JP2010162475A - Treatment method for waste gas containing sf6 - Google Patents

Treatment method for waste gas containing sf6 Download PDF

Info

Publication number
JP2010162475A
JP2010162475A JP2009006538A JP2009006538A JP2010162475A JP 2010162475 A JP2010162475 A JP 2010162475A JP 2009006538 A JP2009006538 A JP 2009006538A JP 2009006538 A JP2009006538 A JP 2009006538A JP 2010162475 A JP2010162475 A JP 2010162475A
Authority
JP
Japan
Prior art keywords
exhaust gas
fluorine
temperature
treatment method
containing compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009006538A
Other languages
Japanese (ja)
Other versions
JP5016618B2 (en
Inventor
Yoichi Mori
洋一 森
Tetsuo Komai
哲夫 駒井
Norihiko Nomura
典彦 野村
Yutaka Hashimoto
裕 橋本
Masaaki Osato
雅昭 大里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2009006538A priority Critical patent/JP5016618B2/en
Publication of JP2010162475A publication Critical patent/JP2010162475A/en
Application granted granted Critical
Publication of JP5016618B2 publication Critical patent/JP5016618B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide waste gas treatment method excellent in durability for efficiently decomposing SF<SB>6</SB>. <P>SOLUTION: The treatment method is for decomposing SF<SB>6</SB>by bringing a fluorine-containing compound treatment agent, which is obtained by molding a mixture of Al(OH)<SB>3</SB>and Ca(OH)<SB>2</SB>with an average particle diameter (median diameter) of at least 55 μm and at most 160 μm in a mole ratio of (3:7) to (5:5), drying the molded mixture, and firing the dried mixture in a temperature range higher than 430°C and 890°C or lower in a nitrogen current or air current, and a waste gas containing SF<SB>6</SB>into contact with each other in a temperature range of 550 to 650°C, and when the SF<SB>6</SB>removal efficiency is lowered to 95% or lower during the operation, the fluorine-containing compound treatment agent is replaced. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、フッ素含有化合物を含む排ガスの処理に関し、特に、W(タングステン)又はポリシリコンのエッチングプロセスから排出されるSFを含む排ガスの処理方法に関する。 The present invention relates to treatment of exhaust gas containing a fluorine-containing compound, and more particularly to a method of treating exhaust gas containing SF 6 discharged from a W (tungsten) or polysilicon etching process.

半導体工場においては、半導体製造工程中に多種類の有害ガスが使用されており、環境中への排気による環境汚染が懸念される。特に、半導体工業における半導体製造装置内面のクリーニング工程や、エッチング工程或いはCVD工程などにおいては、CHFなどのフッ化炭化水素や、CF、C、C、C、C、C、SF、NFなどのパーフルオロ化合物(PFC)などのフッ素含有化合物が用いられており、これらのプロセスからの排ガス中に含まれるフッ素含有化合物は、地球温暖化ガスとしてその除去システムの確立が急務とされている。 In semiconductor factories, many kinds of harmful gases are used during the semiconductor manufacturing process, and there is concern about environmental pollution due to exhaust into the environment. In particular, in a cleaning process of an inner surface of a semiconductor manufacturing apparatus in the semiconductor industry, an etching process, a CVD process, or the like, a fluorinated hydrocarbon such as CHF 3 , CF 4 , C 2 F 6 , C 3 F 8 , C 4 F 6. , C 4 F 8 , C 5 F 8 , SF 6 , and fluorine-containing compounds such as perfluoro compounds (PFC) such as NF 3 are used. The fluorine-containing compounds contained in the exhaust gas from these processes are: As a global warming gas, it is urgently required to establish a removal system.

フッ素含有化合物を含む排ガスの処理方法としては、例えば、酸化アルミニウム及びアルカリ土類金属の酸化物を含む処理剤を用いて排ガス中のフルオロカーボンを分解処理する方法(特許文献1);酸化アルミニウム及びアルカリ土類金属の酸化物を含む処理剤を用いて排ガス中のフッ化硫黄を分解処理する方法(特許文献2);アルミナ及びアルカリ土類金属化合物、及び場合によっては銅、錫、バナジウム等の金属の酸化物を含む処理剤を用いて排ガス中のフッ素化合物を分解処理する方法(特許文献3);水酸化アルミニウムと水酸化カルシウムとを含む処理剤を用いて排ガス中のPFCを分解処理する方法(特許文献4);などが提案されている。   As a method for treating exhaust gas containing a fluorine-containing compound, for example, a method of decomposing fluorocarbon in exhaust gas using a treatment agent containing aluminum oxide and an oxide of an alkaline earth metal (Patent Document 1); aluminum oxide and alkali A method of decomposing sulfur fluoride in exhaust gas using a treating agent containing an earth metal oxide (Patent Document 2); alumina and alkaline earth metal compounds, and in some cases metals such as copper, tin, vanadium, etc. Method for Decomposing Fluorine Compound in Exhaust Gas Using Treatment Agent Containing Oxide (Patent Document 3); Method for Decomposing PFC in Exhaust Gas Using Treatment Agent Containing Aluminum Hydroxide and Calcium Hydroxide (Patent Document 4); and the like have been proposed.

しかしながら、上記のような従来の処理方法は、処理温度が800〜1000℃と高いため、処理装置の熱による劣化が速く、装置のエネルギー消費量も大きいという問題があった。また、従来の処理剤は、使用寿命が短くて交換頻度が高いという問題を包含していた。例えば、特許文献1〜3に開示されている方法では、PFCを酸化アルミニウム(アルミナ)と反応させてフッ化アルミニウムを生成させることによってPFCガスを分解している。しかしながら、酸化アルミニウムの反応活性が低いので、この反応を効率よく進行させるためには、高温の反応条件が必要である。更に、生成したフッ化アルミニウムが酸化アルミニウムの表面に層を形成し、これによって酸化アルミニウムが被毒されて短時間で触媒活性を失うおそれがあり、その様な場合は、処理剤の交換頻度が高くなってしまうという問題がある。   However, the conventional processing method as described above has a problem that the processing temperature is as high as 800 to 1000 ° C., so that the processing apparatus is rapidly deteriorated by heat and the energy consumption of the apparatus is large. Moreover, the conventional processing agent included the problem that service life is short and replacement frequency is high. For example, in the methods disclosed in Patent Documents 1 to 3, PFC gas is decomposed by reacting PFC with aluminum oxide (alumina) to produce aluminum fluoride. However, since the reaction activity of aluminum oxide is low, high-temperature reaction conditions are necessary to allow this reaction to proceed efficiently. Further, the generated aluminum fluoride forms a layer on the surface of the aluminum oxide, which may poison the aluminum oxide and lose the catalytic activity in a short time. There is a problem of becoming high.

PFCガスを水酸化アルミニウムと反応させて、水酸化アルミニウムの水酸基の水素によってフッ素をフッ化水素とし、次に生成したフッ化水素を水酸化カルシウムと反応させてフッ化カルシウムを生成させることによって、PFCガスなどのPFCを従来法よりも低い温度で効率よく分解処理することができる方法が提案されている(特許文献4)。しかし、かかる方法は、小型の装置では効果があるものの、実機規模にスケールアップすると、アルミニウムの活性が阻害され、十分な除去効果を示さない場合があることが確認された。   PFC gas is reacted with aluminum hydroxide, fluorine is converted to hydrogen fluoride with hydrogen of the hydroxyl group of aluminum hydroxide, and then the generated hydrogen fluoride is reacted with calcium hydroxide to generate calcium fluoride. A method that can efficiently decompose PFC such as PFC gas at a temperature lower than that of the conventional method has been proposed (Patent Document 4). However, although this method is effective in a small apparatus, it has been confirmed that when it is scaled up to an actual scale, the activity of aluminum is inhibited and a sufficient removal effect may not be exhibited.

本発明者らは、先に特願2008−71336に示した処理剤を開発したが、これらの最適処理温度は、主に、パーフルオロカーボンを対象としていたため650〜750℃であり、このような高温でSFを処理すると、SFとしての破過の時期より前に、有害なSOがTLV値以上に排出してしまうという問題があった。
特開2002−224565号公報 特開2002−370013号公報 特開2001−190959号公報 特開2005−262128号公報
The inventors of the present invention have previously developed the treatment agent shown in Japanese Patent Application No. 2008-71336, but these optimum treatment temperatures are mainly 650 to 750 ° C. because they are mainly perfluorocarbons. When SF 6 was processed at a high temperature, there was a problem that harmful SO 2 was discharged to a TLV value or more before the breakthrough time as SF 6 .
JP 2002-224565 A JP 2002-370013 A JP 2001-190959 A JP-A-2005-262128

そこで、本発明は、かかる従来技術の問題を解決し、SFの破過と、SOが許容値以上に排出するタイミングを近づけるか、もしくは、SFとしての破過の時期より前に、有害なSOが許容値を超えて排出することがなく、SFを効率よく分解する耐久性に優れた排ガスの処理方法を提供することを課題とする。 Accordingly, the present invention is to solve such prior art problems, and breakthrough of SF 6, or narrowing the time SO 2 discharges above the allowable value, or, prior to the time of breakthrough of the SF 6, It is an object of the present invention to provide an exhaust gas treatment method having excellent durability for efficiently decomposing SF 6 without causing harmful SO 2 to be discharged beyond an allowable value.

前記課題を解決するために、本発明によれば、SFを含む排ガスの処理方法において、該排ガスを、平均粒子径(メディアン径)55μm以上160μm以下のAl(OH)とCa(OH)とのモル比が3:7〜5:5である混合物を成形して乾燥し、430℃よりも高く890℃以下の温度範囲で、窒素流又は空気流中で焼成して得られるフッ素含有化合物処理剤と、550〜650℃温度で接触させることを特徴とするSFを含む排ガス処理方法としたものである。
前記排ガス処理方法において、接触温度は、600〜650℃とするのがよく、また、フッ素含有化合物処理剤は、SF除去率が95%以下に低下時には交換するのがよい。
In order to solve the above problems, according to the present invention, in an exhaust gas treatment method containing SF 6 , the exhaust gas is treated with Al (OH) 3 and Ca (OH) having an average particle diameter (median diameter) of 55 μm to 160 μm. A fluorine-containing mixture obtained by molding and drying a mixture having a molar ratio of 2 : 7 to 5: 5 and calcining in a nitrogen flow or an air flow in a temperature range higher than 430 ° C. and not higher than 890 ° C. This is an exhaust gas treatment method containing SF 6 , which is brought into contact with a compound treatment agent at a temperature of 550 to 650 ° C.
In the exhaust gas treatment method, the contact temperature is preferably 600 to 650 ° C., and the fluorine-containing compound treatment agent is preferably exchanged when the SF 6 removal rate is reduced to 95% or less.

本発明によれば、フッ素含有化合物処理剤とSFを含む排ガスとを、550〜650℃の温度、より好ましくは600〜650℃で接触させることにより、SFの分解により発生する有害なSOをTLV値(2ppm)以上発生させないで、長時間安定に効率よく、SFを分解処理することができた。 According to the present invention, the harmful SO generated by the decomposition of SF 6 by contacting the fluorine-containing compound treating agent and the exhaust gas containing SF 6 at a temperature of 550 to 650 ° C., more preferably 600 to 650 ° C. without generating 2 TLV value (2 ppm) or more, long-term stability and efficiently, it was possible to decompose the SF 6.

以下に、本発明を詳細に説明する。
本発明で使用するフッ素含有化合物処理剤について説明すると、該処理剤の原材料であるAl(OH)は、その平均粒子径が55μm以上、好ましくは、60μm以上160μm以下、より好ましくは90μm以上120μm以下である。ここで、平均粒子径とは、メディアン径を意味し、粒子径ごとに頻度(含有量)を積算し、含有量の累積が最小粒子径からはじめて50%になる点での粒子径である。
該処理剤のもう一つの原材料であるCa(OH)の平均粒子径はA1(OH)の平均粒径によって変動するが、A1(OH)よりもCa(OH)の平均粒子径(メディアン径)は小さい方が好ましい。Ca(OH)の平均粒子径(メディアン径)としては、好ましくは1μm以上10μm以下、より好ましくは3μm以上8μm以下、最も好ましくは4μm以上6μm以下である。
The present invention is described in detail below.
The fluorine-containing compound treating agent used in the present invention will be described. Al (OH) 3 as a raw material of the treating agent has an average particle size of 55 μm or more, preferably 60 μm or more and 160 μm or less, more preferably 90 μm or more and 120 μm. It is as follows. Here, the average particle diameter means the median diameter, and is the particle diameter at which the frequency (content) is integrated for each particle diameter, and the accumulation of the content reaches 50% from the minimum particle diameter.
The average particle diameter of Ca (OH) 2 which is another raw material of the treatment agent varies depending on the average particle diameter of A1 (OH) 3 , but the average particle diameter of Ca (OH) 2 is higher than that of A1 (OH) 3. A smaller (median diameter) is preferable. The average particle diameter (median diameter) of Ca (OH) 2 is preferably 1 μm to 10 μm, more preferably 3 μm to 8 μm, and most preferably 4 μm to 6 μm.

A1(OH)とCa(OH)とは、平均粒子径の大きいA1(OH)を核にして、その表層にCa(OH)が効率よく配置されることで活性が維持されると考えられる。よって、Ca(OH)の粒径がA1(OH)の平均粒径に比べて小さすぎるとA1(OH)の表面全体を隙間なく覆い、フッ素含有化合物との接触を阻止して結果的にフッ素含有化合物の分解を阻害し、逆にCa(OH)の粒径がA1(OH)の平均粒径に比べて大きすぎるとフッ素含有化合物分解時のFとの接触効率が低下し結果的に分解が不充分となり、何れの場合もフッ素含有化合物の分解効率を下げると考えられる。 The activity of A1 (OH) 3 and Ca (OH) 2 is maintained by efficiently arranging Ca (OH) 2 on the surface layer of A1 (OH) 3 having a large average particle diameter as a nucleus. it is conceivable that. Thus, Ca (OH) particle size of 2 covers without gaps an entire surface of the too small A1 (OH) 3 than the average particle size of A1 (OH) 3, by preventing the contact between the fluorine-containing compound results In contrast, if the particle size of Ca (OH) 2 is too large compared to the average particle size of A1 (OH) 3 , the contact efficiency with F during decomposition of the fluorine-containing compound decreases. As a result, the decomposition becomes insufficient, and in any case, it is considered that the decomposition efficiency of the fluorine-containing compound is lowered.

上記混合物におけるA1(OH)とCa(OH)とのモル比は、3:7〜5:5、好ましくは3:7〜4:6である。A1(OH)とCa(OH)とのモル比が上記範囲外であると、フッ素含有化合物処理剤としての所望の処理性能が得られず、短時間でCF除去率が95%以下に劣化してしまい、実用に耐えない。
本発明で使用するフッ素含有化合物処理剤は、上記混合物を押出し成形して得た成形物を乾燥し、430℃よりも高く890℃以下の温度範囲、好ましくは580℃〜850℃、より好ましくは650℃〜780℃の温度範囲で、窒素流又は空気流中で焼成することにより得られる。
The molar ratio of A1 (OH) 3 and Ca (OH) 2 in the above mixture is 3: 7 to 5: 5, preferably 3: 7 to 4: 6. If the molar ratio of A1 (OH) 3 and Ca (OH) 2 is outside the above range, desired treatment performance as a fluorine-containing compound treating agent cannot be obtained, and the CF 4 removal rate is 95% or less in a short time. It will deteriorate and will not be practical.
The fluorine-containing compound treating agent used in the present invention is obtained by drying a molded product obtained by extruding the above mixture, and a temperature range of 430 ° C. to 890 ° C., preferably 580 ° C. to 850 ° C., more preferably. It is obtained by calcining in a nitrogen flow or air flow in a temperature range of 650 ° C. to 780 ° C.

A1(OH)とCa(OH)との成形物の焼成温度は、脱水可能な温度であって且つ失活しない温度範囲であることが必要になる。A1(OH)の脱水温度は約270℃であり、Ca(OH)の脱水温度は約430℃であるから、少なくとも430℃を超えることが好ましい。温度範囲が890℃を超えると、SF除去率が低下する。
このことから、高熱焼成処理により酸化アルミニウムが結晶化してしまい、活性が劣化することによると考えられる。
The firing temperature of the molded product of A1 (OH) 3 and Ca (OH) 2 needs to be a temperature that allows dehydration and does not deactivate. Since the dehydration temperature of A1 (OH) 3 is about 270 ° C. and the dehydration temperature of Ca (OH) 2 is about 430 ° C., it is preferable to exceed at least 430 ° C. When the temperature range exceeds 890 ° C., the SF 6 removal rate decreases.
From this, it is considered that aluminum oxide is crystallized by the high-heat firing process, and the activity is deteriorated.

A1(OH)とCa(OH)との成形物は、窒素流又は空気流中で焼成する。窒素流又は空気流は一定時間で流入方向を逆転させることが好ましい。焼成により進行する脱水反応の結果、発生する水分を混合物周囲に滞留させず、速やかに蒸発・除去させるためである。高熱高湿雰囲気でA1(OH)とCa(OH)との成形物を焼成し続けると、水分の存在により酸化アルミニウムが結晶化(活性点における微細構造レベルでの結晶化を意味する)してしまい、活性が劣化すると考えられる。よって、A1(OH)や焼成により得られる酸化アルミニウムなどの周囲に不活性ガスを流すことによって、発生する水分を速やかに除去することが必要である。窒素流又は空気流の向流気流は、例えば、A1(OH)とCa(OH)との成形物をカラムに充填して、カラムの上下から窒素流又は空気流を送るなどして与えることができる。 A molded product of A1 (OH) 3 and Ca (OH) 2 is fired in a nitrogen stream or an air stream. The flow of nitrogen or air preferably reverses the inflow direction for a certain time. This is because moisture generated as a result of the dehydration reaction that proceeds by firing is not allowed to stay around the mixture, but is quickly evaporated and removed. When a molded product of A1 (OH) 3 and Ca (OH) 2 is continuously fired in a high-heat and high-humidity atmosphere, aluminum oxide is crystallized due to the presence of moisture (meaning crystallization at the fine structure level at the active site). Therefore, the activity is considered to deteriorate. Therefore, it is necessary to quickly remove the generated water by flowing an inert gas around A1 (OH) 3 or aluminum oxide obtained by baking. The countercurrent airflow of nitrogen flow or air flow is given by, for example, filling a column with a molded product of A1 (OH) 3 and Ca (OH) 2 and sending nitrogen flow or air flow from the top and bottom of the column. be able to.

焼成時間は特に限定されず、使用するA1(OH)とCa(OH)との量によっても変動するが、一般的に6〜12時間とするのが脱水効果やエネルギー消費効率の点で好ましく、8〜10時間とするのがさらに好ましい。技術的にはCa(OH)が脱水する温度(約430℃)まで昇温した後、さらに1〜2時間焼成することで充分であると考えられる。焼成温度に達するまでの昇温速度が速すぎると脱水が不充分な場合が生じ、遅すぎると経済的理由(エネルギーや時間を消費する)から好ましくない。通常は、100℃/hrの昇温速度が最適である。また、焼成時間が長すぎると、処理剤が焼成中に燃料から発生するCOを過吸着してしまい、フッ素吸着性能が低下するので好ましくない。 The firing time is not particularly limited and varies depending on the amounts of A1 (OH) 3 and Ca (OH) 2 used, but generally 6 to 12 hours is the point of dehydration effect and energy consumption efficiency. Preferably, the time is 8 to 10 hours. Technically, it is considered sufficient that the temperature is raised to a temperature at which Ca (OH) 2 dehydrates (about 430 ° C.) and then baked for an additional 1-2 hours. If the rate of temperature rise until reaching the firing temperature is too fast, dehydration may be insufficient, and if it is too slow, it is not preferred for economic reasons (consuming energy and time). Usually, a temperature increase rate of 100 ° C./hr is optimum. Further, if the firing time is too long, the treatment agent excessively adsorbs CO 2 generated from the fuel during firing, which is not preferable because the fluorine adsorption performance deteriorates.

本発明のフッ素含有化合物処理剤により処理することのできるフッ素含有化合物としては、CHF等のフッ化炭化水素、CF、C、C、SF、NFなどのパーフルオロ化合物(PFC)等を挙げることができるが、本発明では、特にSFを、有害なSOをTLV値以上に排出させないで分解することができる。SFが主な排ガス成分ででてくるプロセスとしては、W(タングステン)、又は、Poly(ポリシリコン)をエッチングする工程で排出される排ガスなどを挙げることができる。
本発明のフッ素含有化合物とSFを含む排ガスとを接触させる処理温度は、SF処理量とSOリーク量から、550〜650℃、好ましくは、600〜650℃がよい。この範囲内で温度を高くすると、SF除去率95%以上で、SF処理量は増加するが、SOリーク量も増加し、また温度を低くすると、SOリーク量は減少するが、SF処理量も減少する。また処理温度を750℃にすると、SF処理量も少なく、SOリーク量も増加してしまう。
Examples of the fluorine-containing compound that can be treated with the fluorine-containing compound treating agent of the present invention include fluorinated hydrocarbons such as CHF 3 , CF 4 , C 2 F 6 , C 3 F 8 , SF 6 , NF 3 and the like. fluoro compounds (PFC), and the like, but the present invention, particularly the SF 6, can be decomposed without drained harmful SO 2 or more TLV value. Examples of the process in which SF 6 is a main exhaust gas component include exhaust gas discharged in the process of etching W (tungsten) or poly (polysilicon).
The treatment temperature at which the fluorine-containing compound of the present invention is brought into contact with the exhaust gas containing SF 6 is 550 to 650 ° C., preferably 600 to 650 ° C., based on the SF 6 treatment amount and the SO 2 leakage amount. If the temperature is increased within this range, the SF 6 removal rate is 95% or more and the SF 6 treatment amount is increased, but the SO 2 leakage amount is also increased, and if the temperature is lowered, the SO 2 leakage amount is decreased. SF 6 throughput is also reduced. When the processing temperature is 750 ° C., the SF 6 processing amount is small and the SO 2 leakage amount is also increased.

本発明のフッ素含有化合物処理剤とSFの反応では、処理剤中の反応成分はCaOと考えられ、まず、次のように、CaOとSFが反応して、
SF+CaO→CaF+SO
CaFとSOが生成し、さらにこのSOとCaOが反応して、
CaO+SO→CaSO
となり、安定な化合物に変化すると考えられる。
処理剤が劣化したり、温度が高いと、SFの分解に全てのCaOが使われてしまい、SOはCaSOに変化せずに、そのままSOが排出されてしまうのではないかと考えられる。
In the reaction between the fluorine-containing compound treating agent of the present invention and SF 6 , the reaction component in the treating agent is considered to be CaO. First, CaO and SF 6 react as follows,
SF 6 + CaO → CaF 2 + SO 2
CaF 2 and SO 2 are produced, and this SO 2 and CaO react,
CaO + SO 2 → CaSO 4
Thus, it is considered that the compound is changed into a stable compound.
If the treatment agent deteriorates or the temperature is high, all CaO is used for the decomposition of SF 6 , and SO 2 does not change to CaSO 4 , but SO 2 is discharged as it is. It is done.

次に、本発明の排ガス処理方法に用いる装置について説明する。
図1は、本発明で用いる装置の一例を示す断面構成図である。
図1において、1aは左反応槽、1bは右反応槽、2a、2bは熱交換部、3a、3bはヒーター、4a、4bはフッ素含有化合物処理剤、5は被処理排ガス流入口、6は処理済排ガス流出口、7はSF検知器、8は吸引ファンである。この装置を用いた排ガスの処理では、反応槽は2槽直列に接続される。まず、SFを含む排ガスは、吸引ファン8による吸気により排ガス流入口5から導入されて、左反応槽1aの熱交換部2aで高温の処理済排ガスと熱交換され、フッ素含有化合物処理剤4aの充填された左反応槽1a内に導入されて、ヒーター3aにより、550℃〜650℃に昇温されて排ガス中のSFが分解処理される。左反応槽1aで処理された排ガスは、熱交換部2aの加熱側を通り、右反応槽1bの熱交換部2bの被加熱側に入り、高温の処理済排ガスと熱交換され、右反応槽1bに導入されて、ヒーター3bにより、550℃〜650℃に加熱されているフッ素含有化合物処理剤4bにより排ガス中に残留しているSFが分解されて除去される。SFが除去された排ガスは、熱交換部2bの加熱側を通り、処理済排ガス流出口6から排出される。
Next, the apparatus used for the exhaust gas treatment method of the present invention will be described.
FIG. 1 is a sectional view showing an example of an apparatus used in the present invention.
In FIG. 1, 1a is a left reaction tank, 1b is a right reaction tank, 2a and 2b are heat exchange sections, 3a and 3b are heaters, 4a and 4b are fluorine-containing compound treatment agents, 5 is an exhaust gas inlet for treatment, and 6 is A treated exhaust gas outlet, 7 is an SF 6 detector, and 8 is a suction fan. In the treatment of exhaust gas using this apparatus, two reaction tanks are connected in series. First, the exhaust gas containing SF 6 is introduced from the exhaust gas inlet 5 by the intake air by the suction fan 8 and is heat-exchanged with the high temperature treated exhaust gas in the heat exchange part 2a of the left reaction tank 1a, and the fluorine-containing compound treatment agent 4a. Is introduced into the left reaction tank 1a and heated to 550 ° C. to 650 ° C. by the heater 3a to decompose SF 6 in the exhaust gas. The exhaust gas treated in the left reaction tank 1a passes through the heating side of the heat exchange part 2a, enters the heated side of the heat exchange part 2b of the right reaction tank 1b, and is heat-exchanged with the high-temperature treated exhaust gas. The SF 6 remaining in the exhaust gas is decomposed and removed by the fluorine-containing compound treating agent 4b introduced into 1b and heated to 550 ° C. to 650 ° C. by the heater 3b. The exhaust gas from which SF 6 has been removed passes through the heating side of the heat exchange unit 2b and is discharged from the treated exhaust gas outlet 6.

そして、右反応槽1bから排出される処理済ガス中に、SF検知器7でSFを検知した場合、左反応槽1aへの被処理排ガスの導入を停止し、左反応槽1a中のフッ素含有化合物処理剤4aを新しいものに交換し、被処理排ガスの流入を右反応槽1bから左反応槽1aへと切換える。
このように、被処理排ガスの処理経路を変更することにより、反応槽内の処理剤を使い切ることができ、処理剤の有効活用を図ることができる。
Then, during the treated gas discharged from the right reaction vessel 1b, when detecting SF 6 in SF 6 detector 7, and stopping the introduction of the treated flue gas to the left the reaction vessel 1a, in the left reaction vessel 1a The fluorine-containing compound treating agent 4a is replaced with a new one, and the inflow of the exhaust gas to be treated is switched from the right reaction tank 1b to the left reaction tank 1a.
Thus, by changing the treatment path of the exhaust gas to be treated, the treatment agent in the reaction tank can be used up, and the treatment agent can be effectively used.

以下、実施例により、本発明を更に具体的に説明する。
(1) フッ素含有化合物処理剤の調製
均一に加熱できるように外部ヒーターを全周に具備する小型カラム(寸法:径150mm×高さ850mm)に、A1(OH)とCa(OH)との混合物〔A1(OH)の平均粒子径90μm、Ca(OH)の平均粒子径5μm、A1(OH)とCa(OH)との配合割合3:7〕を押出し成形して得た造粒品14Lを充填して、カラム内部に多量の水蒸気が滞留しないようにN流量:50L/minを上向流と下向流とで与えた。反応槽の温度を600℃に調整して、最初にN上向流を5〜6時間流してA1(OH)とCa(OH)との充填物層のうち上層の半分を焼成し、次にN下向流を2〜3時間流してA1(OH)とCa(OH)との充填物層のうち下層の半分を焼成した。
Hereinafter, the present invention will be described more specifically with reference to examples.
(1) Preparation of fluorine-containing compound treatment agent A1 (OH) 3 and Ca (OH) 2 were added to a small column (size: diameter 150 mm × height 850 mm) equipped with an external heater around the circumference so that it could be heated uniformly. A mixture of [average particle diameter of A1 (OH) 3 of 90 μm, average particle diameter of Ca (OH) 2 of 5 μm, blending ratio of A1 (OH) 3 and Ca (OH) 2 of 3: 7] is obtained by extrusion molding. The granulated product 14L was packed, and an N 2 flow rate of 50 L / min was given by an upward flow and a downward flow so that a large amount of water vapor did not stay inside the column. The temperature of the reaction vessel is adjusted to 600 ° C., and the upper half of the packed bed of A1 (OH) 3 and Ca (OH) 2 is first fired by flowing N 2 upward flow for 5 to 6 hours. Next, N 2 downward flow was allowed to flow for 2 to 3 hours, and the lower half of the packing layer of A1 (OH) 3 and Ca (OH) 2 was fired.

(2) SFを含む排ガスの処理
石英製処理筒に(1)で調製した処理剤を定量充填し、これをセラミックス製管状炉に装着し、所定の温度に加熱して、次の条件でSFを含む排ガスを通ガスした。
ガス流量 :65ml/min
SF濃度 :10000ppm
処理筒容量 :49ml
ガス滞留時間 :45sec
処理済温度 :650℃、600℃、550℃
(2) Treatment of exhaust gas containing SF 6 A treatment tube prepared in (1) is quantitatively filled into a quartz treatment cylinder, this is mounted in a ceramic tube furnace, heated to a predetermined temperature, and subjected to the following conditions: An exhaust gas containing SF 6 was passed.
Gas flow rate: 65 ml / min
SF 6 concentration: 10,000 ppm
Processing cylinder capacity: 49ml
Gas residence time: 45 sec
Processed temperature: 650 ° C, 600 ° C, 550 ° C

(3) 処理結果
処理結果を表1に示す。
下記表1及び表2において、SF処理量(L/L)は、SF除去率が95%になるまで低下した時点でのそれまでのフッ素含有化合物処理剤1L当たりの標準状態に換算したSF処理量(L/L)である。
(3) Processing results Table 1 shows the processing results.
In Table 1 and Table 2 below, the SF 6 throughput (L / L) was converted to the standard state per 1 L of the fluorine-containing compound treatment agent up to that point when the SF 6 removal rate decreased to 95%. SF 6 throughput (L / L).

同様にして、SF濃度が4320ppmを処理した結果を表2に示す。


なお、比較のため、処理剤温度750℃で、ガス流量100ml/min、ガス滞留時間29sec、SF濃度1830ppmで処理した場合、SF除去率95%に低下するまでに176時間、SF処理量は39.4(L/L)であり、SOリークは510ppmであった。また、排出SOが2ppmを超えるまでの処理時間は56hrであった。
Similarly, the results of processing the SF 6 concentration of 4320 ppm are shown in Table 2.


For comparison, when processing is performed at a processing agent temperature of 750 ° C., a gas flow rate of 100 ml / min, a gas residence time of 29 sec, and an SF 6 concentration of 1830 ppm, the SF 6 treatment is performed for 176 hours until the SF 6 removal rate decreases to 95%. The amount was 39.4 (L / L) and the SO 2 leak was 510 ppm. Moreover, the processing time until exhausted SO2 exceeded 2 ppm was 56 hr.

(4) 処理結果の分析
SFの除去率95%をSF処理の破過、及びSOの許容値をTLV値である2ppmとすると、比較例の750℃処理時では、SF処理の破過とSOの許容値以上の排出のタイミングが、大きくずれていた。しかし、処理温度を550〜650℃にすると、SF濃度が10000ppm、4320ppmいずれの場合もSF除去率が95%に至る時間に対して5%以内の時間差でSOが2ppmを超えており、もしくはSF除去率が95%に達するよりもSO排出濃度が2ppmに達する方が遅くなっている。また、SF、SOの処理量を多く、SOの破過に至るまでの時間を長くするために、600〜650℃で処理することがより望ましい。本実施例ではSFの除去率95%を処理剤の破過としたが、破過値を90%とする場合も、同じ傾向である。
(4) processing breakthrough 95% rate removal of analysis SF 6 results SF 6 treatment, and when the allowable value of SO 2 to 2ppm a TLV value, at the time of 750 ° C. processing of the comparative example, the SF 6 treatment The timing of breakthrough and discharge exceeding the allowable value of SO 2 deviated greatly. However, when the treatment temperature to 550 to 650 ° C., SF 6 concentration 10000 ppm, SO 2 in the time difference within 5% with respect to 4320ppm time to reach the 95% SF 6 removal rate in either case is above the 2ppm Alternatively, the SO 2 emission concentration reaches 2 ppm later than the SF 6 removal rate reaches 95%. Further, in order to increase the processing amount of SF 6 and SO 2 and to increase the time until SO 2 breakthrough, it is more preferable to perform the processing at 600 to 650 ° C. In this example, the removal rate of SF 6 was 95%, but the treatment agent breakthrough, but the same tendency is observed when the breakthrough value is 90%.

(5) SF処理済処理剤の分析結果
(a) XRD分析
結晶性化合物の同定を行った。結果を、650℃は図2に、600℃は図3に、550℃は図4に示す。
(b) XRF分析
成分含有量を分析した。FとSの含有量を表2に示す。SFのうちFやSが混合体に反応固定されていた。

上記の結果から、処理後の混合体にCaFやCaSOの結晶性化合物が存在しており、FとSの含有量から、SFは混合体に反応固定されていることがわかった。
(5) Analysis result of SF 6- treated treatment agent (a) XRD analysis The crystalline compound was identified. The results are shown in FIG. 2 for 650 ° C., FIG. 3 for 600 ° C. and FIG. 4 for 550 ° C.
(B) XRF analysis The component content was analyzed. Table 2 shows the contents of F and S. Among SF 6 , F and S were reaction-immobilized in the mixture.

From the above results, it was found that crystalline compounds such as CaF 2 and CaSO 4 were present in the mixture after the treatment, and SF 6 was reactively immobilized on the mixture from the contents of F and S.

本発明の排ガス処理方法に用いる装置の一例を示す断面構成図。The cross-sectional block diagram which shows an example of the apparatus used for the waste gas processing method of this invention. 処理済温度650℃の処理済処理剤のXRD分析データ。XRD analysis data of the treated agent having a treated temperature of 650 ° C. 処理済温度600℃の処理済処理剤のXRD分析データ。XRD analysis data of the treated agent at a treated temperature of 600 ° C. 処理済温度550℃の処理済処理剤のXRD分析データ。XRD analysis data of the treated agent having a treated temperature of 550 ° C.

1a:左反応槽、1b:右反応槽、2a、2b:熱交換部、3a、3b:ヒーター、4a、4b:フッ素含有化合物処理剤、5:被処理排ガス流入口、6:処理済排ガス流出口、7:SF検知器、8:吸引ファン DESCRIPTION OF SYMBOLS 1a: Left reaction tank, 1b: Right reaction tank, 2a, 2b: Heat exchange part, 3a, 3b: Heater, 4a, 4b: Fluorine containing compound processing agent, 5: To-be-treated exhaust gas inlet, 6: Treated exhaust gas stream Outlet, 7: SF 6 detector, 8: Suction fan

Claims (4)

SFを含む排ガスの処理方法において、該排ガスを、平均粒子径(メディアン径)55μm以上160μm以下のAl(OH)とCa(OH)とのモル比が3:7〜5:5である混合物を成形して乾燥し、430℃よりも高く890℃以下の温度範囲で、窒素流又は空気流中で焼成して得られるフッ素含有化合物処理剤と、550〜650℃温度で接触させることを特徴とするSFを含む排ガス処理方法。 In the method for treating exhaust gas containing SF 6 , the exhaust gas has an average particle diameter (median diameter) of 55 μm to 160 μm in a molar ratio of Al (OH) 3 and Ca (OH) 2 of 3: 7 to 5: 5. Molding and drying a mixture, and contacting with a fluorine-containing compound treating agent obtained by firing in a nitrogen flow or an air flow in a temperature range higher than 430 ° C. and not higher than 890 ° C. at a temperature of 550 to 650 ° C. An exhaust gas treatment method containing SF 6 characterized by the above. 前記接触温度は、600〜650℃とすることを特徴とする請求項1記載のSFを含む排ガス処理方法。 The contact temperature is, the exhaust gas processing method comprising the SF 6 according to claim 1, characterized in that a 600 to 650 ° C.. 前記フッ素含有化合物処理剤は、SF除去率が95%以下に低下時には交換することを特徴とする請求項1又は2記載のSFを含む排ガス処理方法。 The exhaust gas treatment method containing SF 6 according to claim 1 or 2, wherein the fluorine-containing compound treating agent is replaced when the SF 6 removal rate is reduced to 95% or less. 請求項1、2又は3記載のSFを含む排ガス処理方法は、SOの排出濃度を許容濃度以下に抑えつつSFを処理することを特徴とするSFを含む排ガス処理方法。 Exhaust gas treatment method comprising SF 6 according to claim 1, wherein the exhaust gas treatment method comprising SF 6, which comprises treating the SF 6 while kept below the allowable concentration emission concentration SO 2.
JP2009006538A 2009-01-15 2009-01-15 Method for treating exhaust gas containing SF6 Active JP5016618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009006538A JP5016618B2 (en) 2009-01-15 2009-01-15 Method for treating exhaust gas containing SF6

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009006538A JP5016618B2 (en) 2009-01-15 2009-01-15 Method for treating exhaust gas containing SF6

Publications (2)

Publication Number Publication Date
JP2010162475A true JP2010162475A (en) 2010-07-29
JP5016618B2 JP5016618B2 (en) 2012-09-05

Family

ID=42579112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009006538A Active JP5016618B2 (en) 2009-01-15 2009-01-15 Method for treating exhaust gas containing SF6

Country Status (1)

Country Link
JP (1) JP5016618B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001219031A (en) * 2000-02-08 2001-08-14 Air Liquide Japan Ltd Method and device for decomposing perfluorinated compound
JP2004330058A (en) * 2003-05-07 2004-11-25 Denki Kagaku Kogyo Kk Chlorofluorocarbon decomposition method
JP2005095730A (en) * 2003-09-22 2005-04-14 Kyocera Corp Decomposition agent and decomposition method for fluorine compound
JP2005262128A (en) * 2004-03-19 2005-09-29 Ebara Corp Treatment method of gas including fluorine containing compound and apparatus
JP2005270790A (en) * 2004-03-24 2005-10-06 Toda Kogyo Corp Adsorbent adsorbing fluorine and/or boron
JP2005279444A (en) * 2004-03-29 2005-10-13 Kyocera Corp Manufacturing method of hydroxide particle
WO2009008454A1 (en) * 2007-07-10 2009-01-15 Ebara Corporation Fluorine-fixing agent, pfc-decomposing/treating agent, and methods for preparation of the fluorine-fixing agent and the pfc-decomposing/treating agent
JP2009034662A (en) * 2007-07-10 2009-02-19 Ebara Corp Fluorine fixing agent, perfluorocarbon decomposition processing agent, and method for preparing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001219031A (en) * 2000-02-08 2001-08-14 Air Liquide Japan Ltd Method and device for decomposing perfluorinated compound
JP2004330058A (en) * 2003-05-07 2004-11-25 Denki Kagaku Kogyo Kk Chlorofluorocarbon decomposition method
JP2005095730A (en) * 2003-09-22 2005-04-14 Kyocera Corp Decomposition agent and decomposition method for fluorine compound
JP2005262128A (en) * 2004-03-19 2005-09-29 Ebara Corp Treatment method of gas including fluorine containing compound and apparatus
JP2005270790A (en) * 2004-03-24 2005-10-06 Toda Kogyo Corp Adsorbent adsorbing fluorine and/or boron
JP2005279444A (en) * 2004-03-29 2005-10-13 Kyocera Corp Manufacturing method of hydroxide particle
WO2009008454A1 (en) * 2007-07-10 2009-01-15 Ebara Corporation Fluorine-fixing agent, pfc-decomposing/treating agent, and methods for preparation of the fluorine-fixing agent and the pfc-decomposing/treating agent
JP2009034662A (en) * 2007-07-10 2009-02-19 Ebara Corp Fluorine fixing agent, perfluorocarbon decomposition processing agent, and method for preparing the same

Also Published As

Publication number Publication date
JP5016618B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP5284873B2 (en) Gas processing apparatus and semiconductor manufacturing apparatus
JP4488545B2 (en) Treatment method, treatment agent and treatment apparatus for exhaust gas containing halogen fluoride
JP5020136B2 (en) Fluorine fixing agent, PFC decomposition treatment agent, and preparation method thereof
CN1195573C (en) Reactant and method for decomposition of fluorine compounds, and use thereof
JP5016616B2 (en) Method for treating exhaust gas containing fluorine compound and reaction tank for treatment
JP5346482B2 (en) Fluorine recovery method and calcium fluoride purification method
JP2004351364A (en) Method, agent and apparatus for treating exhaust gas containing halogenated inorganic gas containing chlorine trifluoride
KR100808618B1 (en) Process and apparatus for treating gas containing fluorine-containing compounds and co
JP5016618B2 (en) Method for treating exhaust gas containing SF6
JP5350809B2 (en) Exhaust gas treatment equipment with pretreatment tank
KR100939307B1 (en) Method and apparatus for treating exhaust gases containing fluorine-containing compounds
JP4699919B2 (en) Exhaust gas treatment method and treatment apparatus
JP5066021B2 (en) PFC processing apparatus and PFC-containing gas processing method
JPWO2010101073A1 (en) Reaction apparatus and reaction method
JP5297208B2 (en) Fluorine-containing compound treating agent and exhaust gas treating method
JP5476043B2 (en) Method and apparatus for treating exhaust gas containing fluorine compound
JP5132489B2 (en) Fluoride gas decomposition treatment method, decomposition treatment agent, and decomposition treatment apparatus
JP5284773B2 (en) Exhaust gas treatment method for increasing treatment temperature, operation method of exhaust gas treatment device, and exhaust gas treatment device
JP4831924B2 (en) HF-containing gas dry processing apparatus and processing method
JP4459648B2 (en) Method and apparatus for treating gas containing fluorine-containing compound
JP4698201B2 (en) Fluorine-containing gas decomposition treatment apparatus and fluorine compound recovery method using the same
JP2004269946A (en) Halogen corrosion resistant member, and perfluoro compound decomposition treatment apparatus
TWI454305B (en) Fluorine fixing agent and pfc decomposition treatment agent and preparing methods for the same, pfc processing apparatus and processing method for pfc-containing gas
JP5170040B2 (en) HF-containing gas dry processing apparatus and processing method
JP2008279330A (en) Treating method and treatment apparatus of exhaust gas containing perfruoride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20120116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120521

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5016618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250