JP2017104855A - Production method for dry-type exhaust gas clarifier - Google Patents

Production method for dry-type exhaust gas clarifier Download PDF

Info

Publication number
JP2017104855A
JP2017104855A JP2016227328A JP2016227328A JP2017104855A JP 2017104855 A JP2017104855 A JP 2017104855A JP 2016227328 A JP2016227328 A JP 2016227328A JP 2016227328 A JP2016227328 A JP 2016227328A JP 2017104855 A JP2017104855 A JP 2017104855A
Authority
JP
Japan
Prior art keywords
raw material
mass
flue gas
parts
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016227328A
Other languages
Japanese (ja)
Inventor
瀬戸 弘
Hiroshi Seto
弘 瀬戸
耀二 中島
Teruji Nakajima
耀二 中島
寛司 山岡
Kanji Yamaoka
寛司 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SETEKKU KK
Original Assignee
SETEKKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SETEKKU KK filed Critical SETEKKU KK
Publication of JP2017104855A publication Critical patent/JP2017104855A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/83Solid phase processes with moving reactants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type

Abstract

PROBLEM TO BE SOLVED: To provide a production method for an exhaust gas clarifier that, in an exhaust gas desulfurizer, improves performance of a desulfurizing agent and reduces a cost necessary for production of the desulfurizing agent.SOLUTION: Provided is a production method for an exhaust gas clarifier, comprising: a first raw material mixing step 6 where, when a total amount of solid raw materials is set at 100 pts.mass, 40 to 70 pts.mass of calcium hydroxide or 30 to 53 pts.mass of calcium oxide, and 30 to 10 pts.mass of silica fume are mixed by stirring as a first raw material 1; a second raw material mixing step 8 where, as a second raw material 3, 30 to 20 pts.mass of an exhaust gas clarifier used for exhaust gas desulfurization is kneaded with total 100 pts.mass of the first raw material, together with 40 to 60 pts.mass of water added when calcium hydroxide was used in the first raw material mixing step or together with 52 to 73 pts.mass of water added when calcium oxide was used in the first raw material mixing step; and a granulation step where the kneaded product is subjected to granulation 9 and curing 10, followed by drying 11 to produce granular clarifier with a water content of 10% or less.SELECTED DRAWING: Figure 1

Description

本発明は、石炭、重油、及び各種廃棄物の燃焼による排煙ガスから硫黄酸化物(SOx)を除去するための粒状体、または粉状体の排煙浄化剤の製造方法に関するものである。また、本発明によって製造される浄化剤は塩化水素(HCl)の除去機能をも有するものである。 The present invention relates to a method for producing a particulate or powdery flue gas purifying agent for removing sulfur oxide (SOx) from flue gas generated by combustion of coal, heavy oil, and various wastes. Further, the purifier produced by the present invention has a function of removing hydrogen chloride (HCl).

排煙中の硫黄酸化物(SOx)を除去するための排煙脱硫装置は、湿式石灰石膏法(脱硫剤に炭酸カルシウムを使用)、又は湿式水マグ法(脱硫剤に水酸化マグネシウムを使用)が広く普及している。一方、脱硫反応に水を使用せず、排煙温度を低下させない乾式脱硫は望まれているが、乾式脱硫で実用化している活性炭脱硫法、及び石炭灰利用脱硫法はコスト高のため使用実績は少なく、石炭灰利用脱硫は国内で一例のみである。   The flue gas desulfurization equipment for removing sulfur oxide (SOx) in the flue gas is a wet lime gypsum method (calcium carbonate is used as a desulfurization agent) or a wet water mug method (magnesium hydroxide is used as a desulfurization agent). Is widely spread. On the other hand, dry desulfurization that does not use water in the desulfurization reaction and does not lower the flue gas temperature is desired, but the activated carbon desulfurization method and the coal ash desulfurization method that have been put to practical use in dry desulfurization are used due to high costs. Coal ash desulfurization is only one example in Japan.

石炭灰と水酸化カルシウムを主原料とした脱硫剤(特許文献1,2,3)による石炭灰利用乾式脱硫方式は1990年代に北海道電力株式会社によって開発され、同社の火力発電所にて実用化された。当該方式は産業廃棄物である石炭灰のリサイクル利用として循環型社会構成に有望な技術であるが、コスト要因から普及していなかった。主原料に石炭灰と石灰を利用するのは石炭灰に含有するシリカ(二酸化ケイ素)と石灰(カルシウム)によりカルシウムシリケートを生成させ、固気反応を容易にすることから排煙ガス中のSOxの吸収性が向上する。 Coal ash-based dry desulfurization system using coal ash and calcium hydroxide as main raw materials (Patent Documents 1, 2, and 3) was developed by Hokkaido Electric Power Co., Inc. in the 1990s and put into practical use at the company's thermal power plant. It was done. This method is a promising technology for recycling-oriented society structure for the recycling use of coal ash, which is industrial waste, but it has not spread due to cost factors. Coal ash and lime are used as the main raw material because the silica (silicon dioxide) and lime (calcium) contained in the coal ash produce calcium silicate, facilitating the solid-gas reaction. Absorbability is improved.

特許第2686292号Japanese Patent No. 2686292 特許第3409285号Japanese Patent No. 3409285 特許第4259633号Japanese Patent No. 4259633

産業廃棄物のリサイクル利用の一環として、石炭灰利用の脱硫剤を使用した排煙乾式脱硫方式は、社会的ニーズに適合した方式であるが、普及しない要因は当該方式のコスト高によるものであった。当該方式は石炭灰利用脱硫剤の製造と、その脱硫剤により排煙ガス中の硫黄酸化物を除去する脱硫塔から構成される。コストの低減には脱硫剤製造設備、及び脱硫塔設備の設備費低減が課題である。 As part of industrial waste recycling, the flue gas dry desulfurization method using coal ash-based desulfurization agent is a method that meets social needs, but the reason why it does not spread is due to the high cost of the method. It was. The system consists of the manufacture of a coal ash desulfurization agent and a desulfurization tower that removes sulfur oxides in the flue gas using the desulfurization agent. In order to reduce the cost, it is necessary to reduce the equipment costs of the desulfurization agent manufacturing equipment and the desulfurization tower equipment.

乾式脱硫において脱硫剤に水酸化カルシウムを煙道に吹込み、排煙ガスと接触させ、さらに水酸化カルシウムをバグフイルター表面に付着させて脱流・脱塩反応させる方式もあるが、バグフイルターに付着した脱硫剤はバグフイルターの粉塵付着による圧力損失抑制のため、間欠的に逆洗・払落しが必要となり、結果的に粉体状浄化剤の利用率は半減する。一方で、浄化剤を粒状として、排煙を移動層粒子と固気反応させる方式においては、移動層容積を大型化しなければならないことから、粒子の固気反応速度が課題になる。   In dry desulfurization, there is a method in which calcium hydroxide is blown into the flue as a desulfurizing agent and brought into contact with flue gas, and calcium hydroxide is attached to the surface of the bag filter to cause desulfurization and desalination reaction. The adhering desulfurizing agent needs to be backwashed and removed intermittently in order to suppress the pressure loss due to the dust adhering to the bag filter. As a result, the utilization rate of the powder cleaner is halved. On the other hand, in the system in which the purifier is granular and the smoke is solid-gas reacted with the moving bed particles, the moving bed volume must be increased, so the solid-gas reaction speed of the particles becomes an issue.

本発明は、このような事情に鑑みてなされたもので、排煙浄化剤の性能向上と排煙浄化剤製造に要するコストの低減を目的としている。なお、前述した石炭灰利用乾式脱硫における脱硫剤製造と脱硫塔のうち、脱硫塔(脱硫装置)については別途特許出願(特願2015−230001、乾式排煙移動層浄化装置)を行っていることから、本発明は排煙浄化剤の製造方法に関するものである。   This invention is made | formed in view of such a situation, and aims at the reduction of the cost which the performance improvement of a flue gas purifying agent and a flue gas purifying agent manufacture require. Of the desulfurization agent production and desulfurization towers in the above-described dry desulfurization utilizing coal ash, a patent application (Japanese Patent Application No. 2015-230001, dry flue gas moving bed purification apparatus) has been filed separately for the desulfurization tower (desulfurization apparatus). Thus, the present invention relates to a method for producing a flue gas purifying agent.

請求項1に記載の発明は、前記課題の解決策として、「排煙浄化剤の製造において固体原料の総量を100質量部とした場合に、第1原料は水酸化カルシウム40〜70質量部、または酸化カルシウム30〜53質量部、及びシリカヒューム30〜10質量部として攪拌混合する第1原料混合工程と、
第2原料として排煙脱硫に使用した当該排煙浄化剤30〜20質量部を、
前記第1原料総量100質量部に対して、前記第1原料混合工程にて水酸化カルシウムを使用した場合に水40〜60質量部を加えて混練、又は前記第1原料混合工程にて酸化カルシウムを使用した場合に水52〜73質量部を加えて混練する第2原料混合工程と、
前記混練物を造粒硬化後、乾燥し含水率10%以下の粒状浄化剤を製造する粒状化工程と、を具備することを特徴とする排煙浄化剤の製造方法。」としている。
The invention according to claim 1 is a solution to the above-mentioned problem: “When the total amount of solid raw materials is 100 parts by mass in the manufacture of the flue gas purifying agent, the first raw material is 40 to 70 parts by mass of calcium hydroxide, Alternatively, a first raw material mixing step of stirring and mixing as 30 to 53 parts by mass of calcium oxide and 30 to 10 parts by mass of silica fume,
30-20 parts by mass of the flue gas purification agent used for flue gas desulfurization as the second raw material,
When calcium hydroxide is used in the first raw material mixing step with respect to 100 parts by mass of the first raw material, 40-60 parts by weight of water is added and kneaded, or calcium oxide is used in the first raw material mixing step. A second raw material mixing step in which 52 to 73 parts by mass of water is added and kneaded,
And a granulating step for producing a granular purification agent having a moisture content of 10% or less after granulation and curing of the kneaded product, and a method for producing a flue gas purification agent. "

請求項1の発明によれば、脱硫剤性能を向上させるためカルシウムシリケートの表面構造や細孔径分布が固気反応を容易にする形態をとることから、排煙ガス中のSOxの吸収性が向上する。そのためには高含水率で蒸気養生するのが望ましい。従来、造粒後の蒸気養生方法では粒子間付着防止のため含水率に制約を受けるが、造粒前の蒸気養生方法においては高含水率での養生が可能となることから、脱硫剤性能の向上に有効である。 According to the invention of claim 1, since the surface structure and pore size distribution of the calcium silicate take a form that facilitates a solid-gas reaction in order to improve the performance of the desulfurizing agent, the absorption of SOx in the flue gas is improved. To do. For this purpose, steam curing with a high water content is desirable. Conventionally, the steam curing method after granulation is limited by the moisture content to prevent adhesion between particles, but the steam curing method before granulation allows curing at a high moisture content, so that It is effective for improvement.

請求項2に記載の発明は「請求項1における第1原料混合工程において、第1原料に水を加えて混錬し水蒸気雰囲気中で養生した後、乾燥し、含水率10%未満とした粉体浄化剤を製造することを特徴とする排煙浄化剤の製造方法。」である。粉体浄化剤は移動層粒子間に介在させて脱硫反応させるものであり粒状脱硫剤よりローコストで製造可能である。   The invention according to claim 2 is “powder in which the water content is less than 10% in the first raw material mixing step according to claim 1 after adding water to the first raw material, kneading and curing in a steam atmosphere. “A method for producing a flue gas purifying agent, comprising producing a body purifying agent.” The powder cleaning agent is desulfurized by interposing between the moving bed particles and can be produced at a lower cost than the granular desulfurizing agent.

請求項3に記載の発明は「請求項1項の第1原料中のシリカヒュームに代替として非晶質性二酸化珪素40質量部以上を含有する石炭灰、珪藻土、ベントナイト、天然ゼオライト(中国産クリノプチロライトなど)などの鉱物原料を使用したことを特徴とする請求項1,2に記載の排煙浄化剤の製造方法。」である。   The invention described in claim 3 is “coal ash, diatomaceous earth, bentonite, natural zeolite containing 40 parts by mass or more of amorphous silicon dioxide instead of silica fume in the first raw material of claim 1 (Chinese clino The method for producing a flue gas purifying agent according to claim 1, wherein a mineral raw material such as ptylolite is used.

請求項4に記載の発明は「請求項1項の第2原料中の使用済み脱硫剤の代替として、セメント5〜15質量部を使用したことを特徴とする請求項1,2に記載の排煙浄化剤の製造方法。」である。   The invention as set forth in claim 4 is characterized in that, as an alternative to the used desulfurizing agent in the second raw material of claim 1, 5-15 parts by mass of cement is used. "A method for producing a smoke purifier."

本発明はカルシウムとシリカによる乾式脱硫剤で製造コストの低減と脱硫性能の向上を図ることを可能とするものであり、本発明者は別途行っている特許出願(特願2015−230001〜「乾式排煙移動層浄化装置」)に適用することにより経済的で高性能な乾式排煙脱硫装置を実現することができる。
乾式排煙脱硫は、湿式排煙脱硫と比較して排煙温度を低下させずに済むとともに、用水を多量に使用しないなどの長所を有している。一方、本発明では乾式脱硫剤の製造原料に水酸化カルシウム、または酸化カルシウムを使用することから脱硫剤コストは湿式脱硫の脱硫剤である炭酸カルシウムよりコスト高になるが、湿式脱流における用水費、廃水処理費が不要となり、本発明の脱硫剤を使用する脱硫塔では集塵性を有することから、電気集塵機は不要となり、また排煙ガス温度の低下対策としてのガス・ガスヒーターが不要となり、トータルコストとしてはローコストになる。
The present invention is a dry desulfurization agent composed of calcium and silica, which can reduce the production cost and improve the desulfurization performance. The present inventor has separately filed patent applications (Japanese Patent Application Nos. An economical and high-performance dry-type flue gas desulfurization device can be realized by applying it to the flue gas moving bed purification device ").
Compared with wet flue gas desulfurization, dry flue gas desulfurization does not require lowering of the flue gas temperature and has advantages such as not using a large amount of water. On the other hand, in the present invention, since calcium hydroxide or calcium oxide is used as a raw material for producing a dry desulfurization agent, the cost of the desulfurization agent is higher than that of calcium carbonate, which is a desulfurization agent for wet desulfurization. This eliminates the need for wastewater treatment costs, and the desulfurization tower using the desulfurization agent of the present invention has dust collecting properties. Therefore, an electric dust collector is not required, and a gas / gas heater is not required as a measure for reducing the exhaust gas temperature. The total cost is low.

本発明の乾式排煙浄化剤の製造方法を示した図であり、粒状排煙浄化剤は実線の径路による。実線の径路の一部より分岐した点線の径路は粉状排煙浄化剤の製造径路である。It is the figure which showed the manufacturing method of the dry type flue gas purification agent of this invention, and a granular flue gas purification agent is based on the path | route of a continuous line. A dotted line branched from a part of the solid line is a production path for the powdered flue gas purifier. 乾式脱硫剤の性能評価試験装置を示した図であり、具体的には試験用模擬ガスによる評価試験装置の概要を示している。It is the figure which showed the performance evaluation test apparatus of the dry-type desulfurization agent, and has shown the outline | summary of the evaluation test apparatus by the simulation gas for a test specifically ,. 脱硫剤のSO2吸収特性を示したグラフであり、曲線Iは粒状石炭灰利用脱硫剤(粒径3〜2mm)による場合、曲線IIは粉状石炭灰利用脱硫剤(粒径0.1mm以下)による場合、曲線IIIはシリカヒューム利用粉状脱硫剤(粒径0.1mm以下)による場合である。It is the graph which showed the SO2 absorption characteristic of a desulfurization agent, and when curve I is based on a granular coal ash utilization desulfurization agent (particle diameter 3-2 mm), curve II is based on a powdered coal ash utilization desulfurization agent (particle diameter of 0.1 mm or less) In this case, curve III is the case with a silica fume-based powder desulfurization agent (particle size of 0.1 mm or less).

本発明の主たる特徴は排煙浄化剤に含有するCa成分の利用率と脱硫効率の向上、及び製造コストの低減である。本発明の浄化剤の製造方法を図1により説明する。
なお用語尾末の符号は後述する説明図全体に共通の符号であり参考のために付記する。なお、以下では本発明の浄化剤を排煙中の硫黄分を除去する脱硫剤として製造・使用する場合について説明する。
本発明による浄化剤原料(脱硫剤)はつぎの4種類により構成される。
A:水酸化カルシウム、または酸化カルシウム(1)
B:シリカヒューム(2)
C:使用済み脱硫剤(本発明の脱硫剤が排煙脱硫に使用されSOxを吸収した剤)(3)
D:未使用脱硫剤(本発明による脱硫剤)(4)
The main features of the present invention are the utilization rate and desulfurization efficiency of the Ca component contained in the flue gas purifying agent, and the reduction of manufacturing costs. The manufacturing method of the purifier of this invention is demonstrated with reference to FIG.
In addition, the code | symbol of a term tail is a code | symbol common to the whole explanatory drawing mentioned later, and is added for reference. In the following, the case where the purification agent of the present invention is produced and used as a desulfurization agent for removing sulfur content in flue gas will be described.
The purifier raw material (desulfurizing agent) according to the present invention comprises the following four types.
A: Calcium hydroxide or calcium oxide (1)
B: Silica fume (2)
C: Used desulfurization agent (agent in which the desulfurization agent of the present invention is used for flue gas desulfurization and absorbs SOx) (3)
D: Unused desulfurization agent (desulfurization agent according to the present invention) (4)

(第1原料混合工程)
以上の原料においてA+B+C=W を100質量部(質量部、以下省略)とした場合において、第1原料A:酸化カルシウム(1)30〜53を使用し、B;シリカヒューム(2)30〜10とし、水(5)は(A+B+C)×(0.52〜0.73)を加え混練機(6)で攪拌混合し蒸気養生槽(7)にて蒸気雰囲気にて温度90〜120℃で0.5時間以上養生する。
(First raw material mixing step)
In the above raw materials, when A + B + C = W is 100 parts by mass (mass part, hereinafter omitted), the first raw material A: calcium oxide (1) 30 to 53 is used, B; silica fume (2 ) 30 to 10 and water (5) is added with (A + B + C) × (0.52 to 0.73), stirred and mixed in a kneader (6), and heated in a steam atmosphere in a steam curing tank (7) at a temperature of 90 to Cured for more than 0.5 hours at 120 ℃.

(第2原料混合工程、造粒化工程又は粉状化工程)
養生後、第2原料のC:使用済み脱硫剤(3)30〜20を加え、さらに混練物の造粒に最適な水分率とするため浄化剤の製造過程で磨耗・破砕により発生する製品所要粒径未満の脱硫剤を分級機(12)で篩い分けしてD:粉状脱硫剤(4)に使用する。造粒後、硬化過程を経て、含有水分は10%以下に乾燥して浄化剤とする。
(Second raw material mixing step, granulating step or powdering step)
After curing, the second raw material C: used desulfurization agent (3) 30 to 20 is added, and the product required due to wear and crushing in the manufacturing process of the purifier is necessary to make the moisture content optimal for granulation of the kneaded product The desulfurization agent having a particle size of less than the particle size is sieved with a classifier (12) and used as D: powder desulfurization agent (4). After granulation, after a curing process, the moisture content is dried to 10% or less to obtain a cleaning agent.

上記のように製造された排煙浄化剤の使用方法は以下の通りである。図1に示されるように、本発明で製造された浄化剤は移動層脱硫塔(20)に搬送し移動層粒子供給弁(21a)より移動層内に充填され、排煙ガスと十字流を形成して固気接触により脱硫し、浄化剤は移動層粒子排出弁(21b)より使用済み脱硫剤として排出し、その一部は粉砕機(22)により粉砕されて、浄化剤製造の原料ホッパーC:使用済み脱硫剤(3)に搬送され、使用済み脱硫剤は含有する硫酸カルシウム(CaSO4石膏)は造粒結合剤として利用される。 The method of using the flue gas purifier produced as described above is as follows. As shown in FIG. 1, the purifier produced in the present invention is transported to the moving bed desulfurization tower (20) and filled into the moving bed from the moving bed particle supply valve (21a), and the flue gas and cross flow are Formed and desulfurized by solid-gas contact, the purifying agent is discharged as a used desulfurizing agent from the moving bed particle discharge valve (21b), a part of which is pulverized by the pulverizer (22), and the raw material hopper for producing the purifying agent C: It is conveyed to the used desulfurization agent (3), and the used desulfurization agent contains calcium sulfate (CaSO 4 gypsum) as a granulating binder.

図1の浄化剤製造工程において水蒸気養生後、点線の径路で浄化剤乾燥・粉砕工程を経て粉体浄化剤とし、移動層脱硫塔(20)には脱流性能を有しない移動層粒子を移動層内を循環させ、移動層粒子間に粉状浄化剤を介在させて脱流反応させる。脱流塔内で、SOxを吸収した粉状浄化剤は使用済み脱硫剤として系外に搬出する。   In the purification agent production process of Fig. 1, after steam curing, it is converted into powder purification agent through the drying and pulverization process of the purification agent along the dotted line, and the moving bed particles that do not have deflowing performance are moved to the moving bed desulfurization tower (20). It circulates in the bed, and a desulfurization reaction is caused by interposing a powdery cleaner between the moving bed particles. In the flow-off tower, the powdery cleaner that has absorbed SOx is carried out of the system as a used desulfurizer.

以上の浄化剤製造工程のうち、第1原料混合工程において、原料B:(2)は非晶質シリカの供給源としてシリカヒュームを利用したが、石炭灰、珪藻土、べントナイト、天然ゼオライト(中国産クリノプチロライトなど)などの天然鉱物を利用できる。 Of the above purification agent manufacturing processes, in the first raw material mixing process, raw material B: (2) used silica fume as a source of amorphous silica, but coal ash, diatomaceous earth, bentonite, natural zeolite (China) Natural minerals such as clinoptilolite from Japan) can be used.

脱硫剤製造の試作例として、請求項2によるものとし、第1原料A:水酸化カルシウム(1)40%、B:シリカヒューム(2)30%、混練水(5)を加えて混練し、蒸気養生時間を0.5時間以上として粉状脱硫剤を製造した。図2に示す脱硫剤性能評価試験装置により脱硫剤の性能評価試験を実施し、脱硫剤として市販消石灰、石炭灰利用脱流剤の、粒状体と粉状体と脱流性能を比較した。試験機に供給する模擬ガスはO2、CO2、SO2、NO、N2、H2Oより構成し、反応管は電熱ヒーターによりガス温度140℃に設定しSO2吸収特性を測定した。その測定結果を図3に示す。 As a trial example for producing a desulfurizing agent, the first raw material A: 40% calcium hydroxide (1), B: 30% silica fume (2), and kneading water (5) are added and kneaded. The powder desulfurization agent was produced with a steam curing time of 0.5 hours or more. The performance evaluation test of the desulfurizing agent was performed using the desulfurizing agent performance evaluation test apparatus shown in FIG. 2, and the desulfurization performance of the commercially available slaked lime and coal ash-based desulfurization agent was compared as the desulfurization agent. The simulated gas supplied to the test machine was composed of O 2 , CO 2 , SO 2 , NO, N 2 , and H 2 O, and the reaction tube was set to a gas temperature of 140 ° C. with an electric heater and the SO 2 absorption characteristics were measured. The measurement results are shown in FIG.

図3の曲線Iは石炭灰脱硫剤の粒状体(3mmΦ)(原料には消石灰、石炭灰、使用済み脱硫剤を使用)、曲線IIは石炭灰脱硫剤の粉体状(粒径0.1mm以下、原料成分は曲線Iと同一)、曲線IIIは石灰、シリカヒュームを原料とした粉体状脱硫剤のSOx吸収特性である。図3において、SO2入口濃度(1700ppm)と各曲線の間に挟まれた面積がSO2吸収量に対応するので、IIIのシリカヒューム利用粉状脱硫剤はI、IIに比較して脱硫時の反応性が優れており、脱流反応における反応容積の縮小化が可能になる。 Curve I in Fig. 3 shows granular particles of coal ash desulfurization agent (3mmΦ) (slaked lime, coal ash and used desulfurization agent are used as raw materials), and curve II shows powder form of coal ash desulfurization agent (particle size 0.1mm or less) The raw material component is the same as curve I), and curve III is the SOx absorption characteristic of the powdered desulfurization agent using lime and silica fume as raw materials. In FIG. 3, since the SO 2 inlet concentration (1700 ppm) and the area sandwiched between the curves correspond to the SO 2 absorption, the silica fume-based powder desulfurization agent of III is more desulfurized than I and II. This makes it possible to reduce the reaction volume in the deflow reaction.

本発明による浄化剤のシリカ原料供給源としてシリカヒュームは太陽光発電の進展により金属シリコン製造炉の煤塵として多量に発生するが、その有効利用に資するものである。
わが国の中小規模の排煙脱硫では水マグ法が普及しているが当該方式は水酸化マグネシウム水溶液を排煙ガスと接触させ、脱硫反応後は硫酸マグネシウムとして沿岸より海洋投棄され、地球環境上では好ましい対策とはなっていない。また、近海沿岸を航行する内航船の小型貨物船による排煙ガス中のSOxは規制されていないことから、問題となっている。以上を背景として、脱硫剤を集中生産し、分散した排煙ガス発生源の脱硫には本発明は最適な方式となる。
さらに、本発明は中国大陸など内陸地域での水資源不足の状況下において、乾式脱硫のニーズに適切に対応し得ること、また本発明の脱硫剤を使用する移動層脱硫塔は集塵機能を有することから排煙中の脱硫と同時に煤塵対策に有効な手段になり得ることなど、地球環境に寄与するところ大なるものと考える。
Silica fume as a silica raw material supply source of the purifier according to the present invention is generated in large quantities as dust in a metal silicon production furnace due to the progress of photovoltaic power generation, which contributes to its effective use.
The water mug method is widely used in small and medium-scale flue gas desulfurization in Japan, but in this method, magnesium hydroxide aqueous solution is brought into contact with flue gas, and after desulfurization reaction, magnesium sulfate is dumped offshore from the coast. It is not a favorable measure. In addition, SOx in flue gas from a small cargo ship of a coastal ship navigating the near sea coast is a problem because it is not regulated. Against the background described above, the present invention is an optimum method for desulfurization of a dehumidified gas generation source by producing a desulfurization agent in a concentrated manner.
Furthermore, the present invention can appropriately respond to the needs for dry desulfurization in the situation of shortage of water resources in inland areas such as the mainland of China, and the moving bed desulfurization tower using the desulfurization agent of the present invention has a dust collecting function. Therefore, it can be an effective means for dust control at the same time as desulfurization in flue gas.

1 : 水酸化カルシウム、または酸化カルシウム
1a : Ca原料用計量機
2 : シリカヒューム
2a : シリカヒューム用計量機
3 : 使用済み脱硫剤(UDA)
3a: UDA用計量機
4 : 粉体脱硫剤
4a: 粉体脱硫剤用計量機
5 : 混練水
5a : 混練用流量計
5b : 水分調整用流量計
6 : 混練機
7 : 水蒸気養生装置
8 : 水分調整混練機
9 : 造粒機
10: 硬化装置
11: 乾燥機
12 ; 分級機
13: 脱硫剤サイロ
20: 脱硫塔
20a: 排ガス流入口
20b: 排ガス流出口
21a: 脱硫剤供給弁
21b: 脱硫剤排出弁
22 : 粉砕機


1: Calcium hydroxide or calcium oxide 1a: Ca raw material meter 2: Silica fume 2a: Silica fume meter 3: Used desulfurization agent (UDA)
3a: UDA meter 4: Powder desulfurizer 4a: Powder desulfurizer meter 5: Kneading water 5a: Kneading flow meter 5b: Moisture adjusting flow meter 6: Kneading machine 7: Steam curing device 8: Water Adjustment kneader 9: Granulator 10: Curing device 11: Dryer 12; Classifier 13: Desulfurization agent silo
20: Desulfurization tower 20a: Exhaust gas inlet 20b: Exhaust gas outlet 21a: Desulfurization agent supply valve
21b: Desulfurization agent discharge valve 22: Crusher


Claims (4)

排煙浄化剤の製造において固体原料の総量を100質量部とした場合に、第1原料は水酸化カルシウム40〜70質量部、または酸化カルシウム30〜53質量部、及びシリカヒューム30〜10質量部として攪拌混合する第1原料混合工程と、
第2原料として排煙脱硫に使用した当該排煙浄化剤30〜20質量部を、
前記第1原料総量100質量部に対して、前記第1原料混合工程にて水酸化カルシウムを使用した場合に水40〜60質量部を加えて混練、又は前記第1原料混合工程にて酸化カルシウムを使用した場合に水52〜73質量部を加えて混練する第2原料混合工程と、
前記混練物を造粒硬化後、乾燥し含水率10%以下の粒状浄化剤を製造する粒状化工程と、を具備することを特徴とする排煙浄化剤の製造方法。
When the total amount of the solid raw material is 100 parts by mass in the production of the flue gas purifying agent, the first raw material is 40 to 70 parts by mass of calcium hydroxide, 30 to 53 parts by mass of calcium oxide, and 30 to 10 parts by mass of silica fume. A first raw material mixing step of stirring and mixing as
30-20 parts by mass of the flue gas purification agent used for flue gas desulfurization as the second raw material,
When calcium hydroxide is used in the first raw material mixing step with respect to 100 parts by mass of the first raw material, 40-60 parts by weight of water is added and kneaded, or calcium oxide is used in the first raw material mixing step. A second raw material mixing step in which 52 to 73 parts by mass of water is added and kneaded,
And a granulating step for producing a granular purification agent having a moisture content of 10% or less after granulation and curing of the kneaded product, and a method for producing a flue gas purification agent.
請求項1における第1原料混合工程において、第1原料に水を加えて混錬し水蒸気雰囲気中で養生した後、乾燥し、含水率10%未満とした粉体浄化剤を製造することを特徴とする排煙浄化剤の製造方法。   In the first raw material mixing step according to claim 1, water is added to the first raw material, kneaded and cured in a steam atmosphere, and then dried to produce a powder purifier having a water content of less than 10%. A method for producing a flue gas purifying agent. 請求項1項の第1原料中のシリカヒュームに代替として非晶質性二酸化珪素40質量部以上を含有する石炭灰、珪藻土、ベントナイト、天然ゼオライト(中国産クリノプチロライトなど)などの鉱物原料を使用したことを特徴とする請求項1、2に記載の排煙浄化剤の製造方法。   2. Mineral raw materials such as coal ash, diatomaceous earth, bentonite, natural zeolite (such as Chinese clinoptilolite) containing 40 parts by mass or more of amorphous silicon dioxide as an alternative to silica fume in the first raw material of claim 1 The method for producing a flue gas purifying agent according to claim 1, wherein 請求項1項の第2原料中の使用済み脱硫剤の代替として、セメント5〜15質量部を使用したことを特徴とする請求項1、2に記載の排煙浄化剤の製造方法。   The method for producing a flue gas purifying agent according to claim 1 or 2, wherein 5 to 15 parts by mass of cement is used as an alternative to the used desulfurizing agent in the second raw material of claim 1.
JP2016227328A 2015-11-27 2016-11-22 Production method for dry-type exhaust gas clarifier Pending JP2017104855A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015232419 2015-11-27
JP2015232419 2015-11-27

Publications (1)

Publication Number Publication Date
JP2017104855A true JP2017104855A (en) 2017-06-15

Family

ID=58764173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016227328A Pending JP2017104855A (en) 2015-11-27 2016-11-22 Production method for dry-type exhaust gas clarifier

Country Status (2)

Country Link
JP (1) JP2017104855A (en)
WO (1) WO2017090262A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111330424B (en) * 2020-01-20 2020-11-27 北京宝聚能源科技有限公司 Flue gas desulfurizing agent and preparation method and application thereof
CN111056817A (en) * 2020-02-25 2020-04-24 和县明生环保材料有限责任公司 Preparation method of environment-friendly coal gangue-based hollow brick
CN116081771A (en) * 2022-12-09 2023-05-09 大唐东北电力试验研究院有限公司 Desulfurization wastewater integrated treatment agent and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194833A (en) * 1989-01-24 1990-08-01 Hokkaido Electric Power Co Inc:The Production of dry desulfurizing agent for waste gas
JPH06198126A (en) * 1992-09-16 1994-07-19 Hokkaido Electric Power Co Inc:The Method for treating exhaust gas
JP2002320819A (en) * 2001-04-25 2002-11-05 Babcock Hitachi Kk Method for treating waste gas
JP2015085303A (en) * 2013-11-01 2015-05-07 栗田工業株式会社 Treatment method of acidic exhaust gas and exhaust gas treatment agent
JP2015178049A (en) * 2014-03-18 2015-10-08 栗田工業株式会社 Acidic waste gas-treating agent and method for preventing elution of heavy metals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194833A (en) * 1989-01-24 1990-08-01 Hokkaido Electric Power Co Inc:The Production of dry desulfurizing agent for waste gas
JPH06198126A (en) * 1992-09-16 1994-07-19 Hokkaido Electric Power Co Inc:The Method for treating exhaust gas
JP2002320819A (en) * 2001-04-25 2002-11-05 Babcock Hitachi Kk Method for treating waste gas
JP2015085303A (en) * 2013-11-01 2015-05-07 栗田工業株式会社 Treatment method of acidic exhaust gas and exhaust gas treatment agent
JP2015178049A (en) * 2014-03-18 2015-10-08 栗田工業株式会社 Acidic waste gas-treating agent and method for preventing elution of heavy metals

Also Published As

Publication number Publication date
WO2017090262A1 (en) 2017-06-01

Similar Documents

Publication Publication Date Title
KR101986270B1 (en) Flue gas scrubbing
US9387434B2 (en) Mercury sorbents
CN1962034A (en) Method and apparatus for removing sulfur, nitrate and mercury simultaneously from boiler flue gas
WO2015187780A1 (en) Treatment method for coal fly ash
WO2015187778A1 (en) Stabilization of at least one heavy metal contained in a sodic fly ash using a water-soluble source of silicate and a material containing calcium and/or magnesium
JP2017104855A (en) Production method for dry-type exhaust gas clarifier
CN103463960A (en) Desulfurization and purification method of flue gas desulfurization and purification system
CN102718194A (en) System for manufacturing sulphur by utilizing carbon and sulfur-containing flue gas
WO2021193476A1 (en) Device and method pertaining to combustion exhaust gas purification treatment
CN202594785U (en) System using carbon materials and sulfur-containing smoke to manufacture sulphur
JP3999995B2 (en) Dry smoke purification system
CA2990081A1 (en) Method for removing mercury from flue gases of incineration plants
WO2015187781A2 (en) Stabilization of sodic fly ash of type f using calcium-based material
Lau et al. Rice husk ash sorbent doped with copper for simultaneous removal of SO2 and NO: Optimization study
JPH0248289B2 (en)
CN103055656B (en) Method for performing mercury removal treatment on boiler flue gas by utilizing coal ash-based mercury removal adsorbent
Karatepe et al. Preparation of fly ash-Ca (OH) 2 sorbents by pressure hydration for SO2 removal
CN202893179U (en) Novel flue gas dry-method conditioning desulphurization integrated device for glass melting furnace
JP2006102561A (en) Carbon dioxide absorption material and carbon dioxide reaction device
JP6137643B2 (en) Dry smoke moving bed purification device
JP7074943B1 (en) Powder manufacturing method
CN209885903U (en) Baking soda storage grinding and conveying device for hazardous waste incineration line
Zhang et al. Preparation and characterization of a new desulfurizer and its performance on removal of SO2
JP7358405B2 (en) Adsorbent composition for electrostatic precipitators
JPH02152520A (en) Dry treatment of exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180118

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180118

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180810