JPH0248289B2 - - Google Patents

Info

Publication number
JPH0248289B2
JPH0248289B2 JP59072246A JP7224684A JPH0248289B2 JP H0248289 B2 JPH0248289 B2 JP H0248289B2 JP 59072246 A JP59072246 A JP 59072246A JP 7224684 A JP7224684 A JP 7224684A JP H0248289 B2 JPH0248289 B2 JP H0248289B2
Authority
JP
Japan
Prior art keywords
lime
exhaust gas
harmful substances
particles
primary particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59072246A
Other languages
Japanese (ja)
Other versions
JPS60216832A (en
Inventor
Yoshio Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP59072246A priority Critical patent/JPS60216832A/en
Priority to GB08506958A priority patent/GB2157192B/en
Priority to CA000477363A priority patent/CA1290922C/en
Priority to DE19853511759 priority patent/DE3511759A1/en
Priority to IT47914/85A priority patent/IT1180740B/en
Priority to FR858505119A priority patent/FR2562442B1/en
Priority to BE2/60660A priority patent/BE902140A/en
Publication of JPS60216832A publication Critical patent/JPS60216832A/en
Publication of JPH0248289B2 publication Critical patent/JPH0248289B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/508Sulfur oxides by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は乾式石灰法による排ガスの浄化方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for purifying exhaust gas using a dry lime method.

従来例の構成とその問題点 ボイラや廃棄物焼却炉から排出される高温排ガ
ス中には、硫黄酸化物(SOx)、HCl,HFなどの
酸性の有害物質が通常10〜2000ppm含まれてお
り、公害対策上これら物質を除去することが義務
付けられている。従来、上記酸性有害物質の除去
方法としては、アルカリ性の吸収剤を含む吸収液
ないしはスラリーを温度の低下した排ガスと直接
接触させて排ガスを洗浄する湿式法が一般的であ
つた。しかしこの方法の場合、除去率が高い反
面、廃水の処理に苦慮し、排ガスを再加熱する必
要があり、さらに設備費や運転費が高くつくうら
みがあつた。
Conventional configuration and its problems High-temperature exhaust gas discharged from boilers and waste incinerators usually contains 10 to 2000 ppm of acidic harmful substances such as sulfur oxides (SO x ), HCl, and HF. It is mandatory to remove these substances as a pollution control measure. Conventionally, as a method for removing the above-mentioned acidic harmful substances, a wet method has been generally used, in which an absorbing liquid or slurry containing an alkaline absorbent is brought into direct contact with the exhaust gas at a reduced temperature to clean the exhaust gas. However, although this method has a high removal rate, it is difficult to treat wastewater, the exhaust gas needs to be reheated, and equipment and operating costs are high.

このような点から湿式法に代わつて種々の方法
が検討され、たとえば活性炭で有害物質を吸着し
ついで脱着する活性炭吸着法や、消石灰スラリー
を排ガス中に噴霧する半乾式法が提案されている
が、これらいずれも高い除去率を得ることができ
なかつた。また、高温の火炉内や煙道内に石灰を
直接分散させて酸性有害物質を除去する乾式法が
検討されたが、この方法の場合も吸収剤である石
灰の反応率が低く、したがつて環境規制が極めて
緩い特殊な場合以外にはこの方法は実用化されて
いなかつた。即ち、乾式石灰法では石灰(消石
灰、生石灰)のSOxとの反応率は高々30%程度で
あり、HClに対しても50%を越える事はなかつ
た。また、粒子径を小さくすると反応率が向上す
ることが期待されるのであるが、一般的なこの期
待に反して粒子径を小さくしても石灰の反応率は
あまり向上しないことが知られていた。
From this point of view, various methods have been considered in place of the wet method. For example, an activated carbon adsorption method, in which harmful substances are adsorbed and desorbed using activated carbon, and a semi-dry method, in which slaked lime slurry is sprayed into the exhaust gas, have been proposed. However, it was not possible to obtain a high removal rate in any of these methods. In addition, a dry method was considered in which lime was directly dispersed in a high-temperature furnace or flue to remove acidic harmful substances, but this method also had a low reaction rate for lime, an absorbent, and was therefore environmentally friendly. This method has not been put into practical use except in special cases where regulations are extremely lax. That is, in the dry lime method, the reaction rate of lime (slaked lime, quicklime) with SO x was at most about 30%, and with HCl it never exceeded 50%. Furthermore, it is expected that reducing the particle size will improve the reaction rate, but contrary to this general expectation, it is known that reducing the particle size does not significantly improve the reaction rate of lime. .

本発明者はこの反応率を向上させるべく理論的
及び実験的な研究を重ねた結果、2次凝集した石
灰の排ガス中への分散方法を工夫することによつ
てこの石灰の反応率が大巾に向上することを見出
した。
As a result of repeated theoretical and experimental research in order to improve this reaction rate, the present inventor has found that the reaction rate of this lime can be greatly increased by devising a method for dispersing the secondary agglomerated lime into the exhaust gas. found that it improved.

発明の目的 そこで、本発明は上記の点に鑑み、石灰と酸性
有害物質との反応率を向上させ得る乾式石灰法に
よる排ガスの浄化方法を提供することを目的とす
る。
OBJECTS OF THE INVENTION In view of the above points, an object of the present invention is to provide a method for purifying exhaust gas using a dry lime method that can improve the reaction rate between lime and acidic harmful substances.

発明の構成 上記目的を達成するため、本発明の乾式石灰法
による排ガスの浄化方法は、石灰の微細粒子の2
次凝集体を解砕機によつて大部分が10μm以下の
一次粒子である高濃度分散相となし、その后酸性
有害物質を含む排ガス中に導入して均一に混合し
た後、集塵装置に導いて除塵することにより、排
ガス中に含まれる酸性有害物質及び煤塵を除去す
る方法である。
Composition of the Invention In order to achieve the above object, the method for purifying exhaust gas by the dry lime method of the present invention has two
The next aggregate is made into a highly concentrated dispersed phase consisting mostly of primary particles of 10 μm or less using a crusher, and after being introduced into the exhaust gas containing acidic harmful substances and mixed uniformly, it is introduced into a dust collector. This method removes acidic harmful substances and soot contained in exhaust gas.

実施例と作用 以下、本発明の一実施例を図面に基づいて説明
する。
Embodiment and Operation An embodiment of the present invention will be described below based on the drawings.

まず、本発明の方法を詳細に説明する。 First, the method of the present invention will be explained in detail.

排ガス中の酸性有害物質(SOx,HCl,HF)
は生石灰及び/又は消石灰よりなる吸収剤と次の
反応式にしたがつて反応する。
Acidic hazardous substances in exhaust gas (SO x , HCl, HF)
reacts with an absorbent consisting of quicklime and/or slaked lime according to the following reaction formula.

CaO+SO2→CaSO4 Ca(OH)2+SO3→CaSO4+H2O CaO+2HCl→CaCl2+H2O Ca(OH)2+2HCl→CaCl2+2H2O SO2,HFについても上記反応式に準じて反応
する。
CaO+SO 2 →CaSO 4 Ca(OH) 2 +SO 3 →CaSO 4 +H 2 O CaO+2HCl→CaCl 2 +H 2 O Ca(OH) 2 +2HCl→CaCl 2 +2H 2 O SO 2 , HF also reacts according to the above reaction formula. do.

従来の乾式石灰法は、平均粒径10〜20ミクロン
(凝集していると考えられる)の石灰粉末(市販
品)をパイプ又は簡単なノズルを介して炉内又は
煙道中に噴霧する方法であつた。
The conventional dry lime method is a method in which lime powder (commercially available) with an average particle size of 10 to 20 microns (considered to be agglomerated) is sprayed into the furnace or flue through a pipe or simple nozzle. Ta.

ところで、本発明者の研究によれば、従来の方
法によると、噴霧される石灰粒子がたとえ1〜2
ミクロンであつても、排煙中では(堆積保管中に
1〜2ミクロンの微細粒子同志が凝集して粗大化
している。)1〜2ミクロンの一次粒子が凝集し
て二次凝集体となり、粗大化として挙動すること
がわかつた。そして、この凝集の度合は細かくな
ればなるほど大きくなり、特に粒径が10ミクロン
以下では殆んどが二次凝集体を形成して挙動する
ために石灰粒子を小さくしても石灰の反応率があ
まり改善出来ないということが明らかになつた。
一方、二次凝集体は気流中で一定の分散エネルギ
ーを与えると一次粒子に分散されることが知られ
ているが、分散エネルギーの具体的な与え方とし
ては、エゼクター、オリフイス、ベンチユリー管
などを介して高速気流中に二次凝集体を投入する
方法とかジエツトミルなどの粉砕機を用いる方法
が考えられる。この他、一次粒子に調整するの
に、気流中で粉砕するジエツトミルとか機械式の
解砕機を用いてもよい。
By the way, according to the research of the present inventor, according to the conventional method, even if the amount of lime particles sprayed is 1 to 2
Even if they are microns, in the flue gas (fine particles of 1 to 2 microns aggregate and become coarse during storage), primary particles of 1 to 2 microns aggregate to form secondary aggregates, It was found that it behaves as coarsening. The degree of this agglomeration increases as the particles become finer, and especially when the particle size is 10 microns or less, most of the particles behave as secondary aggregates, so even if the lime particles are made smaller, the reaction rate of lime will decrease. It became clear that not much could be improved.
On the other hand, it is known that secondary aggregates can be dispersed into primary particles by applying a certain amount of dispersion energy in an air flow. Possible methods include introducing the secondary agglomerates into a high-speed air stream through a pulverizer, or using a crusher such as a jet mill. In addition, a jet mill or a mechanical crusher that crushes in an air stream may be used to adjust the particles to primary particles.

たとえば、ベンチユリー管を介して排ガス本流
中に分散させる方法では、二次凝集体化した石灰
の一次粒子化と同時にの排ガス中へそれの均一な
分散相を形成するために非常に優れた除去率が得
られることが判明したが、高度な除去率をうるた
めに必要とされる5ミクロン以下の石灰粒子を一
次粒子にまで分散させるには、数10〜300m/sec
の高速気流を必要とし、大きな圧力損失を伴う。
したがつて、排ガス全体をこのような高速流にす
るには、大きな動力消費を伴い実用的ではない。
したがつて、あらかじめオリフイス、エゼクター
などの解砕機で小量の高速気流中で形成された一
次粒子の高濃度分散相を排ガス本流中に均一に混
合させることによつて、小さな動力消費で高度な
除去率がえられることを見出し、本発明を完成す
るに至つた。ちなみに、排ガス本流への分散石灰
の濃度は2〜20g/Nm3程度であるのに対して、
高濃度分散相の石灰濃度は200〜1000g/Nm3
達する。つまり、取扱う高速気流の量が1/50〜1/
100でよいことになり、動力消費量もそれに従つ
て小さくなる。
For example, in the method of dispersing lime into the main stream of exhaust gas through a ventilate tube, secondary aggregated lime becomes primary particles and at the same time forms a homogeneous dispersed phase in the exhaust gas, resulting in a very good removal rate. However, in order to disperse lime particles of 5 microns or less into primary particles, which is necessary to obtain a high removal rate, it is necessary to
requires high-velocity airflow and involves large pressure loss.
Therefore, making the entire exhaust gas flow at such a high speed requires large power consumption and is not practical.
Therefore, by uniformly mixing a high-concentration dispersed phase of primary particles, which is formed in a small amount of high-speed airflow in a crusher such as an orifice or ejector, into the main stream of exhaust gas, it is possible to achieve high-level processing with low power consumption. It was discovered that a high removal rate could be obtained, and the present invention was completed. By the way, the concentration of lime dispersed in the main stream of exhaust gas is about 2 to 20 g/ Nm3 ,
The lime concentration of the highly concentrated dispersed phase reaches 200-1000 g/ Nm3 . In other words, the amount of high-speed airflow handled is 1/50 to 1/
100 will suffice, and the power consumption will decrease accordingly.

そこで、本発明の浄化方法は、ミクロンオーダ
の石灰(生石灰、消石灰、ドロマイト、焼成ドロ
マイト、消化ドロマイト)の微粒子の2次凝集体
を、あらかじめ解砕機によつて一次粒子にまで砕
いて気流中に分散させた石灰の高濃度分散相を酸
性有害物質(SOx,HCl,HF)を含む排ガス中
に導入して排ガスと均一に混合させた後、この排
ガスを集塵装置に導くことによつて排ガス中に含
まれる酸性有害物質と石灰(吸収剤)を煤塵と共
に除去する方法である。上記のフローを示すと、
第1図のようになる。
Therefore, in the purification method of the present invention, secondary aggregates of micron-order lime particles (quicklime, slaked lime, dolomite, calcined dolomite, digested dolomite) are crushed into primary particles using a crusher in advance, and then introduced into the air stream. By introducing a highly concentrated dispersed phase of dispersed lime into exhaust gas containing acidic harmful substances ( SO This method removes acidic harmful substances and lime (absorbent) contained in exhaust gas along with soot and dust. Showing the above flow,
It will look like Figure 1.

また、本発明の浄化方法は、900〜1200℃の温
度域に石灰石、生石灰、消石灰、ドロマイト、焼
成ドロマイトのようなCa系吸収剤の微粒子を分
散させてSOx,HCl,HFを除去する場合にも、
150〜400℃の温度域に生石灰、消石灰、焼成ドロ
マイトのようなCa系吸収剤の微粒子を分散させ
てHCl,HFを主体とする酸性有害物質を除去す
る場合にも有効に用いられる。なお、900〜1200
℃の高温域では、消石灰、石灰石、ドロマイトの
微粒子は瞬時に熱分解を起して多孔性の反応活性
に富む生石灰、焼成ドロマイトを生成するので、
生石灰を用いるよりよい効果がえられる。また、
1200℃を越えると生石灰、焼成ドロマイトの結晶
化が進むため反応性が阻害される。また、150〜
400℃の温度域でも同様に生石灰、焼成ドロマイ
トよりも消石灰、消化ドロマイトを用いる方がよ
い効果がえられる。微粒子状のCa吸収剤として
は粒径10ミクロン以下のものが用いられ、特に5
ミクロン以下のものが好ましい。凝集力は粒径が
小さくなるに従つて増すが、特に5ミクロン以下
になると急激に大きくなる傾向がある(第2図参
照)。
In addition, the purification method of the present invention involves dispersing fine particles of a Ca-based absorbent such as limestone, quicklime, slaked lime, dolomite, and calcined dolomite in a temperature range of 900 to 1200°C to remove SO x , HCl, and HF. Also,
It is also effectively used to remove acidic harmful substances, mainly HCl and HF, by dispersing fine particles of Ca-based absorbents such as quicklime, slaked lime, and calcined dolomite in the temperature range of 150 to 400°C. In addition, 900-1200
In the high temperature range of ℃, fine particles of slaked lime, limestone, and dolomite instantly undergo thermal decomposition to produce quicklime and calcined dolomite, which are porous and highly reactive.
A better effect can be obtained than using quicklime. Also,
When the temperature exceeds 1200℃, the crystallization of quicklime and calcined dolomite progresses, which inhibits reactivity. Also, 150~
Similarly, even in the temperature range of 400°C, better effects can be obtained by using slaked lime and digested dolomite than by quicklime and calcined dolomite. The fine particulate Ca absorbent used is one with a particle size of 10 microns or less, especially 5.
Preferably it is less than a micrometer. The cohesive force increases as the particle size becomes smaller, but it tends to increase rapidly especially when the particle size is 5 microns or less (see Figure 2).

乾式石灰法において、湿式並みの高い除去率を
達成するためには、石灰粒径は少くとも5ミクロ
ン以下好ましくは1〜3ミクロンにする必要があ
るが、このような粒径の石灰では凝集力が強いた
め、排ガス中に単純に分散させる方法では高い除
去率を達成することが出来ない。
In the dry lime method, in order to achieve a removal rate as high as that of the wet method, the lime particle size must be at least 5 microns or less, preferably 1 to 3 microns, but lime with such a particle size has a low cohesive force. Because of the strong carbon content, it is not possible to achieve a high removal rate by simply dispersing it in the exhaust gas.

したがつて、本発明の方法を実施するにあたつ
て注意すべき重要な点は、石灰の一次粒子を分散
させた高濃度分散相が再凝集しないようにするこ
とである。そのためには、調整した高濃度分散相
の輸送距離を極力短くする必要があり、流線の乱
れが生じないように配管の急激な曲り部をつくら
ないような工夫をすることが好ましく、オリフイ
ス、エゼクター等で調整した一次粒子の高濃度分
散相は直ちに排ガス本流に混合されるように装置
上の工夫をすることが必要である。微粒子石灰は
あらかじめ所定の粒径に微粉砕されたものをホツ
パーから切り出して供給してもよいし、またジエ
ツトミルなどの粉砕機で粉砕しながら供給しても
よい。更に、一次粒子の高濃度分散相と排ガス本
流との混合方法としては、ベンチユリー管を用い
るのもよいし、高濃度分散相の供給口を多数設け
て、供給口の位置と方向、及び供給速度を調整し
ながら排ガスとの均一な混合をはかる方法でもよ
い。排ガス中に分散された微粒子石灰は1〜3秒
間排ガス中に浮遊する間に酸性有害物質と反応し
て集塵部で排ガス中から除去される。集塵装置と
しては通常、一般に用いられるバグフイルタとか
電気集塵機などが用いられる。
Therefore, when carrying out the method of the present invention, it is important to keep in mind that the highly concentrated dispersed phase in which the primary lime particles are dispersed does not re-agglomerate. For this purpose, it is necessary to shorten the transport distance of the adjusted high-concentration dispersed phase as much as possible, and it is preferable to take measures to avoid creating sharp bends in the piping so as not to disrupt the streamlines. It is necessary to devise a device so that the highly concentrated dispersed phase of primary particles prepared by an ejector or the like is immediately mixed into the main stream of exhaust gas. The fine particulate lime may be supplied by being pulverized in advance to a predetermined particle size and cut out from a hopper, or may be supplied while being pulverized by a pulverizer such as a jet mill. Furthermore, as a method of mixing the highly concentrated dispersed phase of primary particles and the main stream of exhaust gas, it is good to use a ventilate tube, or to provide a large number of supply ports for the highly concentrated dispersed phase, and adjust the position and direction of the supply ports, as well as the supply speed. A method may also be used in which uniform mixing with exhaust gas is achieved while adjusting the amount of gas. The particulate lime dispersed in the exhaust gas reacts with acidic harmful substances while floating in the exhaust gas for 1 to 3 seconds, and is removed from the exhaust gas in the dust collecting section. As a dust collector, a commonly used bag filter or electric dust collector is usually used.

次に、実施例1及び実施例2について説明す
る。
Next, Example 1 and Example 2 will be described.

(i) 実施例1 HCl約1000ppmを含む250℃の排ガス中に消石
灰を噴霧してHClを除去する実験を行つた。滞留
時間は約2秒であつた。その結果を第3図に示
す。図中、実線の範囲は本発明方法による一次粒
子の高濃度分散相を排ガス本流に混合した場合の
反応率(除去率)であり、これに対して破線の範
囲は消石灰を単純に噴霧した場合の反応率(除去
率)を示す。粒径が小さくなればなるほど一次粒
子への分散の効果の大きいことがわかる。
(i) Example 1 An experiment was conducted in which slaked lime was sprayed into exhaust gas at 250° C. containing about 1000 ppm of HCl to remove HCl. The residence time was approximately 2 seconds. The results are shown in FIG. In the figure, the solid line range is the reaction rate (removal rate) when a high concentration dispersed phase of primary particles according to the method of the present invention is mixed into the main stream of exhaust gas, whereas the broken line range is when slaked lime is simply sprayed. shows the reaction rate (removal rate). It can be seen that the smaller the particle size, the greater the effect of dispersion into primary particles.

(ii) 実施例2 SOx約1000ppm含む1100℃の排ガス中に消石灰
を噴霧してSOxを除去する実験を行つた。滞留時
間は約2秒であつた。その結果を第4図に示す。
図中、実線の範囲は本発明方法による一次粒子の
高濃度分散相を排ガス本流に混合した場合の反応
率(除去率)であり、これに対して破線の範囲は
消石灰を単純に噴霧した場合の反応率(除去率)
を示す。粒径が小さくなればなるほど一次粒子へ
の分散効果が大きいことがわかる。
(ii) Example 2 An experiment was conducted in which slaked lime was sprayed into exhaust gas at 1100° C. containing about 1000 ppm SO x to remove SO x . The residence time was approximately 2 seconds. The results are shown in FIG.
In the figure, the solid line range is the reaction rate (removal rate) when a high concentration dispersed phase of primary particles according to the method of the present invention is mixed into the main stream of exhaust gas, whereas the broken line range is when slaked lime is simply sprayed. reaction rate (removal rate)
shows. It can be seen that the smaller the particle size, the greater the dispersion effect into primary particles.

発明の効果 上記本発明の方法によると、石灰の微粒子を解
砕機によつて一次粒子まで細かくして気流中に分
散させた高濃度分散相を、酸性有害物質を含む排
ガス中に導入して均一に混合するので、石灰と酸
性有害物質とが極めて効率よく反応し、従つて排
ガス中の酸性有害物質の除去率が非常に向上す
る。
Effects of the Invention According to the method of the present invention described above, a highly concentrated dispersed phase obtained by pulverizing lime particles into primary particles using a crusher and dispersing them in an air stream is introduced into the exhaust gas containing acidic harmful substances and uniformly dispersed. Since the lime and the acidic harmful substances are mixed together, the lime and the acidic harmful substances react with each other very efficiently, and therefore the removal rate of the acidic harmful substances from the exhaust gas is greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を示す流れ図、第2図は
粒子径とふるい凝集度との関係を示すグラフ、第
3図は石灰粒径と石灰反応率(HCl除去率)との
関係を示すグラフ、第4図は石灰粒径と石灰反応
率(SOx除去率)との関係を示すグラフである。
Figure 1 is a flowchart showing the method of the present invention, Figure 2 is a graph showing the relationship between particle size and sieve agglomeration degree, and Figure 3 is a graph showing the relationship between lime particle size and lime reaction rate (HCl removal rate). The graph, FIG. 4, is a graph showing the relationship between lime particle size and lime reaction rate (SO x removal rate).

Claims (1)

【特許請求の範囲】[Claims] 1 石灰の微細粒子の2次凝集体を解砕機によつ
て大部分が10μm以下の一次粒子である高濃度分
散相となし、その后酸性有害物質を含む排ガス中
に導入して均一に混合した後、集塵装置に導いて
除塵することにより、排ガス中に含まれる酸性有
害物質を除去することを特徴とする乾式石灰法に
よる排ガスの浄化方法。
1. Secondary aggregates of fine lime particles were made into a highly concentrated dispersed phase consisting mostly of primary particles of 10 μm or less using a crusher, and then introduced into the exhaust gas containing acidic harmful substances and mixed uniformly. A method for purifying exhaust gas using a dry lime method, which is characterized by removing acidic harmful substances contained in the exhaust gas by guiding the exhaust gas to a dust collector and removing dust.
JP59072246A 1984-04-10 1984-04-10 Purification of waste gas by dry lime process Granted JPS60216832A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP59072246A JPS60216832A (en) 1984-04-10 1984-04-10 Purification of waste gas by dry lime process
GB08506958A GB2157192B (en) 1984-04-10 1985-03-18 Method of purifying exhaust gas
CA000477363A CA1290922C (en) 1984-04-10 1985-03-25 Method of purifying exhaust gas
DE19853511759 DE3511759A1 (en) 1984-04-10 1985-03-30 METHOD AND DEVICE FOR PURIFYING EXHAUST GAS
IT47914/85A IT1180740B (en) 1984-04-10 1985-04-03 EXHAUST GAS FURIFICATION METHOD
FR858505119A FR2562442B1 (en) 1984-04-10 1985-04-04 PROCESS FOR THE PURIFICATION OF AN EXHAUST GAS
BE2/60660A BE902140A (en) 1984-04-10 1985-04-09 PROCESS FOR PURIFYING EXHAUST GAS.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59072246A JPS60216832A (en) 1984-04-10 1984-04-10 Purification of waste gas by dry lime process

Publications (2)

Publication Number Publication Date
JPS60216832A JPS60216832A (en) 1985-10-30
JPH0248289B2 true JPH0248289B2 (en) 1990-10-24

Family

ID=13483739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59072246A Granted JPS60216832A (en) 1984-04-10 1984-04-10 Purification of waste gas by dry lime process

Country Status (7)

Country Link
JP (1) JPS60216832A (en)
BE (1) BE902140A (en)
CA (1) CA1290922C (en)
DE (1) DE3511759A1 (en)
FR (1) FR2562442B1 (en)
GB (1) GB2157192B (en)
IT (1) IT1180740B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0721273U (en) * 1992-07-15 1995-04-18 新日本製鐵株式会社 Power supply tip for high frequency resistance welding
JP2022034920A (en) * 2020-08-19 2022-03-04 株式会社ニッセー Foodstuff made from orthopteran insects treated to be edible and its production method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62210035A (en) * 1986-03-07 1987-09-16 Hitachi Zosen Corp Method for desalting combustion exhaust gas
CA1309571C (en) * 1986-07-14 1992-11-03 Ronald R. Landreth Method and apparatus for reducing sulfur dioxide content in flue gases
DE3624300A1 (en) * 1986-07-18 1988-01-28 Metallgesellschaft Ag Process for the preparation of calcium-hydrate-containing sorbents for SO2 absorption from exhaust gases
JP5170040B2 (en) * 2009-09-01 2013-03-27 株式会社日立製作所 HF-containing gas dry processing apparatus and processing method
CN114262635B (en) * 2021-12-09 2022-10-04 中国石油大学(北京) Natural gas reinforced desulfurization and decarburization system and method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3721066A (en) * 1970-12-29 1973-03-20 Teller Environmental Systems Process for recovery of acid gases
DE2437750C3 (en) * 1974-08-06 1983-12-01 Hünlich, Hans-Werner, Dipl.-Ing., 5600 Wuppertal Single and multi-stage process for dry absorption and separation of gaseous pollutants from exhaust gases as dry residues
FR2285169A1 (en) * 1974-09-19 1976-04-16 Mitsubishi Heavy Ind Ltd Preventing corrosion and dust deposition by gas effluents - in glass-melting installation by injecting alkaline powders into gas ducts
DE2615828A1 (en) * 1976-04-10 1977-10-13 Heinz Hoelter Gas purificn. by addn. of absorbent - in series of stages with sepn. and recycling of absorbent after each stage
DE2520045A1 (en) * 1975-05-06 1976-11-25 Heinz Hoelter Gas purificn. by addn. of absorbent - in series of stages with sepn. and recycling of absorbent after each stage
FR2387073A1 (en) * 1977-04-12 1978-11-10 Air Ind PROCESS FOR DEPURING A HOT GAS CURRENT THAT MAY CAUSE CONDENSABLE PARTICLES AND / OR GASEOUS PRODUCTS
US4197278B1 (en) * 1978-02-24 1996-04-02 Abb Flakt Inc Sequential removal of sulfur oxides from hot gases
DE2820357A1 (en) * 1978-05-10 1979-11-15 Metallgesellschaft Ag METHOD FOR REMOVING SULFUR OXIDS FROM COMBUSTION EXHAUST GASES
DE2910537C2 (en) * 1979-03-17 1982-10-21 L. & C. Steinmüller GmbH, 5270 Gummersbach Process for regenerating the dry and fine-grain additives from an exhaust gas purification device
AT380645B (en) * 1983-11-25 1986-06-25 Waagner Biro Ag METHOD FOR SEPARATING ACID POLLUTANT GASES AND COMBUSTION PLANT FOR CARRYING OUT THE METHOD

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0721273U (en) * 1992-07-15 1995-04-18 新日本製鐵株式会社 Power supply tip for high frequency resistance welding
JP2022034920A (en) * 2020-08-19 2022-03-04 株式会社ニッセー Foodstuff made from orthopteran insects treated to be edible and its production method

Also Published As

Publication number Publication date
GB2157192A (en) 1985-10-23
DE3511759A1 (en) 1985-10-17
IT1180740B (en) 1987-09-23
GB2157192B (en) 1988-04-13
FR2562442A1 (en) 1985-10-11
BE902140A (en) 1985-07-31
CA1290922C (en) 1991-10-22
JPS60216832A (en) 1985-10-30
GB8506958D0 (en) 1985-04-24
FR2562442B1 (en) 1990-03-23
IT8547914A1 (en) 1986-10-03
IT8547914A0 (en) 1985-04-03

Similar Documents

Publication Publication Date Title
US20090090277A1 (en) Coal Fired Flue Gas Treatment and Process
CN101262929B (en) Sulfur trioxide removal from a flue gas stream
JP2651029B2 (en) Gas cleaning method
JPS60232233A (en) Method for oxidation of flue gas desulfurization absorbent
US4726940A (en) Method of purifying exhaust gas
US5512097A (en) Removal of sulfur oxides from waste gases by scrubbing with an aqueous slurry of finely comminuted limestone
CN211358316U (en) Low-sulfur flue gas dry desulfurization denitration dust collector in cement kiln tail
CA1296865C (en) Method and system for purifying exhaust gas
US5575984A (en) Method for preparing calcium carbonate for scrubbing sulfur oxides from combustion effluents
JPH0248289B2 (en)
US20220105523A1 (en) Hydrated lime with reduced resistivity and method of manufacture
CN104353350A (en) Smoke purification technology implemented based on adsorbent pretreatment
JPS6136969B2 (en)
JP2017104855A (en) Production method for dry-type exhaust gas clarifier
Hall et al. Current status of the ADVACATE process for flue gas desulfurization
CA2038953A1 (en) Process for the removal or reduction of gaseous contaminants
CN216367341U (en) Desulfurization system of ultra-high sulfur flue gas
Zhao et al. Simultaneous removal of SO2 and NO from flue gas using “oxygen-enriched” highly reactive absorbent
RU2095128C1 (en) Method for cleaning effluent gases of oil burners and device for its embodiment
CN212440685U (en) Purification system for tail flue gas of cement kiln
Kong et al. Effective removal of HCl and SO2 with dry injection of sodium bicarbonate or trona
JP3428461B2 (en) Removal method of dioxins in exhaust gas
JPS61157328A (en) Purification of exhaust gas by dry dolomite method
CN207446204U (en) The process units of cementitious material based on flue gas desulfurization and denitrification
CN111437720A (en) Glass flue gas catalytic oxidation desulfurization method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees