JP3150497B2 - Dry purification method of exhaust gas - Google Patents

Dry purification method of exhaust gas

Info

Publication number
JP3150497B2
JP3150497B2 JP17873293A JP17873293A JP3150497B2 JP 3150497 B2 JP3150497 B2 JP 3150497B2 JP 17873293 A JP17873293 A JP 17873293A JP 17873293 A JP17873293 A JP 17873293A JP 3150497 B2 JP3150497 B2 JP 3150497B2
Authority
JP
Japan
Prior art keywords
exhaust gas
absorbent
raw material
gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17873293A
Other languages
Japanese (ja)
Other versions
JPH0731837A (en
Inventor
務 上野
裕 北山
宏明 土合
浩 藤田
淳 多谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Hokkaido Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Hokkaido Electric Power Co Inc
Priority to JP17873293A priority Critical patent/JP3150497B2/en
Publication of JPH0731837A publication Critical patent/JPH0731837A/en
Application granted granted Critical
Publication of JP3150497B2 publication Critical patent/JP3150497B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は排ガスから硫黄酸化物
(以下、SOxという)などの環境汚染物質を除去する
方法に関し、さらに詳しくは粉状の吸収剤を排ガス流内
に吹き込み汚染物質を吸収した吸収剤を排ガス中のダス
トとともに乾式分離することによって、排ガスを浄化す
るいわゆる排ガスの乾式浄化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing environmental pollutants such as sulfur oxides (hereinafter referred to as "SOx") from exhaust gas, and more particularly to a method of blowing a powdery absorbent into an exhaust gas stream to absorb the pollutant. The present invention relates to a so-called exhaust gas dry purification method for purifying exhaust gas by dry-separating the absorbed absorbent together with dust in exhaust gas.

【0002】[0002]

【従来の技術】排ガスの乾式浄化方法は排水が発生しな
いことや排ガス温度を低下させないなどの利点があり、
脱硫に関しては炭酸カルシウムを燃焼炉内に注入する炉
内脱硫や消石灰を煙道に散布する方法などが一部で実用
されているが除去率が低い。また、今までに活性酸化マ
ンガン法、活性炭法などの各種方法が研究されてきてい
るが、まだ工業的に普及されるに至っていない。
2. Description of the Related Art The dry purification method of exhaust gas has the advantages that no waste water is generated and the temperature of exhaust gas is not lowered.
As for desulfurization, in-furnace desulfurization in which calcium carbonate is injected into a combustion furnace and a method of spraying slaked lime into a flue are partially used, but the removal rate is low. In addition, various methods such as an activated manganese oxide method and an activated carbon method have been studied so far, but have not yet been industrially used.

【0003】一方、乾式の同時脱硫、脱硝方法としては
活性炭吸着/NH3 接触還元法、酸化銅吸着還元法の研
究が見られるが、これらの方法は再生工程が複雑であ
り、吸収剤が高価で処理費用が高いなど問題がある。ま
た、これらの方法は固定床及び移動床で用いられるた
め、石炭焚きのごとく高ダストの排ガスを処理するため
には反応器で圧損上昇防止対策など解決しなければなら
ない問題点が多い。
On the other hand, studies on activated carbon adsorption / NH 3 catalytic reduction method and copper oxide adsorption reduction method have been found as dry simultaneous desulfurization and denitration methods. However, these methods have complicated regeneration steps and require expensive absorbents. There are problems such as high processing costs. In addition, since these methods are used on a fixed bed and a moving bed, there are many problems that must be solved in a reactor in order to treat high-dust exhaust gas as in the case of coal-fired combustion.

【0004】その改善策として特開平01−80425
号の方法を提案している。この方法は酸化カルシウムを
供給できる物質と硫酸化合物、ハロゲン元素化合物、二
酸化ケイ素、酸化アルミニウム、硫化物及びアルカリ金
属の水酸化物を供給できる物質の群から選ばれる1種以
上の物質を水で混練し水分存在下で養生した後、乾燥・
粉砕して粉状にし排ガス内に噴霧するのが基本となって
おり吸収剤の排ガス浄化性能が優れている特徴をもって
いる。
As a measure for improvement, Japanese Patent Laid-Open No. 01-80425 is disclosed.
No. method is proposed. In this method, a substance capable of supplying calcium oxide and one or more substances selected from a group of substances capable of supplying a sulfate compound, a halogen element compound, silicon dioxide, aluminum oxide, sulfide, and a hydroxide of an alkali metal are kneaded with water. After curing in the presence of water,
Basically, it is pulverized into a powder and sprayed into exhaust gas, and the absorbent has a characteristic that the exhaust gas purifying performance is excellent.

【0005】しかし、この方法で得られる吸収剤は水量
が比較的少ない混練固形物を攪拌しないで養生するため
高活性な吸収剤を得るための水和反応が十分に行われ
ず、そのためSOxなどの酸性ガスの吸収に必要なアル
カリ性Caの含有量を高めることが難しいとされてい
た。例えばCa源である水酸化カルシウムの添加割合は
せいぜい30重量%が限度で、これ以上添加すると活性
のないCaが余剰に残ることとなりCaの利用率が低下
する。
[0005] However, the absorbent obtained by this method cures a kneaded solid having a relatively small amount of water without stirring, so that the hydration reaction for obtaining a highly active absorbent is not sufficiently performed, and therefore, such as SOx, etc. It has been said that it is difficult to increase the content of alkaline Ca necessary for absorbing the acid gas. For example, the addition ratio of calcium hydroxide, which is a Ca source, is at most 30% by weight, and if added more, inactive Ca will remain in excess, and the utilization rate of Ca will decrease.

【0006】これを水量の多い熱水中で攪拌しながら養
生するとCa源である水酸化カルシウムはさらに高めら
れ、かつ活性の高い吸収剤が得られることが特願平4−
299642号で提案されている。しかしこの方法で得
られる吸収剤はスラリ状であり、これを粉状にして乾式
法で排ガス浄化するためには脱水・乾燥が必要となり、
これには膨大なエネルギが必要となる。特に、熱水養生
した吸収剤スラリは機械的脱水性が悪く、せいぜい50
wt%以下であり、またこれを必要以上に脱水すると吸
収剤粒子同士が圧密されるため活性が低下するという問
題がある。
Japanese Patent Application No. Hei 4-1992 discloses that when this is cured with stirring in hot water having a large amount of water, calcium hydroxide as a Ca source is further increased and an absorbent having high activity can be obtained.
No. 299642. However, the absorbent obtained by this method is in the form of a slurry, and it is necessary to dehydrate and dry it in order to turn this into powder and purify the exhaust gas by the dry method.
This requires enormous energy. In particular, absorbent slurries that have been cured with hot water have poor mechanical dewatering properties, and are at most 50%.
wt% or less, and if this is dehydrated more than necessary, there is a problem that the activity is reduced because the absorbent particles are compacted.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記技術水準
に鑑み、従来の欠点を解消した経済的な排ガスの乾式浄
化方法を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned state of the art, and has as its object to provide an economical dry purification method of exhaust gas which has solved the conventional disadvantages.

【0008】[0008]

【課題を解決するための手段】本発明は (1) 水酸化カルシウムを供給し得る物質よりなる
第1原料、硫酸カルシウムを供給し得る物質よりなる第
2原料及び二酸化ケイ素と酸化アルミニウムを供給し得
る物質よりなる第3原料との混合物のスラリを調整し、
該スラリを90〜100℃の温度条件下で熱水養生し、
該熱水養生したスラリを脱水して得られる吸収剤前
駆体に、前記第2原料及び第3原料の粉末混合物を添加
して混練して混練体となし、 該混練体を熱ガス流通
下の解砕機に導入して解砕と粉砕を同時に行わせて粉状
の吸収剤と熱ガスの固気混相流とし、 該固気混相流
を排ガス流中に供給した後、該排ガスと粉状の吸収剤の
混合流体を集塵装置に導入し、該排ガスから粉末状の吸
収剤及び排ガスに同伴されていたフライアッシュを分離
回収することを特徴とする排ガスの乾式浄化方法。 (2)集塵装置において排ガスから分離回収された使用
済み粉末状の吸収剤及びフライアッシュを第2原料及び
第3原料として使用することを特徴とする上記(1)記
載の排ガスの乾式浄化方法。 (3)熱水養生したスラリから脱水された水をスラリの
調整及び/又は集塵装置前流の排ガス温度調整用に循環
使用することを特徴とする上記(1)又は(2)記載の
排ガスの乾式浄化方法。 (4)混練体を乾燥及び搬送するために解砕機に吹き込
む熱ガスの温度が400〜600℃であり、かつ該熱ガ
スの少なくとも一部が浄化対象排ガスの発生設備の高温
帯域から取り出されるか、あるいは粉末の吸収剤を吹き
込む前の排ガスをダクトバーナで昇温したものであるこ
とを特徴とする請求項(1)〜(3)いずれかに記載の
排ガスの乾式浄化方法。である。
According to the present invention, there are provided (1) a first raw material composed of a substance capable of supplying calcium hydroxide, a second raw material composed of a substance capable of supplying calcium sulfate, and silicon dioxide and aluminum oxide; Adjusting the slurry of the mixture with the third raw material consisting of the obtained substance,
Curing the slurry under a temperature condition of 90 to 100 ° C.,
A powder mixture of the second raw material and the third raw material is added to an absorbent precursor obtained by dehydrating the slurry that has been cured with hot water, and the mixture is kneaded to form a kneaded body. After being introduced into a disintegrator, the disintegration and the pulverization are simultaneously performed to form a solid-gas multiphase flow of the powdery absorbent and the hot gas. After the solid-gas multiphase flow is supplied into the exhaust gas stream, the exhaust gas and the powdery A dry purification method for exhaust gas, comprising introducing a mixed fluid of an absorbent into a dust collector and separating and recovering a powdery absorbent and fly ash entrained in the exhaust gas from the exhaust gas. (2) The method for dry purification of exhaust gas as described in (1) above, wherein the used powdery absorbent and fly ash separated and recovered from the exhaust gas in the dust collector are used as the second raw material and the third raw material. . (3) The exhaust gas according to the above (1) or (2), wherein the water dehydrated from the hot water cured slurry is circulated for adjusting the slurry and / or adjusting the temperature of the exhaust gas upstream of the dust collector. Dry purification method. (4) Whether the temperature of the hot gas blown into the crusher for drying and transporting the kneaded body is 400 to 600 ° C, and at least a part of the hot gas is taken out of the high temperature zone of the facility for generating the exhaust gas to be purified. The method for dry-purifying exhaust gas according to any one of claims 1 to 3, wherein the temperature of the exhaust gas before blowing in the powdery absorbent is raised by a duct burner. It is.

【0009】[0009]

【作用】本発明の第1原料である水酸化カルシウムを供
給しうる物質としては、例えば生石灰、消石灰、炭酸カ
ルシウム、セメント、スラグ、ドロマイトプラスタなど
があげられ、第2原料の硫酸カルシウムを供給しうる物
質としては、例えば2水石膏、半水石膏及び生石灰、消
石灰、炭酸カルシウムと硫酸との組合せ、亜硫酸カルシ
ウムなどがあげられ、また、第3原料の一つである二酸
化珪素を供給しうる物質としては、例えばシリカ、メタ
珪酸、珪酸アルミニウム、珪酸カルシウム及びクリスト
バライト、トリジマイト、カオリン、ベントナイト、タ
ルク、パーライト、シラス、ケイソウ土、水ガラスなど
の反応性二酸化珪素を含有する化合物などがあげられ、
第3原料の一つである酸化アルミニウムを供給しうる物
質としては、例えばアルミナ、水酸化アルミニウム、珪
酸アルミニウム、硫酸ばん土、ミョウバン、硫化アルミ
ニウム、硫酸アルミニウム、塩化アルミニウム、ベント
ナイト、カオリン、ケイソウ土、ゼオライト、パーライ
トなど反応性アルミニウムを含有する化合物などがあげ
られる。
The substance capable of supplying calcium hydroxide, which is the first raw material of the present invention, includes, for example, quicklime, slaked lime, calcium carbonate, cement, slag, dolomite plaster, and the like. Examples of the substance that can be obtained include dihydrate gypsum, hemihydrate gypsum and quicklime, slaked lime, a combination of calcium carbonate and sulfuric acid, and calcium sulfite, and a substance that can supply silicon dioxide, which is one of the third raw materials. As, for example, silica, metasilicate, aluminum silicate, calcium silicate and cristobalite, tridymite, kaolin, bentonite, talc, perlite, shirasu, diatomaceous earth, compounds containing reactive silicon dioxide such as water glass, and the like,
Examples of the substance that can supply aluminum oxide as one of the third raw materials include alumina, aluminum hydroxide, aluminum silicate, sodium sulfate, alum, aluminum sulfide, aluminum sulfate, aluminum chloride, bentonite, kaolin, and diatomaceous earth. Examples thereof include compounds containing reactive aluminum, such as zeolite and perlite.

【0010】また、前述の4種の化合物中、2種以上を
同時に供給しうる他の物質の例としては、石炭灰(酸化
カルシウム、二酸化珪素、酸化アルミニウム源)、セメ
ント(酸化カルシウム、硫酸カルシウム、二酸化珪素、
酸化アルミニウム源)スラグ、シラス、安山岩、チャー
ト、石英粗面岩、オパール、沸石、長石、粘土鉱物、エ
トリンガイドなど反応性二酸化珪素、アルミニウム、カ
ルシウムなどを含む鉱物があげられる。
Examples of other substances which can simultaneously supply two or more of the above four compounds are coal ash (calcium oxide, silicon dioxide, aluminum oxide source) and cement (calcium oxide, calcium sulfate). , Silicon dioxide,
Aluminum oxide source) Minerals containing reactive silicon dioxide, aluminum, calcium, etc. such as slag, shirasu, andesite, chert, quartz trachyte, opal, zeolite, feldspar, clay mineral, etrin guide and the like.

【0011】最初、SOxなどの汚染物質及び酸素を含
有する排ガス中に散布される粉状吸収剤としては、重量
%で酸化珪素(SiO2 ):酸化アルミニウム(Al2
3):酸化カルシウム(CaO):硫酸カルシウム
(CaSO4 )=10〜30%:5〜12%:30〜5
0%:5〜30%のものが好ましい。
First, as a powdery absorbent to be dispersed in an exhaust gas containing contaminants such as SOx and oxygen, silicon oxide (SiO 2 ): aluminum oxide (Al 2
O 3 ): Calcium oxide (CaO): Calcium sulfate (CaSO 4 ) = 10 to 30%: 5 to 12%: 30 to 5
0%: 5% to 30% is preferable.

【0012】上記第1原料から第3原料を提供しうる物
質を種々組合せ、これにSOxなどの汚染物質及び酸素
を含有する排ガス中に吸収剤を散布することによってS
Oxなどの汚染物質を吸収し集塵装置で捕集された粉粒
体{この粉粒体の一般的組成は重量%で未反応Ca(O
H)2 :10〜20%、CaSO4 :50〜70%、S
iO2 :12〜18%、Al2 3 :5〜7%である}
の一部と水とを加えスラリとし、これを90〜100℃
の熱水中で養生した後、脱水機で水を搾り取り、次いで
これに集塵装置で捕集された粉粒体の一部を加え混練し
た後、熱ガス流通下の解砕機に導入して解砕と粉砕を同
時に行わせることによって粉状の吸収剤が得られる。こ
こで脱水後の水分量であるが、熱水養生した吸収剤前駆
体はミクロ的にポーラスであり内部の包含水が極めて大
きいため、遠心脱水、真空脱水、フィルタプレスなどの
機械的脱水操作ではせいぜい50重量%以下である。こ
の脱水操作において必要以上に水分を搾り取ると吸収剤
粒子が圧密されてミクロポアーが潰され、逆に活性の低
下を招くこととなる。従ってこの操作における脱水後の
水分濃度は60重量%程度とすることが好ましい。
[0012] By combining various substances capable of providing the third raw material from the first raw material, and by sprinkling an absorbent into exhaust gas containing contaminants such as SOx and oxygen, S
Granules that absorb contaminants such as Ox and are collected by a dust collector. The general composition of the granules is unreacted Ca (O
H) 2: 10~20%, CaSO 4: 50~70%, S
iO 2 : 12 to 18%, Al 2 O 3 : 5 to 7%.
Of water and water to make a slurry,
After curing in hot water, the water was squeezed out by a dehydrator, and then a part of the powder and granules collected by a dust collector was added and kneaded, and then introduced into a crusher under hot gas flow. By performing crushing and pulverization at the same time, a powdery absorbent is obtained. Here, it is the water content after dehydration, but since the absorbent precursor cured by hot water is microscopically porous and the water contained therein is extremely large, centrifugal dehydration, vacuum dehydration, mechanical dehydration operations such as filter press, etc. It is at most 50% by weight or less. If water is squeezed out more than necessary in this dehydration operation, the absorbent particles are compacted and the micropores are crushed, which in turn causes a decrease in activity. Therefore, the water concentration after dehydration in this operation is preferably about 60% by weight.

【0013】この残りの水分をできるだけ少なくするた
め、集塵装置で捕集された乾いた使用済みの吸収剤を加
えて混練し、水分濃度の少ない混練物として残りの水分
を熱ガスにより除去すれば乾燥・解砕に要するエネルギ
が大幅に節約できる。ここで使用済み吸収剤を加えるも
う一つのメリットは未反応のCa分が有効に利用できる
ことにある。
In order to reduce the remaining water as much as possible, a dry used absorbent collected by a dust collector is added and kneaded, and the remaining water is removed by a hot gas as a kneaded material having a low water concentration. If this is the case, the energy required for drying and crushing can be greatly reduced. Another advantage of adding the used absorbent is that the unreacted Ca can be effectively used.

【0014】[0014]

【実施例】実施態様に基づき本発明の詳細を説明する。
図1は本発明の実施態様を示す概略系統図であり、石炭
焚きボイラから発生する排ガスの乾式浄化方法を例示し
ている。図1中、10は熱水養生用の吸収剤スラリの調
合槽を示し、第1原料の供給ライン11から供給される
第1原料のスラリと、第2原料及び第3原料の供給ライ
ン14から供給される各原料は水供給ライン12から供
給される水及びろ過水供給ライン15から供給される脱
水機30のろ過水を加えて所定濃度のスラリに調合され
るとともに、水蒸気供給ライン13から供給される水蒸
気によって熱水養生温度まで昇温される。
The details of the present invention will be described based on embodiments.
FIG. 1 is a schematic system diagram showing an embodiment of the present invention, and illustrates a dry purification method of exhaust gas generated from a coal-fired boiler. In FIG. 1, reference numeral 10 denotes a mixing tank for an absorbent slurry for hot water curing, which includes a slurry of a first raw material supplied from a supply line 11 of a first raw material and a supply line 14 of a second raw material and a third raw material. Each raw material to be supplied is mixed with water supplied from the water supply line 12 and filtered water of the dehydrator 30 supplied from the filtered water supply line 15 to prepare a slurry having a predetermined concentration, and supplied from the steam supply line 13. The temperature is raised to the hot water curing temperature by the generated steam.

【0015】ライン11から供給される第1原料のスラ
リは、好ましくは生石灰をスレーキングした水酸化カル
シウムが適当であり、またライン14から供給される第
2原料及び第3原料は集塵装置90で捕集された使用済
み吸収剤及び排ガス中のフライアッシュが使用される。
水酸化カルシウムを含有する吸収剤は排ガス中のSOx
を吸収し硫酸カルシウムを生成し、また石炭焚きボイラ
のフライアッシュなどは二酸化ケイ素及び酸化アルミニ
ウムを相当量含有しており、本発明で使用する吸収剤の
第2原料及び第3原料としての要件を備えている。
The slurry of the first raw material supplied from the line 11 is preferably calcium hydroxide obtained by slaking quicklime, and the second and third raw materials supplied from the line 14 are collected by a dust collector 90. The collected spent absorbent and fly ash in the exhaust gas are used.
The absorbent containing calcium hydroxide is SOx in the exhaust gas.
To produce calcium sulfate, and fly ash of a coal-fired boiler contains a considerable amount of silicon dioxide and aluminum oxide, and the requirements as the second and third raw materials of the absorbent used in the present invention are considered. Have.

【0016】調合槽10内の吸収剤スラリの固形分濃度
は10〜25重量%が適当であり、固形分濃度が薄いと
養生するための装置容量が大きくなるばかりでなく、熱
水養生温度を確保するため水蒸気供給ライン13から供
給される水蒸気の消費量が大きくなる。また固形分濃度
が高過ぎるとスラリ粘度が高くなりスラリの均一攪拌が
困難になるばかりでなく、スラリ輸送時にラインが閉塞
したりして設備の円滑稼働が不可能となる。
The solid concentration of the absorbent slurry in the mixing tank 10 is suitably from 10 to 25% by weight. If the solid concentration is low, not only the capacity of the device for curing becomes large, but also the curing temperature of hot water is lowered. To ensure this, the consumption of steam supplied from the steam supply line 13 increases. On the other hand, if the solid content is too high, the slurry viscosity becomes high, making uniform stirring of the slurry difficult. In addition, the line becomes blocked during the transportation of the slurry, making it impossible to operate the equipment smoothly.

【0017】調合槽10で調整されたスラリはライン2
1から熱水養生装置20内に送られ、90〜100℃で
6〜12時間の温度条件下で熱水養生される。この間に
CaO、Al2 3 、CaSO4 、SiO2 の4成分か
らなるゲル状の物質が生成する。このゲル状物質は比表
面積が50〜100m2 /gにもなり非常に多孔質の物
質に変質する。
The slurry adjusted in the mixing tank 10 is supplied to the line 2
1 is sent into the hot water curing device 20 and is subjected to hot water curing at 90 to 100 ° C. for 6 to 12 hours. During this time, a gel-like substance consisting of four components of CaO, Al 2 O 3 , CaSO 4 and SiO 2 is generated. This gel-like substance has a specific surface area of 50 to 100 m 2 / g and is transformed into a very porous substance.

【0018】熱水養生装置10としては攪拌槽が利用で
き必要に応じ複数基使用してもよい。また養生温度を維
持するために養生装置20はスチームトレースあるいは
小量のスチーム吹き込みが行われる。養生を終了した吸
収剤スラリはライン31から脱水機30に供給され、こ
こで固形分濃度40重量%程度に脱水される。脱水され
た吸収剤ケーキはライン41より混練機40に供給され
る。混練機40にはパグミルが利用でき、ここでライン
42から供給される粉状の第2原料及び第3原料と混合
され固形分濃度50重量%以上の混練体を形成させる。
固形分濃度はできるだけ高い方が乾燥熱量が節減でき得
策であるが、混練機の能力に限界があり、好ましくは5
0〜70重量%である。
As the hot water curing device 10, a stirring tank can be used, and a plurality of units may be used if necessary. Further, in order to maintain the curing temperature, the curing device 20 is subjected to steam tracing or a small amount of steam blowing. The absorbent slurry after curing is supplied from a line 31 to a dehydrator 30, where it is dehydrated to a solid concentration of about 40% by weight. The dehydrated absorbent cake is supplied from line 41 to kneader 40. A pug mill can be used as the kneading machine 40, where it is mixed with the powdery second and third raw materials supplied from the line 42 to form a kneaded body having a solid content concentration of 50% by weight or more.
The higher the solids concentration is, the better the drying calorie can be saved, but the capacity of the kneader is limited,
0 to 70% by weight.

【0019】次に、この混練体はライン51から解砕機
50に供給されて、解砕されるとともにライン52から
吹き込まれる熱ガスによって乾燥され、粉状吸収剤と熱
ガスの固気混相流としてライン71からダクト91中の
排ガス中に吹き込まれる。ライン71には必要ならサイ
クロンなどの固気分離器70を設置し解砕が不十分な吸
収剤の粗粉を分離してライン43から混練機40に還流
してもよい。
Next, the kneaded material is supplied to a crusher 50 from a line 51, crushed and dried by a hot gas blown from a line 52, and is formed into a solid-gas mixed phase flow of the powdery absorbent and the hot gas. It is blown into the exhaust gas in the duct 91 from the line 71. If necessary, a solid-gas separator 70 such as a cyclone may be installed in the line 71 to separate the coarse powder of the absorbent that is insufficiently disintegrated, and then return to the kneader 40 from the line 43.

【0020】ダクト91内の排ガス流中に吹き込まれた
吸収剤は排ガス中に浮遊分散され、排ガス中の汚染物質
を吸収除去することとなるが、両者の接触時間は10秒
以上保持されるのが好ましく、この接触時間を確保する
ためにダクト91に反応器80を設けることもできる。
The absorbent blown into the exhaust gas flow in the duct 91 is suspended and dispersed in the exhaust gas to absorb and remove pollutants in the exhaust gas, but the contact time between the two is maintained for 10 seconds or more. Preferably, a reactor 80 can be provided in the duct 91 to secure this contact time.

【0021】ダクト91は集塵装置90に接続されてお
り、排ガス中の吸収剤及びフライアッシュは排ガスから
分離され、ライン93を介して一部は吸収剤調合槽10
及び混練機40に供給する第2原料及び第3原料として
使用され、残りはライン94から系外に取り出される。
排ガス中の汚染物質は吸収剤が集塵装置90で分離され
る過程においても吸収剤に吸収される。従って集塵装置
90としてはバグフィルタを使用するのが好ましい。
The duct 91 is connected to a dust collector 90, and the absorbent and fly ash in the exhaust gas are separated from the exhaust gas.
And used as a second raw material and a third raw material to be supplied to the kneading machine 40, and the rest is taken out of the system from a line 94.
Contaminants in the exhaust gas are also absorbed by the absorbent during the process in which the absorbent is separated by the dust collector 90. Therefore, it is preferable to use a bag filter as the dust collector 90.

【0022】排ガス中に吹き込まれる吸収剤の量はSO
xなどの汚染物質と反応する吸収剤中のCa分が排ガス
中汚染物質の1モル当り1〜3モルになるように吹き込
まれる。また排ガス温度は集塵装置90出口で80〜1
30℃となるように調節される。一般に排ガス温度は1
50℃程度と高いため温度の調節には水スプレなどが行
われるが、これには脱水機30から排出されるろ液を使
うこともできる。
The amount of the absorbent blown into the exhaust gas is SO
It is blown in such a manner that the Ca content in the absorbent that reacts with pollutants such as x becomes 1 to 3 mol per mol of the pollutants in the exhaust gas. The exhaust gas temperature is 80 to 1 at the outlet of the dust collector 90.
Adjusted to 30 ° C. Generally, the exhaust gas temperature is 1
Since the temperature is as high as about 50 ° C., the temperature is adjusted by water spray or the like. For this purpose, a filtrate discharged from the dehydrator 30 can be used.

【0023】吸収剤を乾燥及び搬送するために解砕機5
0に吹き込まれる熱ガスは排ガス発生設備の高温域の排
ガス、例えば図1のボイラ100の場合、エコノマイザ
入口の高温排ガスを吹き込む方法(図示なし)あるいは
ダクト91の吸収剤を吹き込む前の排ガスをライン54
で取り出し、ライン52との間に組み込まれたダクトバ
ーナ60に導き、ライン61から供給する燃料及びライ
ン62から供給する空気を調整することによって所定の
ガス温度に昇温して吹き込む方法が排ガス浄化費用の低
減につながる。但し、このように排ガスを使用する場合
は、排ガス温度を400〜600℃の範囲にする必要が
ある。これ以下の排ガス温度においては吸収剤の乾燥が
うまくいかないばかりでなく、排ガス中の汚染物質に起
因すると考えられる吸収剤の活性低下が生じる。またこ
れ以上の温度では解砕器を特殊な材料で構成する必要が
あるとともに熱経済上も不利となる。
A crusher 5 for drying and transporting the absorbent.
The hot gas blown into the exhaust gas in the high temperature region of the exhaust gas generating equipment, for example, in the case of the boiler 100 in FIG. 1, a method of blowing high temperature exhaust gas at the inlet of the economizer (not shown) or exhaust gas before blowing the absorbent in the duct 91 into a line 54
A method of raising the gas temperature to a predetermined gas temperature and blowing it by adjusting the fuel supplied from the line 61 and the air supplied from the line 62 by introducing into the duct burner 60 incorporated between the line 52 and the exhaust gas purification cost. Leads to a reduction in However, when the exhaust gas is used in this way, the exhaust gas temperature needs to be in the range of 400 to 600 ° C. At exhaust gas temperatures below this, not only does the drying of the absorbent fail, but also a decrease in the activity of the absorbent, which is thought to be due to contaminants in the exhaust gas. At a higher temperature, the crusher must be made of a special material, and this is disadvantageous in terms of thermal economy.

【0024】(実験例1)生石灰を水に投入し、消化に
よって得られた消石灰スラリにSiO2 、Al23
各々60wt%、23wt%含有する石炭灰と2水石膏
をそれぞれ乾燥基準の重量比で50:30:20の割合
になるように混合した。この時の水の量は粉体の合計重
量に対し5倍相当とした。このスラリを95℃の熱水中
で12時間攪拌しながら養生した後、減圧ろ過により脱
水し、水分60wt%を含む吸収剤の前駆体を得た。
(Experimental Example 1) Quick lime was poured into water, and coal ash and SiO 2 containing 60 wt% and 23 wt% respectively of SiO 2 and Al 2 O 3 were added to slaked lime slurry obtained by digestion on a dry basis. The mixture was mixed so that the weight ratio was 50:30:20. The amount of water at this time was equivalent to 5 times the total weight of the powder. The slurry was aged while being stirred in hot water at 95 ° C. for 12 hours, and then dehydrated by filtration under reduced pressure to obtain a precursor of an absorbent containing 60% by weight of water.

【0025】この前駆体に、2水石膏:50wt%、石
炭灰:50wt%を含む粉末混合物を上記前駆体の全重
量に対し60wt%添加し混練体とした。この混練体を
灯油を燃料とする熱ガス流通下の解砕機に導入し、温度
550℃の熱ガスに数分間接触させ水分0.8wt%を
含む粉末状の吸収剤を得た。この吸収剤の平均粒径は2
0μmであり、X線回折ピークからエトリンガイトの類
似物質があることを確認した。また比表面積を測定した
ところ63m2 /gであった。
A powder mixture containing 50% by weight of gypsum dihydrate and 50% by weight of coal ash was added to this precursor in an amount of 60% by weight based on the total weight of the precursor to form a kneaded product. The kneaded product was introduced into a disintegrator under hot gas flow using kerosene as a fuel, and was brought into contact with a hot gas at a temperature of 550 ° C. for several minutes to obtain a powdery absorbent containing 0.8 wt% of water. The average particle size of this absorbent is 2
It was 0 μm, and it was confirmed from the X-ray diffraction peak that there was a substance similar to ettringite. When the specific surface area was measured, it was 63 m 2 / g.

【0026】この粉末状吸収剤を、Ca/SO2 比2と
なるように噴霧ノズルを装着した管とバグフィルタとを
連結したガス量20m3 N/hの装置に散布した。この
時の入口ガス組成はSO2 :500ppm、NO:12
ppm、CO2 :10vol%、O2 :5vol%、H
2 O:8vol%、N:バランスとなるように調整し、
ガス温度は110℃になるように加熱器で調整した。噴
霧ノズルからの吸収剤の散布には加圧N2 ガスを用い
た。
This powdery absorbent was sprayed onto a device having a gas amount of 20 m 3 N / h in which a tube equipped with a spray nozzle and a bag filter were connected so that the Ca / SO 2 ratio became 2. At this time, the inlet gas composition was SO 2 : 500 ppm, NO: 12
ppm, CO 2 : 10 vol%, O 2 : 5 vol%, H
2 O: 8vol%, N: adjust so as to be balanced,
The gas temperature was adjusted with a heater so as to be 110 ° C. Pressurized N 2 gas was used to spray the absorbent from the spray nozzle.

【0027】吸収剤を散布しながら、バグフィルタ出口
でSO2 及びNOを計測した結果、SO2 除去率は58
%、NOx除去率は43%が得られた。なお、試験終了
後バグフィルタに付着した反応生成物を分析したとこ
ろ、殆んどが硫酸塩で一部硝酸塩が検出された。比較の
ため、消石灰の粉末を用いて同じように試験した結果S
2 除去率は5%、NOxについては僅か2%弱であっ
た。
As a result of measuring SO 2 and NO at the outlet of the bag filter while spraying the absorbent, the SO 2 removal rate was 58%.
% And NOx removal rate of 43%. When the reaction product attached to the bag filter was analyzed after the test, almost all sulfates and some nitrates were detected. For comparison, a similar test was performed using slaked lime powder.
The O 2 removal rate was 5%, and NOx was only slightly less than 2%.

【0028】(実験例2)実験例1で得られた吸収剤の
前駆体に、実験例1で得られた吸収剤評価試験後のバグ
フィルタ捕集物(使用済み吸収剤)の粉体を、吸収剤の
前駆体の全重量に対して20,60,100重量%添加
し、混練体1,2,3を形成した。この混練体を熱ガス
流通下の解砕機に導入し、温度550℃の熱ガスで乾
燥、粉砕し、粉末状の吸収剤1′、2′,3′を得た。
この各粉末状吸収剤を用い、実験例1と同様の方法で、
Ca/SO2 モル比が2となるように試験装置に散布し
たところ表1に示す結果が得られた。
(Experimental Example 2) The powder of the collected bag filter (used absorbent) after the absorbent evaluation test obtained in Experimental Example 1 was used as the precursor of the absorbent obtained in Experimental Example 1. 20, 60, and 100% by weight based on the total weight of the absorbent precursor were added to form kneaded bodies 1, 2, and 3. The kneaded product was introduced into a crusher under a hot gas flow, dried and pulverized with a hot gas at a temperature of 550 ° C. to obtain powdered absorbents 1 ′, 2 ′ and 3 ′.
Using each of these powdery absorbents, in the same manner as in Experimental Example 1,
When the Ca / SO 2 molar ratio was sprayed on the test apparatus so as to be 2, the results shown in Table 1 were obtained.

【0029】[0029]

【表1】 [Table 1]

【0030】(実験例3)実験例1で使用した石炭灰に
消石灰と2水石膏を30:50:20(重量比)の割合
でオートクレーブに投入し、5倍相当の水と混合してス
ラリとした後、70〜120℃まで温度を変えて各々6
〜12時間、熱水中で攪拌養生した。養生後のスラリを
固形分濃度50wt%となるよう脱水し、吸収剤の前駆
体4〜14を得た。この各前駆体の全重量に対して半水
石膏:60wt%、石炭灰:40wt%を含む粉末混合
物を50重量%添加して混練体を形成した後各混練体を
熱ガス流通下の解砕機に導入し、温度500℃の熱ガス
で乾燥、粉砕し粉末状の吸収剤4′〜14′を得た。こ
の粉末状吸収剤を用い、実験例1と同様の方法でCa/
SO2 モル比が2となるように試験装置に散布したとこ
ろ、表2に示す結果を得た。
(Experimental Example 3) Slaked lime and dihydrate gypsum were added to the coal ash used in Experimental Example 1 in an autoclave at a ratio of 30:50:20 (weight ratio), and mixed with 5 times as much water as a slurry. After changing the temperature from 70 to 120 ° C,
The mixture was agitated and cured in hot water for 時間 12 hours. The slurry after curing was dehydrated so as to have a solid content concentration of 50 wt% to obtain precursors 4 to 14 of the absorbent. 50% by weight of a powder mixture containing hemihydrate gypsum: 60% by weight and coal ash: 40% by weight with respect to the total weight of each precursor was added to form a kneaded body, and each kneaded body was crushed under a hot gas flow. And dried and pulverized with a hot gas at a temperature of 500 ° C. to obtain powdered absorbents 4 ′ to 14 ′. Using this powdery absorbent, Ca /
When sprayed on a test apparatus so that the SO 2 molar ratio was 2, the results shown in Table 2 were obtained.

【0031】[0031]

【表2】 [Table 2]

【0032】(実験例4)実験例3で得た熱水養生スラ
リの脱水ろ液と石炭灰、消石灰、半水石膏を重量比で5
00:25:50:25の割合で混合し、95℃で12
時間養生したのち、固形分濃度が50wt%になるよう
脱水して、吸収剤の前駆体を得た。この前駆体の全重量
に対して2水石膏:50wt%、石炭灰:50wt%を
含む粉末を40wt%添加して混練体を形成し、この混
練体を熱ガス流通下の解砕機に導入し、温度550℃の
熱ガスで乾燥、粉砕して粉末状の吸収剤を得た。この粉
末状吸収剤を用い実験例1と同様の方法でCa/SO2
モル比が2となるように試験装置に散布した。また、こ
の時、ガス温度を110℃とするための冷却用の水とし
て脱水ろ液を吸収剤供給ラインより供給したところSO
2 除去率:60%、NOx除去率:44%であった。
(Experimental Example 4) The dehydrated filtrate of the hydrothermally cured slurry obtained in Experimental Example 3 and coal ash, slaked lime, and hemihydrate gypsum were mixed in a weight ratio of 5%.
Mix at a ratio of 00: 25: 50: 25 and at 95 ° C. for 12
After curing for an hour, dehydration was performed so that the solid content concentration became 50 wt%, and a precursor of the absorbent was obtained. 40% by weight of a powder containing 50% by weight of gypsum and 50% by weight of coal ash based on the total weight of this precursor was added to form a kneaded body, and this kneaded body was introduced into a crusher under hot gas flow. The powder was dried with a hot gas at a temperature of 550 ° C. and pulverized to obtain a powdery absorbent. Using this powdery absorbent, Ca / SO 2 was produced in the same manner as in Experimental Example 1.
It was sprayed on the test apparatus so that the molar ratio was 2. At this time, dehydrated filtrate was supplied from the absorbent supply line as cooling water for setting the gas temperature to 110 ° C.
2 The removal rate was 60%, and the NOx removal rate was 44%.

【0033】(実験例5)実験例2で得た混練体2を用
い、灯油を燃料とする熱ガス流通下の解砕機の温度を3
00℃〜700℃まで変化させ、これに混練体を供給
し、各温度における乾燥粉末状の吸収剤を得た。この各
々の吸収剤について比表面積とX線回折の測定を行い、
更に、実験例1と同じ条件及び方法でSO2 及びNOを
含む排ガス中に散布し各々の除去性能を測定し表3に示
す結果を得た。
(Experimental Example 5) Using the kneaded body 2 obtained in Experimental Example 2, the temperature of the crusher was set to 3 under a hot gas flow using kerosene as fuel.
The temperature was changed from 00 ° C. to 700 ° C., and the kneaded body was supplied thereto to obtain a dry powder absorbent at each temperature. The specific surface area and X-ray diffraction were measured for each of the absorbents,
Further, it was sprayed into an exhaust gas containing SO 2 and NO under the same conditions and method as in Experimental Example 1, and the removal performance of each was measured. The results shown in Table 3 were obtained.

【0034】[0034]

【表3】 X線回折ピークのうちVSは非常に強いピーク、Sは強
いピーク、Wは弱いピークを表わしている。表3の結果
から熱ガス温度が300℃では乾燥に時間がかかり熱ガ
ス中の炭酸ガスにより炭酸カルシウムが生成し、活性の
低下が見られ、逆に温度700℃ではエトリンガイトの
類似物質が消失し、SO2 及びNOxの除去率が低下す
ることが判る。
[Table 3] Among the X-ray diffraction peaks, VS represents a very strong peak, S represents a strong peak, and W represents a weak peak. From the results shown in Table 3, when the hot gas temperature is 300 ° C., drying takes a long time and calcium carbonate is generated by the carbon dioxide gas in the hot gas, and a decrease in activity is observed. it can be seen that SO 2 and NOx removal rate decreases.

【0035】[0035]

【発明の効果】本発明によれば、新規な吸収剤を採用し
て、乾式でSOxなどの環境汚染物質が除去でき、また
スラリ状で得られる吸収剤を粉体状とするための乾燥熱
エネルギの節減が可能となる。
According to the present invention, a novel absorbent can be employed to remove environmental pollutants such as SOx in a dry manner, and a drying heat for forming a slurry-like absorbent into powder. Energy can be saved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施態様の説明図。FIG. 1 is an explanatory diagram of one embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 土合 宏明 北海道札幌市豊平区里塚461番地の6 北海道電力株式会社総合研究所内 (72)発明者 藤田 浩 広島県広島市西区観音新町四丁目6番22 号 三菱重工業株式会社 広島研究所内 (72)発明者 多谷 淳 広島県広島市西区観音新町四丁目6番22 号 三菱重工業株式会社 広島研究所内 (56)参考文献 特開 平3−213122(JP,A) 特開 平6−198127(JP,A) 特開 平6−99025(JP,A) 特開 平4−197419(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 53/34 - 53/83 B01J 20/16 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hiroaki Doai 461-6, Satozuka, Toyohira-ku, Sapporo-city, Hokkaido Inside the Hokkaido Electric Power Research Institute (72) Inventor Hiroshi Fujita 4--22 Kannonshinmachi, Nishi-ku, Hiroshima, Hiroshima, Japan No. Hiroshima Research Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Atsushi Atani, 4-4-2 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries, Ltd. Hiroshima Research Laboratory (56) References JP-A-3-213122 (JP, A) JP-A-6-198127 (JP, A) JP-A-6-99025 (JP, A) JP-A-4-197419 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) ) B01D 53/34-53/83 B01J 20/16

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水酸化カルシウムを供給し得る物質
よりなる第1原料、硫酸カルシウムを供給し得る物質よ
りなる第2原料及び二酸化ケイ素と酸化アルミニウムを
供給し得る物質よりなる第3原料との混合物のスラリを
調整し、該スラリを90〜100℃の温度条件下で熱水
養生し、 該熱水養生したスラリを脱水して得られる
吸収剤前駆体に、前記第2原料及び第3原料の粉末混合
物を添加して混練して混練体となし、 該混練体を熱
ガス流通下の解砕機に導入して解砕と粉砕を同時に行わ
せて粉状の吸収剤と熱ガスの固気混相流とし、 該固
気混相流を排ガス流中に供給した後、該排ガスと粉状の
吸収剤の混合流体を集塵装置に導入し、該排ガスから粉
末状の吸収剤及び排ガスに同伴されていたフライアッシ
ュを分離回収することを特徴とする排ガスの乾式浄化方
法。
1. A mixture of a first raw material composed of a substance capable of supplying calcium hydroxide, a second raw material composed of a substance capable of supplying calcium sulfate, and a third raw material composed of a substance capable of supplying aluminum oxide and aluminum oxide. Of the second raw material and the third raw material to an absorbent precursor obtained by dehydrating the slurry subjected to hot water curing under a temperature condition of 90 to 100 ° C. A powder mixture is added and kneaded to form a kneaded body. The kneaded body is introduced into a crusher under a hot gas flow so that crushing and pulverization are performed simultaneously to obtain a solid-gas mixed phase of the powdery absorbent and the hot gas. After the solid-gas multiphase flow is supplied into the exhaust gas stream, a mixed fluid of the exhaust gas and the powdery absorbent is introduced into the dust collector, and the exhaust gas is accompanied by the powdery absorbent and the exhaust gas. Characterized by separating and collecting fly ash Dry purification method of exhaust gas.
【請求項2】 集塵装置において排ガスから分離回収さ
れた使用済み粉末状の吸収剤及びフライアッシュを第2
原料及び第3原料として使用することを特徴とする請求
項1記載の排ガスの乾式浄化方法。
2. The used powdery absorbent and fly ash separated and recovered from the exhaust gas in the dust collector,
The dry purification method for exhaust gas according to claim 1, wherein the method is used as a raw material and a third raw material.
【請求項3】 熱水養生したスラリから脱水された水を
スラリの調整及び/又は集塵装置前流の排ガス温度調整
用に循環使用することを特徴とする請求項1又は2記載
の排ガスの乾式浄化方法。
3. The exhaust gas according to claim 1, wherein the water dehydrated from the slurry cured with hot water is circulated for adjusting the slurry and / or adjusting the temperature of the exhaust gas upstream of the dust collector. Dry purification method.
【請求項4】 混練体を乾燥及び搬送するために解砕機
に吹き込む熱ガスの温度が400〜600℃であり、か
つ該熱ガスの少なくとも一部が浄化対象排ガスの発生設
備の高温帯域から取り出されるか、あるいは粉末の吸収
剤を吹き込む前の排ガスをダクトバーナで昇温したもの
であることを特徴とする請求項1〜3いずれかに記載の
排ガスの乾式浄化方法。
4. The temperature of a hot gas blown into a crusher for drying and transporting the kneaded body is 400 to 600 ° C., and at least a part of the hot gas is taken out of a high temperature zone of a facility for generating an exhaust gas to be purified. The method for dry purification of exhaust gas according to any one of claims 1 to 3, wherein the temperature of the exhaust gas before being blown or before blowing in a powdery absorbent is raised by a duct burner.
JP17873293A 1993-07-20 1993-07-20 Dry purification method of exhaust gas Expired - Fee Related JP3150497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17873293A JP3150497B2 (en) 1993-07-20 1993-07-20 Dry purification method of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17873293A JP3150497B2 (en) 1993-07-20 1993-07-20 Dry purification method of exhaust gas

Publications (2)

Publication Number Publication Date
JPH0731837A JPH0731837A (en) 1995-02-03
JP3150497B2 true JP3150497B2 (en) 2001-03-26

Family

ID=16053618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17873293A Expired - Fee Related JP3150497B2 (en) 1993-07-20 1993-07-20 Dry purification method of exhaust gas

Country Status (1)

Country Link
JP (1) JP3150497B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4550293B2 (en) * 2001-01-17 2010-09-22 電気化学工業株式会社 Adsorbent

Also Published As

Publication number Publication date
JPH0731837A (en) 1995-02-03

Similar Documents

Publication Publication Date Title
JP2559557B2 (en) Carbon dioxide consuming material using sludge discharged during production of fresh concrete or concrete secondary product, method for producing the same, and method for consuming carbon dioxide in exhaust gas
US5126300A (en) Clay composites for the removal of SOx from flue gas streams
CA1248735A (en) Method and apparatus for dry desulfurization of exhaust gas
US5401481A (en) Processes for removing acid components from gas streams
Matsushima et al. Novel dry-desulfurization process using Ca (OH) 2/fly ash sorbent in a circulating fluidized bed
JP2651029B2 (en) Gas cleaning method
EP0074258B1 (en) Improved process for flue gas desulfurization
CN112295400B (en) Preparation method of activated red mud composite calcium-based dry desulfurizing agent and desulfurizing agent
US5100643A (en) Processes for removing acid components from gas streams
CA1296865C (en) Method and system for purifying exhaust gas
JPS6136969B2 (en)
JP3150497B2 (en) Dry purification method of exhaust gas
US6520099B1 (en) Method for treating combustion ash of coal and method for desulfurization
US5160715A (en) Clay composites for removal of SOx from flue gas streams
JP4691770B2 (en) Method for producing highly reactive calcium hydroxide
JP3025081B2 (en) Dry exhaust gas treatment method
JPH06198127A (en) Waste gas treating device
JP3025111B2 (en) Exhaust gas treatment method
JPS642409B2 (en)
JPH02152520A (en) Dry treatment of exhaust gas
EP0022367B1 (en) Process for the preparation of an agent for neutralizing acidic components of flue gas
JPH0248289B2 (en)
JP3025082B2 (en) Dry exhaust gas treatment method
JP3214088B2 (en) Manufacturing method of desulfurization material
JPS63197520A (en) Spray drying absorption method for desulfurizing hot flue gas current

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001212

LAPS Cancellation because of no payment of annual fees