JPH02152520A - Dry treatment of exhaust gas - Google Patents

Dry treatment of exhaust gas

Info

Publication number
JPH02152520A
JPH02152520A JP63306025A JP30602588A JPH02152520A JP H02152520 A JPH02152520 A JP H02152520A JP 63306025 A JP63306025 A JP 63306025A JP 30602588 A JP30602588 A JP 30602588A JP H02152520 A JPH02152520 A JP H02152520A
Authority
JP
Japan
Prior art keywords
slurry
absorbent
exhaust gas
conduit
dry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63306025A
Other languages
Japanese (ja)
Other versions
JPH0655257B2 (en
Inventor
Hiroshi Fujita
浩 藤田
Atsushi Tatani
多谷 淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63306025A priority Critical patent/JPH0655257B2/en
Publication of JPH02152520A publication Critical patent/JPH02152520A/en
Publication of JPH0655257B2 publication Critical patent/JPH0655257B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To enable desulfurization and denitration by grinding an Si source and a Ca source added to water with a mill and by aging the resulting slurry to prepare an absorbent slurry. CONSTITUTION:In a slurrying stage 101, an Si compd. and a Ca compd. are added to water and ground to <=5mum average grain size with a mill. The resulting slurry is sent to a stage 106 for preparing an absorbent slurry through a feed path 105. In the stage 106, the slurry is aged by heating and stirring to partially modify the Si compd. and to produce a Ca-contg. gelled substance. An absorbent slurry obtd. by the aging is sent to a slurry pump 109 through a duct 108 and transferred through a slurry duct 110. Air is fed from a gas feed path 111 under high pressure, mixed with the slurry from the duct 110 and sprayed as fine particles from a spray nozzle 114 in a drying chamber 113.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、燃焼排ガスから硫黄酸化物(以下SOxと称
する)と窒素酸化物(以下NOxと称する)を乾式で除
去する乾式の排ガス処理方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a dry exhaust gas treatment method for dry removing sulfur oxides (hereinafter referred to as SOx) and nitrogen oxides (hereinafter referred to as NOx) from combustion exhaust gas. Regarding.

〔従来の技術〕[Conventional technology]

従来技術(%開昭58−76127号公報)を第2図に
より説明する。1は供給物調整系、2はアルカリ土類金
属化合物を主成分とする吸収剤の供給路、3は導水管で
あり、前記吸収剤の水性懸濁液の供給路13から懸濁液
が乾燥室4に噴霧される。
The prior art (Patent Publication No. 58-76127) will be explained with reference to FIG. 1 is a feed adjustment system, 2 is a supply path for an absorbent containing an alkaline earth metal compound as a main component, and 3 is a water pipe, through which the suspension is dried from the supply path 13 for the aqueous suspension of the absorbent. The chamber 4 is sprayed.

この乾燥室4には硫黄酸化物(SOX)、と窒素酸化物
(NoX)を含有する熱廃ガスが導管11より導かれる
。乾燥室4では吸収剤の噴霧小滴が乾燥して粉末となり
、同時に廃ガス中の硫黄酸化物の大半が吸収されて、亜
硫酸塩および硫酸塩に変わる。前記粉末の一部は被処理
廃ガス中に存在するフライアラシスの一部と共に乾燥室
4の底部に設けた導管5を介して回収される。
A hot waste gas containing sulfur oxides (SOX) and nitrogen oxides (NoX) is introduced into the drying chamber 4 through a conduit 11. In the drying chamber 4, the atomized droplets of absorbent are dried into a powder and at the same time most of the sulfur oxides in the waste gas are absorbed and converted into sulphites and sulphates. A portion of the powder is recovered via a conduit 5 provided at the bottom of the drying chamber 4 together with a portion of the fly oxide present in the waste gas to be treated.

一方前記粉末の残部およびフライアラシスの残部を随伴
する廃ガスは導管6を介して粒子分離装置7に導かれる
。この粒子分離装置7はp布フィルターバッグハウスや
電気集塵器が用いられる。
On the other hand, the waste gas entrained by the remainder of the powder and the remainder of the fly lysis is led via conduit 6 to a particle separator 7 . As this particle separator 7, a p cloth filter bag house or an electric precipitator is used.

吸収剤の量はこの段階で廃ガスの硫黄酸化物を完全に除
去するものではなく、粒子分離装置7にて窒素酸化物の
除去を行なうために、窒素酸化物濃度のめ未満に調整さ
れる。また乾燥室4で蒸発する水量は粒子分離装置7で
の廃ガスと粒子の温度が85〜145℃になるように調
節される。
The amount of the absorbent is adjusted to less than the nitrogen oxide concentration at this stage so that the sulfur oxides in the waste gas are not completely removed, but the nitrogen oxides are removed in the particle separator 7. . Further, the amount of water evaporated in the drying chamber 4 is adjusted so that the temperature of the waste gas and particles in the particle separator 7 is 85 to 145°C.

分離装置7から窒素酸化物および硫黄酸化物の含量が低
下した廃ガスが導管8を介して煙突(図示せず)K導か
れる。粒子分離装置7で廃ガスと分離された粒子は乾燥
室4での噴霧乾燥・吸収反応によって生成した物質とフ
ライアッシュからなり導管9を介して取り出される。導
管5及び9を介して回収された粒子の一部又は全量が導
管10から系外へ排出される。粒子の残部は導管12を
介して供給物調整系IK循環され吸収剤に再利用される
The waste gas depleted in nitrogen oxides and sulfur oxides from the separator 7 is led via a conduit 8 to a chimney (not shown) K. The particles separated from the waste gas in the particle separator 7 are composed of fly ash and a substance produced by the spray drying/absorption reaction in the drying chamber 4, and are taken out through the conduit 9. Part or all of the particles collected via conduits 5 and 9 are discharged out of the system via conduit 10. The remainder of the particles are recycled to the feed conditioning system IK via conduit 12 and recycled to the absorbent.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来方法は次のような欠点を有している。 The above conventional method has the following drawbacks.

(1)  吸収反応生成物の粒子に亜硫酸塩を含む。こ
の亜硫酸塩は不安定であり、CODの原因となるので、
粒子の廃棄に支障をきたす。
(1) The particles of the absorption reaction product contain sulfite. This sulfite is unstable and causes COD, so
This will impede the disposal of particles.

(2)  吸収剤(水酸化カルシウム)の懸濁液を噴霧
してSOxの吸収性能を高めようとしても、吸収剤の反
応性に限界があって、乾燥室でSOXとNOxとが十分
に除去出来ない。
(2) Even if an attempt is made to improve SOx absorption performance by spraying a suspension of an absorbent (calcium hydroxide), there is a limit to the reactivity of the absorbent, and it is not possible to sufficiently remove SOx and NOx in a drying room. Can not.

また、SOxとNOxとの反応性を高めるために懸濁液
の噴霧量を多くする必要があり、その結果排ガス温度が
下がって、乾燥室壁面及び粒子分離装置内のスケール付
着が多くなるばかりでなく、乾燥室及び粒子分離装置で
の腐食が発生し問題となる。
Additionally, in order to increase the reactivity between SOx and NOx, it is necessary to increase the amount of suspension sprayed, which results in a drop in exhaust gas temperature and increases scale adhesion on the drying chamber walls and inside the particle separator. Corrosion occurs in the drying chamber and particle separator, which poses a problem.

一方乾式の同時脱硫・脱硝方法としては活性炭吸着/N
H3接触還元法、酸化銅吸着還元法の研究が見られるが
、これらの方法は再生工程が複雑であり、吸収剤が高価
で処理費用が高い等問題がある。また、これらの方法は
、固定床及び移動床で用いられるため、石炭焚きのごと
く高ダストの排ガスを処理するためには、反応器での圧
損上昇防止対策等解決しなければならない問題点が多い
On the other hand, as a dry method for simultaneous desulfurization and denitrification, activated carbon adsorption/N
Research has been done on the H3 catalytic reduction method and the copper oxide adsorption reduction method, but these methods have problems such as complicated regeneration steps, expensive absorbents, and high processing costs. Additionally, since these methods are used in fixed beds and moving beds, there are many problems that must be resolved, such as measures to prevent pressure loss from increasing in the reactor, in order to treat high-dust exhaust gases such as those from coal-fired reactors. .

本発明は上記問題点を解消し、SOxとNOxを同時処
理することができ、乾式乗じん工程における脱硫・脱硝
を可能とし、吸収剤の原料には廃棄物を再利用すること
ができ、また吸収装置における圧力損失の上昇を回避す
ることができ、さらには、Soxを吸収した生成物中に
は亜硫酸塩を含まず、実質的に硫酸塩に転換しているた
めに、廃棄を容易にした、乾式排ガス処理方法を提供し
ようとするものである。
The present invention solves the above problems, can simultaneously process SOx and NOx, enables desulfurization and denitration in the dry dusting process, allows waste to be reused as raw material for absorbent, and It is possible to avoid an increase in pressure drop in the absorption device, and furthermore, the product after absorbing Sox does not contain sulfite and is substantially converted to sulfate, making it easy to dispose of it. , which attempts to provide a dry exhaust gas treatment method.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は硫黄酸化物、窒素酸化物及び酸素を含有する排
ガス中に吸収剤スラリーをI]Jt霧して硫黄酸化物及
び窒素酸化物を吸収した粉粒体を乾式乗じん工程で捕集
する乾式排ガス処理方法において、ケイ素源とカルシウ
ム源及び水を加えて、湿式ミル粉砕してスラリーとする
工程と、該スラリーを攪拌しながら養生し吸収剤スラリ
ーを調製する工程と、該吸収剤スラリーを上記排ガス中
に噴霧する工程とを含むことを特徴とする乾式排ガス処
理方法である。
In the present invention, an absorbent slurry is atomized into exhaust gas containing sulfur oxides, nitrogen oxides, and oxygen, and granules that have absorbed sulfur oxides and nitrogen oxides are collected in a dry dusting process. The dry exhaust gas treatment method includes a step of adding a silicon source, a calcium source, and water and grinding with a wet mill to form a slurry, a step of curing the slurry while stirring to prepare an absorbent slurry, and a step of preparing the absorbent slurry. This is a dry exhaust gas treatment method characterized by including a step of spraying into the exhaust gas.

〔作用〕[Effect]

本発明では、金属精錬・製鉄鉱滓、酸洗廃液処理スラッ
ジ、フライアッシュ。カオリン、ベントナイト、珪砂、
ケイソウ士、ゼオライト、各種ケイ酸ガラスなどから選
ばれた少なくとも1つのSi源とCaCO3,Ca、(
OH)2. Cab、 CaSO4・2H20゜CaS
O3・L/2H20,CaCl2などから選ばれた少な
(とも1つのCa化合物を、水を加えて湿式ミル粉砕し
てスラリーとし、これをアルカリ性の水性スラリーを攪
拌しながら養生することにより非晶質のケイ酸カルシウ
ムからなる吸収剤を得る。
In the present invention, metal smelting/iron slag, pickling waste liquid treatment sludge, and fly ash. Kaolin, bentonite, silica sand,
At least one Si source selected from diatomite, zeolite, various silicate glasses, etc. and CaCO3, Ca, (
OH)2. Cab, CaSO4・2H20゜CaS
A small amount of Ca compound selected from O3・L/2H20, CaCl2, etc. is wet-milled with water to form a slurry, and this is cured while stirring the alkaline aqueous slurry to form an amorphous form. An absorbent consisting of calcium silicate is obtained.

この吸収剤は、優れたSOxとNOxの吸収剤であるば
かりでなく、亜硫酸塩を吸収と同時に硫酸塩に転化させ
る作用を有するため、排ガス処理生成物に亜硫酸塩が含
まれない。また、本発明による吸収剤は高活性を有する
ため噴霧するスラリー量も少なくてすみ、排ガス温度の
低下も少なく、装置の腐食の発生も少ない。一方排ガス
中にスラリーを噴霧乾燥固化し、その乾燥固形物を後流
の乾式乗じん装置でダストと共に捕集するため、固定床
および移動床の欠点である反応器でのダストによる圧損
上昇がない。
This absorbent is not only an excellent SOx and NOx absorbent, but also has the effect of absorbing sulfite and converting it to sulfate at the same time, so that the exhaust gas treatment product does not contain sulfite. Furthermore, since the absorbent according to the present invention has high activity, the amount of slurry to be sprayed is small, the exhaust gas temperature is less likely to decrease, and equipment corrosion is less likely to occur. On the other hand, since the slurry is spray-dried and solidified into the exhaust gas, and the dried solids are collected together with the dust in the downstream dry multiplication device, there is no increase in pressure drop due to dust in the reactor, which is a drawback of fixed bed and moving bed. .

〔実施例〕〔Example〕

第1図によって本発明の一実施例を説明する。 An embodiment of the present invention will be explained with reference to FIG.

101は、鉱滓9 フライアッシエ、粘土等の81化合
物を含む粉粒固形物を供給路102かも、またCaC0
a * Ca(OH)2− CaOr C’aSO4a
 2H201CaS03−1/2 H2O、CamQ2
等のCa化合物を供給路103から供給すると共に、 
後記する排ガスよ2 から捕集された粉粒体を導管122へ供給し、更に導水
管104から水を加えて湿式ミル粉砕して吸収剤原料を
混合してスラリーとする工程である。
101 is a supply path 102 for supplying granular solids containing 81 compounds such as slag 9, fly assier, clay, etc.;
a*Ca(OH)2- CaOr C'aSO4a
2H201CaS03-1/2 H2O, CamQ2
While supplying Ca compounds such as from the supply path 103,
This is a step in which powder and granules collected from exhaust gas (described later) are supplied to a conduit 122, water is added through a water conduit 104, and wet milling is performed to mix absorbent raw materials to form a slurry.

ここでは、原料であるSl源の比表面積を増大させ、C
a化合物との反応性を向上させるため、平均粒径5μm
以下、好ましくは、1μm程度に粉砕されるのが望まし
い。
Here, the specific surface area of the Sl source, which is the raw material, is increased, and C
In order to improve the reactivity with compound a, the average particle size is 5 μm.
Hereinafter, it is preferable that the powder be pulverized to about 1 μm.

混合粉砕されたスラリーな供給路105を介して吸収剤
のスラリー調整工程106へ送る。同工程106では熱
源供給路107からのスチーム等の加熱媒体によってス
ラリーを80℃〜150℃好ましくは105℃〜120
℃で数時間〜数十時間好ましくは10〜30時間加熱す
ると共に、図示しない装置によって攪拌することによっ
て養生し、$1化合物が一部変質しCaを含むゲル状の
物質を生成させる。この養生によるスラリー調整工程に
おいては、 SOxや、NOXを含まない雰囲気に保持
することが重要である。即ち、比較的緩慢な反応である
所のゲル状物質形成中にアルカリ成分がSOxやNOx
で消費されないようにすることが重要である。このゲル
状物質は比表面積が80〜150m”/Hにもなり、養
生前の粉粒固形物の5〜20 mVgに比べ極めて多孔
質の物質に変質するため、 SOxとNOxの吸収能は
従来方法では達成し得なかった高活性を示すこととなる
The mixed and pulverized slurry is sent to an absorbent slurry preparation step 106 via a supply path 105. In the same step 106, the slurry is heated to 80°C to 150°C, preferably 105°C to 120°C, using a heating medium such as steam from the heat source supply path 107.
C. for several hours to several tens of hours, preferably 10 to 30 hours, and cured by stirring with a device not shown, whereby the $1 compound is partially denatured and a gel-like substance containing Ca is produced. In this slurry adjustment process by curing, it is important to maintain an atmosphere that does not contain SOx or NOx. That is, during the formation of a gel-like substance, which is a relatively slow reaction, alkaline components cause SOx and NOx.
It is important to ensure that it is not consumed. This gel-like material has a specific surface area of 80 to 150 m"/H, and changes into an extremely porous material compared to the 5 to 20 mVg of powder solids before curing, so its SOx and NOx absorption capacity is lower than that of the conventional This results in high activity that could not be achieved using other methods.

養生を終了した吸収剤は導管108を介してスラリーポ
ンプ109へ送られ、スラリー導管110で輸送される
。ガス供給路111からは、空気又はスチームあるいは
排ガスが1〜10 k&/i Gの高圧で供給され、ス
ラリー導管110からのスラリーと混合され導管117
を介して噴霧ノズル114から乾燥室113に微細粒子
として噴霧される。この乾燥室113には、SOxとN
Oxを含有する熱排ガス、又は、あらかじめNOxの大
部分が燃焼改善や別途設けた脱硝装置で取り除かれ若干
のNOxとSOxを含有する排ガスが熱廃ガス導管11
5より導かれる。この乾燥室113では、115から導
入される排ガスにより噴霧スラリーが乾燥すると共にS
OxとNOxが同時に除去される。
After curing, the absorbent is sent to a slurry pump 109 via a conduit 108 and transported by a slurry conduit 110. Air, steam, or exhaust gas is supplied from the gas supply line 111 at a high pressure of 1 to 10 k&/i G, and mixed with the slurry from the slurry conduit 110 to the conduit 117.
It is sprayed as fine particles from the spray nozzle 114 into the drying chamber 113 via the spray nozzle 114. This drying chamber 113 contains SOx and N.
The thermal exhaust gas containing Ox, or the exhaust gas containing some NOx and SOx after most of the NOx has been removed by combustion improvement or a separately provided denitrification device, is transferred to the thermal exhaust gas conduit 11.
It is derived from 5. In this drying chamber 113, the spray slurry is dried by the exhaust gas introduced from 115, and the S
Ox and NOx are removed simultaneously.

ここで、本発明における吸収剤は活性が良いので、吸収
後の吸収剤中には亜硫酸化合物は含まれず、全て硫酸化
合物にまで酸化されている。従来方法では、副生物とし
て回収される吸収済みの粉粒体に亜硫酸塩が含まれるた
め、これを廃棄するときに、副生物のCODが高く、し
かも不安定物質であるので投棄上の問題が避けられない
ものとなっていた。
Here, since the absorbent in the present invention has good activity, no sulfite compounds are contained in the absorbent after absorption, and all of the absorbent is oxidized to sulfuric compounds. In the conventional method, the absorbed powder collected as a by-product contains sulfites, so when disposing of this, the by-product has a high COD and is an unstable substance, which poses a problem in terms of disposal. It had become inevitable.

本実施例の吸収剤が高活性を示すのは、養生によるスラ
ー調整工程においてSi化合物とCa化合物の反応によ
り生成する比表面積の高いゲル状物質を含有するためで
あり、この高活性なゲル状物質を多く含むことは、スラ
リー噴霧量も少なくて済み、また排ガス温度の低下も小
さく、乾燥室壁面へのスケール付着も少なくすることが
できる・本実施例における湿式ミル粉砕してスラリーと
する工程101は、吸収剤原料をここで微細化し、Si
源とCa源の反応性を高め、高活性なゲル状物質の含有
量を高める役割を持つ。
The reason why the absorbent of this example shows high activity is that it contains a gel-like substance with a high specific surface area that is produced by the reaction of Si compounds and Ca compounds in the slurry adjustment process by curing. Containing a large amount of the substance means that the amount of slurry sprayed is small, the exhaust gas temperature decreases little, and scale adhesion to the drying chamber wall surface can be reduced. - Process of wet milling to form slurry in this example In No. 101, the absorbent raw material is made fine and Si
It has the role of increasing the reactivity between the Ca source and the Ca source, and increasing the content of highly active gel-like substances.

反応生成固形物の一部は、乾燥室113の底部に設けた
導管120を介して回収される。一方、前記反応生成固
形物の残部と未反応の吸収剤とフライアッシーを伴う排
ガスは導管116を介して乾式乗じん装置117に導か
れる。この装置117はP布フィルターメッグハウスが
用いられる。装置117内では、未反応の吸収剤が、乾
燥室113において残留したSOxとNOxと反応する
。装置117でNOxおよびSOxを除去した排ガスは
導管118を介して煙突(図示せず)から構成される装
置117で排ガスと分離された粉粒体は反応生成固形物
とフライアッシュと未反応の吸収剤から成り導管119
を介して取り出される。導管120及び119を介して
回収された粉粒体の一部又は全量が導管121から系外
へ排出される。粉粒体の残部は導管122を介して吸収
剤原料の湿式ミル粉砕によるスラリー化工程101に再
循環して、吸収剤の有効利用率を高め、新たに供給する
量を節減する。
A portion of the reaction product solids are recovered via a conduit 120 provided at the bottom of the drying chamber 113. On the other hand, the remainder of the reaction product solids, unreacted absorbent, and exhaust gas accompanied by fly assy are led to a dry dust multiplication device 117 via a conduit 116. This device 117 uses a P cloth filter Meghouse. In the device 117, unreacted absorbent reacts with the SOx and NOx remaining in the drying chamber 113. The exhaust gas from which NOx and SOx have been removed is passed through a conduit 118 in a device 117 that includes a chimney (not shown). A conduit 119 consisting of a
is retrieved via. A part or all of the powder collected through conduits 120 and 119 is discharged from the system through conduit 121. The remainder of the powder is recycled via conduit 122 to the wet milling slurry process 101 of the absorbent raw material to increase the effective utilization of the absorbent and reduce the amount of fresh feed.

(実験例1) 表−1に示す組成S1化合物に水を加え湿式ボールミル
で12〜24時間粉砕し、消石灰を10.20゜30、
40.50wtチ割合で添加し、水を加えて20〜25
チスラリーに調整した。 このスラリーを、オートクレ
ーブに仕込み、105℃で加時間攪拌機によって攪拌し
ながら養生を行い、吸収剤スラリー1〜4(Sl化合物
平均粒径15μ)及び5〜8(Sl化合物平均粒径1.
2μ)を得た。この吸収剤スラリーな110℃の乾燥器
にて12時間乾燥し、その後4〜5mφに成形して表−
2に示す活性評価条件でSOxとNOxの吸収除去性能
を測定した。その結果を表−3に示す。
(Experimental Example 1) Water was added to the composition S1 compound shown in Table 1, and the mixture was ground in a wet ball mill for 12 to 24 hours.
Add at a ratio of 40.50wt and add water to 20-25wt.
Adjusted to chisulary. This slurry was charged into an autoclave and cured at 105° C. while stirring with a stirrer for a period of time, and absorbent slurries 1 to 4 (Sl compound average particle size 15 μm) and 5 to 8 (Sl compound average particle size 1.5 μm) were prepared.
2μ) was obtained. This absorbent slurry was dried in a dryer at 110°C for 12 hours, and then formed into a size of 4 to 5 mφ.
The absorption and removal performance of SOx and NOx was measured under the activity evaluation conditions shown in 2. The results are shown in Table-3.

表−I Si化合物の組成 表−2活性評価条件 表−3 活性試験結果 なお、SO□、NO吸収量は、入口濃度に対して反応器
出口濃度が20%リークした時点までの吸収量として表
わした。また、吸収剤養生後における消石灰の残存率は
、吸収剤の養生前後におけるCa(OH)2のX線ピー
ク強度より求めた。
Table-I Si compound composition table-2 Activity evaluation conditions table-3 Activity test results Note that the SO□ and NO absorption amounts are expressed as the absorption amounts up to the time when the reactor outlet concentration leaks 20% of the inlet concentration. Ta. Further, the residual rate of slaked lime after curing of the absorbent was determined from the X-ray peak intensity of Ca(OH)2 before and after curing of the absorbent.

本実施例において、調製した吸収剤は、顕微鏡観察で8
1化合物粒子及び消石灰粒子とは全く形状の異なる多孔
質なゲル状物質に変質しており養生前の粉粒固形物の比
表面積5〜20m3’jに対し養生後は80〜150 
m’/gであった。
In this example, the prepared absorbent was found to have a
1 It has changed into a porous gel-like substance that has a completely different shape from compound particles and slaked lime particles, and the specific surface area of the powdered solid before curing is 5 to 20 m3'j, while after curing it is 80 to 150 m3'j.
m'/g.

また、粒径の細かいSl化合物を使用することにより、
消石灰との反応性が増しSl化合物の粒径1.2μmで
は、消石灰40チでもSlと完全に反応していることが
判った。
In addition, by using a Sl compound with a fine particle size,
It was found that the reactivity with slaked lime increased, and when the particle size of the Sl compound was 1.2 μm, even 40 grams of slaked lime completely reacted with Sl.

さらに、反応生成固形物を分析したところ、消石灰残存
率10%以下の吸収剤では亜硫酸化合物は検出されず、
硫酸化合物に全て酸化されていることを確認した。
Furthermore, when the reaction product solids were analyzed, sulfite compounds were not detected in absorbents with a slaked lime residual rate of 10% or less.
It was confirmed that everything was oxidized to sulfuric acid compounds.

なお、消石灰の配合割合が多いはとSO2,Noの吸収
量が多くなるが、養生後の吸収剤に未反応消石灰が多く
残存するほどCa利用率は悪くなり特策ではない。
It should be noted that a higher proportion of slaked lime will absorb more SO2 and No, but the more unreacted slaked lime remains in the absorbent after curing, the worse the Ca utilization rate will be, so this is not a special measure.

(実験例2) 上記表−1の81化合物Bに消石灰及び石膏を表−4に
示す割合で混合し、湿式ボールミルで冴時間粉砕した後
各々15〜20%スラリーに調整し、80〜150℃で
5〜30時間オートクレーブで攪拌機によって攪拌しな
がら養生を行い吸収剤スラリーを得た。この吸収剤を1
10℃で12時間乾燥し、実験例1と同様の方法でSO
xとNOxの吸収除去性能を測定した。その結果を表−
4に示す。
(Experiment Example 2) Mix slaked lime and gypsum in the proportions shown in Table 4 with 81 Compound B in Table 1 above, grind for a while in a wet ball mill, adjust to a 15-20% slurry of each, and hold the mixture at 80-150°C. The mixture was cured in an autoclave for 5 to 30 hours while being stirred with a stirrer to obtain an absorbent slurry. 1 of this absorbent
After drying at 10°C for 12 hours, SO
The absorption and removal performance of x and NOx was measured. Table the results.
4.

本実験例によると、吸収剤の活性は消石灰の配合量にも
よるが養生温度1時間によって消石灰の反応性が異なる
ことが判明した。消石灰20%での養生温度及び時間は
105〜120℃で、加時間程度が好ましい。温度が低
いと高活性なゲル状物質ができにくく、逆に高温にする
と、ゲル状物質とは別の比表面積の小さいケイ酸カルシ
ウム化合物が生成し活性も低下する。
According to this experimental example, it was found that although the activity of the absorbent depends on the amount of slaked lime mixed, the reactivity of slaked lime varies depending on the curing temperature for one hour. The curing temperature and time with 20% slaked lime are 105 to 120° C., preferably about a heating time. If the temperature is low, it is difficult to form a highly active gel-like substance, whereas if the temperature is high, a calcium silicate compound with a small specific surface area that is different from the gel-like substance is produced, and the activity decreases.

(実験例3) 実験例1及び2で調製した吸収剤スラリー6及び10を
スラリー濃度10 % K II整し、NOx1001
1%SO□600111+11. Co210%、)1
2010L残りN2(容積比率)からなる150℃の石
炭燃焼排ガスが流入する乾錬室に噴霧し、その乾燥固形
物の固気接触時間が1秒で排ガスと接触させたところ、
消石灰と当量のsO2が吸収されるまで出口排ガス中の
S02とNOxはそれぞれ50(9)以下に低下し続け
た。
(Experimental Example 3) Absorbent slurries 6 and 10 prepared in Experimental Examples 1 and 2 were adjusted to a slurry concentration of 10% KII, and NOx1001
1%SO□600111+11. Co210%,)1
When sprayed into a pyrolysis chamber into which 150°C coal combustion exhaust gas consisting of 2010L remaining N2 (volume ratio) flows, and the dry solids were brought into contact with the exhaust gas for a solid-gas contact time of 1 second,
S02 and NOx in the outlet exhaust gas continued to decrease to below 50(9), respectively, until sO2 equivalent to slaked lime was absorbed.

反応生成固形物を分析したところ、亜硫酸化合物は検出
されず、硫黄酸化物に全て酸化されていることを確認し
た。
When the solids produced by the reaction were analyzed, no sulfite compounds were detected, and it was confirmed that all of the solids had been oxidized to sulfur oxides.

本発明による方法においては、4〜5101φの吸収剤
を使用する固定床に比べ、小粒子の吸収剤スラリーを使
用するため、Ca利用率が高くなり、また吸収剤中に含
有する高活性なゲル状物質も多いため噴霧量も少なくて
済み、排ガス温度の低下も少ないことが判明した。
In the method according to the present invention, compared to a fixed bed that uses an absorbent with a diameter of 4 to 5101 φ, since an absorbent slurry with small particles is used, the Ca utilization rate is higher, and the highly active gel contained in the absorbent is It was found that the amount of spraying was small because there was a large amount of such substances, and the exhaust gas temperature did not decrease much.

〔発明の効果〕〔Effect of the invention〕

本発明は、上記構成を採用することにより、以上説明し
たように廃棄物等を原料にした新規な吸収剤スラリーを
採用して、乾式排煙脱硫・脱硝の同時処患が可能であり
、また、SOxの吸収形態を全て硫酸塩に転換すること
ができ、その廃棄を容易にすることができる。
By adopting the above configuration, the present invention employs a novel absorbent slurry made from waste, etc., as explained above, and can simultaneously perform dry flue gas desulfurization and denitrification. , the absorption form of SOx can all be converted to sulfate, and its disposal can be facilitated.

また更に、吸収剤スラリーにおいて高活性なゲル状物質
の含有量を増大させたことでスラリーの噴霧量の低減を
可能にした。
Furthermore, by increasing the content of highly active gel-like substances in the absorbent slurry, it is possible to reduce the amount of slurry sprayed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る乾式排ガス処理方法の
フロー図、第2図は従来法の乾式排ガス処理方法の70
−図である。 101・・・湿式ミル粉砕によるスラリー工程。 102・・・S1化合物粉粒固形物の供給路。 103・・・Oa化合物の供給路、1o4・・・導水管
。 105・・・供給路、106・・・スラリー調整工程。 107・・・熱源供給路、11o・・・スラリー導管。 109・・・スラリーポンプ、111・・・ガス供給路
。 113・・・乾燥室、114・・・噴霧ノズル。 115・・・熱廃ガス導管、117・・・乾式集じん装
置。 118、119.120.122・・・導管。 第1 図
Figure 1 is a flow diagram of a dry exhaust gas treatment method according to an embodiment of the present invention, and Figure 2 is a flowchart of a conventional dry exhaust gas treatment method.
-Illustration. 101...Slurry process by wet mill grinding. 102...S1 compound powder/grain solid material supply path. 103... Oa compound supply path, 1o4... Water conduit pipe. 105... Supply path, 106... Slurry adjustment process. 107...Heat source supply path, 11o...Slurry conduit. 109... Slurry pump, 111... Gas supply path. 113...Drying room, 114...Spray nozzle. 115... Heat waste gas conduit, 117... Dry dust collector. 118, 119.120.122... Conduit. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 硫黄酸化物、窒素酸化物及び酸素を含有する排ガス中に
吸収剤スラリーを噴霧して硫黄酸化物及び窒素酸化物を
吸収した粉粒体を乾式集じん工程で捕集する乾式排ガス
処理方法において、ケイ素源とカルシウム源及び水を加
えて湿式ミル粉砕してスラリーとする工程と、該スラリ
ーを攪拌しながら養生し吸収剤スラリーを調製する工程
と、該吸収剤スラリーを上記排ガス中に噴霧する工程と
を含むことを特徴とする乾式排ガス処理方法。
In a dry exhaust gas treatment method in which an absorbent slurry is sprayed into exhaust gas containing sulfur oxides, nitrogen oxides, and oxygen, and granules that have absorbed sulfur oxides and nitrogen oxides are collected in a dry dust collection step, A step of adding a silicon source, a calcium source, and water and wet milling to form a slurry, a step of curing the slurry while stirring to prepare an absorbent slurry, and a step of spraying the absorbent slurry into the exhaust gas. A dry exhaust gas treatment method comprising:
JP63306025A 1988-12-05 1988-12-05 Dry exhaust gas treatment method Expired - Fee Related JPH0655257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63306025A JPH0655257B2 (en) 1988-12-05 1988-12-05 Dry exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63306025A JPH0655257B2 (en) 1988-12-05 1988-12-05 Dry exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JPH02152520A true JPH02152520A (en) 1990-06-12
JPH0655257B2 JPH0655257B2 (en) 1994-07-27

Family

ID=17952170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63306025A Expired - Fee Related JPH0655257B2 (en) 1988-12-05 1988-12-05 Dry exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JPH0655257B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0491931A1 (en) * 1990-07-16 1992-07-01 Univ Michigan State COMPOSITE CLAY MATERIALS FOR REMOVAL OF SO x? FROM GAS STREAMS.
WO2000004982A1 (en) * 1998-07-23 2000-02-03 Sumitomo Osaka Cement Co., Ltd. Exhaust gas treating agent, process for producing the same, and method of treating exhaust gas
WO2000009256A1 (en) * 1998-08-14 2000-02-24 Cdem Holland B.V. Method for manufacturing a sorbent, a sorbent obtained with such method, and a method for cleaning a stream of hot gas
US6099816A (en) * 1996-07-24 2000-08-08 Dravo Lime, Inc. Process for desulfurizing a sulfur-dioxide containing gas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5876127A (en) * 1981-10-12 1983-05-09 アクテイエセルスカベツト・ニロ・アトマイゼル Removal of nitrogen oxide and sulfur oxide from waste gas
JPS58166932A (en) * 1982-03-26 1983-10-03 Onoda Cement Co Ltd Removing agent for acidic material in waste gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5876127A (en) * 1981-10-12 1983-05-09 アクテイエセルスカベツト・ニロ・アトマイゼル Removal of nitrogen oxide and sulfur oxide from waste gas
JPS58166932A (en) * 1982-03-26 1983-10-03 Onoda Cement Co Ltd Removing agent for acidic material in waste gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0491931A1 (en) * 1990-07-16 1992-07-01 Univ Michigan State COMPOSITE CLAY MATERIALS FOR REMOVAL OF SO x? FROM GAS STREAMS.
US6099816A (en) * 1996-07-24 2000-08-08 Dravo Lime, Inc. Process for desulfurizing a sulfur-dioxide containing gas
WO2000004982A1 (en) * 1998-07-23 2000-02-03 Sumitomo Osaka Cement Co., Ltd. Exhaust gas treating agent, process for producing the same, and method of treating exhaust gas
WO2000009256A1 (en) * 1998-08-14 2000-02-24 Cdem Holland B.V. Method for manufacturing a sorbent, a sorbent obtained with such method, and a method for cleaning a stream of hot gas

Also Published As

Publication number Publication date
JPH0655257B2 (en) 1994-07-27

Similar Documents

Publication Publication Date Title
US4804521A (en) Process for removing sulfur from sulfur-containing gases
US4931264A (en) Process for removing sulfur from sulfur-containing gases
US5401481A (en) Processes for removing acid components from gas streams
CN1962034A (en) Method and apparatus for removing sulfur, nitrate and mercury simultaneously from boiler flue gas
JP2651029B2 (en) Gas cleaning method
Matsushima et al. Novel dry-desulfurization process using Ca (OH) 2/fly ash sorbent in a circulating fluidized bed
CN102380308A (en) Sintering flue gas desulfurization and purification method and equipment
EP0074258B1 (en) Improved process for flue gas desulfurization
US5100643A (en) Processes for removing acid components from gas streams
CA1296865C (en) Method and system for purifying exhaust gas
JPS6136969B2 (en)
JPH02152520A (en) Dry treatment of exhaust gas
JP2017104855A (en) Production method for dry-type exhaust gas clarifier
JPH06198127A (en) Waste gas treating device
JP3025081B2 (en) Dry exhaust gas treatment method
JPS6312321A (en) Dry treatment for exhaust gas
JPH0248289B2 (en)
EP0022367B1 (en) Process for the preparation of an agent for neutralizing acidic components of flue gas
JPS642409B2 (en)
JP3150497B2 (en) Dry purification method of exhaust gas
Zhao et al. Experimental and mechanism studies on simultaneous desulfurization and denitrification from flue gas using a flue gas circulating fluidized bed
JPS6025531A (en) Dry purification of exhaust gas
JP3025082B2 (en) Dry exhaust gas treatment method
Luo et al. A Novel Dry Process for Simultaneous Removal of SO2 and NO from Flue Gas in a Powder‐Particle Fluidized Bed
JPS63197520A (en) Spray drying absorption method for desulfurizing hot flue gas current

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees