JPS6019019A - Dry purifying method of waste gas - Google Patents

Dry purifying method of waste gas

Info

Publication number
JPS6019019A
JPS6019019A JP58128112A JP12811283A JPS6019019A JP S6019019 A JPS6019019 A JP S6019019A JP 58128112 A JP58128112 A JP 58128112A JP 12811283 A JP12811283 A JP 12811283A JP S6019019 A JPS6019019 A JP S6019019A
Authority
JP
Japan
Prior art keywords
absorbent
particle size
waste gas
gas
acidic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58128112A
Other languages
Japanese (ja)
Inventor
Yoshio Kobayashi
義雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP58128112A priority Critical patent/JPS6019019A/en
Publication of JPS6019019A publication Critical patent/JPS6019019A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

PURPOSE:To allow an absorbent to absorb an acidic noxious substance contained in waste gas within a short treating time, by a method wherein the absorbent comprising fine particulate quick lime or slaked lime with a particle size of 10mum or less is dispersed in the waste gas containing the acidic substance and the treated gas is subsequently subjected to dust collecting treatment. CONSTITUTION:Powdery quick lime or slaked lime is mutually impinged in a grinder 1 by a jet stream of high pressure air or overheated steam to be finely pulverized. The obtained fine particulate absorbent is introduced into waste gas along with high pressure air or overheated steam in a dispersing machine 2 to be uniformly dispersed throughout the waste gas. The dispersed fine particulate absorbent absorbs the acidic noxious substance in the exhaust gas. As a dust collecting apparatus 3, a bag filter is pref. used. The particle size of the absorbent is pref as small as possible but, with due regard to the operation cost of a jet mill, the absorbent having a particle size of 5mum or less and sharp particle size distribution curve is especially pref.

Description

【発明の詳細な説明】 この発明はIIガスの乾式浄化法に関する。[Detailed description of the invention] This invention relates to a dry purification method for II gas.

ボイラ排ガスや廃棄物焼却炉排ガス中には、硫黄酸化f
4f/J(S Ox )、HCJ、HFなどの酸性の力
゛害物質が大mtこ含まれており、公害対策上沖れら物
質を除去することが義務付けられている。従来、上記酸
性有害物質の除去方法としては、アルカリ性の吸収剤を
含む吸収液ないしはスラリーを排ガスと接触させて刊ガ
スを洗浄する湿式法が一般的であった。しかしこの方法
の場合、除去率は高いか、反面廃水の処理に苦慮し、排
ガスを珂加熱する必要があり、さらに設備費や運転費が
高くつくうらみがあった。
Sulfur oxidation f is present in boiler exhaust gas and waste incinerator exhaust gas.
It contains a large amount of acidic and harmful substances such as 4f/J (SOx), HCJ, and HF, and it is mandatory to remove these substances as a pollution control measure. Conventionally, as a method for removing the above-mentioned acidic harmful substances, a wet method has been generally used in which an absorbing liquid or slurry containing an alkaline absorbent is brought into contact with exhaust gas to clean the exhaust gas. However, in this method, the removal rate was high, but on the other hand, it was difficult to treat the waste water, it was necessary to heat the exhaust gas, and the equipment and operating costs were high.

このような点から湿式法に代わって種々の方法か検削さ
れ、たとえば活性炭で有害物質を1#!着しついで脱着
する活性炭吸着法や、消石灰スラリーを排ガス中に噴霧
する半乾式法、さらには石灰の粉体を排ガス中に噴霧し
たり石灰の移動床に有害物質を吸収させる方法などが提
案されている。しかしこれらの方法はいずれも十分な成
果をあげるに至っていない。上記の1ilff方法のう
ちでは石灰の粉体噴霧法が、安価な設備でかつ簡単な操
作か実施できる点で有望視されるが、この場合も吸収剤
である粉体石灰の利用率か低くそのため除去率か低いき
らいかあり、したがって環壕規制が極めて緩い特殊な場
合以外にはこの方法は実用化されていなかった。
From this point of view, various methods have been used in place of the wet method, such as activated carbon to eliminate harmful substances. Proposed methods include an activated carbon adsorption method that deposits and then desorbs harmful substances, a semi-dry method that sprays slaked lime slurry into the exhaust gas, and a method that sprays lime powder into the exhaust gas or uses a moving bed of lime to absorb harmful substances. ing. However, none of these methods has achieved sufficient results. Among the above-mentioned 1ilff methods, the lime powder spraying method is considered promising because it uses inexpensive equipment and can be easily performed, but in this case as well, the utilization rate of powdered lime as an absorbent is low. The removal rate was low, and therefore this method was not put to practical use except in special cases where trench regulations were extremely lax.

上記粉体石灰の利用率が低い理由は以下のとおりである
。すなわち朗ガス中の酸性有害成分は生石灰および消石
灰よりなる吸収剤とつぎの反応式に従って反1+Qiし
、吸収剤に1吸収される。
The reason why the utilization rate of the powdered lime is low is as follows. That is, the acidic harmful components in the dry gas react with an absorbent consisting of quicklime and slaked lime according to the following reaction formula, and 1 is absorbed by the absorbent.

Ca O(−S O2−+ Ca S 03Ca (O
H) 2 +S O2→Ca S 03 +H20C+
+、 O−1−2HCl −Ca Cj’ 2 +H2
0Ca (OH) 2 +2 H(J’−+Ca C1
2+2 H20SO3およびHFについても上記反応式
に準じマ吸収剤に吸収される。従来の吸収剤は粒径10
0ミクロン程度せいぜい30〜50ミクロンのものであ
り、そのため上記反応の速度論的研究によると、上記酸
性成分と吸収剤との反+5速度はすこぶる速いか、酸性
成分か吸収剤の粒子内部に拡散する速度かZ<、反応は
粒子の表面ないしは表面から3〜4ミクロンの部分でし
かtl; −L−)”ず、粒子内部の大部分は反応にあ
ずからない。
Ca O(-S O2-+ Ca S 03Ca (O
H) 2 +S O2→Ca S 03 +H20C+
+, O-1-2HCl -Ca Cj' 2 +H2
0Ca (OH) 2 +2 H(J'-+Ca C1
2+2 H20SO3 and HF are also absorbed by the polymer absorbent according to the above reaction formula. Conventional absorbents have a particle size of 10
Therefore, according to the kinetic study of the above reaction, the reaction rate between the acidic component and the absorbent is extremely fast, or the acidic component is diffused inside the particles of the absorbent. If the rate of reaction is Z<, the reaction occurs only at the surface of the particle or within 3 to 4 microns from the surface, and most of the interior of the particle does not participate in the reaction.

したがって吸収剤の利用率は40%以下にすきなかった
。この場合湿式法と同程度の除去率を得るには、吸収剤
と排ガスの接触時間を著しく長く保つ必要かあるが、こ
のような処理は全く非実用的なものである。
Therefore, the utilization rate of the absorbent could not be lower than 40%. In this case, in order to obtain a removal rate comparable to that of the wet method, it is necessary to keep the contact time between the absorbent and the exhaust gas extremely long, but such treatment is completely impractical.

本発明者は、上記のような実情に鑑み、111)式法に
劣らない高い除去率(少なくとも90%)を得ることの
てきるIJ]ガスの乾式浄化法の開発を目的として研究
を重ねた結果、石灰粒子の大きさが除去率に大きく影響
するという知見を得、この発明を完成するに至った。
In view of the above-mentioned circumstances, the present inventor has conducted extensive research with the aim of developing a dry purification method for IJ gas that can obtain a removal rate as high as that of the 111) method (at least 90%). As a result, they obtained the knowledge that the size of lime particles greatly affects the removal rate, and completed this invention.

この発明による浄化法は、酸性物質を含む排ガス中に粒
径10ミクロン以下の微粒子状の生石灰ないし消石灰よ
りなる吸着剤を分散させ、ついで排ガスを集塵処理して
、酸性物質を吸着した吸着剤を除去することを特徴とす
るものである。
The purification method according to the present invention involves dispersing an adsorbent made of fine particulate quicklime or slaked lime with a particle size of 10 microns or less in exhaust gas containing acidic substances, and then collecting dust from the exhaust gas to form an adsorbent that has adsorbed acidic substances. It is characterized by removing.

ボイラ拮ガスや廃棄物焼却排ガスは通常100〜400
℃の温度を有するか、JJ+ガス温度か高いと拮ガス中
の炭酸ガスにより吸収剤かCaCO3に変わってその利
用率が低下する。したがって吸収剤の利用率を低下させ
ないためには、υ1力゛スi’i1M&ハ150〜20
0°Cの範囲が好まし17″0またこの種の#l’ j
fスはS Ox、 J(Cj2. HFなどの酸性有害
物質を10〜20001〕Pnl含む。
Boiler gas and waste incineration exhaust gas are usually 100 to 400
℃ or higher than JJ+gas temperature, the carbon dioxide in the antagonist gas converts into an absorbent or CaCO3, and its utilization rate decreases. Therefore, in order not to reduce the utilization rate of the absorbent, it is necessary to
The range of 0°C is preferably 17″0 and this type of #l’ j
fs contains acidic harmful substances such as SOx, J (Cj2. HF, etc.).

このような朗ガスを処理するには、微粒子状の生石灰ま
たは消石灰よりなる吸着剤として、粒径10ミクロン以
下、好ましくは粒径6ミクロン以下のものか用いられる
。また1)成粒イ・状吸第1剤としては、シャープな粒
径分布曲線を描くものキ≠i半母か好ましい。吸着剤の
粒径は小さくなればなるほどよいが、ジェットミルの運
転費を考慮に入れると、5ミクロン以下でシャープな粒
径分布曲線を有する吸着剤か特に好ましい。粗い粒子を
含む吸着剤は好ましくない。たとえば粒径40ミクロン
の粒子を10重は%含む吸着剤の場合、吸着効率は約7
%低下する。
In order to treat such harmful gases, an adsorbent made of particulate quicklime or slaked lime with a particle size of 10 microns or less, preferably 6 microns or less is used. In addition, 1) As the first agent in the form of granulated particles, it is preferable that the first agent draws a sharp particle size distribution curve, i. The smaller the particle size of the adsorbent, the better; however, taking into consideration the operating cost of a jet mill, an adsorbent with a sharp particle size distribution curve of 5 microns or less is particularly preferred. Adsorbents containing coarse particles are not preferred. For example, in the case of an adsorbent containing 10 weight percent of particles with a particle size of 40 microns, the adsorption efficiency is approximately 7.
%descend.

この発明による浄化法のフローは第1図に示すとおりで
ある。同図において、粉砕機(1)としはジェットミル
が好ましく用いられるか、これに限定されない。ジェッ
トミルにおいて、生石灰または消石灰の粉体が高圧空気
または過熱蒸気の噴射によって互いに衝突させられて微
粒子化せられる。微粒子状の吸収剤は高圧空気または過
熱蒸気とともに分散機(2)において、U[ガスに導入
され、υl・ガス中に均一に分散される。
The flow of the purification method according to the present invention is shown in FIG. In the figure, the crusher (1) is preferably a jet mill, but is not limited thereto. In a jet mill, quicklime or slaked lime powder is atomized by colliding with each other by a jet of high-pressure air or superheated steam. The particulate absorbent is introduced into the U[gas] together with high-pressure air or superheated steam in the disperser (2), and is uniformly dispersed in the υl·gas.

分散した6に粒子状の吸収剤は上述した反応式ニ従っT
#lガス中の酸″に、有害物質を吸収する。
The particulate absorbent dispersed in 6 follows the reaction formula described above.
#l Harmful substances are absorbed by the acid in the gas.

集塵装置(3)としてはバグフィルタが好ましいが、こ
れに代えて電気集塵機などを用いてももちろんよい。酸
性物質を吸収した微粒子状の吸収剤と煤塵の混合物はバ
グフィルタによって排ガスから除去される。この場合バ
グフィルタ内部においてもす1″ガスと吸収剤の接触時
間ががなり長く保たれ、酸性物質の吸収が一層促進され
る。
Although a bag filter is preferable as the dust collector (3), an electric dust collector or the like may of course be used instead. A mixture of particulate absorbent that has absorbed acidic substances and soot is removed from the exhaust gas by a bag filter. In this case, the contact time between the 1" gas and the absorbent inside the bag filter increases and is maintained for a long time, further promoting the absorption of acidic substances.

つぎにこの発明のツノ1ガス浄化法に用いる装置の構造
について説明する。
Next, the structure of the apparatus used in the horn 1 gas purification method of the present invention will be explained.

第2図において、空気圧縮機(11jおよびエアタンク
(12)を有する空気供給管(13)が、生石灰供給口
(14,a)を有するジェットミル(14)に配されて
いる。煙道(15)には後述する構造の分1枚機(16
jが設けられ、これの後流側にバグフィルタ(17)が
設(Jられている。そしてジェットミル(14)の出[
」がら分散機(16)に吸収剤供給管(J8)が配され
ている。分散i (1(i+からバグフィルタ(I7)
までの距離は餠ガスと吸収剤との接触か十分になされる
ように設定されている。そしてジェットミル(14)に
おいて生石灰供給口(14−a、 )から供給された粒
状の生石灰を圧縮空気の気流エネルギーで互いに衝突さ
せて微粒子化する。
In Figure 2, an air supply pipe (13) with an air compressor (11j and an air tank (12)) is arranged in a jet mill (14) with a quicklime supply port (14, a). ) has a single sheet machine (16
A bag filter (17) is installed (J) on the downstream side of the bag filter (17).
An absorbent supply pipe (J8) is arranged in the disperser (16). Variance i (1(i+ to bag filter (I7)
The distance is set to ensure sufficient contact between the gas and the absorbent. Then, in the jet mill (14), the granular quicklime supplied from the quicklime supply port (14-a, ) is made to collide with each other using the air flow energy of compressed air to become fine particles.

の固定羽根(20)と、芯体(19)の下流端に下流方
向に開口するように設+jられた吸収剤吐出1御とより
なる。そして複数の固定羽根(20)はそれぞれ長切) さ方向にねじれ、噴射I]51!lには吸収剤供給管(
18)か接続している。排ガスは芯体(19)によって
狭小(シコノ になされた分散機(16)の内部通路筒を通過する間に
流速を増すとともに、固定羽根(19)によって旋(j
l) 回流となされる。また吸収剤吐出1卑から微粒子状の吸
収剤が吐出される。その結果微粒子状の吸収剤は期ガス
の高速旋回流によってす1ガス中に均一に分散せられる
。分散状の吸収剤はり「ガスとよく接frJ+ Lで酸
性物質を吸着し、バグフィルタ(17)によって煤塵と
ともに収集され、ローQ〕ン タリーバルブへを介して除去される。
It consists of a fixed vane (20) and an absorbent discharge valve 1 provided at the downstream end of the core body (19) so as to open in the downstream direction. Then, the plurality of fixed blades (20) are each cut long), twisted in the horizontal direction, and injected I]51! l is the absorbent supply pipe (
18) or connected. The exhaust gas increases the flow velocity while passing through the internal passage tube of the disperser (16), which is narrowed by the core body (19), and is rotated by the fixed vane (19).
l) Circulation is performed. Further, fine particulate absorbent is discharged from the absorbent discharge 1 base. As a result, the particulate absorbent is uniformly dispersed in the first gas by the high-speed swirling flow of the first gas. The dispersed absorbent beam adsorbs acidic substances in contact with the gas, is collected together with soot and dust by the bag filter (17), and is removed via the low-Q intertary valve.

実施例 まず第5図に示すフローよりなる実験装置を構成した。Example First, an experimental apparatus consisting of the flow shown in FIG. 5 was constructed.

同図において、粉砕機f211としてはジイルタを用い
、加熱装置(27)としては電気ヒータを用いた。また
流量調節装置(2G)ではSO2、稲 行ない、分析装置(29)ではSO2、HCj’、CO
2オ6 およびH2Oの各号lを行ない、湿度調節装置(28)
では循環排ガスの温度を調節した。
In the figure, a zilter was used as the crusher f211, and an electric heater was used as the heating device (27). In addition, the flow rate regulator (2G) measures SO2 and rice, and the analyzer (29) measures SO2, HCj', and CO.
2 O 6 and H 2 O, and the humidity control device (28)
Then, the temperature of the circulating exhaust gas was adjusted.

実験に用いた生石灰はCa095%、(: a C03
3,5%およびその他1.5%よりなり、消石灰はCa
(OH)296%、CaCO33%およびその他1%よ
りなるものであった。
The quicklime used in the experiment was Ca095%, (: a C03
3.5% and other 1.5%, slaked lime contains Ca
It consisted of 296% (OH), 33% CaCO, and 1% other.

上記構成の実験装置において、SO2、HC4CO2お
よびH20を含む模擬U[ガスを、送風的 器時によって2000 NyytI/ Hの流量で矢印
の方向に循環させ、生石灰または消石灰をジエットミル
において圧縮空気で微粒子化し、分散機(22)におい
て循環期ガス中に分散した。W設定条件か安定した後各
種条件における運転データをとり、下表7にまとめた。
In the experimental apparatus with the above configuration, a simulated U[gas containing SO2, HC4CO2, and H20 was circulated in the direction of the arrow at a flow rate of 2000 NyytI/H, and quicklime or slaked lime was atomized with compressed air in a jet mill. , dispersed in the circulating phase gas in a disperser (22). After the W setting conditions became stable, operating data under various conditions was collected and summarized in Table 7 below.

また粒径と除去率の関係を第6図に示した。なお同表中
の吸収剤の粒径の表示は、その表示の粒径を有する微粒
子が95%以上含まれることを意味する。
Furthermore, the relationship between particle size and removal rate is shown in FIG. Note that the particle size of the absorbent in the same table means that 95% or more of fine particles having the indicated particle size are contained.

また吸収剤の化学量論比は(供給した吸収剤中のCaO
またはCa(OH)2の%/l/数)/(反応したSO
2のモル数十反応したHCl のモル数XI/2)を表
わす。
The stoichiometric ratio of the absorbent is (CaO in the supplied absorbent)
or %/l/number of Ca(OH)2)/(reacted SO
It represents the number of moles of reacted HCl (XI/2).

以下余白 上記表および第6図から明らかなように、粒径10ミク
ロン以上の場合には酸性成分の除去率ハ低いか、粒径1
0ミクロンとりわけ粒径6ミクロン以下では同除去率お
よび吸収剤の利用率(すなわち吸収剤の化学量論比の逆
数)はいずれも90%以上に達した。また排ガスの温度
か200℃以上ではCaCO3の生成による吸収剤の利
用率低下がみられた。
As is clear from the above table and Figure 6, when the particle size is 10 microns or more, the removal rate of acidic components is low, or the particle size is 1.
The removal rate and absorbent utilization rate (that is, the reciprocal of the absorbent stoichiometric ratio) reached 90% or more when the particle size was 0 microns, especially when the particle size was 6 microns or less. Furthermore, when the temperature of the exhaust gas exceeded 200°C, a decrease in the utilization rate of the absorbent was observed due to the formation of CaCO3.

比較例 実施例で用いた実験装置において、微粒子状の吸収剤の
代わりに、下記表2に示す粒径分布を有する市販の消石
灰よりなる吸収剤を用い、温度245℃で、H2O11
,3%、HCj’1228p 11 nl を含む模擬
排ガス中に上記吸収剤を分散させて、H(4除去を行な
った。吸収剤/ HClの当量比1,02でHCpの除
去率は52.2%で表2 消石灰の粒径分布 この結果から明らかなように、粒径1oミクロン以上の
粒子がたとえ43%含まれていても、除去率は著しく低
下した。
Comparative Example In the experimental apparatus used in the example, an absorbent made of commercially available slaked lime having the particle size distribution shown in Table 2 below was used instead of the fine particulate absorbent, and H2O11 was used at a temperature of 245°C.
, 3%, HCj'1228p 11 nl was dispersed in a simulated exhaust gas to remove H(4). At an equivalent ratio of absorbent/HCl of 1.02, the removal rate of HCp was 52.2. Table 2 Particle size distribution of slaked lime in % As is clear from the results, even if 43% of particles with a particle size of 10 microns or more were contained, the removal rate was significantly reduced.

以上のとおりて、この発明による乾式浄化法では、粒径
1oミクロン以下の微粒子状の生石灰ないし消石灰より
なる吸収剤を用し)るので、排ガスに含まれる酸性有害
物質の90%以上を数秒〜数分という短い処理時間で吸
収剤に吸収させることかでき、したがって高い除去率で
酸性物質を除去することかできる。
As described above, in the dry purification method according to the present invention, an absorbent made of fine particulate quicklime or slaked lime with a particle size of 10 microns or less is used. The acidic substances can be absorbed into the absorbent in a short treatment time of a few minutes, and therefore the acidic substances can be removed with a high removal rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はυ]ガス浄化法のフロー図、第2図は排ガス浄
化装置の概略図、第3図は分散機の一部り欠き側面図、
第4図は第3図中のJv −IV Mjに沿う断面図、
第5図は実験装置のフロー図、第6図は粒径と除去率の
関係を示すグラフで汐る。 以 上
Figure 1 is a flow diagram of the υ gas purification method, Figure 2 is a schematic diagram of the exhaust gas purification device, Figure 3 is a partially cutaway side view of the dispersion machine,
Figure 4 is a cross-sectional view along Jv-IV Mj in Figure 3;
FIG. 5 is a flow diagram of the experimental apparatus, and FIG. 6 is a graph showing the relationship between particle size and removal rate. that's all

Claims (1)

【特許請求の範囲】[Claims] 酸性物質を含む排ガス中に粒径10ミクロン以下の微粒
子状の生石灰ないし消石灰よりなる吸着剤を分散させ、
ついて拮ガスを集塵処理して、酸性物質を吸着した吸着
剤を除去することを特徴とする、排ガスの乾式浄化法。
An adsorbent made of fine particulate quicklime or slaked lime with a particle size of 10 microns or less is dispersed in exhaust gas containing acidic substances,
This is a dry purification method for exhaust gas, which is characterized by collecting the residual gas and removing the adsorbent that has adsorbed acidic substances.
JP58128112A 1983-07-13 1983-07-13 Dry purifying method of waste gas Pending JPS6019019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58128112A JPS6019019A (en) 1983-07-13 1983-07-13 Dry purifying method of waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58128112A JPS6019019A (en) 1983-07-13 1983-07-13 Dry purifying method of waste gas

Publications (1)

Publication Number Publication Date
JPS6019019A true JPS6019019A (en) 1985-01-31

Family

ID=14976673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58128112A Pending JPS6019019A (en) 1983-07-13 1983-07-13 Dry purifying method of waste gas

Country Status (1)

Country Link
JP (1) JPS6019019A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08108040A (en) * 1994-08-17 1996-04-30 Okutama Kogyo Kk Waste gas processing agent and treatment of waste gas
JP2009285656A (en) * 2009-09-01 2009-12-10 Hitachi Ltd Apparatus and method for dry treatment of hf-containing gas
JP2010247096A (en) * 2009-04-16 2010-11-04 Ryuki Engineering:Kk Gas treatment apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553855A (en) * 1978-06-26 1980-01-11 Ishikawajima Harima Heavy Ind Co Ltd Method of and apparatus for removing hydrogen chloride gas generated from waste incinerator
JPS58112026A (en) * 1981-12-25 1983-07-04 Hitachi Plant Eng & Constr Co Ltd Apparatus for removing gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553855A (en) * 1978-06-26 1980-01-11 Ishikawajima Harima Heavy Ind Co Ltd Method of and apparatus for removing hydrogen chloride gas generated from waste incinerator
JPS58112026A (en) * 1981-12-25 1983-07-04 Hitachi Plant Eng & Constr Co Ltd Apparatus for removing gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08108040A (en) * 1994-08-17 1996-04-30 Okutama Kogyo Kk Waste gas processing agent and treatment of waste gas
JP2010247096A (en) * 2009-04-16 2010-11-04 Ryuki Engineering:Kk Gas treatment apparatus
JP2009285656A (en) * 2009-09-01 2009-12-10 Hitachi Ltd Apparatus and method for dry treatment of hf-containing gas

Similar Documents

Publication Publication Date Title
CN103239985B (en) Efficient fuel coal flue gas desulfurizing and hydrargyrum-removing method and device thereof
KR890000512B1 (en) Process for removal of nitrogen oxides and sulfur oxides from waste gases
CN109569228A (en) The exhaust system and technique of flue gas of garbage furnace
CN108325317A (en) A kind of method of operation of Pollutant in Coal Burning Boiler minimum discharge
WO1993008902A1 (en) A METHOD OF IMPROVING THE Hg-REMOVING CAPABILITY OF A FLUE GAS CLEANING PROCESS
US5965095A (en) Flue gas humidification and alkaline sorbent injection for improving vapor phase selenium removal efficiency across wet flue gas desulfurization systems
CN105477995A (en) Method for removing sulfur trioxide from coal-fired flue gas
CN209155342U (en) A kind of flue gas multiple pollutant dry method cooperation-removal device
CN104353325A (en) Device and method for removing mercury from boiler flue gas of power station
CA1296865C (en) Method and system for purifying exhaust gas
JPS6136969B2 (en)
CN113731114A (en) System and method for removing waste incineration flue gas pollutants by combining ozone and activated carbon
US5112588A (en) Method of and apparatus for the removal of gaseous contaminants from flue gas or reduction of the content of gaseous contaminants in a flue gas
CN108373936A (en) A kind of flue gas purification system and method for the gasification of fire coal coupled biological matter
JPS6019019A (en) Dry purifying method of waste gas
CN106582233A (en) Dry desulfurization and denitrification dust removal system for catalytic cracking regeneration flue gas
CN104075335B (en) Process and device for realizing up-to-standard emission of boiler flue gas with coupling technology
JPS6025531A (en) Dry purification of exhaust gas
CN106064016A (en) The ultra-clean dust removal integrated plant of exhuast gas desulfurization denitration
JPH0467085B2 (en)
JPH0248289B2 (en)
CN109833748A (en) A kind of near-zero release flue gas coordinated desulfurization denitration dust collecting group technology
CN115957610A (en) Waste incineration flue gas treatment system and treatment method
JPS61157328A (en) Purification of exhaust gas by dry dolomite method
RU2095128C1 (en) Method for cleaning effluent gases of oil burners and device for its embodiment