JP5170040B2 - HF-containing gas dry processing apparatus and processing method - Google Patents

HF-containing gas dry processing apparatus and processing method Download PDF

Info

Publication number
JP5170040B2
JP5170040B2 JP2009201211A JP2009201211A JP5170040B2 JP 5170040 B2 JP5170040 B2 JP 5170040B2 JP 2009201211 A JP2009201211 A JP 2009201211A JP 2009201211 A JP2009201211 A JP 2009201211A JP 5170040 B2 JP5170040 B2 JP 5170040B2
Authority
JP
Japan
Prior art keywords
gas
sox
exhaust gas
packed tower
pfc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009201211A
Other languages
Japanese (ja)
Other versions
JP2009285656A (en
Inventor
周一 菅野
慎 玉田
和寿 東山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009201211A priority Critical patent/JP5170040B2/en
Publication of JP2009285656A publication Critical patent/JP2009285656A/en
Application granted granted Critical
Publication of JP5170040B2 publication Critical patent/JP5170040B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Landscapes

  • Treating Waste Gases (AREA)

Description

本発明は、HF含有排ガス中からHFを除去する乾式処理装置及び処理方法に関する。   The present invention relates to a dry processing apparatus and a processing method for removing HF from exhaust gas containing HF.

半導体や液晶製造工場では、エッチング剤やクリーニング剤としてPFC(Per fluoro compounds)が使用されている。PFCはCF4,C26,C38,SF6,NF3などの総称であり、高い温暖化係数を持つ温室効果ガスであることから、規制対象ガスになっている。PFC放出を防止するために触媒法,燃焼法,プラズマ法等の分解処理法が検討されている。PFCを分解するとHF,SOx等のガスが生成する。このHF及びSOxは毒性ガスであり、また腐食性ガスである。このため、PFC分解処理では、これらの分解生成ガスの無害処理も必要になる。 In semiconductor and liquid crystal manufacturing factories, PFC (Perfluoro compounds) is used as an etching agent and a cleaning agent. PFC is a generic term for CF 4 , C 2 F 6 , C 3 F 8 , SF 6 , NF 3, etc., and is a greenhouse gas with a high global warming potential and is therefore a regulated gas. In order to prevent PFC emission, decomposition methods such as a catalytic method, a combustion method, and a plasma method have been studied. When PFC is decomposed, gases such as HF and SOx are generated. HF and SOx are toxic gases and corrosive gases. For this reason, the PFC decomposition treatment also requires harmless treatment of these decomposition product gases.

HFの無害化処理ではないが、ハロ酸である塩化水素の除去に関しては、水酸化ナトリウム水溶液で洗浄、或いは消石灰や炭酸カルシウムとの反応を利用して除去することが知られている(例えば特許文献1,2参照)。   Although it is not HF detoxification treatment, it is known that hydrogen chloride, which is a halo acid, is removed by washing with an aqueous sodium hydroxide solution or using a reaction with slaked lime or calcium carbonate (for example, patents). References 1 and 2).

特開平10−43546号公報(特許請求の範囲,従来の技術)Japanese Patent Application Laid-Open No. 10-43546 (Claims, Prior Art) 特開平7−299327号公報(要約,特許請求の範囲)Japanese Patent Application Laid-Open No. 7-299327 (abstract, claims)

塩化水素等のガスを、水やアルカリ水溶液を噴霧したスクラバで吸収除去する湿式法は、大量の酸性廃液が発生し、この処理が必要になる。   The wet method in which a gas such as hydrogen chloride is absorbed and removed by a scrubber sprayed with water or an aqueous alkaline solution generates a large amount of acidic waste liquid, which requires this treatment.

一方、消石灰や炭酸カルシウム等を使用して乾式で処理する方法は、湿式法に比べて反応率が低く、装置が大型化する。   On the other hand, the dry process using slaked lime, calcium carbonate or the like has a lower reaction rate than the wet process, and the apparatus becomes larger.

本発明の目的は、乾式法により、HF含有排ガス或いはHFとSOxを含む排ガスからHFを除去するのに適した処理装置及び処理方法を提供することにある。   An object of the present invention is to provide a treatment apparatus and a treatment method suitable for removing HF from exhaust gas containing HF or exhaust gas containing HF and SOx by a dry method.

本発明者らは、PFCの分解によって生成するガスにおいて、HFを含むガスからHFを除去する方法として、固体の水酸化カルシウム(以下、Ca(OH)2と記載する)を固定床で用いる方法を検討した。その結果、PFC分解ガス組成条件で約4.0%のHFを所定温度のCa(OH)2に接触させると高い利用率が得られることがわかった。PFC分解ガス組成としては、約4.0%のHFのほかに、約1.0%のCO2、5〜15%のH2O、3〜6%のO2が含まれ、残りはN2である。しかし、試験後のCa化合物は、利用率の上昇とともに強度が低下した。このため、固定床で使用する場合、排ガスの導入方法やCa(OH)2充填塔構造によっては、強度低下により粉化したカルシウム化合物が配管を閉塞する恐れがあることが判った。また、HFとともにSOxが共存すると、SOxとCa(OH)2との反応により表面にCaSO4が生成し、粒子内部のCa(OH)2がHFとの反応に有効に使われないことが判った。 The present inventors use solid calcium hydroxide (hereinafter referred to as Ca (OH) 2 ) in a fixed bed as a method for removing HF from a gas containing HF in a gas generated by decomposition of PFC. It was investigated. As a result, it was found that a high utilization rate can be obtained when about 4.0% of HF is brought into contact with Ca (OH) 2 at a predetermined temperature under the PFC decomposition gas composition conditions. The PFC cracked gas composition contains about 1.0% CO 2 , 5-15% H 2 O, 3-6% O 2 in addition to about 4.0% HF, and the rest is N 2 . However, the strength of the Ca compound after the test decreased as the utilization rate increased. For this reason, it has been found that when used in a fixed bed, the calcium compound pulverized due to the strength reduction may block the pipe depending on the method of introducing exhaust gas and the structure of the Ca (OH) 2 packed tower. Further, when the SOx with HF coexist, CaSO 4 is produced on the surface by reaction with SOx and Ca (OH) 2, revealed that the Ca (OH) 2 is inside the particles not effectively used for the reaction with HF It was.

本発明の処理装置によれば、粉化したカルシウム化合物による閉塞なしにHFを除去することが可能になる。本発明は、HFとともにSOxが共存しても、粒子内部のCa(OH)2をほぼ100%使用できる方法を提案する。 According to the treatment apparatus of the present invention, it is possible to remove HF without clogging with the powdered calcium compound. The present invention proposes a method that can use almost 100% of Ca (OH) 2 inside the particles even if SOx coexists with HF.

本発明は、ガスを流通させるCa(OH)2充填塔を有し、この充填塔内にメッシュ板を設けてその上にCa(OH)2層を保持し、充填塔の下部にはHF含有ガス導入口を設け、上部にはHF除去後のガスを排出する排出口を設けたHF処理装置を提案する。充填塔の下方にはメッシュ板から落下した廃カルシウム化合物を回収するためのタンクを設け、また排ガスの出口には充填塔内のガスを吸引排気するブロワまたはエゼクタを備えることが望ましい。 The present invention has a Ca (OH) 2 packed tower through which gas is circulated, a mesh plate is provided in the packed tower, and a Ca (OH) 2 layer is held thereon, and the lower part of the packed tower contains HF. An HF processing apparatus is proposed in which a gas inlet is provided and an exhaust port for discharging the gas after HF removal is provided at the top. It is desirable to provide a tank for recovering the waste calcium compound dropped from the mesh plate below the packed tower, and a blower or ejector for sucking and exhausting the gas in the packed tower at the exhaust gas outlet.

HFを含むガスが放出されるのは、例えば半導体工場,液晶工場,ごみ焼却炉などである。したがって、これらの工場又は炉の排ガスラインに本発明のHF処理装置を備えることが望ましい。   Gases containing HF are released, for example, in semiconductor factories, liquid crystal factories, waste incinerators, and the like. Therefore, it is desirable to provide the HF treatment apparatus of the present invention in the exhaust gas line of these factories or furnaces.

Ca(OH)2充填塔の前段にHF含有排ガスを所定温度まで低下させる熱交換器を具備することで装置を小型化できることが判った。 It has been found that the apparatus can be miniaturized by providing a heat exchanger for lowering the HF-containing exhaust gas to a predetermined temperature in the front stage of the Ca (OH) 2 packed tower.

Ca(OH)2充填塔に充填されたCa(OH)2は、HFとの反応及びSOxとの反応によって次第にその機能が低下するので交換が必要になる。使用済みのCa(OH)2交換時にHF除去装置の運転を停止させないために、複数個の充填塔を備え、切り替えられるようにしておくことが望ましい。 Ca (OH) 2 is filled in the packed column was Ca (OH) 2 is gradually its function by reaction with a reactive and SOx of HF is required to be replaced because reduced. In order not to stop the operation of the HF removing device when replacing the used Ca (OH) 2, it is desirable to provide a plurality of packed towers so that they can be switched.

Ca(OH)2層を通過した排ガスを吸引排気するブロワまたはエゼクタの前段に、排ガス中に同伴したCaF2粉を捕集するメッシュ板を具備することで、ブロワ,エゼクタの故障を少なくすることができる。 Reduce blower and ejector failures by providing a mesh plate that collects CaF 2 powder entrained in exhaust gas in front of the blower or ejector that sucks and exhausts exhaust gas that has passed through the Ca (OH) 2 layer. Can do.

また、触媒法や燃焼法によるPFC分解では排ガス中に水蒸気成分が含まれるため、Ca(OH)2充填塔を通過したガス中の凝縮水を保管する凝縮水貯層を設けることが望ましい。例えば触媒法によるPFC分解では、反応剤としてH2Oが使用される。この方法において、分解反応に使用されなかったH2Oは分解ガス中に残り、ガス温度が低下した時点で凝縮する。この凝縮水を貯める槽を設けることで二次廃棄物を最小限にすることができる。なお、PFC分解生成ガスをH2Oが含まれたままでCa(OH)2充填塔に通すことにより、Ca(OH)2のCaOへの形態変化を抑制できるというメリットもある。 Further, in the PFC decomposition by the catalytic method or the combustion method, since a water vapor component is contained in the exhaust gas, it is desirable to provide a condensed water reservoir for storing condensed water in the gas that has passed through the Ca (OH) 2 packed tower. For example, in the PFC decomposition by the catalytic method, H 2 O is used as a reactant. In this method, H 2 O that has not been used for the decomposition reaction remains in the decomposition gas and condenses when the gas temperature decreases. By providing a tank for storing the condensed water, secondary waste can be minimized. In addition, there is also an advantage that a change in the form of Ca (OH) 2 to CaO can be suppressed by passing the PFC decomposition product gas through a Ca (OH) 2 packed tower while containing H 2 O.

使用するCa(OH)2の形状としては、通常の触媒と同じように種々の形状、例えば粒状,ペレット状ハニカム状等に成型して使用することができるが、顆粒状が望ましい。市販されている顆粒状Ca(OH)2は広範囲な粒形分布を有するため、圧損の観点から微細なCa(OH)2は予め除いておくのがよい。0.5mm以上の大きさの顆粒Ca(OH)2を用いることが望ましい。Ca(OH)2の形状因子としては、平均細孔直径として500Å以上が好ましい。特に500Å以上1500Å以下が望ましい。1500Å以上になると、強度が小さくなり、Ca(OH)2を積層した際の荷重で使用中に粉化し、系内圧損が大きくなる。比表面積は20m2/g以上あることが好ましい。10m2/g程度だと、Ca(OH)2粒内部まで使用されないおそれがある。 As the shape of Ca (OH) 2 to be used, it can be used by molding into various shapes, for example, a granular shape, a pellet-like honeycomb shape, and the like, as in a normal catalyst, but a granular shape is desirable. Since commercially available granular Ca (OH) 2 has a wide range of particle shape distribution, fine Ca (OH) 2 is preferably removed in advance from the viewpoint of pressure loss. It is desirable to use granules Ca (OH) 2 having a size of 0.5 mm or more. The shape factor of Ca (OH) 2 is preferably 500 mm or more as the average pore diameter. In particular, 500 to 1500 mm is desirable. If it is 1500 liters or more, the strength is decreased, and the powder is pulverized during use with the load when the Ca (OH) 2 is laminated, and the internal pressure loss increases. The specific surface area is preferably 20 m 2 / g or more. If it is about 10 m 2 / g, there is a possibility that the inside of Ca (OH) 2 grains will not be used.

本発明にて対象となるPFCには、炭素,水素,酸素,硫黄或いは窒素とフッ素との化合物などがあり、具体的には炭素とフッ素からなる化合物,炭素と水素とフッ素からなる化合物,炭素とフッ素と水素と酸素からなる化合物,炭素とフッ素と酸素からなる化合物,硫黄とフッ素からなる化合物,硫黄とフッ素と酸素からなる化合物,窒素とフッ素からなる化合物,窒素とフッ素と酸素からなる化合物,窒素とフッ素と酸素と水素からなる化合物などがある。化合物の一例はCF4,CHF3,CH22,CH3F,C26,C2HF5,C2HF5,C224,C233,C242,C25F,C38,CH3OCF2CF3,C48,C58,SF6,SO22,NF3等である。半導体・液晶製造装置からの排ガスには上記のPFC以外にも、Cl2,HCl,HOCl等の塩素化合物、HBr,Br2等の臭素化合物、及びHI,I2等のヨウ素化合物が含まれることがある。これらのガスが、N2中,Air中,N2とO2気流中或いはAr中などに含まれる。 The PFC targeted in the present invention includes carbon, hydrogen, oxygen, sulfur, or a compound of nitrogen and fluorine. Specifically, a compound of carbon and fluorine, a compound of carbon, hydrogen and fluorine, carbon A compound composed of carbon, fluorine and oxygen, a compound composed of carbon, fluorine and oxygen, a compound composed of sulfur and fluorine, a compound composed of sulfur, fluorine and oxygen, a compound composed of nitrogen and fluorine, a compound composed of nitrogen, fluorine and oxygen , Compounds composed of nitrogen, fluorine, oxygen and hydrogen. Examples of compounds are CF 4 , CHF 3 , CH 2 F 2 , CH 3 F, C 2 F 6 , C 2 HF 5 , C 2 HF 5 , C 2 H 2 F 4 , C 2 H 3 F 3 , C 2. H 4 F 2 , C 2 H 5 F, C 3 F 8 , CH 3 OCF 2 CF 3 , C 4 F 8 , C 5 F 8 , SF 6 , SO 2 F 2 , NF 3 and the like. Exhaust gas from semiconductor / liquid crystal manufacturing equipment contains chlorine compounds such as Cl 2 , HCl and HOCl, bromine compounds such as HBr and Br 2 , and iodine compounds such as HI and I 2 in addition to the above PFC. There is. These gases are contained in N 2 , Air, N 2 and O 2 , or Ar.

PFC分解ガス中には、HFと同時に、SF6の分解生成物であるSOx(SO2,SO3など)が含まれる場合がある。分解ガス中の酸性ガスがHFのみであれば、100℃以上460℃以下で運転すれば、Ca(OH)2がCaOに形態変化を起こさないようにすることができる。しかし、HFとともにSOxが含まれると、Ca(OH)2表面にCaSO4が生成し、Ca(OH)2粒内部の利用が抑制されることが判明した。Ca(OH)2の利用率が低いと、交換頻度が多くなり、また充填するCa(OH)2量が多くなるため処理装置が大型化する。 The PFC decomposition gas may contain SOx (SO 2 , SO 3, etc.) that is a decomposition product of SF 6 at the same time as HF. When the acidic gas in the cracked gas is only HF, it is possible to prevent Ca (OH) 2 from undergoing a shape change in CaO by operating at 100 ° C. or higher and 460 ° C. or lower. However, it includes SOx with HF, Ca (OH) 2 the surface of CaSO 4 generated, Ca (OH) 2 grains inside the utilization was found to be inhibited. When the utilization rate of Ca (OH) 2 is low, the replacement frequency increases, and the amount of Ca (OH) 2 to be filled increases, so that the processing apparatus becomes large.

この対策としては、予めSOxを除去した後、HFをCa(OH)2充填塔で除去することが望ましく、これによりCa(OH)2を90%以上利用できることが判った。SOxを除去する方法としては、微細なCa(OH)2を固定床,流動床等で使用して除去率を上げる方法、CaOやCaCO3による乾式除去法,電気集塵法など一般的に知られている方法を用いればよい。SOxは排ガス中から完全に除去してしまうことが望ましいが、一部残存することが予想される。この場合には、Ca(OH)2の使用温度を100℃以上310℃以下にすることが望ましく、これによりCa(OH)2利用率を90%以上にできることが判った。310℃未満の温度であるとCaSO4が表面に析出し、Ca利用率が低下する。310℃未満の温度でCa(OH)2利用率が高まるのは、Ca(OH)2とSOxとの反応性が低下し、HFが優先的に反応するためと考えられる。 As a countermeasure, it has been found that after SOx is removed in advance, HF is preferably removed by a Ca (OH) 2 packed tower, whereby 90% or more of Ca (OH) 2 can be used. Methods for removing SOx are generally known, such as using fine Ca (OH) 2 in a fixed bed, fluidized bed, etc. to increase the removal rate, dry removal using CaO or CaCO 3 , and electrostatic precipitating. What is necessary is just to use the method. Although it is desirable to completely remove SOx from the exhaust gas, it is expected that part of it will remain. In this case, it is desirable to Ca a (OH) 2 in the working temperature to 100 ° C. or higher 310 ° C. or less, it has been found that thereby the Ca (OH) 2 utilization to 90% or more. When the temperature is lower than 310 ° C., CaSO 4 precipitates on the surface, and the Ca utilization rate decreases. The reason why the utilization rate of Ca (OH) 2 is increased at a temperature of less than 310 ° C. is considered to be because the reactivity of Ca (OH) 2 and SOx decreases and HF reacts preferentially.

また、SOx除去工程では、処理するHF濃度に対し、1%程度のSOx濃度まで低減することが望ましい。例えば、4%HF濃度のガスを処理する場合は、400ppm以下のSOx濃度にまで下げることで、Ca(OH)2をほぼ100%利用することができるようになる。SOx除去とHF除去は同一反応塔内で行ってもよく、或いは分割して2塔式で行ってもよい。 In the SOx removal step, it is desirable to reduce the SOx concentration to about 1% with respect to the HF concentration to be processed. For example, when processing a gas having a 4% HF concentration, Ca (OH) 2 can be used almost 100% by reducing the SOx concentration to 400 ppm or less. The SOx removal and the HF removal may be performed in the same reaction tower, or may be performed in a two-column system by dividing.

本発明によれば、HFを乾式で除去することができる。乾式であるため水を使用することがなく、酸性排水が発生しない。   According to the present invention, HF can be removed by a dry method. Since it is a dry type, water is not used and acidic drainage is not generated.

PFCガスの処理システムフローを示す図である。It is a figure which shows the processing system flow of PFC gas. 実施例で用いた基礎試験装置の概略図である。It is the schematic of the basic test apparatus used in the Example. 本発明の一実施例によるHF処理装置の概略図である。It is the schematic of the HF processing apparatus by one Example of this invention. Ca(OH)2の温度が性能に及ぼす影響を示した特性図である。It is the characteristic view which showed the influence which the temperature of Ca (OH) 2 has on performance. 空間速度がCa(OH)2の性能に及ぼす影響を示した特性図である。It is the characteristic figure which showed the influence which the space velocity has on the performance of Ca (OH) 2 . 試料1〜3の性能を比較した図である。It is the figure which compared the performance of samples 1-3. Ca(OH)2の使用前後の特性比較図である。It is a characteristic comparison figure before and behind using Ca (OH) 2 . Ca(OH)2充填塔を切り替える方法の説明図である。It is explanatory drawing of the method of switching a Ca (OH) 2 packed tower.

本発明のHF処理装置を含むPFC処理のシステムフロー図を図1に示す。半導体は多くの製造ラインを持っており、そのライン毎の排ガス組成は異なる。今回対象とする排ガスラインはHF及びSOxを含む排ガスラインである。   A system flow diagram of PFC processing including the HF processing apparatus of the present invention is shown in FIG. Semiconductors have many production lines, and the exhaust gas composition differs from line to line. The target exhaust gas line is an exhaust gas line containing HF and SOx.

半導体や液晶製造ラインからの排ガスにおいて、PFCを含む排ガスはPFC分解装置10にて分解される。製造ラインからの排ガスは全てPFCを含んでいるわけではなく、HFとSOxの一方を含むもの、2つを同時に含むもの、両方とも含まないものがある。これらのうち、HF,SOxを含む排ガスを赤外吸収分析法などを利用して選択し、PFC分解装置10で処理された排ガスに合流させて、SOx除去工程20にて、例えばCaO乾式脱硫と電気集塵の組み合わせでSOxを除去する。SOx除去後の排ガスはHF除去工程30にてCa(OH)2を用いた乾式法にてHFを除去する。この後の排ガスは排気する。このシステムの特徴は排ガス処理に水やアルカリ水溶液を使用しないことである。 In the exhaust gas from the semiconductor or liquid crystal production line, the exhaust gas containing PFC is decomposed by the PFC decomposition apparatus 10. All exhaust gases from the production line do not contain PFC, but some contain one of HF and SOx, some contain two at the same time, and some do not contain both. Of these, exhaust gas containing HF and SOx is selected using infrared absorption analysis, etc., and merged with the exhaust gas treated by the PFC decomposition apparatus 10, and in the SOx removal step 20, for example, CaO dry desulfurization and Remove SOx with a combination of electrostatic precipitator. The exhaust gas after the removal of SOx removes HF by a dry method using Ca (OH) 2 in the HF removal step 30. The exhaust gas after this is exhausted. The feature of this system is that water or alkaline aqueous solution is not used for exhaust gas treatment.

実施例1
本実施例では、PFCの一種であるCF4を分解した後の高濃度HFが、Ca(OH)2により除去可能かどうかを調べた。
Example 1
In this example, it was examined whether high concentration HF after decomposing CF 4 which is a kind of PFC can be removed by Ca (OH) 2 .

試験に用いた基礎試験装置の系統図を図2に示す。反応管1内にPFCを分解するためNiとAlよりなるPFC分解触媒2を充填し、その後段に市販のCa(OH)2((株)ズードケミー社製のCa(OH)2UCL−3)よりなるCa(OH)2層3を設けた。反応管内のPFC分解触媒2の上方にガラスウール4を敷き詰め、PFC分解触媒とCa(OH)2層との間及びCa(OH)2層の下部にアルミナウール5の層を設けた。Ca(OH)2層を通過した排ガスは、ガス採取口6から定期的にテドラーバッグに採取し、HF濃度を測定した。HF濃度を測定する時以外は吸収水を通過させ排気した。反応管1は外側から電気炉7で加熱し、NiとAlよりなる触媒(以下、Ni/Al触媒と記載する)及びCa(OH)2を所定温度に加熱した。 A system diagram of the basic test equipment used for the test is shown in FIG. In order to decompose PFC in the reaction tube 1, a PFC decomposition catalyst 2 made of Ni and Al is filled, and a commercially available Ca (OH) 2 (Ca (OH) 2 UCL-3 manufactured by Zude Chemie Co., Ltd.) is used in the subsequent stage. A Ca (OH) 2 layer 3 made of this material was provided. Glass wool 4 was spread over the PFC decomposition catalyst 2 in the reaction tube, and an alumina wool 5 layer was provided between the PFC decomposition catalyst and the Ca (OH) 2 layer and below the Ca (OH) 2 layer. The exhaust gas that passed through the Ca (OH) 2 layer was periodically collected in a Tedlar bag from the gas sampling port 6 and the HF concentration was measured. Except when measuring the HF concentration, the absorption water was passed through and exhausted. The reaction tube 1 was heated from the outside with an electric furnace 7, and a catalyst composed of Ni and Al (hereinafter referred to as Ni / Al catalyst) and Ca (OH) 2 were heated to a predetermined temperature.

反応ガスはCF4,Air,N2及びH2Oからなる。ボンベ8からのCF4に窒素を添加してCF4濃度約1.4%のガスとし、このガス1290ml/minに空気を115ml/min添加した。水蒸気はイオン交換水を0.30ml/minで反応管に導入してNi/Al触媒上部で気化させて供給した。この反応ガスをNi/Al触媒と接触させた。触媒の温度は700〜800℃、空間速度はCF4+N2ベースの流量で1000h-1とした(空間速度(h-1)=反応ガス流量(ml/h)/触媒量(ml))。なお、触媒の温度は反応管内に挿入した熱電対により計測した。 The reaction gas is composed of CF 4 , Air, N 2 and H 2 O. Nitrogen was added to CF 4 from the cylinder 8 to obtain a gas having a CF 4 concentration of about 1.4%, and air was added to 1290 ml / min of 115 ml / min. Water vapor was supplied by introducing ion-exchanged water into the reaction tube at 0.30 ml / min and evaporating it at the top of the Ni / Al catalyst. This reaction gas was brought into contact with a Ni / Al catalyst. Temperature of the catalyst is 700 to 800 ° C., space velocity was 1000h -1 in CF 4 + N 2 based flow (space velocity (h -1) = flow rate of the reaction gas (ml / h) / amount of catalyst (ml)). The temperature of the catalyst was measured with a thermocouple inserted in the reaction tube.

CF4を1mol分解するとHFは4mol生成し、Ni/Al触媒通過後のガス中にはHFが約4%濃度で存在することになる。CF4の分解開始とともに、定期的に出口ガスをテドラーバッグに採取し、HF濃度を測定した。試験開始から60分間、出口ガス中にHFは検出されなかった。投入CF4量から算出される生成HF量と充填したCa(OH)2量とからCaF2が生成したとして計算された理論カルシウム利用率は95%以上となった。また、試験後のX線回折分析からはCaF2の回折パターンのみが検出され、試験後のCa(OH)2中のF分析から95%以上の利用率であることが確認された。 When 1 mol of CF 4 is decomposed, 4 mol of HF is generated, and HF is present at a concentration of about 4% in the gas after passing through the Ni / Al catalyst. With the start of CF 4 decomposition, the outlet gas was periodically collected in a Tedlar bag, and the HF concentration was measured. No HF was detected in the outlet gas for 60 minutes from the start of the test. The theoretical calcium utilization rate calculated as CaF 2 was generated from the amount of HF calculated from the amount of CF 4 charged and the amount of Ca (OH) 2 filled was 95% or more. Further, only the diffraction pattern of CaF 2 was detected from the X-ray diffraction analysis after the test, and it was confirmed that the utilization rate was 95% or more from the F analysis in Ca (OH) 2 after the test.

以上の結果から、PFC分解条件での高濃度HF処理にCa(OH)2が使用可能であることが判明した。 From the above results, it was found that Ca (OH) 2 can be used for high concentration HF treatment under PFC decomposition conditions.

試験に供したNi/Al触媒の調製法は以下のとおりである。   The preparation method of the Ni / Al catalyst used for the test is as follows.

市販のベーマイト粉末を120℃で1時間乾燥。この乾燥粉末200gに、硝酸ニッケル6水和物210.82gを溶かした水溶液を添加し、混練。混練後、空気雰囲気中で250〜300℃の温度で約2時間乾燥し、さらに空気中で700℃の温度で2時間焼成。焼成物を粉砕、篩い分けして0.5−1mm粒径とした。完成後の触媒組成はmol比でNi/Al=20/80であった。   A commercially available boehmite powder is dried at 120 ° C. for 1 hour. An aqueous solution in which 210.82 g of nickel nitrate hexahydrate was dissolved was added to 200 g of this dry powder and kneaded. After kneading, it is dried for about 2 hours at a temperature of 250 to 300 ° C. in an air atmosphere, and further fired at a temperature of 700 ° C. for 2 hours in air. The fired product was pulverized and sieved to a particle size of 0.5-1 mm. The catalyst composition after completion was Ni / Al = 20/80 in terms of mol ratio.

実施例2
(イ)CF4分解後の高濃度HFを除去する場合に、Ca(OH)2使用温度がどのような影響を及ぼすかを調べた。
Example 2
(A) The effect of the Ca (OH) 2 use temperature on the removal of high-concentration HF after CF 4 decomposition was examined.

Ca(OH)2温度を変えるため、反応管温度を変えた。このため、Ni/Al触媒のPFC分解温度も変化したが、Ca(OH)2層へのHF供給量はCF4分解率から算出した。その他の条件は実施例1と同じである。温度依存性を調べた結果を図4に示す。反応温度を250〜460℃まで変化させたが、出口ガス中にHFが検出される時間はほぼ同じであった。すなわち、今回の試験条件において温度依存性はなく、高い除去性能を示すことが確認された。 The reaction tube temperature was changed in order to change the Ca (OH) 2 temperature. For this reason, the PFC decomposition temperature of the Ni / Al catalyst also changed, but the HF supply amount to the Ca (OH) 2 layer was calculated from the CF 4 decomposition rate. Other conditions are the same as those in the first embodiment. The results of examining the temperature dependence are shown in FIG. The reaction temperature was varied from 250 to 460 ° C., but the time for detecting HF in the outlet gas was almost the same. That is, it was confirmed that there was no temperature dependence under the present test conditions and high removal performance was exhibited.

(ロ)次に、CF4分解後の高濃度HFを除去する場合のCa(OH)2の空間速度SV依存性を調べた。 (B) Next, the space velocity SV dependence of Ca (OH) 2 in the case of removing high concentration HF after CF 4 decomposition was examined.

Ca(OH)2のSV条件は反応ガス量を同一組成で増やして増大させた。その他の条件は実施例1と同じである。SV依存性を調べた結果を図5に示す。SVは1000〜2800h-1まで増大させたが、出口ガス中にHFが検出される時間は、Ca(OH)2量とHF供給量から算出される利用率95%以上の時間と一致した。すなわち、今回の試験条件においてSV依存性はなく、高い除去性能を示すことが確認された。 The SV condition of Ca (OH) 2 was increased by increasing the amount of reaction gas with the same composition. Other conditions are the same as those in the first embodiment. The results of examining the SV dependence are shown in FIG. The SV increased from 1000 to 2800 h −1 , but the time during which HF was detected in the outlet gas coincided with the time of 95% or more utilization rate calculated from the Ca (OH) 2 amount and the HF supply amount. That is, it was confirmed that there was no SV dependency in this test condition and high removal performance was exhibited.

(ハ)次に、Ca(OH)2の形状依存性を調べた。各種Ca(OH)2の比表面積と平均細孔直径を表1に示す。また、それらのCa(OH)2を用いてHF除去性能を調べた結果を図6に示す。高い除去性能を示すのは、比表面積が20m2/g以上、平均細孔直径が500Å以上のものであった。平均細孔直径が577Åだが、比表面積が12m2/gのものは、HFが孔に入るための十分な径はあるが、その孔の深さが十分でなくCa(OH)2粒子の内部まで十分に利用できないと考えられる。 (C) Next, the shape dependence of Ca (OH) 2 was examined. Table 1 shows specific surface areas and average pore diameters of various Ca (OH) 2 . Moreover, the result of having investigated HF removal performance using those Ca (OH) 2 is shown in FIG. High removal performance was exhibited when the specific surface area was 20 m 2 / g or more and the average pore diameter was 500 mm or more. An average pore diameter of 577 mm but a specific surface area of 12 m 2 / g has a sufficient diameter for HF to enter the pores, but the pore depth is not sufficient, and the inside of the Ca (OH) 2 particles It is thought that it cannot be used enough.

Figure 0005170040
Figure 0005170040

(ニ)次に、使用前後のCa(OH)2の強度を調べた。強度はCa(OH)2粒の破壊重量で比較した。各種Ca(OH)2の試験前後の破壊重量を、実施例1で使用したCa(OH)2の破壊重量を100%とした場合の相対強度で示した結果を図7に示す。 (D) Next, the strength of Ca (OH) 2 before and after use was examined. The strength was compared with the breaking weight of 2 Ca (OH) grains. FIG. 7 shows the results of the relative strengths of the various Ca (OH) 2 before and after the test when the fracture weight of the Ca (OH) 2 used in Example 1 was taken as 100%.

試料2は試験後、約1/10となり強度がほとんどなかった。これに対して、試料1,3は初期強度は試料2に比べて低いものの、試験後の強度低下は小さかった。   Sample 2 was about 1/10 after the test and had almost no strength. On the other hand, samples 1 and 3 had lower initial strength than sample 2, but the strength decrease after the test was small.

実施例3
本実施例では、PFCの一種であるSF6を分解した後のSOx及びHFの除去可能性を調べた。実験装置には、図2に示す装置を用いた。
Example 3
In this example, the possibility of removing SOx and HF after decomposing SF 6 which is a kind of PFC was examined. As the experimental apparatus, the apparatus shown in FIG. 2 was used.

反応ガスはSF6,Air,N2及びH2Oからなる。SF6に窒素を添加してSF6濃度を約1.4%とし、このガス約1300ml/minに空気を約115ml/min添加した。水蒸気はイオン交換水を0.30ml/minで反応管に導入してNi/Al触媒上部で気化させて供給した。この反応ガスをNi/Al触媒と接触させた。触媒の温度は600〜700℃、Ca(OH)2の温度は310〜670℃まで変えた。空間速度はSF6+N2ベースの流量で約1426〜1440h-1とした(空間速度(h-1)=反応ガス流量(ml/h)/触媒量(ml))。 The reaction gas is composed of SF 6 , Air, N 2 and H 2 O. By adding nitrogen to the SF 6 is about 1.4 percent SF 6 concentration was added about 115 ml / min of air to the gas to about 1300 ml / min. Water vapor was supplied by introducing ion-exchanged water into the reaction tube at 0.30 ml / min and evaporating it at the top of the Ni / Al catalyst. This reaction gas was brought into contact with a Ni / Al catalyst. The temperature of the catalyst was changed to 600 to 700 ° C, and the temperature of Ca (OH) 2 was changed to 310 to 670 ° C. The space velocity was about 1426~1440H -1 in SF 6 + N 2 based flow (space velocity (h -1) = flow rate of the reaction gas (ml / h) / amount of catalyst (ml)).

SF6を1mol分解するとHFは6mol生成し、SOxは1mol生成する。したがって、Ni/Al触媒通過後のガス中にはHFが約6%濃度で、SOxが約1%濃度で存在することになる。SF6の分解開始とともに、定期的に出口ガスをテドラーバッグに採取し、SO2濃度とHF濃度を測定した。 When 1 mol of SF 6 is decomposed, 6 mol of HF is produced and 1 mol of SOx is produced. Therefore, HF is present at a concentration of about 6% and SOx is present at a concentration of about 1% in the gas after passing through the Ni / Al catalyst. As the SF 6 decomposition started, the outlet gas was periodically collected in a Tedlar bag, and the SO 2 concentration and the HF concentration were measured.

Ca(OH)2温度460℃において、出口ガス中にSO2,HFが検出された時間(破過開始時間)を調べた。試験開始から10分後には既にSO2が検出された。またSO3と思われるミストが30分後に検出された。そしてHFが40分後に検出された。すなわち、本条件ではSO2はCa(OH)2でほとんど除去できなかった。また、HFも推定時間より早く検出され、Caが十分に利用されなかった。試験後のCa(OH)2をX線回折で調べた結果、CaSO4,CaF2の回折パターンが検出されたが、それと同時に未利用のCa(OH)2も検出された。HF単独では利用率が高いことから、CaSO4が影響しているものと考えられる。試験後のCa(OH)2顆粒断面を蛍光X線分析した結果、表面にSが多く存在していることが判った。すなわち、CaSO4が表面に生成し、内部のCa(OH)2が利用されないと考えられた。 At a Ca (OH) 2 temperature of 460 ° C., the time during which SO 2 and HF were detected in the outlet gas (breakthrough start time) was examined. SO 2 was already detected 10 minutes after the start of the test. Moreover, mist which seems to be SO 3 was detected after 30 minutes. HF was detected after 40 minutes. That is, under this condition, SO 2 could hardly be removed with Ca (OH) 2 . Moreover, HF was detected earlier than the estimated time, and Ca was not fully utilized. As a result of examining the test Ca (OH) 2 by X-ray diffraction, diffraction patterns of CaSO 4 and CaF 2 were detected, but at the same time, unused Ca (OH) 2 was also detected. Since HF alone has a high utilization rate, it is considered that CaSO 4 has an influence. As a result of fluorescent X-ray analysis of the Ca (OH) 2 granule cross section after the test, it was found that a large amount of S was present on the surface. That is, it was considered that CaSO 4 was generated on the surface and the internal Ca (OH) 2 was not used.

そこで、CaSO4の挙動を調べるため、反応温度を460℃から370℃,310℃と下げて試験を行った。370℃では反応開始10分後にSO2が検出された。しかし、ミストは40分後、HFは50分後に検出され、利用率が上昇したことが予想できた。さらに、310℃ではSO2は10分後に検出され、HFは50分後に検出されたが、ミストは1時間の間検出されなかった。310℃で試験をしたCa(OH)2をX線回折分析で調べた結果、未利用のCa(OH)2は検出されず、ほぼ100%利用されたことが確認された。すなわち、Ca(OH)2の温度を310℃以下とすることで、表面へのCaSO4生成を抑制でき、Ca(OH)2を有効に利用することができる。なお、低温で表面CaSO4生成が抑制される理由としては、低温側ではSO2とSO3の平衡反応がSO3側にシフトしており、SO3の反応性がSO2,HFに比べて低いために、HFが反応しやすいためと考えられる。 Therefore, in order to investigate the behavior of CaSO 4 , the reaction temperature was lowered from 460 ° C. to 370 ° C. and 310 ° C., and the test was conducted. At 370 ° C., SO 2 was detected 10 minutes after the start of the reaction. However, mist was detected after 40 minutes and HF was detected after 50 minutes, and it was expected that the utilization rate increased. Furthermore, at 310 ° C., SO 2 was detected after 10 minutes and HF was detected after 50 minutes, but no mist was detected for 1 hour. As a result of examining the Ca (OH) 2 tested at 310 ° C. by X-ray diffraction analysis, it was confirmed that unused Ca (OH) 2 was not detected and almost 100% was used. That is, by setting the temperature of Ca (OH) 2 to 310 ° C. or less, the generation of CaSO 4 on the surface can be suppressed, and Ca (OH) 2 can be used effectively. As the reason why the low temperature surface CaSO 4 generated is suppressed, the equilibrium reaction between SO 2 and SO 3 at low temperature side is shifted to SO 3 side, the reactivity of SO 3 as compared to SO 2, HF This is probably because HF is easy to react because it is low.

以上より、SOxとHFが共存するガスを処理する場合には、SOxを予め除去し、その後HFをCa(OH)2と反応させることでCa利用率を上げることができる。ただし、SOxを完全に除去することは難しいため、Ca(OH)2使用温度を310℃以下100℃以上とすることが望ましい。100℃以上とするのは、排ガス中のH2Oが凝縮するためである。 From the above, when processing a gas in which SOx and HF coexist, the Ca utilization rate can be increased by removing SOx in advance and then reacting HF with Ca (OH) 2 . However, since it is difficult to completely remove SOx, it is desirable that the Ca (OH) 2 use temperature is 310 ° C. or lower and 100 ° C. or higher. The reason why the temperature is 100 ° C. or higher is that H 2 O in the exhaust gas is condensed.

実施例4
Ca(OH)2充填塔の装置構成を図3に示す。本装置は、HFを含む排ガスの温度を調節するための熱交換器100と、Ca(OH)2充填塔101と、Ca(OH)2層110と、Ca(OH)2層を保持するメッシュ板102と、Ca(OH)2充填塔とフランジで繋がった廃カルシウム化合物回収タンク103及び排ガスを吸引排気するブロワ(またはエゼクタ)104を有する。また、熱交換器100とCa(OH)2充填塔101との間に、他のCa(OH)2充填塔への排ガス導入を切り替える切替弁105と、充填塔とバイパスラインを切り替える切替弁106を有する。更に、ブロワ(またはエゼクタ)104の前段に排ガス中に同伴したCaF2粉を捕集するメッシュ板107を有し、さらにCa(OH)2層110を加熱するためのヒータ108を具備する。Ca(OH)2充填塔101は、内径約300mm,高さ1mの円筒型である。
Example 4
The apparatus configuration of the Ca (OH) 2 packed tower is shown in FIG. This apparatus is a heat exchanger 100 for adjusting the temperature of exhaust gas containing HF, a Ca (OH) 2 packed tower 101, a Ca (OH) 2 layer 110, and a mesh that holds a Ca (OH) 2 layer. A plate 102, a waste calcium compound recovery tank 103 connected to a Ca (OH) 2 packed tower by a flange, and a blower (or ejector) 104 for sucking and exhausting exhaust gas are provided. Further, a switching valve 105 for switching exhaust gas introduction into another Ca (OH) 2 packed tower and a switching valve 106 for switching between the packed tower and the bypass line between the heat exchanger 100 and the Ca (OH) 2 packed tower 101. Have In addition, a mesh plate 107 that collects CaF 2 powder entrained in the exhaust gas is provided in front of the blower (or ejector) 104, and a heater 108 for heating the Ca (OH) 2 layer 110 is provided. The Ca (OH) 2 packed tower 101 has a cylindrical shape with an inner diameter of about 300 mm and a height of 1 m.

この装置を用いて、CF4の分解により生成したガスの処理を行った。なお、Ca(OH)2には市販の顆粒消石灰(吉澤石灰工業の72顆粒消石灰)を篩いで1mm以上のもののみ選別して用い、1.2kgを充填した。メッシュ板にはインコネル製で目開き0.7mmのものを用いた。排ガス吸引にはブロワを用いた。 Using this apparatus, the gas produced by the decomposition of CF 4 was processed. For Ca (OH) 2 , commercially available granular slaked lime (72 granular slaked lime from Yoshizawa Lime Industry) was screened and used only with a size of 1 mm or more, and 1.2 kg was filled. A mesh plate made of Inconel and having an aperture of 0.7 mm was used. A blower was used for exhaust gas suction.

図3の装置によるHF処理に先立つCF4の分解処理は、実施例1のときと同じである。CF4の分解により生成した約4%のHFを含む約750℃のガスを、水冷式の熱交換器100により350℃まで温度を下げてからCa(OH)2充填塔101に導入した。Ca(OH)2層の平均温度は310℃であったため、ヒータ108による加熱は行わなかった。充填塔にはHF含有ガスを50h流通させた。ブロワ出口の排ガス中のHF濃度は0.5ppm以下であり、Ca(OH)2で吸収除去されていることが確認された。なお、0.7mm以下に微粉化したCaF2粉が一部廃カルシウム化合物回収タンク103で回収された。 The decomposition process of CF 4 prior to the HF process by the apparatus of FIG. 3 is the same as in the first embodiment. A gas at about 750 ° C. containing about 4% of HF produced by the decomposition of CF 4 was introduced into the Ca (OH) 2 packed column 101 after the temperature was lowered to 350 ° C. by the water-cooled heat exchanger 100. Since the average temperature of the Ca (OH) 2 layer was 310 ° C., heating by the heater 108 was not performed. An HF-containing gas was passed through the packed tower for 50 hours. It was confirmed that the HF concentration in the exhaust gas at the outlet of the blower was 0.5 ppm or less and was absorbed and removed with Ca (OH) 2 . In addition, a part of CaF 2 powder pulverized to 0.7 mm or less was recovered in the waste calcium compound recovery tank 103.

実施例5
Ca(OH)2充填塔の切り替え方法の例を図8に示す。HFを含む排ガスは200〜750℃の高温であり、またHFを数千ppmから数%まで含んでいる。このため、通常のバルブでガス流路を変更するとなると、耐熱耐食性材料を用いなければならず、コストが大きくなる。また、耐久性の心配もある。
Example 5
An example of a method for switching the Ca (OH) 2 packed tower is shown in FIG. The exhaust gas containing HF has a high temperature of 200 to 750 ° C. and contains HF from several thousand ppm to several percent. For this reason, if the gas flow path is changed with a normal valve, a heat and corrosion resistant material must be used, resulting in an increase in cost. There are also concerns about durability.

そこで、圧縮空気を吹き込むことでガス流路を変更する。HFを含む排ガスよりも高圧で空気を吹き込み、Ca充填塔を第一塔101aから第二塔101bへ切り替える。充填塔を通過した後のガスは熱交換器100で200℃以下に温度を下げ、バルブ106で流路を切り替える。充填塔を通過したガスはHFが除去された後のガスなので、バルブ材質の腐食を低減できる。   Therefore, the gas flow path is changed by blowing compressed air. Air is blown at a higher pressure than the exhaust gas containing HF, and the Ca packed tower is switched from the first tower 101a to the second tower 101b. The gas after passing through the packed tower is cooled to 200 ° C. or lower by the heat exchanger 100 and the flow path is switched by the valve 106. Since the gas passing through the packed tower is a gas after HF is removed, the corrosion of the valve material can be reduced.

1…反応管、2…PFC分解触媒、3…Ca(OH)2層、7…電気炉、30…HF除去工程、100…熱交換器、101…Ca(OH)2充填塔、102,107…メッシュ板、103…廃カルシウム化合物回収タンク、104…ブロア(又はエゼクタ)、108…ヒータ。 DESCRIPTION OF SYMBOLS 1 ... Reaction tube, 2 ... PFC decomposition catalyst, 3 ... Ca (OH) 2 layer, 7 ... Electric furnace, 30 ... HF removal process, 100 ... Heat exchanger, 101 ... Ca (OH) 2 packed tower, 102, 107 ... Mesh plate, 103 ... Waste calcium compound recovery tank, 104 ... Blower (or ejector), 108 ... Heater.

Claims (8)

半導体又は液晶製造工場の排ガス処理方法であって、PFCを含有する排ガスをPFC
分解装置により処理し、PFC分解装置から排出される排ガスにHF及びSOxを含む排
ガスラインの排ガスを混合し、HF及びSOxを含む排ガスよりSOxを除去し、
一部残存したSOxを含む排ガスを、固体のCa(OH) 2 層を固定床として内部に保持するCa(OH) 2 充填塔内に導入し、排ガス中のH2Oの存在下、100〜310℃で前記固体のCa(OH)2に接触させて、残存したSOxとHFを除去することを特徴とするHF含有ガスの乾式処理方法。
An exhaust gas treatment method for a semiconductor or liquid crystal manufacturing plant, wherein an exhaust gas containing PFC is treated with PFC
The exhaust gas from the exhaust gas line containing HF and SOx is mixed with the exhaust gas discharged from the PFC decomposition device, and the SOx is removed from the exhaust gas containing HF and SOx.
The exhaust gas containing part of the remaining SOx is introduced into a Ca (OH) 2 packed tower that holds a solid Ca (OH) 2 layer as a fixed bed, and in the presence of H 2 O in the exhaust gas, A dry treatment method for HF-containing gas, which comprises contacting the solid Ca (OH) 2 at 310 ° C. to remove the remaining SOx and HF.
請求項1において、前記排ガス中のH2Oは、前記PFC分解装置から排出される排ガス中に含まれる水蒸気成分であることを特徴とするHF含有ガスの乾式処理方法。 2. The dry treatment method for HF-containing gas according to claim 1, wherein H 2 O in the exhaust gas is a water vapor component contained in the exhaust gas discharged from the PFC decomposition apparatus. 請求項1または2において、前記Ca(OH)2の平均細孔直径は500〜1500Åであり、粒径は0.5mm以上であることを特徴とするHF含有ガスの乾式処理方法。 3. The dry treatment method for an HF-containing gas according to claim 1, wherein the Ca (OH) 2 has an average pore diameter of 500 to 1500 mm and a particle size of 0.5 mm or more. 請求項1ないし3のいずれかにおいて、前記Ca(OH)2の比表面積は20m2/g以上であることを特徴とするHF含有ガスの乾式処理方法。 4. The dry treatment method for an HF-containing gas according to claim 1, wherein the specific surface area of the Ca (OH) 2 is 20 m 2 / g or more. SOxおよびHF含有ガスを流通させるCa(OH)2充填塔と、該充填塔の下部に設けられたSOxおよびHF含有ガスの導入口と、前記Ca(OH) 2 充填塔内の前記導入口の上部に設けられたメッシュ板に保持されたCa(OH) 2 層と、前記充填塔の上部に設けられたSOxおよびHFが除去されたガスの排出口と、該排出口に設けられた前記充填塔内のガスを吸引排気するブロワまたはエゼクタと、前記充填塔内のCa(OH)2の温度を100〜310℃に保つように加熱するヒータと、Ca(OH)2充填塔を通過したガス中に残存するH 2 Oが凝縮して発生した凝縮水を保管する凝縮水貯と、を具備し、前記導入口から前記Ca(OH) 2 充填塔内に導入されたSOxおよびHF含有ガスをH 2 Oの存在下で前記Ca(OH) 2 層に流通させることを特徴とするHF含有ガスの乾式処理装置。 A Ca (OH) 2 packed column through which SOx and HF-containing gas are circulated, an inlet for SOx and HF-containing gas provided at the lower portion of the packed column, and the inlet of the Ca (OH) 2 packed column A Ca (OH) 2 layer held by a mesh plate provided at the upper part, a gas outlet provided at the upper part of the packed tower from which SOx and HF have been removed, and the packing provided at the outlet. It passed through a blower or ejector for sucking and exhausting gas in the tower, a heater for heating the Ca (OH) 2 layer in the packed tower to keep the temperature at 100 to 310 ° C., and a Ca (OH) 2 packed tower. comprising a condensed water storing condensed water savings tank H 2 O occurs condensed remaining in the gas, and the Ca (OH) SOx and HF containing introduced into the 2 packed tower from the inlet gas was passed through the Ca (OH) 2 layer in the presence of H 2 O Turkey A dry processing apparatus for HF-containing gas. 請求項5において、さらに、前記メッシュ板より脱落したカルシウム化合物を回収する廃カルシウム化合物回収タンクを備えることを特徴とするHF含有ガスの乾式処理装置。   The dry processing apparatus for HF-containing gas according to claim 5, further comprising a waste calcium compound recovery tank that recovers the calcium compound dropped from the mesh plate. 請求項5または6において、
前記Ca(OH)2充填塔の前段に、HFを含むガスを所定温度に調整するための熱交換器を備えることを特徴とするHF含有ガスの乾式処理装置
In claim 5 or 6,
A dry processing apparatus for HF-containing gas, comprising a heat exchanger for adjusting a gas containing HF to a predetermined temperature in a stage preceding the Ca (OH) 2 packed tower.
請求項5ないし7のいずれかにおいて、さらに、前記ガス排出口にガスに同伴するカルシウム化合物を捕集するためのメッシュ板を備えることを特徴とするHF含有ガスの乾式
処理装置。
8. The dry processing apparatus for HF-containing gas according to claim 5, further comprising a mesh plate for collecting calcium compounds accompanying the gas at the gas discharge port.
JP2009201211A 2009-09-01 2009-09-01 HF-containing gas dry processing apparatus and processing method Expired - Fee Related JP5170040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009201211A JP5170040B2 (en) 2009-09-01 2009-09-01 HF-containing gas dry processing apparatus and processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009201211A JP5170040B2 (en) 2009-09-01 2009-09-01 HF-containing gas dry processing apparatus and processing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003142822A Division JP4831924B2 (en) 2003-05-21 2003-05-21 HF-containing gas dry processing apparatus and processing method

Publications (2)

Publication Number Publication Date
JP2009285656A JP2009285656A (en) 2009-12-10
JP5170040B2 true JP5170040B2 (en) 2013-03-27

Family

ID=41455401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009201211A Expired - Fee Related JP5170040B2 (en) 2009-09-01 2009-09-01 HF-containing gas dry processing apparatus and processing method

Country Status (1)

Country Link
JP (1) JP5170040B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316370A (en) * 1976-07-30 1978-02-15 Gadelius Co Ltd Gas dry absorption method
JPS58143837A (en) * 1982-02-19 1983-08-26 Mitsui Mining Co Ltd Absorbent for halogen gas
JPS6019019A (en) * 1983-07-13 1985-01-31 Hitachi Zosen Corp Dry purifying method of waste gas
JPS60216832A (en) * 1984-04-10 1985-10-30 Hitachi Zosen Corp Purification of waste gas by dry lime process
JPS62152519A (en) * 1985-12-26 1987-07-07 Iwatani & Co Dry treatment of halogen type waste gas
JPH0275125U (en) * 1988-11-21 1990-06-08
JP2740707B2 (en) * 1992-04-27 1998-04-15 株式会社大東 Acid gas removal member
DE4233223C2 (en) * 1992-10-02 1997-06-19 Flaekt Ab Process for cleaning flue gases from waste incineration plants
JPH07253208A (en) * 1994-03-17 1995-10-03 Marukoshi Eng:Kk Harmful gas absorbing and removing device
JPH1043546A (en) * 1996-07-31 1998-02-17 Kazuteru Shinohara Absorbing and removing method of harmful component
JP3217034B2 (en) * 1997-11-14 2001-10-09 株式会社日立製作所 Perfluorinated compound processing method and apparatus

Also Published As

Publication number Publication date
JP2009285656A (en) 2009-12-10

Similar Documents

Publication Publication Date Title
JP5035722B2 (en) Regeneration of NT-SCR-catalyst
JP5961514B2 (en) Fly ash circulation type exhaust gas treatment method
JP2007196204A (en) Apparatus and method for treating exhaust gas generated from semiconductor manufacturing process
WO2006080636A1 (en) Hybrid-type method and apparatus for treating exhaust gas
WO2011040214A1 (en) Method for reusing hydrogen
AU2002226536B2 (en) Decomposition of fluorine containing compounds
JP5017071B2 (en) Exhaust gas treatment equipment
KR101640976B1 (en) Apparatus and method for treating perfluorocompounds, and recording medium
JP4831924B2 (en) HF-containing gas dry processing apparatus and processing method
JP4357018B2 (en) Detoxification method using halogenated gas treatment agent
JP2001017831A (en) Treating agent for halogen gas
JP5170040B2 (en) HF-containing gas dry processing apparatus and processing method
JP2009242215A (en) Method for recovering fluorine and method for purifying calcium fluoride
JPH06177B2 (en) Method for treating exhaust gas containing C1F (bottom 3)
JP4518460B2 (en) Method for selectively recovering fluorine components from exhaust gas
CN106770889A (en) A kind of catalyst screening device and method for hydrolyzing freon
JP4344536B2 (en) Fluorine recovery method and apparatus
JP4675148B2 (en) Method and apparatus for treating fluorine compound-containing gas
JP2011143329A (en) Apparatus for detoxifying gas comprising chlorine trifluoride
WO2010090118A1 (en) Method for rendering iodine fluoride harmless
WO2005077496A1 (en) Method and apparatus for treating gas containing fluorine-containing compounds
JP6085203B2 (en) Perfluoride treatment apparatus and perfluoride treatment method
JP5651306B2 (en) Fluorine recovery method and apparatus
JPH08318122A (en) Treatment of decomposed fluorocarbon waste gas
JP2003088729A (en) Method for removing dioxins by activated carbon adsorption and removal apparatus therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees