JPS62210035A - Method for desalting combustion exhaust gas - Google Patents

Method for desalting combustion exhaust gas

Info

Publication number
JPS62210035A
JPS62210035A JP61051088A JP5108886A JPS62210035A JP S62210035 A JPS62210035 A JP S62210035A JP 61051088 A JP61051088 A JP 61051088A JP 5108886 A JP5108886 A JP 5108886A JP S62210035 A JPS62210035 A JP S62210035A
Authority
JP
Japan
Prior art keywords
exhaust gas
desalting
nozzle
particle
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61051088A
Other languages
Japanese (ja)
Inventor
Yoshimasa Miura
三浦 祥正
Kenji Kaketa
健二 掛田
Kazuo Ieyama
家山 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP61051088A priority Critical patent/JPS62210035A/en
Publication of JPS62210035A publication Critical patent/JPS62210035A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To effectively desalt exhaust gas by using a high-speed diffusion nozzle to inject a fine granular-particle desalting agent with a high-speed air current into the combustion exhaust gas at 150-1,000 deg.C, hence increasing the reaction surface area, and carrying out a reaction in the optimum temp. range. CONSTITUTION:High-speed diffusion nozzles 7A, 7B, and 7C are provided in a combustion part 1a and a flue 2 on the upstream side of an electrostatic precipitator 4, and an extremely fine-particle desalting agent is supplied from powder feed vessels 8 and 9 by a blower 10 in the embodiment of a trash incinerator. Desalting agents such as CaCO3 and Ca(OH)2 appropriate for the temps. of the exhaust gas at respective sites are used. The aperture of the nozzle, injection velocity, and requisite amt. of an air stream to be injected are selected, and even extremely fine particles having high cohesive force can be diffused into a single particle. Consequently, an extremely large reaction surface area is secured, and a remarkably high efficiency in removing HC can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、燃焼排ガスに粉末状脱塩剤を噴霧供給して、
燃焼排ガス中のHC,9を除去する、燃焼排ガスの脱塩
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a method for spraying and supplying a powder desalination agent to combustion exhaust gas.
The present invention relates to a method for desalinating combustion exhaust gas, which removes HC,9 from the combustion exhaust gas.

従来の技術 燃焼炉から排出される排ガスの中のIIcρを除去する
脱塩方法としては、 ■ 煙道へ脱塩剤粉体を低速(15〜60m/秒)で吹
込む簡易法。
Conventional techniques Desalination methods for removing IIcρ from exhaust gas discharged from combustion furnaces include: (1) A simple method in which desalination agent powder is blown into the flue at a low speed (15 to 60 m/sec).

■ 上記■についてさらに、下流l1llI煙道内へ混
合板等を設置し、積極的に排ガスを撹拌混合さぜ効率を
向上させる方法。
■ Regarding (■) above, a method of installing a mixing plate etc. in the downstream l1lll flue to actively improve the efficiency of stirring and mixing the exhaust gas.

■ 電気集塵はの上流側もしくは内部に設置された反応
塔および集塵部に脱塩剤粉体を吹込む方法。
■Electrostatic precipitator is a method in which desalting agent powder is injected into the reaction tower and dust collection section installed upstream or inside.

■ 上記■、■、■に超微粒子脱塩剤を使用し、反応効
率を向上させる方法。
■ A method of improving reaction efficiency by using an ultrafine particle desalting agent in the above ■, ■, and ■.

などがある。and so on.

発明が解決しようとする問題点 燃焼排ガスの脱塩処理における、上記の方法では、殆ど
の場合、単一ノズルによる低速吹き込み方式であるため
、いずれも供給された脱塩剤粉体が凝集した状態となっ
ていると考えられ、除去率が低く、脱塩率を向上するた
めには薬品使用量を多くする必要がある、などの欠点が
あった。粉末状薬剤を用いる排ガス脱塩処理において、
その脱塩性能を向上させる手段としては、 (i)  排ガス中のIIcρ総量に対する添加薬剤量
の比率を増大させる。
Problems to be Solved by the Invention Most of the above methods for desalinating combustion exhaust gas use a low-speed blowing method using a single nozzle, so the supplied desalting agent powder is in an agglomerated state. The removal rate was low, and in order to improve the desalting rate, it was necessary to use a large amount of chemicals. In exhaust gas desalination treatment using powdered chemicals,
As a means for improving the desalting performance, (i) increasing the ratio of the amount of added chemicals to the total amount of IIcρ in the exhaust gas;

(ii)  R適温度域内で脱塩反応を行なわせ、かつ
この間の油密時間を増大させる。
(ii) The desalting reaction is carried out within the R-appropriate temperature range, and the oil-tight time during this reaction is increased.

f3iD  排ガスと脱塩剤粉体との拡散混合性を積極
的に増大させ、反応率を上げる。
f3iD Actively increases the diffusion mixability of exhaust gas and desalting agent powder to increase the reaction rate.

6φ 脱塩剤粉体を超微粒子化し、反応表面積を増大さ
せるとともに、超微粒子化により反応活性を向上させて
、脱塩率の増大をはかる。
6φ The desalting agent powder is made into ultra-fine particles to increase the reaction surface area, and the reaction activity is improved by making the ultra-fine particles, thereby increasing the desalination rate.

等の手段がある。この中でも、脱塩率増大のためには、
通常上記(1)項の手段が最も即効性がある。
There are other means such as Among these, in order to increase the desalination rate,
Usually, the measures in item (1) above are the most immediately effective.

しかしこれはランニングコストの増大に直結し、好まし
くない。また、上記OiD、Gψ項に33いては、超微
粒子の分散性の問題がある。すなわち粉体粒子間には、
一般にファンデアワールス等の粒子間引力が鋤き、粒子
同士が凝縮しやすく、超微粒子になると殆どの場合、粒
子は141−では存在し得ず、中−粒子ずなわち1次粒
子は2次粒子と言われる粒子集合体を形成している。こ
の凝集の度合は、粉体粒子が微細になればなる稈大とな
り、例えばタルクの微粉末においては、その粉体粒子侵
と凝集度合との関係は第7図に示すごとく、粒子径が5
μm以下になる附近からその凝集度合は幾何級数的に増
大する。一般には1μm以下の粉体粒子を中−粒子分散
さゼることは極めて難しいと言われており、いわゆる超
微粒子粉体を中−粒子分散させるためには、かなりの分
散エネルギーが必要であることはいうまでもない。
However, this directly leads to an increase in running costs, which is undesirable. Furthermore, regarding the above OiD and Gψ terms, there is a problem in the dispersibility of ultrafine particles. In other words, between the powder particles,
In general, Van der Waals and other interparticle attractions are created and particles tend to condense together, and in most cases when they become ultrafine particles, particles cannot exist at 141-, and medium-sized particles, that is, primary particles, are secondary particles. They form particle aggregates called particles. The degree of agglomeration increases as the powder particles become finer. For example, in the case of fine talc powder, the relationship between the powder particle invasion and the degree of aggregation is as shown in Figure 7.
The degree of aggregation increases exponentially from the point where it becomes less than μm. It is generally said that it is extremely difficult to disperse powder particles of 1 μm or less into medium-sized particles, and a considerable amount of dispersion energy is required to disperse so-called ultra-fine powders into medium-sized particles. Needless to say.

ここで、lI3微粒子粉体の単一粒子への分散に要する
エネルギーをε(J/ Wt−S)とすると、そのεと
粉体噴射のノズル孔径do(fRIn)おJ:び所要噴
射空気流Qo  (ρ/1in)、そのときの噴射速度
V(m/5ec)には、次の関係があり、(I)式を満
足づるεを選定することにより、単一粉体粒子の発生が
可能である。
Here, if the energy required to disperse lI3 fine powder into a single particle is ε (J/Wt-S), then ε, powder injection nozzle hole diameter do (fRIn), J: and required injection air flow Qo (ρ/1in) and the injection speed V (m/5ec) at that time have the following relationship, and by selecting ε that satisfies equation (I), it is possible to generate single powder particles. It is.

32.3ε  ≦1・・自・・(I) ε= 2.7x10’ Qo ’ /da ’−−−・
(If )V=Qa x103 /15πdo 2−−
− (II[)すなわち、(I)式を満足するごときエ
ネルギーεを与えるべく、do 、Qoを選定すれば、
凝集性の高い超微粒子粉体の場合でも、はぼ1lj−−
粒子になることが知られている。
32.3ε ≦1...self...(I) ε= 2.7x10'Qo'/da'----
(If)V=Qax103/15πdo 2−-
- (II[) That is, if do and Qo are selected to give energy ε that satisfies equation (I), then
Even in the case of highly cohesive ultrafine powder, the
known to form particles.

本発明は、燃焼排ガスの脱塩処理において、上記(ti
)、 GiD項に膿目し、かつ特に微粒子状脱塩剤の単
一粒子分散を実現して、脱塩効率を向上させ、上記のご
とき従来技術の問題点を解決しようとするものである。
The present invention provides the above (ti
), which aims to solve the problems of the prior art as described above by improving the desalting efficiency by realizing single-particle dispersion of a particulate desalting agent and in particular by realizing a single particle dispersion of a particulate desalting agent.

問題点を解決するための手段 上記のごとき問題点を解決するために、本発明の燃焼排
ガスの脱塩方法は、燃焼排ガス中へ、温度150℃〜1
000℃で微粒子粉末状脱塩剤を高速分散ノズルを用い
て高速気流により噴射することを特徴とするものである
Means for Solving the Problems In order to solve the above-mentioned problems, the method for desalinating combustion exhaust gas of the present invention provides a method for desalinating combustion exhaust gas at a temperature of 150°C to 1°C.
The method is characterized in that a fine particle powder desalting agent is injected with a high-speed air stream using a high-speed dispersion nozzle at 000°C.

作用 本発明では、超微粒子粉体としたカルシウム系またはマ
グネシウム系化合物などの脱塩剤を、高速分散ノズルを
用いて高速気流により、温度150℃〜1000℃の燃
焼(Iガス中へ噴射して、それによって分散エネルギー
を与え単一粒子状に分散して、極めて大きな反応表面積
を確保するとともに、反応最適雰囲気温度で反応させる
ことにより、反応を活性化して、非常に高いIICΩ除
去率が得られる。
Function In the present invention, a desalting agent such as a calcium-based or magnesium-based compound in the form of ultrafine powder is combusted (injected into I gas) at a temperature of 150°C to 1000°C using a high-speed airflow using a high-speed dispersion nozzle. , thereby providing dispersion energy and dispersing it into single particles to ensure an extremely large reaction surface area, and by allowing the reaction to occur at the optimum reaction temperature, the reaction is activated and a very high IICΩ removal rate can be obtained. .

実施例 まず、本発明の実施に用いる装置について説明する。第
1図は、本発明を適用し得るようにしたごみ焼W炉の一
例を示すものである。焼XIJ炉本体1内でごみ(D)
が燃焼し、発生する排ガスは煙道2を経てガス冷fJJ
Jバ3で冷IJ後、電気集U■4で集I/Jされ、適用
器5を経て煙突6から外部へ排出される。38は冷却水
噴射ノズルである。焼却炉木杯1内の燃焼部1aに高速
分散ノズル7A。
Embodiment First, an apparatus used to carry out the present invention will be described. FIG. 1 shows an example of a waste incineration furnace to which the present invention can be applied. Garbage inside the XIJ furnace body 1 (D)
is burned, and the generated exhaust gas passes through flue 2 to the gas cooling fJJ
After being subjected to cold IJ at the J bar 3, it is collected at the electric collector U4, passed through the applicator 5, and is discharged to the outside from the chimney 6. 38 is a cooling water injection nozzle. A high-speed dispersion nozzle 7A is installed in the combustion section 1a in the incinerator wooden cup 1.

7Bが配設され、又電気集塵器4の上流側′!j!道2
内に高速分散ノズル7Cが配設されている。高速分散ノ
ズル7A、7Bと7Cに、それぞれ脱塩剤粉体供給槽8
と9から吹込ブロワ10により、それぞれの箇所の排ガ
ス温度(たとえば燃焼部1aニア00℃〜1000℃、
電気集塵器4上流側煙道:150℃〜400℃)に適応
した脱塩剤[燃焼部のノズル7A、7BにはCaC(8
、電気集塵器上流側煙道のノズル7CにはCa(Oft
)2]が超微粒子状で供給され、噴出する。高速分散ノ
ズル7A、7Bおよび7Cは、′;XS2〜71図に例
示するごとき配置で取付けられている。たとえば第2図
では、4個のノズル7の先端が、煙道2内の排ガスの進
行方向に直角な横断面を仮りに4等分した、各区分のほ
ぼ中央に相当する箇所に位@するごとく、それぞれ挿入
され、かつ各ノズルの先端には、噴流を水平方向へ円形
に哨射し得るよう複数のノズル孔が設けられている。第
3図では、煙道2等の設置箇所の大きさに応じて、排ガ
スの進行方向に直角な横断面のほぼ中央に1個のノズル
7が配置され、ノズルの先端には第2図の場合と同様の
多数のノズル孔が設けられている。第4図は、たとえば
広い断面積の煙道2あるいは燃焼部1a等において、対
向する側壁にそれぞれ複数個の単一孔ノズル7を、排ガ
スの進行方向に直角な方向に噴射し得るように配列した
例である。上記第2図〜第4図で例示した配置で高速分
散ノズル7を設置することにより、脱塩剤が排ガスの流
れに対し、直角方向に均等に噴射され、排ガスと十字流
となって、均一に両者が混合される。また上記のごとく
配設した脱塩剤の高速分散ノズル7において、ノズル孔
径do(ml、噴射速度V (m/sec )および所
要噴射空気流Qo  ([/lin )を上記式(1)
〜(f[[)を満足げる値に設定して噴射することが、
超微粒子状の脱塩剤を1li−粒子状に分散し、反応表
面積を増大して、脱塩効率を向上させる上で帰めて好ま
しい。
7B is arranged, and also on the upstream side of the electrostatic precipitator 4'! j! road 2
A high-speed dispersion nozzle 7C is disposed inside. High-speed dispersion nozzles 7A, 7B and 7C each have a desalting agent powder supply tank 8.
From 9 to 9, the exhaust gas temperature at each location (for example, 00°C to 1000°C near the combustion section 1a,
Electrostatic precipitator 4 upstream flue: 150°C to 400°C) desalination agent [CaC (8
, the nozzle 7C of the flue on the upstream side of the electrostatic precipitator
)2] is supplied in the form of ultrafine particles and ejected. The high-speed dispersion nozzles 7A, 7B, and 7C are installed in the arrangement shown in FIGS. For example, in Fig. 2, the tips of the four nozzles 7 are located approximately at the center of each section where the cross section perpendicular to the direction of travel of the exhaust gas in the flue 2 is divided into four equal parts. Each nozzle is inserted as shown in FIG. In Fig. 3, one nozzle 7 is arranged approximately in the center of the cross section perpendicular to the direction of movement of the exhaust gas, depending on the size of the installation location of the flue 2, etc., and the tip of the nozzle is as shown in Fig. 2. A large number of nozzle holes are provided as in the case. FIG. 4 shows a plurality of single-hole nozzles 7 arranged on opposing side walls of a flue 2 or a combustion section 1a having a large cross-sectional area, for example, so as to inject exhaust gas in a direction perpendicular to the traveling direction of the exhaust gas. This is an example. By installing the high-speed dispersion nozzle 7 in the arrangement illustrated in Figs. 2 to 4 above, the desalting agent is evenly injected in a direction perpendicular to the flow of exhaust gas, forming a cross flow with the exhaust gas, and uniformly Both are mixed. In addition, in the high-speed dispersion nozzle 7 for the desalting agent arranged as described above, the nozzle hole diameter do (ml), the injection speed V (m/sec), and the required injection air flow Qo ([/lin) are expressed by the above formula (1).
~(Setting f[[) to a satisfactory value and injecting
It is preferable to disperse the desalting agent in the form of ultrafine particles in the form of 1li-particles to increase the reaction surface area and improve the desalting efficiency.

次に、上記第1図に示された焼却炉における脱塩処理の
実施例を示す。
Next, an example of desalination treatment in the incinerator shown in FIG. 1 will be described.

実施例1:脱塩剤としてCa(Oll)2超微粒子粉末
(平均粒径1.7μm)を用い、第3図のごとく配置し
た孔径6闇の高速分散ノズル7Cにより、噴射流速10
0〜180TrL/SeCで、排ガス温度が200℃〜
260℃の電気集塵器4の上流側eJ?!において、C
a(011)2/ 211cj2当量1ヒを1.2.3
Jljよび4と変えて噴射して、fm塩処理を行なった
Example 1: Ca(Oll)2 ultrafine powder (average particle size 1.7 μm) was used as a desalting agent, and a jet flow rate of 10
0-180TrL/SeC, exhaust gas temperature 200℃~
Upstream eJ of electrostatic precipitator 4 at 260°C? ! In, C
a(011)2/211cj2 equivalent 1hi 1.2.3
The fm salt treatment was carried out by injecting with Jlj and 4 instead.

比較例1として、単一噴射ノズルを用い、噴射流速20
〜40m / sacとするほかは、前記具体例と全く
同様の条件で脱塩処理を行なった。
As Comparative Example 1, a single injection nozzle was used and the injection flow rate was 20
Desalination treatment was carried out under the same conditions as in the above specific example except that the speed was set at ~40 m/sac.

上記実施例I J3よび比較例1について得られたCa
(叶)2/2tlCρ当量比とIIcΩ除去率との関係
を第5図に示ヅ。
Ca obtained for the above Example I J3 and Comparative Example 1
(Ko) The relationship between the 2/2tlCρ equivalence ratio and the IIcΩ removal rate is shown in Figure 5.

実施例2:14図のごとく配置した孔径6顛の高速分散
ノズル(A)群および(8)群により、噴射流速150
〜200m/secで、脱塩剤としてCaCO3超微粒
子粉末(平均粒径1.7μm)を用い、排ガス温度が7
00℃〜1000℃の燃焼部1aにJ3いて、CaC0
+ / 211cj2当吊比を1.2.36よび4と変
えて噴射して、脱塩処理を行なった。
Example 2: A jet flow rate of 150
~200 m/sec, using CaCO3 ultrafine powder (average particle size 1.7 μm) as a desalting agent, and exhaust gas temperature of 7.
J3 is in the combustion section 1a at 00°C to 1000°C, and CaC0
+/211cj2 The desalination treatment was carried out by injecting with different suspension ratios of 1.2.36 and 4.

比較例2として、単一噴射ノズルを用い噴射流速20〜
40m / SeCとするほかは、前記具体例と全く同
様の条件で脱塩処理を行なった。
As Comparative Example 2, a single injection nozzle was used and the injection flow rate was 20~
Desalting treatment was carried out under exactly the same conditions as in the above specific example except that the density was 40 m/SeC.

上記実施例2および比較例2について青られたCaCo
x / 2 HC!2当量比をICΩ除去率との関係を
第6図に示す。
CaCo blued for Example 2 and Comparative Example 2 above
x/2 HC! The relationship between the 2-equivalent ratio and the ICΩ removal rate is shown in FIG.

第5図および第6図から明らかなごとく、比較例ではC
a(Oll)2/ 211CU 、 CaCox / 
2 IICRの当量比が3でIICAIC率6370程
度であるのに対して、本発明の実施例では75〜90%
と極めてすぐれていた。
As is clear from FIGS. 5 and 6, in the comparative example, C
a(Oll)2/ 211CU, CaCox/
2 The equivalent ratio of IICR is 3 and the IICAIC rate is about 6370, whereas in the examples of the present invention it is 75 to 90%.
It was extremely excellent.

発明の効果 本発明により、燃焼排ガス中のIIcρを、少い脱塩剤
使用量で、極めて効率よく除去することができる。
Effects of the Invention According to the present invention, IIcρ in the combustion exhaust gas can be removed extremely efficiently with a small amount of desalination agent used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(よ本発明の適用しつる燃焼装置の一例を示す慨
略楢成図、第2図は本発明で用いる高速分散ノズルの配
置の一例を示し、(イ)は縦断面図、(ロ)は横断面図
、第3図は同じく高速分散ノズルの配置の他の例を示し
、(イ)は縦断面図、(ロ)は横断面図、第4図は同じ
く高速分散ノズルの配置を示し、(イ)は横断面図、(
ロ)は側面図、第5図は実施例1におけるCa(011
)2/211CQ当吊比とIICρICΩ除去率係を示
すグラフ、第6図は実施例2におけるCaC0:+ /
 211cRの当量比とIIcΩ除去率との関係を示す
グラフ、第7図は微粒子の粒径と凝集度との関係を示ず
グラフである。 1・・・焼n1炉木休、2・・・煙道、3・・・ガス冷
却塔、4・・・電気集塵器、7.7A、78.7G・・
・高速分散ノズル、8,9・・・脱塩剤粉体供給槽、1
0・・・吹込ブロワ 代理人   森  本  義  弘 第3図 (イ)     、?        (0)第4図 7          l    Z N 徘
FIG. 1 (a) is a schematic diagram showing an example of a vine combustion apparatus to which the present invention is applied; FIG. 2 is an example of the arrangement of high-speed dispersion nozzles used in the present invention; B) is a cross-sectional view, FIG. 3 is another example of the arrangement of the high-speed dispersion nozzle, (A) is a longitudinal cross-section, (B) is a cross-sectional view, and FIG. 4 is the same arrangement of the high-speed dispersion nozzle. , (a) is a cross-sectional view, (
B) is a side view, and FIG. 5 is a side view of Ca(011
) 2/211CQ balance ratio and graph showing IICρICΩ removal rate ratio, Figure 6 shows CaC0:+/ in Example 2.
FIG. 7 is a graph showing the relationship between the equivalent ratio of 211cR and the IIcΩ removal rate, and FIG. 7 is a graph showing the relationship between the particle size of fine particles and the degree of aggregation. 1... Baking n1 furnace rest, 2... Flue, 3... Gas cooling tower, 4... Electrostatic precipitator, 7.7A, 78.7G...
・High-speed dispersion nozzle, 8, 9... Desalting agent powder supply tank, 1
0...Blowing blower agent Yoshihiro Morimoto Figure 3 (a) ,? (0) Figure 4 7 l Z N Wandering

Claims (1)

【特許請求の範囲】[Claims] 1、燃焼排ガス中へ、温度150℃〜1000℃で微粒
子粉末状脱塩剤を高速分散ノズルを用いて高速気流によ
り噴射することを特徴とする燃焼排ガスの脱塩方法。
1. A method for desalinating combustion exhaust gas, which comprises injecting a fine powder desalination agent into the combustion exhaust gas at a temperature of 150°C to 1000°C using a high-speed dispersion nozzle with a high-speed air stream.
JP61051088A 1986-03-07 1986-03-07 Method for desalting combustion exhaust gas Pending JPS62210035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61051088A JPS62210035A (en) 1986-03-07 1986-03-07 Method for desalting combustion exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61051088A JPS62210035A (en) 1986-03-07 1986-03-07 Method for desalting combustion exhaust gas

Publications (1)

Publication Number Publication Date
JPS62210035A true JPS62210035A (en) 1987-09-16

Family

ID=12877061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61051088A Pending JPS62210035A (en) 1986-03-07 1986-03-07 Method for desalting combustion exhaust gas

Country Status (1)

Country Link
JP (1) JPS62210035A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021535993A (en) * 2018-09-14 2021-12-23 ミンプラス ベスローテン フェンノトシャップ How to operate an incinerator equipped with a device that captures ash mixed in flue gas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5581726A (en) * 1978-12-18 1980-06-20 Mitsubishi Heavy Ind Ltd Removing apparatus for harmful gas
JPS6025531A (en) * 1983-07-21 1985-02-08 Hitachi Zosen Corp Dry purification of exhaust gas
JPS60216832A (en) * 1984-04-10 1985-10-30 Hitachi Zosen Corp Purification of waste gas by dry lime process
JPS6135827A (en) * 1984-07-27 1986-02-20 Hitachi Zosen Corp Purification of exhaust gas by dry lime method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5581726A (en) * 1978-12-18 1980-06-20 Mitsubishi Heavy Ind Ltd Removing apparatus for harmful gas
JPS6025531A (en) * 1983-07-21 1985-02-08 Hitachi Zosen Corp Dry purification of exhaust gas
JPS60216832A (en) * 1984-04-10 1985-10-30 Hitachi Zosen Corp Purification of waste gas by dry lime process
JPS6135827A (en) * 1984-07-27 1986-02-20 Hitachi Zosen Corp Purification of exhaust gas by dry lime method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021535993A (en) * 2018-09-14 2021-12-23 ミンプラス ベスローテン フェンノトシャップ How to operate an incinerator equipped with a device that captures ash mixed in flue gas

Similar Documents

Publication Publication Date Title
CA2568292C (en) Method and system for removing mercury from combustion gas
US4319890A (en) Dry impact capture of aerosol particulates
US4272499A (en) Process and apparatus for the removal of particulate matter and reactive or water soluble gases from carrier gases
US7429365B2 (en) Method and system for removing mercury from combustion gas
US5382418A (en) Process for removing pollutants from combustion exhaust gases
US3497194A (en) Apparatus for the removal of dust from converter gases
JPH06205933A (en) Reactor and method for reducing release of sulfur oxide in combustion process
US5000098A (en) Combustion apparatus
EP0200695B1 (en) Contact reactor
JPS62210035A (en) Method for desalting combustion exhaust gas
US7086535B2 (en) Particle separation/purification system, diffuser and related methods
US4963330A (en) Method and apparatus for treating contaminated gases
US3894563A (en) Venturi apparatus
US4144051A (en) Process for thermally treating solids with high-oxygen gases, especially for pyrometallurgical applications
US9227157B2 (en) Spray dryer absorption apparatus with flat-bottomed chamber
JP2752107B2 (en) Combustion device for particulate fuel
JPS59125742A (en) Heat treating equipment of powder or granular
US5643344A (en) Dry scrubber with forced recirculation
US5354364A (en) High efficiency advanced dry scrubber
JP2003500631A (en) Method for cooling gas flow in melting furnace
JPS62106823A (en) Method for desulfurization in furnace
JPH06262059A (en) Dispersion nozzle, method for feeding solid fine particle by using the same, and preparation of spherical particle
JPS59125741A (en) Heat treating equipment of powder or granular
JP2739749B2 (en) Burner for slurry fuel
JPS631105B2 (en)