JP2014192942A - Rotary machine - Google Patents

Rotary machine Download PDF

Info

Publication number
JP2014192942A
JP2014192942A JP2013063992A JP2013063992A JP2014192942A JP 2014192942 A JP2014192942 A JP 2014192942A JP 2013063992 A JP2013063992 A JP 2013063992A JP 2013063992 A JP2013063992 A JP 2013063992A JP 2014192942 A JP2014192942 A JP 2014192942A
Authority
JP
Japan
Prior art keywords
permanent magnets
permanent magnet
section
magnets
rotary machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013063992A
Other languages
Japanese (ja)
Other versions
JP2014192942A5 (en
Inventor
Shuichi Yokoyama
修一 横山
Akihira Morishita
明平 森下
Takuya Ashida
拓也 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atec Corp
Original Assignee
Atec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atec Corp filed Critical Atec Corp
Priority to JP2013063992A priority Critical patent/JP2014192942A/en
Publication of JP2014192942A publication Critical patent/JP2014192942A/en
Publication of JP2014192942A5 publication Critical patent/JP2014192942A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rotary machine having a Halbach array field magnet, capable of reducing the cost of manufacture.SOLUTION: A rotary machine 1 configuring a motor and a power generator, comprises a dual Halbach array field magnet configured by respectively arranging permanent magnets 41 and 51 whose cross section vertical to a rotation shaft is rectangular, in a ring shape. The permanent magnets 41 and 51 with the rectangular cross section are arranged in a ring shape at equal angle intervals, respectively. Since wedge-shaped gaps are provided between the adjacent magnets, it is preferred that members for filling those gaps are interposed. Such members are configured by a non-magnetic non-conductive material. By using the permanent magnets whose cross section vertical to the rotation shaft is rectangular, procurement cost of permanent magnets can be suppressed, and rotary machine manufacture can be achieved at low cost. In addition, the usage of such permanent magnets brings about reduction in magnet usage amount, and thus, it can contribute to resource saving. Further, by interposing the members between the adjacent permanent magnets, positioning of the permanent magnets is facilitated, and thereby, the intensity of field magnet and productivity can be improved.

Description

本発明は、コアレスモータやコアレス発電機などの回転機に関するものであり、具体的には、永久磁石をリング状に配列してなるハルバッハ配列界磁を具備する回転機に関するものである。   The present invention relates to a rotating machine such as a coreless motor and a coreless generator, and more specifically to a rotating machine including a Halbach array field formed by arranging permanent magnets in a ring shape.

従来のモータや発電機では、永久磁石をN極とS極とが交互になるように配列するが、そのような配列構造だと、磁場が磁石配列の表側と裏側の両方に発生してしまい、磁場を有効に利用できない。そこで、モータや発電機の磁場を高める手段として、「ハルバッハ配列」という永久磁石の配列構造が提案されている。   In conventional motors and generators, permanent magnets are arranged so that N poles and S poles are alternately arranged, but with such an arrangement structure, a magnetic field is generated on both the front side and the back side of the magnet arrangement. The magnetic field cannot be used effectively. Therefore, a permanent magnet arrangement structure called “Halbach arrangement” has been proposed as means for increasing the magnetic field of a motor or generator.

ハルバッハ配列では、永久磁石の磁極を90°ずつ回転させながら配列しているので、磁石配列の一方の側の磁場が弱まり、その磁石配列の他方の側では、その分磁場が強くなって、永久磁石の配列の片側に強い磁場を発生させることができる。そこで、図10に示すように、それぞれハルバッハ配列された2列の永久磁石配列(デュアルハルバッハ配列)の間に電機子コイルを配置した永久磁石回転機が提案されている(特許文献1)。   In the Halbach arrangement, the magnetic poles of the permanent magnets are arranged while being rotated by 90 °, so that the magnetic field on one side of the magnet arrangement is weakened, and on the other side of the magnet arrangement, the magnetic field is increased accordingly and becomes permanent. A strong magnetic field can be generated on one side of the magnet array. Therefore, as shown in FIG. 10, there has been proposed a permanent magnet rotating machine in which an armature coil is arranged between two rows of permanent magnet arrays (dual Halbach array) each arranged in a Halbach array (Patent Document 1).

特開2009−201343号公報JP 2009-201343 A

永久磁石デュアルハルバッハ配列界磁を用いた回転機、すなわちコアレスモータやコアレス発電機では、界磁をリング状に構成するために、図10に示すような台形断面をもつ永久磁石が一般的に使用されている。しかしながら、台形断面の永久磁石は長方形断面の永久磁石よりも高価であり、永久磁石の調達コストが高くつくため、回転機の作製に多大のコストが発生するといった問題があった。   In a rotating machine using a permanent magnet dual Halbach array field, that is, a coreless motor or a coreless generator, a permanent magnet having a trapezoidal cross section as shown in FIG. 10 is generally used to configure the field in a ring shape. Has been. However, the trapezoidal cross section permanent magnet is more expensive than the rectangular cross section permanent magnet, and the procurement cost of the permanent magnet is high. Therefore, there is a problem in that a large amount of cost is required for manufacturing the rotating machine.

そこで、上述した問題点に鑑み、本発明の目的は、製造コストの低減を図ることができるとともに簡単に製造できるハルバッハ配列界磁を備えた回転機を提供することにある。   Therefore, in view of the above-described problems, an object of the present invention is to provide a rotating machine having a Halbach array field that can be easily manufactured while reducing the manufacturing cost.

このような目的は、回転軸に垂直な断面が長方形の永久磁石をリング状に配列してなるハルバッハ配列界磁を具備する回転機によって達成される。長方形断面の永久磁石をリング状に配列すると、隣接する磁石間には必然的に楔状の隙間が生じるので、この隙間を埋める部材を介在させることが好ましい。このような介在部材の構成材料は特に限定されないが、好ましくは非磁性材料で構成するのがよく、より好ましくは非磁性・非導電性材料で構成するのがよい。   Such an object is achieved by a rotating machine including a Halbach array field formed by arranging permanent magnets having a rectangular cross section perpendicular to the rotation axis in a ring shape. When permanent magnets having a rectangular cross section are arranged in a ring shape, a wedge-shaped gap is inevitably generated between adjacent magnets. Therefore, it is preferable to interpose a member filling the gap. The constituent material of such an interposition member is not particularly limited, but is preferably made of a nonmagnetic material, more preferably a nonmagnetic / nonconductive material.

本発明の回転機では、ハルバッハ配列界磁の構成部材として、回転軸に垂直な断面が長方形の永久磁石を用いる。長方形断面の永久磁石は、一般的に大量生産され廉価で提供されており、そのため、台形断面の永久磁石を用いる場合に比べて、永久磁石の調達コストを大幅に抑えることができる。したがって本発明によれば、台形断面の永久磁石を用いる従来品に比べて、低コストでの回転機の製造が可能になる。また、永久磁石を低コストで調達できるようになるので、少量多品種の回転機を低価格で提供できるようになる。また、長方形断面の永久磁石を用いることで、永久磁石の断面積が減少して、その分、磁石使用量が減るので、省資源化に貢献できる。   In the rotating machine of the present invention, a permanent magnet having a rectangular cross section perpendicular to the rotation axis is used as a constituent member of the Halbach array field. Permanent magnets having a rectangular cross section are generally mass-produced and are provided at a low price. Therefore, the procurement cost of permanent magnets can be significantly reduced as compared with the case where a permanent magnet having a trapezoidal cross section is used. Therefore, according to the present invention, it is possible to manufacture a rotating machine at a lower cost compared to a conventional product using a permanent magnet having a trapezoidal cross section. In addition, since permanent magnets can be procured at a low cost, a small quantity of various types of rotating machines can be provided at a low price. In addition, by using a permanent magnet having a rectangular cross section, the cross sectional area of the permanent magnet is reduced, and the amount of magnet usage is reduced accordingly, thereby contributing to resource saving.

また本発明では、回転軸に垂直な断面が長方形の永久磁石をリング状に配列してハルバッハ配列界磁を構成するため、永久磁石間には楔形状の隙間が生じるが、この隙間には好ましくは間詰部材を介在させるようになっている。このように、隣接する永久磁石間に間詰部材を介在させることで、永久磁石の位置決めが容易になるので、界磁の製作性が向上する。また、永久磁石間の隙間を間詰部材で埋めることで、永久磁石のグラつきを防止でき、界磁の強度が向上する。したがって、台形断面の永久磁石の替わりに長方形断面の永久磁石を用いても、回転機の強度や製作性は損なわれない。   Further, in the present invention, since permanent magnets having a rectangular cross section perpendicular to the rotation axis are arranged in a ring shape to form a Halbach field, a wedge-shaped gap is generated between the permanent magnets. Is configured to interpose a clogging member. In this way, by interposing the interstitial member between the adjacent permanent magnets, the positioning of the permanent magnets is facilitated, and the field productivity is improved. Further, by filling the gap between the permanent magnets with the filling member, it is possible to prevent the permanent magnets from being blurred, and the field strength is improved. Therefore, even if a permanent magnet having a rectangular cross section is used instead of a permanent magnet having a trapezoidal cross section, the strength and manufacturability of the rotating machine are not impaired.

なお、永久磁石を電動機や発電機の界磁に用いる場合、通常、永久磁石は強磁性材料に接触した形で使用される。そのため、長方形断面の永久磁石でリング状界磁を構成する場合、磁石間の隙間に強磁性材料を介在させ、主磁束の磁気抵抗を下げることを想起しがちであるが、デュアルハルバッハ配列界磁では比透磁率が1に近い材料を介在させた方がギャップ中の磁束が低減しない。   In addition, when using a permanent magnet for the field of an electric motor or a generator, a permanent magnet is normally used in the form which contacted the ferromagnetic material. For this reason, when a ring-shaped field is constituted by a permanent magnet having a rectangular cross section, it tends to be recalled that a ferromagnetic material is interposed in the gap between the magnets to lower the magnetic resistance of the main magnetic flux. Then, the magnetic flux in the gap is not reduced when a material having a relative permeability close to 1 is interposed.

本発明の回転機を示す径方向の概略断面図(回転機の回転軸に垂直な方向の断面図)である。It is a schematic sectional drawing of the radial direction which shows the rotating machine of this invention (sectional drawing of a direction perpendicular | vertical to the rotating shaft of a rotating machine). 単層界磁回転機を示す軸方向断面図であって、図1のV−V線に沿った概略断面図である。It is an axial sectional view showing a single layer field rotating machine, and is a schematic sectional view taken along line VV in FIG. 多層界磁回転機を示す軸方向断面図である。It is an axial sectional view showing a multilayer field rotating machine. 実施例1の測定結果を示すグラフである。3 is a graph showing measurement results of Example 1. 実施例1の測定結果を示すグラフである。3 is a graph showing measurement results of Example 1. 実施例2の測定結果を示すグラフである。6 is a graph showing measurement results of Example 2. 実施例2の測定結果を示すグラフである。6 is a graph showing measurement results of Example 2. 比較例の測定結果を示すグラフである。It is a graph which shows the measurement result of a comparative example. 比較例の測定結果を示すグラフである。It is a graph which shows the measurement result of a comparative example. 従来の回転機を示す径方向断面図(回転機の回転軸に垂直な方向の断面図)である。It is radial direction sectional drawing (sectional drawing of a direction perpendicular | vertical to the rotating shaft of a rotary machine) which shows the conventional rotary machine.

本発明は、ハルバッハ配列の永久磁石を用いたコアレスモータやコアレス発電機などの回転機(永久磁石回転電機)に関するものである。以下、図1及び図2に基づいて、本発明に係る回転機の実施形態について説明する。   The present invention relates to a rotating machine (permanent magnet rotating electric machine) such as a coreless motor or a coreless generator using a Halbach array of permanent magnets. Hereinafter, based on FIG.1 and FIG.2, embodiment of the rotary machine which concerns on this invention is described.

回転機1は、回転子3と固定子7を備えている。回転子3にシャフトを取り付けて、このシャフトを回転させるようにすれば、発電機を構成できる。回転子3は、デュアルハルバッハ配列界磁を構成する永久磁石配列4,5を備えている。固定子7は、コイル配列8を備えている。   The rotating machine 1 includes a rotor 3 and a stator 7. A generator can be configured by attaching a shaft to the rotor 3 and rotating the shaft. The rotor 3 includes permanent magnet arrays 4 and 5 constituting a dual Halbach array field. The stator 7 includes a coil array 8.

永久磁石配列4,5はそれぞれリング状に構成され、コイル配列8もリング状に構成されている。永久磁石配列4は、永久磁石配列5の内側に設けられている。永久磁石配列4,5およびコイル配列8は同心円状に配列されている。   The permanent magnet arrays 4 and 5 are each configured in a ring shape, and the coil array 8 is also configured in a ring shape. The permanent magnet array 4 is provided inside the permanent magnet array 5. The permanent magnet arrays 4 and 5 and the coil array 8 are arranged concentrically.

デュアルハルバッハ配列界磁を構成する永久磁石配列4,5は、図1に示すように、それぞれ、永久磁石の磁極を周方向に略90°ずつ回転してリング状に配列した「ハルバッハ配列」となっている。永久磁石配列4と永久磁石配列5の磁石数は同じである。永久磁石配列4を構成する永久磁石41,41…は、その着磁方向に平行な断面(回転機の回転軸に垂直な断面)において、ともに断面形状が長方形である。永久磁石配列5を構成する永久磁石51,51…も同様に、断面形状が長方形である。   As shown in FIG. 1, each of the permanent magnet arrays 4 and 5 constituting the dual Halbach array field is a “Halbach array” in which the magnetic poles of the permanent magnets are rotated approximately 90 ° in the circumferential direction and arranged in a ring shape. It has become. The number of magnets in the permanent magnet array 4 and the permanent magnet array 5 is the same. The permanent magnets 41, 41... Constituting the permanent magnet array 4 are both rectangular in cross section in a cross section parallel to the magnetization direction (a cross section perpendicular to the rotation axis of the rotating machine). Similarly, the permanent magnets 51, 51... Constituting the permanent magnet array 5 have a rectangular cross-sectional shape.

このような長方形断面をもつ同形状の永久磁石41を等角度間隔でリング状に配列しているため、隣接する永久磁石41,41の間には、楔形状の隙間があいている。これらの楔状の隙間には、この隙間を埋める楔形状の間詰部材43が介在している。同様に、隣接する永久磁石51,51の間にも、楔形状の隙間があいており、これらの楔状の隙間には、この隙間を埋める楔形状の間詰部材53が介在している。   Since the same-shaped permanent magnets 41 having such a rectangular cross section are arranged in a ring shape at equal angular intervals, a wedge-shaped gap is provided between adjacent permanent magnets 41 and 41. In these wedge-shaped gaps, wedge-shaped filling members 43 are interposed to fill the gaps. Similarly, there is a wedge-shaped gap between the adjacent permanent magnets 51, 51, and a wedge-shaped filling member 53 is interposed in the wedge-shaped gap to fill the gap.

なお本発明では、長方形断面永久磁石間の隙間に間詰部材を配置せず、空気を介在させる態様も採用可能であるが、好ましくは、上述したように間詰部材を介在させるのがよい。間詰部材43,53の材質は特に限定されず、例えば、アルミニウムなどの非磁性材料で構成することができ、好ましくは、樹脂などの非磁性・非導電性材料で構成するのがよい。   In the present invention, it is possible to adopt a mode in which air is interposed without disposing the clogging member in the gap between the rectangular cross-section permanent magnets, but it is preferable to interpose the clogging member as described above. The material of the filling members 43 and 53 is not particularly limited, and can be made of, for example, a nonmagnetic material such as aluminum, and is preferably made of a nonmagnetic / nonconductive material such as resin.

永久磁石間の隙間に間詰部材を介在させる方法は特に限定されず、回転機の完成状態で永久磁石間の隙間に何らかの部材が介在するものであれば、いかなる手法でも採用可能である。例えば、永久磁石をリング状に配列した後に、隣接する永久磁石間の隙間に何らかの材料(磁石とは別体の部材)を挿入又は充填するようにしてもよい。或いは、予め等角度間隔に配置固定した間詰部材の間に永久磁石を挿し込むように配置してもよい。   The method of interposing the clogging member in the gap between the permanent magnets is not particularly limited, and any method can be adopted as long as some member is interposed in the gap between the permanent magnets in the completed state of the rotating machine. For example, after arranging the permanent magnets in a ring shape, some material (a member separate from the magnet) may be inserted or filled in the gap between the adjacent permanent magnets. Or you may arrange | position so that a permanent magnet may be inserted between the filling members arrange | positioned and fixed beforehand at equal angle intervals.

上述した永久磁石配列4の永久磁石41のうち径方向に着磁した永久磁石の磁極方向と、永久磁石配列5の永久磁石51のうち径方向に着磁した永久磁石の磁極方向は、同じ半径上に配置されているもの同士は同じである。また、永久磁石配列4の永久磁石41のうち周方向に着磁した永久磁石の磁極方向と、永久磁石配列5の永久磁石51のうち周方向に着磁した永久磁石の磁極方向は、同じ半径上に配置されているもの同士は反対である。   The magnetic pole direction of the permanent magnets magnetized in the radial direction of the permanent magnets 41 of the permanent magnet array 4 and the magnetic pole direction of the permanent magnets magnetized in the radial direction of the permanent magnets 51 of the permanent magnet array 5 are the same radius. Those arranged above are the same. In addition, the magnetic pole direction of the permanent magnet magnetized in the circumferential direction of the permanent magnet 41 of the permanent magnet array 4 and the magnetic pole direction of the permanent magnet magnetized in the circumferential direction of the permanent magnet 51 of the permanent magnet array 5 are the same radius. The ones placed above are the opposite.

内側の永久磁石配列4では、永久磁石41の磁極を周方向に略90°ずつ回転させながらリング状に配列しているので、そのリング状配列の内側の磁場が弱まる一方で、外側ではその分磁場が強くなって、永久磁石配列4の外側に強い磁場を発生させることができる。また、外側の永久磁石配列5では、永久磁石51の磁極を周方向に略90°ずつ回転させながらリング状に配列しているので、そのリング状配列の外側の磁場が弱まる一方で、内側ではその分磁場が強くなって、永久磁石配列5の内側に強い磁場を発生させることができる。   In the inner permanent magnet array 4, the magnetic poles of the permanent magnets 41 are arranged in a ring shape while being rotated by about 90 ° in the circumferential direction. A strong magnetic field can be generated and a strong magnetic field can be generated outside the permanent magnet array 4. Further, in the outer permanent magnet arrangement 5, the magnetic poles of the permanent magnets 51 are arranged in a ring shape while being rotated by about 90 ° in the circumferential direction. Accordingly, the magnetic field becomes stronger, and a strong magnetic field can be generated inside the permanent magnet array 5.

このように永久磁石配列4,5を構成しているので、両磁石配列4,5の間の空間の磁場は強くなり、その一方で、永久磁石配列4の内側と永久磁石配列5の外側には、磁場は殆ど漏れなくなる。そして、この永久磁石配列4,5の間にコイル配列8を同心円状に配置しているので、高い電圧を発生することができる。このように、コイル配列8が配置される領域の磁場が強くなるので、コイル配列を構成するコイルに鉄心を使用しなくても、高い電圧を発生することができるようになる。そして、鉄心を使用しないので、コギングを無くすことができる。   Since the permanent magnet arrays 4 and 5 are configured in this way, the magnetic field in the space between the magnet arrays 4 and 5 becomes strong, while on the other hand, inside the permanent magnet array 4 and outside the permanent magnet array 5. The magnetic field hardly leaks. Since the coil array 8 is concentrically arranged between the permanent magnet arrays 4 and 5, a high voltage can be generated. Thus, since the magnetic field in the region where the coil array 8 is arranged becomes strong, a high voltage can be generated without using an iron core for the coils constituting the coil array. And since an iron core is not used, cogging can be eliminated.

なお、上述した実施形態は一例であって、特許請求の範囲に記載の本発明には、種々の変形例が含まれる。例えば、本発明の適用範囲は、図2に示すような一層の界磁に限定されず、図3に示すような多層界磁を具備する回転機にも本発明を適用可能である。また、このような単層界磁または多層界磁を複数段具備する、多段式界磁の回転機にも本発明を適用可能である。   The above-described embodiment is an example, and the present invention described in the claims includes various modifications. For example, the scope of application of the present invention is not limited to a single-layer field as shown in FIG. 2, and the present invention can also be applied to a rotating machine having a multilayer field as shown in FIG. The present invention can also be applied to a multi-stage field rotating machine including a plurality of such single-layer fields or multilayer fields.

(実施例1)
図1に示すような長方形断面をもつ永久磁石を用いて、リング状デュアルハルバッハ界磁を図3に示すように3層に構成した。永久磁石間の楔状隙間には何も挿入せず、空気を介在させた。1層目,3層目のギャップ中央周方向磁束密度分布を図4,図5に示す。
Example 1
Using a permanent magnet having a rectangular cross section as shown in FIG. 1, the ring-shaped dual Halbach field was configured in three layers as shown in FIG. Nothing was inserted in the wedge-shaped gap between the permanent magnets, and air was interposed. FIG. 4 and FIG. 5 show the magnetic flux density distribution in the gap center circumferential direction of the first layer and the third layer.

(実施例2)
図1に示すような長方形断面をもつ永久磁石を用いて、リング状デュアルハルバッハ界磁を図3に示すように3層に構成した。永久磁石間の楔状隙間には、この隙間を埋める楔形状の鉄を挿入した。1層目,3層目のギャップ中央周方向磁束密度分布を図6,図7に示す。
(Example 2)
Using a permanent magnet having a rectangular cross section as shown in FIG. 1, the ring-shaped dual Halbach field was configured in three layers as shown in FIG. The wedge-shaped iron between the permanent magnets was inserted with wedge-shaped iron filling the gap. FIG. 6 and FIG. 7 show the magnetic flux density distribution in the gap center circumferential direction of the first and third layers.

(比較例)
図10に示すような台形断面をもつ永久磁石を用いて、リング状デュアルハルバッハ界磁を図3に示すように3層に構成した。1層目および3層目のギャップ中央の周方向の磁束密度分布を図8,図9に示す。
(Comparative example)
Using a permanent magnet having a trapezoidal cross section as shown in FIG. 10, the ring-shaped dual Halbach field was configured in three layers as shown in FIG. FIG. 8 and FIG. 9 show the magnetic flux density distribution in the circumferential direction at the center of the gap of the first layer and the third layer.

(評価)
図4〜図9に示す結果から明らかなように、回転軸に垂直な断面が長方形の永久磁石を用いてデュアルハルバッハ配列界磁を構成した場合において、磁石一個当たりを見込む角度が5°程度であれば、磁石間の空隙に非磁性・非導電性の部材を挿入しても、界磁ギャップ中央の磁束密度は3%程度の減少にとどまることがわかる。また、磁束密度分布もきれいな正弦波が得られており、永久磁石断面の形状変更による差異は認められない。
(Evaluation)
As is apparent from the results shown in FIGS. 4 to 9, when a dual Halbach array field is configured using permanent magnets having a rectangular cross section perpendicular to the rotation axis, the angle expected per magnet is about 5 °. If it exists, even if a nonmagnetic and nonconductive member is inserted in the space between the magnets, it can be seen that the magnetic flux density at the center of the field gap is only reduced by about 3%. Also, a sine wave with a clean magnetic flux density distribution is obtained, and no difference due to the shape change of the permanent magnet cross section is recognized.

一方、長方形断面の永久磁石間の楔状隙間に鉄を挿入して介在させると、磁気回路的には磁気抵抗が減るため、磁束密度の増加が期待されるが、実際は界磁ギャップ中の磁束が鉄に集中してしまうために、磁束密度の低下を招くことがわかる。   On the other hand, if iron is inserted and interposed between the rectangular gaps between the permanent magnets having a rectangular cross section, the magnetic resistance is reduced in terms of the magnetic circuit, so an increase in magnetic flux density is expected. It can be seen that the magnetic flux density is reduced because the iron is concentrated.

上述のように、回転軸に垂直な断面が長方形の永久磁石でデュアルハルバッハ界磁を構成する際に、隙間に相当する位置にあらかじめ非磁性・非導電性の部材を設置・固定させておけば、界磁組立時の永久磁石の位置決めが容易に行えることになる。また、非磁性・非導電性の部材を使用するため、界磁ギャップ中の磁束密度が減少することが回避できるとともに電機子コイルの作る磁束変動に起因する渦電流の発生もない。したがって、装置のエネルギー効率低下も回避できる。   As described above, when configuring a dual Halbach field with a permanent magnet having a rectangular cross section perpendicular to the rotation axis, a nonmagnetic / nonconductive member should be installed and fixed in advance in a position corresponding to the gap. Thus, the positioning of the permanent magnet at the time of field assembly can be easily performed. In addition, since a non-magnetic / non-conductive member is used, it is possible to avoid a decrease in the magnetic flux density in the field gap, and there is no generation of eddy currents due to magnetic flux fluctuations produced by the armature coil. Therefore, a reduction in energy efficiency of the apparatus can be avoided.

1 回転機(永久磁石回転電機)
3 回転子
4 永久磁石配列(内側磁石配列)
5 永久磁石配列(外側磁石配列)
7 固定子
8 コイル配列
41 永久磁石
43 間詰部材(介在部材)
51 永久磁石
53 間詰部材(介在部材)
1 Rotating machine (permanent magnet rotating electrical machine)
3 Rotor 4 Permanent magnet arrangement (inner magnet arrangement)
5 Permanent magnet arrangement (outside magnet arrangement)
7 Stator 8 Coil arrangement 41 Permanent magnet 43 Spacing member (intervening member)
51 Permanent magnet 53 Spacing member (intervening member)

Claims (3)

回転軸に垂直な断面が長方形の永久磁石をリング状に配列してなるハルバッハ配列界磁を具備する回転機。   A rotating machine provided with a Halbach array field in which permanent magnets having a rectangular cross section perpendicular to a rotation axis are arranged in a ring shape. 隣接する永久磁石間の隙間に介在するように設けられた部材を具備することを特徴とする請求項1に記載の回転機。   The rotating machine according to claim 1, further comprising a member provided so as to be interposed in a gap between adjacent permanent magnets. 隣接する永久磁石間の隙間に介在する前記部材は、非磁性材料で構成されることを特徴とする請求項2に記載の回転機。   The rotating machine according to claim 2, wherein the member interposed in a gap between adjacent permanent magnets is made of a nonmagnetic material.
JP2013063992A 2013-03-26 2013-03-26 Rotary machine Pending JP2014192942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013063992A JP2014192942A (en) 2013-03-26 2013-03-26 Rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013063992A JP2014192942A (en) 2013-03-26 2013-03-26 Rotary machine

Publications (2)

Publication Number Publication Date
JP2014192942A true JP2014192942A (en) 2014-10-06
JP2014192942A5 JP2014192942A5 (en) 2015-02-05

Family

ID=51838782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013063992A Pending JP2014192942A (en) 2013-03-26 2013-03-26 Rotary machine

Country Status (1)

Country Link
JP (1) JP2014192942A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106337892A (en) * 2016-09-27 2017-01-18 北京理工大学 Eddy-current damping magnetic spring
JP2020054175A (en) * 2018-09-28 2020-04-02 日本電産株式会社 motor
JP2020061854A (en) * 2018-10-09 2020-04-16 株式会社デンソー Rotary electric machine
CN112953151A (en) * 2021-03-04 2021-06-11 北京航空航天大学 Outer rotor motor of polygonal dovetail type spliced magnetic steel structure
WO2021085647A3 (en) * 2019-10-31 2021-06-24 株式会社アテック Rotating machine equipped with magnets in dual halbach array, method for manufacturing rotating machine, system for cooling drone motor bearing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030094873A1 (en) * 1999-08-27 2003-05-22 Michael Kim Permanent magnet array and magnet holder for flywheel motor/generator
JP2003164085A (en) * 2001-11-29 2003-06-06 Sawafuji Electric Co Ltd Rotating electric machine
WO2009057981A2 (en) * 2007-11-02 2009-05-07 Korea Institute Of Machinery & Materials Coreless motor
JP2010259150A (en) * 2009-04-21 2010-11-11 Toshiba Corp Permanent-magnet type rotating electrical machine
WO2013008284A1 (en) * 2011-07-08 2013-01-17 三菱電機株式会社 Permanent magnet type electric rotating machine and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030094873A1 (en) * 1999-08-27 2003-05-22 Michael Kim Permanent magnet array and magnet holder for flywheel motor/generator
JP2003164085A (en) * 2001-11-29 2003-06-06 Sawafuji Electric Co Ltd Rotating electric machine
WO2009057981A2 (en) * 2007-11-02 2009-05-07 Korea Institute Of Machinery & Materials Coreless motor
JP2010259150A (en) * 2009-04-21 2010-11-11 Toshiba Corp Permanent-magnet type rotating electrical machine
WO2013008284A1 (en) * 2011-07-08 2013-01-17 三菱電機株式会社 Permanent magnet type electric rotating machine and manufacturing method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106337892A (en) * 2016-09-27 2017-01-18 北京理工大学 Eddy-current damping magnetic spring
JP2020054175A (en) * 2018-09-28 2020-04-02 日本電産株式会社 motor
JP7238312B2 (en) 2018-09-28 2023-03-14 日本電産株式会社 motor
JP2020061854A (en) * 2018-10-09 2020-04-16 株式会社デンソー Rotary electric machine
WO2020075392A1 (en) * 2018-10-09 2020-04-16 株式会社デンソー Rotating electric machine
CN112840526A (en) * 2018-10-09 2021-05-25 株式会社电装 Rotating electrical machine
JP7200585B2 (en) 2018-10-09 2023-01-10 株式会社デンソー Rotating electric machine
CN112840526B (en) * 2018-10-09 2023-12-22 株式会社电装 Rotary electric machine
WO2021085647A3 (en) * 2019-10-31 2021-06-24 株式会社アテック Rotating machine equipped with magnets in dual halbach array, method for manufacturing rotating machine, system for cooling drone motor bearing
CN112953151A (en) * 2021-03-04 2021-06-11 北京航空航天大学 Outer rotor motor of polygonal dovetail type spliced magnetic steel structure
CN112953151B (en) * 2021-03-04 2022-05-03 北京航空航天大学 Outer rotor motor of polygonal dovetail type spliced magnetic steel structure

Similar Documents

Publication Publication Date Title
JP5491484B2 (en) Switched reluctance motor
JP2014138433A (en) Rotating electrical machine
JPWO2013098940A1 (en) Electric motor
JP5696694B2 (en) Rotating electric machine stator
US9225209B2 (en) Permanent magnet rotor and electric motor incorporating the rotor
JP2015133895A (en) permanent magnet synchronous machine
JP2014192942A (en) Rotary machine
US9515524B2 (en) Electric motor
JP2014165927A (en) Permanent magnet type synchronous motor
JP5869306B2 (en) Rotor and motor
JP6001379B2 (en) Rotor and motor
JP2012244874A (en) Rotary electric machine
JP2011182576A (en) Axial gap motor
JP2014073011A (en) Stator for rotary electric machine and rotary electric machine
JP2012019605A (en) Permanent magnet rotating electrical machine
JP2013169071A (en) Rotor and motor
JP2012157182A (en) Variable-field rotary electric machine
US9787153B2 (en) Outer rotor type dynamo
JP5403003B2 (en) Coreless brushless motor
US10186917B2 (en) Rotor assembly for a power generation system
JPWO2019008930A1 (en) Stator and motor
JP2013169073A (en) Rotor and motor
JP2013099104A (en) Rotor and motor
JP2006025486A (en) Electric electric machine
JP2017216855A (en) Rotary electric machine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141203

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170913

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180307