-10 クリアウォーター ホールディングス,リミテッド Magnetic flux machine
US11258320B2 (en) 2015-06-28 2022-02-22 Linear Labs, Inc. Multi-tunnel electric motor/generator
US10476362B2 (en) 2015-06-28 2019-11-12 Linear Labs, LLC Multi-tunnel electric motor/generator segment
US10447103B2 (en) 2015-06-28 2019-10-15 Linear Labs, LLC Multi-tunnel electric motor/generator
WO2017070403A1 (en) 2015-10-20 2017-04-27 Linear Labs, Inc. A circumferential flux electric machine with field weakening mechanisms and methods of use
CN108377663A (en) * 2015-10-20 2018-08-07 利尼尔实验室有限责任公司 A kind of circumferential flux machine and its application method with field weakening mechanism
US11159076B2 (en) 2015-10-20 2021-10-26 Linear Labs, Inc. Circumferential flux electric machine with field weakening mechanisms and methods of use
EP3365971A4 (en) * 2015-10-20 2019-05-22 Linear Labs, LLC A circumferential flux electric machine with field weakening mechanisms and methods of use
JP2019527022A (en) * 2016-09-05 2019-09-19 リニア ラブズ リミテッド ライアビリティ カンパニー Improved multi-tunnel electric motor / generator
US11309778B2 (en) 2016-09-05 2022-04-19 Linear Labs, Inc. Multi-tunnel electric motor/generator
US11189434B2 (en) 2017-09-08 2021-11-30 Clearwater Holdings, Ltd. Systems and methods for enhancing electrical energy storage
US11948742B2 (en) 2017-09-08 2024-04-02 Clearwater Holdings Ltd. Systems and methods for enhancing electrical energy storage
JP2020537864A (en) * 2017-10-17 2020-12-24 ムービング マグネット テクノロジーズ Toroidal type multi-phase electric machine
CN111316536A (en) * 2017-10-17 2020-06-19 移动磁体技术公司 Annular multiphase motor
US11322995B2 (en) 2017-10-29 2022-05-03 Clearwater Holdings, Ltd. Modular electromagnetic machines and methods of use and manufacture thereof
CN108321999A (en) * 2018-02-12 2018-07-24 山东大学 Seven phase disc type permanent magnet synchronous electric motors and method
US11277062B2 (en) 2019-08-19 2022-03-15 Linear Labs, Inc. System and method for an electric motor/generator with a multi-layer stator/rotor assembly

Also Published As

Publication number Publication date
JP5515297B2 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
JP5515297B2 (en) Rotating electric machine
JP6503950B2 (en) Rotor and brushless motor
RU2008111512A (en) ELECTRIC MACHINE ASSEMBLY
JP2010528581A5 (en)
CN102326322A (en) Electric motor
JP5722690B2 (en) Power generator
JP2008252979A (en) Axial-gap type rotating machine
JP2014150710A (en) Dynamo-electric machine
JP5869306B2 (en) Rotor and motor
JP2014192942A (en) Rotary machine
JP6332094B2 (en) Rotor, electric motor
JP2013169071A (en) Rotor and motor
JP2015130796A (en) Rotary electric apparatus
JPWO2019008930A1 (en) Stator and motor
KR20130049189A (en) Development magnetic induced
JP2006025486A (en) Electric electric machine
JP2011205893A (en) Coreless brushless motor
JP6658707B2 (en) Rotating electric machine
JP2010166745A (en) Variable characteristics rotating electrical machine
JP2008086176A5 (en)
JP2008017578A (en) Rotary electric machine
JP2014053980A (en) Rotating electrical apparatus and wind-power generation system
JP4127228B2 (en) Stator structure of rotating electrical machine
JP2015033254A (en) Stator core
JP5340332B2 (en) Rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R151 Written notification of patent or utility model registration

Ref document number: 5515297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151