JP2015085303A - Treatment method of acidic exhaust gas and exhaust gas treatment agent - Google Patents
Treatment method of acidic exhaust gas and exhaust gas treatment agent Download PDFInfo
- Publication number
- JP2015085303A JP2015085303A JP2013228373A JP2013228373A JP2015085303A JP 2015085303 A JP2015085303 A JP 2015085303A JP 2013228373 A JP2013228373 A JP 2013228373A JP 2013228373 A JP2013228373 A JP 2013228373A JP 2015085303 A JP2015085303 A JP 2015085303A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- acidic
- fly ash
- hydroxide
- agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000002378 acidificating effect Effects 0.000 title claims abstract description 127
- 238000000034 method Methods 0.000 title claims abstract description 89
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 158
- 229910001385 heavy metal Inorganic materials 0.000 claims abstract description 118
- 239000010881 fly ash Substances 0.000 claims abstract description 83
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims abstract description 65
- 239000000920 calcium hydroxide Substances 0.000 claims abstract description 65
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims abstract description 65
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 claims abstract description 42
- 239000000347 magnesium hydroxide Substances 0.000 claims abstract description 42
- 229910001862 magnesium hydroxide Inorganic materials 0.000 claims abstract description 42
- 239000000843 powder Substances 0.000 claims abstract description 38
- 239000002253 acid Substances 0.000 claims abstract description 19
- 239000000470 constituent Substances 0.000 claims abstract description 11
- 239000007789 gas Substances 0.000 claims description 172
- 239000010459 dolomite Substances 0.000 claims description 53
- 229910000514 dolomite Inorganic materials 0.000 claims description 53
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 45
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims description 41
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims description 41
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 29
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 claims description 23
- 239000013522 chelant Substances 0.000 claims description 22
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 claims description 20
- 230000005484 gravity Effects 0.000 claims description 18
- 230000003472 neutralizing effect Effects 0.000 claims description 18
- 239000011148 porous material Substances 0.000 claims description 12
- 239000007787 solid Substances 0.000 claims description 12
- 238000003672 processing method Methods 0.000 claims description 10
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical group [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 8
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical group [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 7
- 239000002912 waste gas Substances 0.000 claims description 3
- 239000000834 fixative Substances 0.000 abstract description 2
- 235000011116 calcium hydroxide Nutrition 0.000 description 58
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 29
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 28
- 238000010828 elution Methods 0.000 description 25
- 230000008569 process Effects 0.000 description 25
- 230000029087 digestion Effects 0.000 description 22
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 18
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 18
- 230000000694 effects Effects 0.000 description 18
- 239000000428 dust Substances 0.000 description 17
- 239000000292 calcium oxide Substances 0.000 description 16
- 235000012255 calcium oxide Nutrition 0.000 description 16
- 150000001875 compounds Chemical class 0.000 description 16
- -1 phosphoric acid compound Chemical class 0.000 description 16
- 235000011007 phosphoric acid Nutrition 0.000 description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 13
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 12
- 239000000377 silicon dioxide Substances 0.000 description 12
- 235000012239 silicon dioxide Nutrition 0.000 description 12
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 11
- 239000002245 particle Substances 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000003513 alkali Substances 0.000 description 9
- 238000010304 firing Methods 0.000 description 9
- 229910019142 PO4 Inorganic materials 0.000 description 8
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 8
- 239000011575 calcium Substances 0.000 description 8
- 239000002738 chelating agent Substances 0.000 description 8
- 239000010452 phosphate Substances 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- 229910052500 inorganic mineral Inorganic materials 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 235000010755 mineral Nutrition 0.000 description 6
- 239000011707 mineral Substances 0.000 description 6
- 238000010298 pulverizing process Methods 0.000 description 6
- 230000009257 reactivity Effects 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 235000000346 sugar Nutrition 0.000 description 5
- 238000004448 titration Methods 0.000 description 5
- 239000002699 waste material Substances 0.000 description 5
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- AGKZZTAKVYWQLA-UHFFFAOYSA-N carbamodithioic acid;piperazine Chemical compound NC(S)=S.C1CNCCN1 AGKZZTAKVYWQLA-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 239000002440 industrial waste Substances 0.000 description 4
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 4
- 229910052753 mercury Inorganic materials 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 150000003016 phosphoric acids Chemical class 0.000 description 4
- 235000017557 sodium bicarbonate Nutrition 0.000 description 4
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 4
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 235000019738 Limestone Nutrition 0.000 description 3
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 3
- 229910052785 arsenic Inorganic materials 0.000 description 3
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 239000003546 flue gas Substances 0.000 description 3
- 239000006028 limestone Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 229910052711 selenium Inorganic materials 0.000 description 3
- 239000011669 selenium Substances 0.000 description 3
- 235000019832 sodium triphosphate Nutrition 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229910052815 sulfur oxide Inorganic materials 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 2
- 238000003916 acid precipitation Methods 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 150000001414 amino alcohols Chemical class 0.000 description 2
- 229910052586 apatite Inorganic materials 0.000 description 2
- 239000002956 ash Substances 0.000 description 2
- ZWHCFDOODAQLLX-UHFFFAOYSA-D bis[(2-oxo-1,3,2lambda5,4lambda2-dioxaphosphaplumbetan-2-yl)oxy]lead chloro-[(2-oxo-1,3,2lambda5,4lambda2-dioxaphosphaplumbetan-2-yl)oxy]lead Chemical compound [Cl-].[Pb+2].[Pb+2].[Pb+2].[Pb+2].[Pb+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O ZWHCFDOODAQLLX-UHFFFAOYSA-D 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 2
- 229940116901 diethyldithiocarbamate Drugs 0.000 description 2
- LMBWSYZSUOEYSN-UHFFFAOYSA-N diethyldithiocarbamic acid Chemical compound CCN(CC)C(S)=S LMBWSYZSUOEYSN-UHFFFAOYSA-N 0.000 description 2
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 229960002089 ferrous chloride Drugs 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 229940005740 hexametaphosphate Drugs 0.000 description 2
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 2
- 230000003100 immobilizing effect Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 2
- 239000001095 magnesium carbonate Substances 0.000 description 2
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 2
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 229910000160 potassium phosphate Inorganic materials 0.000 description 2
- 235000011009 potassium phosphates Nutrition 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 150000005846 sugar alcohols Chemical class 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 2
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical compound [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 2
- NCPXQVVMIXIKTN-UHFFFAOYSA-N trisodium;phosphite Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])[O-] NCPXQVVMIXIKTN-UHFFFAOYSA-N 0.000 description 2
- 238000004438 BET method Methods 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 241001595840 Margarites Species 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-N Metaphosphoric acid Chemical compound OP(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 239000005819 Potassium phosphonate Substances 0.000 description 1
- 239000004111 Potassium silicate Substances 0.000 description 1
- 239000004113 Sepiolite Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000000159 acid neutralizing agent Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229910001583 allophane Inorganic materials 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- HPTYUNKZVDYXLP-UHFFFAOYSA-N aluminum;trihydroxy(trihydroxysilyloxy)silane;hydrate Chemical compound O.[Al].[Al].O[Si](O)(O)O[Si](O)(O)O HPTYUNKZVDYXLP-UHFFFAOYSA-N 0.000 description 1
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical group [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 229910052626 biotite Inorganic materials 0.000 description 1
- YYRMJZQKEFZXMX-UHFFFAOYSA-L calcium bis(dihydrogenphosphate) Chemical group [Ca+2].OP(O)([O-])=O.OP(O)([O-])=O YYRMJZQKEFZXMX-UHFFFAOYSA-L 0.000 description 1
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical group [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- YYRMJZQKEFZXMX-UHFFFAOYSA-N calcium;phosphoric acid Chemical compound [Ca+2].OP(O)(O)=O.OP(O)(O)=O YYRMJZQKEFZXMX-UHFFFAOYSA-N 0.000 description 1
- DKVNPHBNOWQYFE-UHFFFAOYSA-N carbamodithioic acid Chemical compound NC(S)=S DKVNPHBNOWQYFE-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical group [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 229940116349 dibasic ammonium phosphate Drugs 0.000 description 1
- SZRLKIKBPASKQH-UHFFFAOYSA-M dibutyldithiocarbamate Chemical compound CCCCN(C([S-])=S)CCCC SZRLKIKBPASKQH-UHFFFAOYSA-M 0.000 description 1
- MHJAJDCZWVHCPF-UHFFFAOYSA-L dimagnesium phosphate Chemical group [Mg+2].OP([O-])([O-])=O MHJAJDCZWVHCPF-UHFFFAOYSA-L 0.000 description 1
- MZGNSEAPZQGJRB-UHFFFAOYSA-N dimethyldithiocarbamic acid Chemical compound CN(C)C(S)=S MZGNSEAPZQGJRB-UHFFFAOYSA-N 0.000 description 1
- 150000002013 dioxins Chemical class 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- YGANSGVIUGARFR-UHFFFAOYSA-N dipotassium dioxosilane oxo(oxoalumanyloxy)alumane oxygen(2-) Chemical compound [O--].[K+].[K+].O=[Si]=O.O=[Al]O[Al]=O YGANSGVIUGARFR-UHFFFAOYSA-N 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- YXXXKCDYKKSZHL-UHFFFAOYSA-M dipotassium;dioxido(oxo)phosphanium Chemical compound [K+].[K+].[O-][P+]([O-])=O YXXXKCDYKKSZHL-UHFFFAOYSA-M 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000012990 dithiocarbamate Substances 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910052621 halloysite Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- TVZISJTYELEYPI-UHFFFAOYSA-N hypodiphosphoric acid Chemical compound OP(O)(=O)P(O)(O)=O TVZISJTYELEYPI-UHFFFAOYSA-N 0.000 description 1
- 229910052900 illite Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 1
- 229910052622 kaolinite Inorganic materials 0.000 description 1
- CYPPCCJJKNISFK-UHFFFAOYSA-J kaolinite Chemical compound [OH-].[OH-].[OH-].[OH-].[Al+3].[Al+3].[O-][Si](=O)O[Si]([O-])=O CYPPCCJJKNISFK-UHFFFAOYSA-J 0.000 description 1
- QQFLQYOOQVLGTQ-UHFFFAOYSA-L magnesium;dihydrogen phosphate Chemical group [Mg+2].OP(O)([O-])=O.OP(O)([O-])=O QQFLQYOOQVLGTQ-UHFFFAOYSA-L 0.000 description 1
- 229910052630 margarite Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 229910052627 muscovite Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- VGIBGUSAECPPNB-UHFFFAOYSA-L nonaaluminum;magnesium;tripotassium;1,3-dioxido-2,4,5-trioxa-1,3-disilabicyclo[1.1.1]pentane;iron(2+);oxygen(2-);fluoride;hydroxide Chemical compound [OH-].[O-2].[O-2].[O-2].[O-2].[O-2].[F-].[Mg+2].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[K+].[K+].[K+].[Fe+2].O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2 VGIBGUSAECPPNB-UHFFFAOYSA-L 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052625 palygorskite Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 1
- 229910052628 phlogopite Inorganic materials 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000137 polyphosphoric acid Polymers 0.000 description 1
- 235000007686 potassium Nutrition 0.000 description 1
- 229910001380 potassium hypophosphite Inorganic materials 0.000 description 1
- CRGPNLUFHHUKCM-UHFFFAOYSA-M potassium phosphinate Chemical compound [K+].[O-]P=O CRGPNLUFHHUKCM-UHFFFAOYSA-M 0.000 description 1
- 229940098424 potassium pyrophosphate Drugs 0.000 description 1
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 229910052913 potassium silicate Inorganic materials 0.000 description 1
- 229910052820 pyromorphite Inorganic materials 0.000 description 1
- 229940048084 pyrophosphate Drugs 0.000 description 1
- 229940005657 pyrophosphoric acid Drugs 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 229910052624 sepiolite Inorganic materials 0.000 description 1
- 235000019355 sepiolite Nutrition 0.000 description 1
- 229910021487 silica fume Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910052604 silicate mineral Inorganic materials 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 1
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000002426 superphosphate Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- RYCLIXPGLDDLTM-UHFFFAOYSA-J tetrapotassium;phosphonato phosphate Chemical compound [K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])([O-])=O RYCLIXPGLDDLTM-UHFFFAOYSA-J 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 229940001496 tribasic sodium phosphate Drugs 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Landscapes
- Treating Waste Gases (AREA)
- Processing Of Solid Wastes (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
Description
本発明は、都市ごみ廃棄物焼却炉、産業廃棄物焼却炉、発電ボイラ、炭化炉、民間工場等の燃焼施設において発生する塩化水素や硫黄酸化物等の有害な酸性ガスを含む排ガスの処理方法に関する。 The present invention relates to a method for treating exhaust gas containing harmful acid gases such as hydrogen chloride and sulfur oxide generated in combustion facilities such as municipal waste waste incinerators, industrial waste incinerators, power generation boilers, carbonization furnaces, and private factories. About.
都市ゴミや産業廃棄物等の廃棄物焼却炉から排出される燃焼排ガスには、炭酸ガスや、水蒸気、酸素、窒素、硫黄酸化物、窒素酸化物、塩化水素、重金属化合物、煤塵などが含まれていることから、大気放出に先立ち、これらの物質を除去する必要がある。 Combustion exhaust gas discharged from waste incinerators such as municipal waste and industrial waste includes carbon dioxide, water vapor, oxygen, nitrogen, sulfur oxides, nitrogen oxides, hydrogen chloride, heavy metal compounds, dust, etc. Therefore, it is necessary to remove these substances prior to release to the atmosphere.
特許文献1のように、一般的に、有害な塩化水素や硫黄酸化物を含む酸性排ガスは、水酸化カルシウム等のアルカリ剤で処理された後、バグフィルター等の集塵機で除塵され、煙突から排出される。一方、集塵機で集塵された飛灰は、有害な鉛、カドミウム等の重金属を含有しており、これら有害重金属を安定化処理した後に埋立処分されている。
集塵機で除塵された飛灰中の重金属の処理方法としては、ピペラジンジチオカルバミン酸塩、ジエチルジチオカルバミン酸塩等のキレート系の重金属固定剤で不溶化処理する方法が一般的である。該方法は、環境庁告示13号試験等による短期的な重金属の固定効果は高いが、最終処分場において酸性雨によりpHが低下した際の影響や、キレートが酸化して自己分解することにより鉛等の重金属が再溶出する問題が懸念されている。
As in Patent Document 1, in general, acidic exhaust gas containing harmful hydrogen chloride and sulfur oxide is treated with an alkaline agent such as calcium hydroxide, and then removed by a dust collector such as a bag filter and discharged from a chimney. Is done. On the other hand, fly ash collected by a dust collector contains harmful heavy metals such as lead and cadmium, and is disposed of in landfill after stabilizing these harmful heavy metals.
As a method for treating heavy metals in fly ash removed by a dust collector, a method of insolubilizing with a chelate heavy metal fixing agent such as piperazine dithiocarbamate or diethyldithiocarbamate is generally used. This method has a high effect of fixing heavy metals in the short term by the Environmental Agency Notification No. 13 test, etc., but lead due to the effect of acid drop at the final disposal site due to acid rain and the chelate oxidation and self-decomposition. There is concern about the problem of heavy metal re-elution.
一方、特許文献2は、重金属固定剤として、リン酸等のリン酸系化合物を用いている。リン酸系化合物は、無機鉱物であるヒドロキシアパタイト形態まで変化させるため最終処分場における鉛等の長期安定性に優れる。このように、リン酸系重金属固定剤は、キレート系重金属固定剤と異なり、長期にわたる重金属固定効果を有しており、酸性雨の影響を加味したアベイラビリティ試験のような厳しい条件下においても、鉛等の重金属を安定的に処理することが可能であり、環境保護の観点から非常に価値の高い重金属の処理方法と考えられている。 On the other hand, Patent Document 2 uses a phosphoric acid compound such as phosphoric acid as a heavy metal fixing agent. The phosphoric acid compound is excellent in long-term stability of lead and the like in the final disposal site because it is changed to the form of hydroxyapatite which is an inorganic mineral. In this way, phosphate-based heavy metal fixing agents, unlike chelate heavy metal fixing agents, have a long-term heavy metal fixing effect, and lead even under severe conditions such as availability tests that take into account the effects of acid rain. In view of environmental protection, it is considered to be a highly valuable heavy metal treatment method.
また、重金属の固定に関して、塩酸、硫酸バンド等の酸性中和剤を添加する方法、ケイ酸ナトリウム水溶液、粉末二酸化ケイ素等の二酸化ケイ素含有化合物を添加する方法が知られている。また、六価クロム、砒素、セレン、水銀等の重金属が溶出する場合には、塩化第一鉄、ポリ硫酸鉄等の鉄含有化合物を添加し、これら重金属の溶出を防止する方法が知られている。 In addition, for fixing heavy metals, a method of adding an acidic neutralizer such as hydrochloric acid or a sulfuric acid band, and a method of adding a silicon dioxide-containing compound such as an aqueous sodium silicate solution or powdered silicon dioxide are known. In addition, when heavy metals such as hexavalent chromium, arsenic, selenium, and mercury are eluted, iron-containing compounds such as ferrous chloride and polyiron sulfate are added to prevent elution of these heavy metals. Yes.
特許文献3には、5〜30μmの微粉に加工された重曹(NaHCO3)で酸性排ガスを処理することにより、通常の水酸化カルシウムに比べ酸性排ガスを安定的に処理することができることが記載されている。また、特許文献4には、重曹を添加された飛灰は、残存するアルカリの未反応分が少なくなり、リン酸系の重金属固定剤の使用量を低減できる飛灰の処理方法が記載されている。 Patent Document 3 describes that by treating acidic exhaust gas with baking soda (NaHCO 3 ) processed into a fine powder of 5 to 30 μm, acidic exhaust gas can be treated more stably than ordinary calcium hydroxide. ing. Patent Document 4 describes a fly ash treatment method in which fly ash to which sodium bicarbonate has been added reduces the amount of remaining alkali unreacted and can reduce the amount of phosphoric acid heavy metal fixing agent used. Yes.
特許文献1のように、酸性排ガスを水酸化カルシウムで処理した飛灰は、未反応の水酸化カルシウムを多量に含んでいる。このため、特許文献2のように、重金属固定剤としてリン酸系化合物を用いた場合、リン酸系化合物が未反応水酸化カルシウムに消費され、鉛等の溶出防止に有効な液固比(L/S)=10における飛灰溶出液のpHを低下させるためのリン酸系化合物が大量に必要となる。また、酸性の中和剤、二酸化ケイ素含有化合物についても、未反応水酸化カルシウムの影響により添加量が多大となる。 As in Patent Document 1, fly ash obtained by treating acidic exhaust gas with calcium hydroxide contains a large amount of unreacted calcium hydroxide. For this reason, as in Patent Document 2, when a phosphate compound is used as a heavy metal fixing agent, the phosphate compound is consumed by unreacted calcium hydroxide, and a liquid-solid ratio (L / S) = 10 requires a large amount of a phosphoric acid compound to lower the pH of the fly ash eluate. In addition, the amount of the acidic neutralizing agent and silicon dioxide-containing compound is increased due to the influence of unreacted calcium hydroxide.
特許文献3及び4のように、微粉の重曹で酸性排ガスを処理した飛灰にリン酸系化合物等を添加し重金属を固定する方法は、重金属を長期的に固定するための有効な方法であるが、重曹等のナトリウム系の薬剤は水酸化カルシウム等のカルシウム系の薬剤に比べてコストが高いことに加え、さらに微粉に加工するための粉砕設備等の加工コストがかかり、処理費用が増加するため普及率は低いのが現状である。 As in Patent Documents 3 and 4, a method of fixing a heavy metal by adding a phosphoric acid compound or the like to fly ash obtained by treating acidic exhaust gas with fine powdered sodium bicarbonate is an effective method for fixing a heavy metal for a long period of time. However, sodium-based chemicals such as baking soda are more expensive than calcium-based chemicals such as calcium hydroxide, and in addition, processing costs such as pulverization equipment for processing into fine powder increase, and processing costs increase. Therefore, the penetration rate is low at present.
本発明は、リン酸系化合物等の重金属固定剤の使用量を減らすとともに、低コストで重金属の固定処理を行うことができる酸性排ガスの処理方法、及び排ガス処理剤を提供することを目的とする。 An object of the present invention is to provide an acidic exhaust gas treatment method and an exhaust gas treatment agent capable of reducing the amount of heavy metal fixing agent such as a phosphoric acid compound and performing heavy metal fixing treatment at low cost. .
上記課題を解決すべく、以下の[1]〜[12]の酸性排ガスの処理方法を提供する。
[1]酸性排ガスに対して、比表面積が20m2/g以上、メジアン径(d50)が5〜30μmであって、水酸化マグネシウム及び水酸化カルシウムを構成成分として有する粉体を含有してなる排ガス処理剤を添加することにより、pH8.3を終点とする酸消費量から規定される飛灰のアルカリ度を150mgCaCO3/g以下とする工程を行い、さらに飛灰を集塵する工程を行った後に、無機重金属固定剤及び/又は酸性中和剤を添加する工程を行う酸性排ガスの処理方法。
[2]無機重金属固定剤及び/又は酸性中和剤を添加する工程を行った後の飛灰の液固比10における溶出液のpHが8.0〜11.5である上記[1]に記載の酸性排ガスの処理方法。
[3]前記粉体中のマグネシウム原子とカルシウム原子とのモルの比が1:0.79 〜 1:3.15である上記[1]又は[2]に記載の酸性排ガスの処理方法。
[4]前記粉体の細孔容積が0.1〜0.7cm3/g、動的見掛け比重が0.3〜0.7g/cm3である上記[1]〜[3]の何れかに記載の酸性排ガスの処理方法。
[5]前記水酸化マグネシウム及び水酸化カルシウムとして、水酸化ドロマイトを含有する上記[1]〜[4]の何れかに記載の酸性排ガスの処理方法。
[6]前記酸性排ガスが塩化水素及び硫黄酸化物を含み、該塩化水素及び硫黄酸化物に対して、水酸化マグネシウム及び水酸化カルシウムを合計で0.5〜5.0当量となるように添加する上記[1]〜[5]の何れかに記載の酸性排ガスの処理方法。
[7]酸性排ガスに対して、比表面積20m2/g以上、メジアン径(d50)5〜30μmであって、水酸化マグネシウム及び水酸化カルシウムを構成成分として有する粉体を含有してなる排ガス処理剤を添加することにより、pH8.3を終点とする酸消費量から規定される飛灰のアルカリ度を55mgCaCO3/g未満とする工程を行い、さらに飛灰を集塵する工程を行った後に、キレート系重金属固定剤を添加する工程を行う酸性排ガスの処理方法。
[8]排ガス処理剤を添加してpH8.3を終点とする酸消費量から規定される飛灰のアルカリ度を55mgCaCO3/g未満とする工程において、飛灰の液固比10における溶出液のpHを11.8以下とする上記[7]に記載の酸性排ガスの処理方法。
[9]前記粉体中のマグネシウム原子とカルシウム原子とのモルの比が1:0.79 〜 1:3.15である上記[7]又は[8]に記載の酸性排ガスの処理方法。
[10]前記粉体の細孔容積が0.1〜0.7cm3/g、動的見掛け比重が0.3〜0.7g/cm3である上記[7]〜[9]の何れかに記載の酸性排ガスの処理方法。
[11]前記水酸化マグネシウム及び水酸化カルシウムとして、水酸化ドロマイトを含有する上記[7]〜[10]の何れかに記載の酸性排ガスの処理方法。
[12]前記酸性排ガスが塩化水素及び硫黄酸化物を含み、該塩化水素及び硫黄酸化物に対して、水酸化マグネシウム及び水酸化カルシウムを合計で0.5〜5.0当量となるように添加する上記[7]〜[11]の何れかに記載の酸性排ガスの処理方法。
In order to solve the above problems, the following [1] to [12] acidic exhaust gas treatment methods are provided.
[1] A powder having a specific surface area of 20 m 2 / g or more, a median diameter (d50) of 5 to 30 μm and containing magnesium hydroxide and calcium hydroxide as constituents with respect to acidic exhaust gas. By adding an exhaust gas treatment agent, the step of reducing the alkalinity of fly ash specified by the acid consumption with pH 8.3 as the end point to 150 mg CaCO 3 / g or less, and further the step of collecting fly ash After that, the processing method of the acidic exhaust gas which performs the process of adding an inorganic heavy metal fixing agent and / or an acidic neutralizer.
[2] In the above [1], the pH of the eluate at the liquid-solid ratio 10 of fly ash after performing the step of adding the inorganic heavy metal fixing agent and / or the acidic neutralizer is 8.0 to 11.5. The treatment method of the acidic exhaust gas as described.
[3] The method for treating acidic exhaust gas according to the above [1] or [2], wherein a molar ratio of magnesium atom to calcium atom in the powder is 1: 0.79 to 1: 3.15.
[4] pore volume 0.1~0.7cm 3 / g of the powder, either dynamic apparent specific gravity of 0.3 to 0.7 g / cm 3 [1] to [3] The processing method of the acidic waste gas as described in 2.
[5] The method for treating acidic exhaust gas according to any one of the above [1] to [4], which contains dolomite hydroxide as the magnesium hydroxide and calcium hydroxide.
[6] The acidic exhaust gas contains hydrogen chloride and sulfur oxide, and magnesium hydroxide and calcium hydroxide are added to the hydrogen chloride and sulfur oxide so that the total amount is 0.5 to 5.0 equivalents. The method for treating acidic exhaust gas according to any one of [1] to [5] above.
[7] Exhaust gas treatment comprising a powder having a specific surface area of 20 m 2 / g or more and a median diameter (d50) of 5 to 30 μm and containing magnesium hydroxide and calcium hydroxide as constituents with respect to acidic exhaust gas After adding the agent, the step of setting the alkalinity of the fly ash specified from the acid consumption with pH 8.3 as the end point to less than 55 mg CaCO 3 / g, and further the step of collecting the fly ash is performed The processing method of acidic exhaust gas which performs the process of adding a chelate type heavy metal fixing agent.
[8] An eluate at a liquid-solid ratio of 10 in fly ash in the step of adding an exhaust gas treating agent to make the fly ash alkalinity less than 55 mg CaCO 3 / g defined by the acid consumption starting from pH 8.3 The method for treating acidic exhaust gas according to the above [7], wherein the pH of the solution is 11.8 or less.
[9] The method for treating acidic exhaust gas according to the above [7] or [8], wherein a molar ratio of magnesium atom to calcium atom in the powder is 1: 0.79 to 1: 3.15.
[10] pore volume 0.1~0.7cm 3 / g of the powder, either dynamic apparent specific gravity of 0.3 to 0.7 g / cm 3 above [7] to [9] The processing method of the acidic waste gas as described in 2.
[11] The method for treating acidic exhaust gas according to any one of the above [7] to [10], which contains dolomite hydroxide as the magnesium hydroxide and calcium hydroxide.
[12] The acidic exhaust gas contains hydrogen chloride and sulfur oxide, and magnesium hydroxide and calcium hydroxide are added to the hydrogen chloride and sulfur oxide so that the total amount is 0.5 to 5.0 equivalents. The method for treating acidic exhaust gas according to any one of [7] to [11] above.
本発明の酸性排ガスの処理方法によれば、重金属固定剤の使用量を減らすとともに、低コストで重金属の固定処理を行うことができる。 According to the method for treating acidic exhaust gas of the present invention, it is possible to reduce the amount of heavy metal fixing agent used and perform heavy metal fixing treatment at low cost.
[酸性排ガスの処理方法]
本発明の酸性排ガスの処理方法は、酸性排ガスに対して、比表面積20m2/g以上、メジアン径(d50)5〜30μmであって、水酸化マグネシウム及び水酸化カルシウムを構成成分として有する粉体を含有してなる排ガス処理剤を添加することにより、pH8.3を終点とする酸消費量から規定される飛灰のアルカリ度を100mgCaCO3/g以下とする工程を行い、さらに飛灰を集塵する工程を行った後に、無機重金属固定剤及び/又は酸性中和剤を添加する工程を行うものである(以下、「第一の方法」と称する場合がある。)。
また、本発明の酸性排ガスの処理方法は、酸性排ガスに対して、比表面積20m2/g以上、メジアン径(d50)5〜30μmであって、水酸化マグネシウム及び水酸化カルシウムを構成成分として有する粉体を含有してなる排ガス処理剤を添加することにより、pH8.3を終点とする酸消費量から規定される飛灰のアルカリ度を55mgCaCO3/g未満とする工程を行い、さらに飛灰を集塵する工程を行った後に、キレート系重金属固定剤を添加する工程を行うものである(以下、「第二の方法」と称する場合がある。)。
[Method of treating acidic exhaust gas]
The method for treating acidic exhaust gas of the present invention is a powder having a specific surface area of 20 m 2 / g or more and a median diameter (d50) of 5 to 30 μm with respect to the acidic exhaust gas, and having magnesium hydroxide and calcium hydroxide as constituent components. By adding an exhaust gas treatment agent containing, the step of setting the alkalinity of fly ash, which is defined from the acid consumption with pH 8.3 as the end point, to 100 mgCaCO 3 / g or less, and further collecting fly ash After performing the dusting step, a step of adding an inorganic heavy metal fixing agent and / or an acidic neutralizing agent is performed (hereinafter sometimes referred to as “first method”).
In addition, the method for treating acidic exhaust gas of the present invention has a specific surface area of 20 m 2 / g or more and a median diameter (d50) of 5 to 30 μm with respect to the acidic exhaust gas, and has magnesium hydroxide and calcium hydroxide as constituent components. By adding an exhaust gas treatment agent containing powder, a step of making the fly ash alkalinity less than 55 mg CaCO 3 / g defined by the acid consumption with pH 8.3 as an end point is carried out, and further fly ash After performing the step of collecting dust, a step of adding a chelate heavy metal fixing agent is performed (hereinafter sometimes referred to as “second method”).
図1は、本発明の第一の方法及び第二の方法における酸性排ガスの処理方法を実施する排ガス処理システムの一実施形態を示す模式図である。図1の酸性排ガス処理システムでは、酸性排ガスは減温塔1で冷却され、煙道2を介して集塵機4に接続されている。また、排ガス処理剤供給装置3から排ガス処理剤が供給され、煙道2の途中において、酸性排ガスと排ガス処理剤とが混合されている。集塵機4からは吸引ファン5により煙が吸い出され、煙突から煙が放出される。また、集塵機4からは飛灰処理装置6に集塵した飛灰が放出され、該装置内で、図示しない薬剤添加手段により、重金属固定剤及び/又は酸性中和剤が添加された後、灰ピット7に放出される。 FIG. 1 is a schematic diagram showing an embodiment of an exhaust gas treatment system for carrying out an acidic exhaust gas treatment method in the first method and the second method of the present invention. In the acidic exhaust gas treatment system of FIG. 1, the acidic exhaust gas is cooled by the temperature reducing tower 1 and connected to the dust collector 4 via the flue 2. Further, the exhaust gas treatment agent is supplied from the exhaust gas treatment agent supply device 3, and the acidic exhaust gas and the exhaust gas treatment agent are mixed in the middle of the flue 2. Smoke is sucked out from the dust collector 4 by the suction fan 5, and smoke is discharged from the chimney. Also, the fly ash collected in the fly ash treatment device 6 is released from the dust collector 4, and after the heavy metal fixing agent and / or the acidic neutralizer is added by the chemical addition means (not shown) in the device, the ash Released to pit 7.
(排ガス処理剤の添加工程)
本発明の第一の方法及び第二の方法における酸性排ガスの処理方法では、まず、酸性排ガスに対して排ガス処理剤を添加する工程を行う。
本発明の酸性排ガスの処理方法が適用できる酸性排ガスは特に制限されない。例えば、都市ごみ廃棄物焼却炉、産業廃棄物焼却炉、発電ボイラ、炭化炉、民間工場等の燃焼施設において発生する、塩化水素や硫黄酸化物等の酸性ガスを含む排ガスが挙げられる。
排ガス処理剤の添加場所は、特に制限はなく、焼却炉内、減温塔手前、バグフィルター等の集塵機の手前で添加することで本発明の効果が見込まれる。ただし、一般的には、排ガス処理剤を、酸性排ガスを減温塔で冷却した後のバグフィルター等の集塵機手前で添加することが好ましい。
(Exhaust gas treatment agent addition process)
In the method for treating acidic exhaust gas in the first method and the second method of the present invention, first, a step of adding an exhaust gas treating agent to the acidic exhaust gas is performed.
The acidic exhaust gas to which the method for treating acidic exhaust gas of the present invention can be applied is not particularly limited. For example, exhaust gas containing acid gases such as hydrogen chloride and sulfur oxides generated in combustion facilities such as municipal waste incinerators, industrial waste incinerators, power generation boilers, carbonization furnaces, and private factories.
The place for adding the exhaust gas treating agent is not particularly limited, and the effect of the present invention can be expected by adding it in the incinerator, before the temperature reducing tower, and before the dust collector such as the bag filter. However, generally, it is preferable to add the exhaust gas treating agent before the dust collector such as a bag filter after the acidic exhaust gas is cooled in the temperature reducing tower.
本発明の酸性排ガスの処理方法では、排ガス処理剤として、比表面積が20m2/g以上、メジアン径(d50)が5〜30μmであって、水酸化マグネシウム及び水酸化カルシウムを構成成分として有する粉体を含有してなるものを用いる。
従来のように、水酸化カルシウムで酸性排ガスを処理した場合、飛灰に水酸化カルシウムの未反応分が残存し、酸消費量で規定される飛灰中のアルカリ度が高くなる。これにより、リン酸系化合物に代表される重金属固定剤を多量に用いる必要がある。
しかしながら、本発明では、上述の特定の粉体を含有してなる排ガス処理剤を用いることから、酸性排ガスとの反応性に優れるとともに、従来の水酸化カルシウムに比べ、処理剤自身のアルカリ度を大幅に削減できる。具体的には、粉体のアルカリ度を500〜1000 mgCaCO3/gにすることができ、好ましくは700〜900 mgCaCO3/gにすることができる。これにより、飛灰に残存するアルカリ含有量を大幅に低減でき、重金属固定剤の添加量を大幅に削減することができる。
粉体の比表面積が20m2/g未満であると、塩化水素や硫黄酸化物等の酸性ガスとの反応性が低下する。また、粉体のメジアン径(d50)が5μm未満であると、集塵機での捕集効率の低下や差圧の上昇が懸念される。また、粉体のメジアン径(d50)が30μmを超えると酸性ガスとの反応性の低下が懸念される。
In the method for treating acidic exhaust gas of the present invention, as an exhaust gas treating agent, a powder having a specific surface area of 20 m 2 / g or more, a median diameter (d50) of 5 to 30 μm, and magnesium hydroxide and calcium hydroxide as constituent components The one containing the body is used.
When the acidic exhaust gas is treated with calcium hydroxide as in the past, the unreacted portion of calcium hydroxide remains in the fly ash, and the alkalinity in the fly ash specified by the acid consumption increases. Thereby, it is necessary to use a heavy metal fixing agent typified by a phosphate compound.
However, in the present invention, since the exhaust gas treatment agent containing the above specific powder is used, the reactivity with acidic exhaust gas is excellent, and the alkalinity of the treatment agent itself is higher than that of conventional calcium hydroxide. It can be greatly reduced. Specifically, the alkalinity of the powder can be 500 to 1000 mgCaCO 3 / g, preferably 700 to 900 mgCaCO 3 / g. Thereby, the alkali content remaining in the fly ash can be greatly reduced, and the amount of heavy metal fixing agent added can be greatly reduced.
When the specific surface area of the powder is less than 20 m 2 / g, the reactivity with acidic gases such as hydrogen chloride and sulfur oxides decreases. Moreover, when the median diameter (d50) of the powder is less than 5 μm, there is a concern that the collection efficiency of the dust collector may be reduced or the differential pressure may be increased. Further, when the median diameter (d50) of the powder exceeds 30 μm, there is a concern that the reactivity with the acid gas is lowered.
なお、本発明において「アルカリ度」は、試料(0.1〜0.5g)と1,000倍量の純水(100〜500ml)をビーカーに投入し、マグネチックスターラーで、1時間攪拌した試料からマイクロピペットで所定量(ml)分取し、フェノールフタレイン指示薬を数滴加え混合した後、1/50Nの硫酸を変色する(pH8.3に至る)まですみやかに滴定し、薬剤1gあたりの硫酸の滴定量(ml)を記録し、以下の換算式により算出した。
(換算式)
アルカリ度(mgCaCO3/g)
=0.02 [滴定硫酸濃度(mol/L)]×A (ml)÷B(g)×C(ml)÷D(ml)×100÷2
=A(ml)÷B(g)×C(ml)÷D(ml)
A:硫酸滴定量(ml)
B:試料量(g)
C:純水添加量(ml)
D:攪拌後の分取量(ml)
In the present invention, “alkalinity” refers to a sample (0.1 to 0.5 g) and 1,000 times the amount of pure water (100 to 500 ml) placed in a beaker and stirred for 1 hour with a magnetic stirrer. Take a predetermined amount (ml) from the sample with a micropipette, mix with a few drops of phenolphthalein indicator, and immediately titrate until 1 / 50N sulfuric acid changes color (to reach pH 8.3). The sulfuric acid titer (ml) was recorded and calculated by the following conversion formula.
(Conversion formula)
Alkalinity (mgCaCO 3 / g)
= 0.02 [Titration sulfuric acid concentration (mol / L)] × A (ml) ÷ B (g) × C (ml) ÷ D (ml) × 100 ÷ 2
= A (ml) / B (g) x C (ml) / D (ml)
A: Sulfuric acid titration (ml)
B: Sample amount (g)
C: Amount of pure water added (ml)
D: Amount taken after stirring (ml)
排ガス処理剤中の粉体は、酸性排ガス処理性能の観点から、比表面積、メジアン径(d50)、細孔容積及び動的見掛比重が以下の範囲であることが好ましい。
比表面積は20〜150m2/gであることが好ましく、20〜100m2/gであることがより好ましく、20〜60m2/gであることがさらに好ましい。メジアン径(d50)は5〜30μmであることが好ましく、10〜20μmであることがより好ましい。細孔容積は0.1〜0.7cm3/gであることが好ましく、0.1〜0.6cm3/gであることがより好ましく、0.1〜0.4cm3/gであることがさらに好ましい。動的見掛比重は、0.3〜0.7g/cm3であることが好ましく、0.4〜0.6 g/cm3であることがより好ましい。
本発明において「比表面積」とは窒素吸着によるBET法により、窒素の吸着量からBET1点法により算出される比表面積を意味し、「細孔容積」とはBJH法により算出される細孔容積を意味し、いずれもQuanta chrome社製の商品名 NOVA 2000等の測定装置により測定できる。また、「メジアン径(d50)」とは、レーザー回折散乱法によって求めた粒度分布における粒子個数の積算値が50%となる粒子径(d50)を意味し、島津製作所社製の商品名SALD-2100等の測定装置により測定できる。また、「動的見掛比重」とは、貯留槽における実際の比重に近い値であり、ホソカワミクロン社製の商品名パウダーテスター等の測定装置により測定される「ゆるみ見掛比重(タップをしない時の見掛比重)」と「固め見掛比重(十分にタップをした際の見掛比重)」の測定値をもとに以下算出式で試算される。
動的見掛比重(g/cm3)=A+{(B−A)×(B−A)÷B}
A:ゆるみ見掛比重(g/cm3)
B:固め見掛比重(g/cm3)
The powder in the exhaust gas treating agent preferably has a specific surface area, median diameter (d50), pore volume, and dynamic apparent specific gravity in the following ranges from the viewpoint of acidic exhaust gas treatment performance.
Preferably the specific surface area is 20~150m 2 / g, more preferably 20 to 100 m 2 / g, more preferably from 20~60m 2 / g. The median diameter (d50) is preferably 5 to 30 μm, and more preferably 10 to 20 μm. Preferably the pore volume is 0.1~0.7cm 3 / g, more preferably 0.1~0.6cm 3 / g, it is 0.1~0.4cm 3 / g Is more preferable. Dynamic apparent specific gravity is preferably from 0.3 to 0.7 g / cm 3, more preferably 0.4~0.6 g / cm 3.
In the present invention, the “specific surface area” means a specific surface area calculated by the BET method by nitrogen adsorption and the BET one-point method from the adsorption amount of nitrogen, and the “pore volume” means the pore volume calculated by the BJH method. These can be measured by a measuring device such as the product name NOVA 2000 manufactured by Quanta chrome. The “median diameter (d50)” means a particle diameter (d50) at which the integrated value of the number of particles in the particle size distribution determined by the laser diffraction scattering method is 50%. The trade name SALD- manufactured by Shimadzu Corporation It can be measured with a measuring device such as 2100. The “dynamic apparent specific gravity” is a value close to the actual specific gravity in the storage tank, and is measured by a measuring device such as a product name powder tester manufactured by Hosokawa Micron Co., Ltd. Based on the measured values of “apparent specific gravity” and “solid apparent specific gravity (apparent specific gravity when fully tapped)”, the following calculation formula is used.
Dynamic apparent specific gravity (g / cm 3 ) = A + {(BA) × (BA) ÷ B}
A: Loose apparent specific gravity (g / cm 3 )
B: Solid apparent specific gravity (g / cm 3 )
排ガス処理剤中の粉体は、水酸化マグネシウム及び水酸化カルシウムを構成成分として有する。排ガス処理剤中の粉体に、水酸化マグネシウム及び水酸化カルシウムという2つの成分を構成成分として有することにより、従来の水酸化カルシウムに比べ、処理剤自身のアルカリ度を大幅に削減できる。この理由は、水酸化カルシウムに比べ、水酸化マグネシウムは、水への溶解が非常に遅く、上記アルカリ度において検出しにくいためと考えられる。
さらに、水酸化カルシウムと水酸化マグネシウムの混合物、特に高比表面積の水酸化ドロマイトは、従来の水酸化カルシウムに比べ酸性排ガスとの反応性が優れており、水酸化カルシウムの未反応分が減少し、前記排ガス処理剤を添加し処理した飛灰のアルカリ度を大幅に減少させることができ、無機重金属固定剤、酸性中和剤、キレート系重金属固定剤の必要添加量を大幅に削減することができる。
なお、本発明において、「水酸化マグネシウム及び水酸化カルシウムを構成成分として有する」とは、水酸化マグネシウム及び水酸化カルシウムが独立して存在する構成、並びに、後述する水酸化ドロマイト[Ca(OH)2・Mg(OH)2]のように、水酸化マグネシウム及び水酸化カルシウムが複合化してなる構成等のように、水酸化マグネシウム及び水酸化カルシウムを構成成分中に含むものを意味する。
The powder in the exhaust gas treating agent has magnesium hydroxide and calcium hydroxide as constituent components. By having two components of magnesium hydroxide and calcium hydroxide as constituents in the powder in the exhaust gas treatment agent, the alkalinity of the treatment agent itself can be greatly reduced compared to conventional calcium hydroxide. The reason for this is considered to be that magnesium hydroxide is very slowly dissolved in water as compared with calcium hydroxide and is difficult to detect at the alkalinity.
In addition, a mixture of calcium hydroxide and magnesium hydroxide, especially dolomite hydroxide with a high specific surface area, is more reactive with acidic exhaust gas than conventional calcium hydroxide, reducing the unreacted content of calcium hydroxide. The alkalinity of the fly ash treated by adding the exhaust gas treatment agent can be greatly reduced, and the required amount of inorganic heavy metal fixing agent, acidic neutralizing agent, chelate heavy metal fixing agent can be greatly reduced. it can.
In the present invention, “having magnesium hydroxide and calcium hydroxide as constituent components” means that magnesium hydroxide and calcium hydroxide exist independently, and dolomite hydroxide [Ca (OH) described later] 2 · Mg (OH) 2 ] means that the component contains magnesium hydroxide and calcium hydroxide, such as a structure in which magnesium hydroxide and calcium hydroxide are combined.
粉体である排ガス処理剤に含まれる、水酸化マグネシウム及び水酸化カルシウムは、飛灰アルカリ度の低減効果及び排ガス処理剤の低コスト化の観点から、排ガス処理剤中に含まれるマグネシウム原子とカルシウム原子のモルの比が、1:0.79〜1:3.15で含まれることが好ましく、1:0.96〜1:2.36で含まれることがより好ましい。
マグネシウム原子とカルシウム原子とのモル比は、EDTA滴定法により算出することができる。例えば、前記排ガス処理剤をJIS R9011に基づくEDTA滴定法により分析したCaとMgの測定結果から算出することができる。
Magnesium hydroxide and calcium hydroxide contained in the exhaust gas treatment agent that is a powder are magnesium atoms and calcium contained in the exhaust gas treatment agent from the viewpoint of reducing fly ash alkalinity and reducing the cost of the exhaust gas treatment agent. The molar ratio of atoms is preferably included at 1: 0.79 to 1: 3.15, and more preferably 1: 0.96 to 1: 2.36.
The molar ratio of magnesium atom to calcium atom can be calculated by EDTA titration method. For example, it can be calculated from the measurement results of Ca and Mg obtained by analyzing the exhaust gas treating agent by the EDTA titration method based on JIS R9011.
水酸化カルシウムは、以下のように、焼成工程、消化工程を経て製造することができる。
(1)焼成工程 CaCO3 → CaO +CO2 ↑
原料の炭酸カルシウムを主成分とする石灰石は、特に制限されることなく使用できる。石灰石の分解温度は、約900℃であるが、焼成工程は、一般的には、1100〜1300℃程度の熱をかけて焼成される。焼成する時間は、炉の形式にもよるが2〜24時間程度行うことにより焼成が可能である。
焼成工程により得られた生石灰(酸化カルシウム)を消化原料とする場合には、ロールクラッシャーやインペラブレーカー等の粉砕機を用いて、数mmアンダー程度の粒度に粉砕することが好ましい。
Calcium hydroxide can be produced through a firing step and a digestion step as follows.
(1) Firing process CaCO 3 → CaO + CO 2 ↑
Limestone mainly composed of raw material calcium carbonate can be used without particular limitation. The decomposition temperature of limestone is about 900 ° C., but the firing step is generally performed by applying heat of about 1100 to 1300 ° C. Although the firing time depends on the type of the furnace, firing is possible for about 2 to 24 hours.
When quick lime (calcium oxide) obtained by the baking process is used as a digestion raw material, it is preferably pulverized to a particle size of about several mm under using a pulverizer such as a roll crusher or an impeller breaker.
(2)消化工程 CaO + H2O → Ca(OH)2
生石灰の消化工程は、一般的には、消化機で生石灰と水を反応させた後、消化反応のムラをなくすため、熟成機で、数十分程度攪拌し、熟成する。消化水の量は、熟成後の消石灰がほぼ乾粉で得られるよう調整される。生石灰の消化工程において必要な理論水量は、生石灰の3割程度であるが、消化に伴う発熱で水分ロスがある為、理論量の倍に相当する6割程度の水を加えて消化するのが一般的である。
前記製造した消石灰には、一部未焼成物や未反応の酸化カルシウムが含まれるため、気流分級機でこれらの不純物を取り除くとともに、ある一定の粒径範囲で消石灰を分級回収する。この際、粗粒のものは、振動ミルやボールミル等の粉砕機により粉砕し、再度分級する場合もある。工業的に使用されるJIS特号消石灰においては、ほぼ150μmアンダーとなるよう粒度調整され、その結果、メジアン径(d50)が5〜20μm程度になる。また、比表面積は、10〜20m2/g、細孔容積が0.05〜0.15cm3/g、動的見掛比重は、0.5〜0.6g/cm3程度となる。
(2) Digestion process CaO + H 2 O → Ca (OH) 2
In the quick lime digestion process, generally, after reacting quick lime and water with a digester, in order to eliminate the unevenness of the digestion reaction, it is aged by stirring for several tens of minutes with an aging machine. The amount of digested water is adjusted so that the slaked lime after aging is obtained almost as a dry powder. The theoretical amount of water required in the quick lime digestion process is about 30% of that of quick lime, but there is water loss due to the heat generated by digestion, so digesting by adding about 60% of water, equivalent to twice the theoretical amount, is necessary. It is common.
Since the produced slaked lime contains partially unfired products and unreacted calcium oxide, these impurities are removed by an air classifier, and slaked lime is classified and recovered in a certain particle size range. At this time, the coarse particles may be pulverized by a pulverizer such as a vibration mill or a ball mill and classified again. In industrially used JIS special slaked lime, the particle size is adjusted to be under about 150 μm, and as a result, the median diameter (d50) is about 5 to 20 μm. The specific surface area is 10 to 20 m 2 / g, a pore volume of 0.05~0.15cm 3 / g, the dynamic apparent specific gravity becomes 0.5~0.6g / cm 3 order.
また、近年、通常用いられていたJIS特号消石灰に比べ、酸性ガスとの反応性が高い、高反応性の消石灰が利用されている。この高反応性消石灰の製造においては、前記消化工程において、生石灰と同量の消化水を糖や多価アルコール等の消化遅延剤とともに添加する。この工程により、消石灰の比表面積を高くし、酸性ガスとの反応性を向上させることができる。
消化遅延剤としては、砂糖等の糖類、エタノール、プロパノール、エチレングリコール、ジエチレングリコール、プロピレングリコール等のアルコール類、エタノールアミン、ジエタノールアミン、トリエタノールアミン等のアミノアルコール類が知られている。消化遅延剤は、生石灰100質量部に対して、0.1〜1.0質量部添加される。
消化後、必要に応じて乾燥、粉砕、分級などの工程を経て、メジアン径(d50)が5〜20μm程度、比表面積が40〜55m2/g、細孔容積が0.15〜0.30cm3/g、動的見掛比重0.35〜0.5g/cm3程度の高反応性の消石灰が得られる。
In recent years, highly reactive slaked lime, which has higher reactivity with acidic gas than JIS special slaked lime, which is normally used, has been used. In the production of this highly reactive slaked lime, in the digestion step, the same amount of digested water as quick lime is added along with digestion retarders such as sugar and polyhydric alcohol. By this step, the specific surface area of slaked lime can be increased and the reactivity with acidic gas can be improved.
Known digestion retarders include sugars such as sugar, alcohols such as ethanol, propanol, ethylene glycol, diethylene glycol, and propylene glycol, and amino alcohols such as ethanolamine, diethanolamine, and triethanolamine. The digestion retardant is added in an amount of 0.1 to 1.0 part by mass with respect to 100 parts by mass of quicklime.
After digestion, the median diameter (d50) is about 5 to 20 μm, the specific surface area is 40 to 55 m 2 / g, and the pore volume is 0.15 to 0.30 cm through steps such as drying, pulverization, and classification as necessary. 3 / g, a dynamic apparent specific gravity 0.35~0.5g / cm 3 as high reactivity lime is obtained.
水酸化マグネシウムは、脱炭酸した海水に消石灰や水酸化ナトリウム等のアルカリ剤を添加し、水酸化マグネシウムの製造を行う海水法が一般的である。本方法では、製造する水酸化マグネシウムがコロイド状となり、沈降及び洗浄が困難となるので、循環により種晶を大きくして、沈降性・ろ過性の高い水酸化マグネシウムを得た後、沈降、洗浄、ろ過、乾燥、粉砕の工程を経て製造することができる。
また、酸化マグネシウムに水を接触させ、水酸化マグネシウムを製造する方法も知られている。
水酸化マグネシウムのメジアン径(d50)は、上記粉砕工程により調整することができる。一般的に市販されている水酸化マグネシウムは、粒子径1〜10μm、比表面積1〜40m2/gのものがある。
本発明では、比表面積の大きい水酸化マグネシウムを用いるのが好ましいことから、神島化学工業社製の商品名「水酸化マグネシウム300(粒子径7μm、BET比表面積35m2/g)」を適用するのが好適である。また、本発明の効果を得るため特開2005-247604号公報に記載されているようなBET比表面積が100m2/g以上の水酸化マグネシウムを適用することも好適である。
Magnesium hydroxide is generally a seawater method in which an alkali agent such as slaked lime or sodium hydroxide is added to decarboxylated seawater to produce magnesium hydroxide. In this method, the magnesium hydroxide to be produced becomes colloidal, making it difficult to settle and wash. Therefore, the seed crystal is enlarged by circulation to obtain magnesium hydroxide having high sedimentation and filterability, followed by sedimentation and washing. It can be manufactured through the steps of filtration, drying and pulverization.
A method of producing magnesium hydroxide by bringing water into contact with magnesium oxide is also known.
The median diameter (d50) of magnesium hydroxide can be adjusted by the pulverization step. In general, commercially available magnesium hydroxide has a particle diameter of 1 to 10 μm and a specific surface area of 1 to 40 m 2 / g.
In the present invention, it is preferable to use magnesium hydroxide having a large specific surface area. Therefore, the trade name “magnesium hydroxide 300 (particle diameter: 7 μm, BET specific surface area: 35 m 2 / g)” manufactured by Kamishima Chemical Co., Ltd. is applied. Is preferred. In order to obtain the effects of the present invention, it is also preferable to apply magnesium hydroxide having a BET specific surface area of 100 m 2 / g or more as described in JP-A-2005-247604.
水酸化カルシウムと水酸化マグネシウムとを含む粉としては、水酸化ドロマイトが好適である。
水酸化ドロマイトは、ドロマイト(CaCO3・MgCO3)を原料として、下記に示すように、焼成工程、消化工程を経て製造される。水酸化ドロマイトは、日本国内に不純物の少ない高品位なドロマイト資源がある点、水酸化カルシウムと水酸化マグネシウムを混合利用する場合や、石灰石や軽焼マグネシウム(MgO)を混合して消化製造する場合において原料を混合する工程は不要であり、比較的安価に製造できる点において好適である。
As the powder containing calcium hydroxide and magnesium hydroxide, dolomite hydroxide is suitable.
Hydroxylated dolomite is produced from dolomite (CaCO 3 .MgCO 3 ) as a raw material through a firing step and a digestion step as shown below. Dolomite hydroxide has high-quality dolomite resources with few impurities in Japan, when mixing and using calcium hydroxide and magnesium hydroxide, or when digesting and manufacturing limestone and light calcined magnesium (MgO) The step of mixing the raw materials is not necessary and is preferable in that it can be produced at a relatively low cost.
(1)焼成工程 CaCO3・MgCO3 → CaO・MgO
原料のドロマイトは特に制限されることなく使用できる。ドロマイトは、炭酸カルシウムと炭酸マグネシウムの複塩であり、炭酸マグネシウムは、炭酸カルシウムに比べ分解温度が低いため、焼成温度は、1100〜1200℃程度と同程度からやや低い温度で焼成できる。焼成する時間は、前記同様、炉の形式にもよるが2〜24時間程度で十分焼成が可能である。
焼成工程により得られた酸化カルシウムと酸化マグネシウムを含む軽焼ドロマイトを消化原料とする場合には、消化反応を安定させるために、ロールクラッシャーやインペラブレーカー等により、数mmアンダー程度の粒度に粉砕することが好ましい。
(1) Firing process CaCO 3 · MgCO 3 → CaO · MgO
The raw material dolomite can be used without any particular limitation. Dolomite is a double salt of calcium carbonate and magnesium carbonate. Since magnesium carbonate has a lower decomposition temperature than calcium carbonate, the firing temperature can be fired at a temperature as low as about 1100 to 1200 ° C. The firing time depends on the type of the furnace as described above, but it can be sufficiently fired in about 2 to 24 hours.
When lightly burned dolomite containing calcium oxide and magnesium oxide obtained in the baking process is used as a raw material for digestion, it is pulverized to a particle size of about several millimeters under a roll crusher or impeller breaker to stabilize the digestion reaction. It is preferable.
(2)消化工程 CaO・MgO + 2H2O → Ca(OH)2・Mg(OH)2
軽焼ドロマイト(CaO・MgO)は、上記生石灰とほぼ同様に消化できる。前記製造した水酸化ドロマイトに含まれる一部未焼成物や未反応物は、前記同様、気流分級機で取り除くとともに、ある一定の粒径範囲で水酸化ドロマイトを分級回収する。この際、粗粒のものは、振動ミルやボールミル等の粉砕機により粉砕し、再度分級しても良い。これらの製造工程を経て、メジアン径(d50)が5〜30μm程度に調整され、比表面積が20〜40m2/g、細孔容積が0.1〜0.2cm3/g、動的見掛比重0.45〜0.65g/cm3程度の水酸化ドロマイトが得られる。
(2) Digestion process CaO · MgO + 2H 2 O → Ca (OH) 2 · Mg (OH) 2
Lightly burned dolomite (CaO · MgO) can be digested in substantially the same manner as the above-mentioned quicklime. As described above, partially unfired products and unreacted materials contained in the produced hydroxide dolomite are removed by an airflow classifier and classified and recovered in a certain particle size range. At this time, coarse particles may be pulverized by a pulverizer such as a vibration mill or a ball mill and classified again. Through these manufacturing steps, the median diameter (d50) is adjusted to about 5 to 30 μm, the specific surface area is 20 to 40 m 2 / g, the pore volume is 0.1 to 0.2 cm 3 / g, the dynamic appearance Hydroxide dolomite having a specific gravity of about 0.45 to 0.65 g / cm 3 is obtained.
水酸化ドロマイトにおいても、上記の消化工程において、消化水に消化遅延剤を添加することにより比表面積を高くすることができる。比表面積を高くすることにより、本発明における酸性ガス除去性能を向上させるとともに、飛灰に残存するアルカリ度を低減することができ、非常に有効な手段である。
消化遅延剤としては、前記同様、砂糖等の糖類、エタノール、プロパノール、エチレングリコール、ジエチレングリコール、プロピレングリコール等のアルコール類、エタノールアミン、ジエタノールアミン、トリエタノールアミン等のアミノアルコール類が挙げられる。
消化遅延剤は、原料である軽焼ドロマイト100質量部に対して、0.1〜1.5質量部添加することが好ましく、0.4〜1.2質量部添加することがより好ましい。
消化後、必要に応じて乾燥、粉砕、分級などの工程を経て、メジアン径(d50)が5〜30μm程度、比表面積が40〜60m2/g、細孔容積が0.2〜0.4cm3/g、動的見掛比重0.4〜0.6g/cm3程度の高比表面積の水酸化ドロマイトが得られる。
Also in dolomite hydroxide, the specific surface area can be increased by adding a digestion retardant to digestion water in the digestion step. By increasing the specific surface area, the acid gas removal performance in the present invention can be improved and the alkalinity remaining in the fly ash can be reduced, which is a very effective means.
Examples of the digestion retardant include sugars such as sugar, alcohols such as ethanol, propanol, ethylene glycol, diethylene glycol, and propylene glycol, and amino alcohols such as ethanolamine, diethanolamine, and triethanolamine, as described above.
The digestion retardant is preferably added in an amount of 0.1 to 1.5 parts by mass, more preferably 0.4 to 1.2 parts by mass, with respect to 100 parts by mass of the light-burned dolomite as a raw material.
After digestion, the median diameter (d50) is about 5 to 30 μm, the specific surface area is 40 to 60 m 2 / g, and the pore volume is 0.2 to 0.4 cm through steps such as drying, pulverization, and classification as necessary. Hydroxide dolomite having a high specific surface area of about 3 / g and a dynamic apparent specific gravity of about 0.4 to 0.6 g / cm 3 is obtained.
酸性排ガスに対する排ガス処理剤の添加量は、酸性排ガス中の塩化水素及び硫黄酸化物の合計に対して、水酸化マグネシウム及び水酸化カルシウムを合計で0.5〜5.0当量となるように添加することが好ましい。排ガス処理剤をこのような量で添加することにより、飛灰のアルカリ度を後述の範囲としやすくすることができ、重金属固定剤の添加量を大幅に削減しやすくできるとともに、重金属の溶出を安定的に防止しやすくできる。
また、排ガス処理剤の添加量は、第一の方法では、0.7〜4.0当量とすることが好ましく、第二の方法では、0.6〜1.5当量とすることが好ましい。
上述のような適切な量の排ガス処理剤を添加するために、出口の塩化水素や硫黄酸化物濃度を監視する装置を設置し、排ガス処理剤の添加量をフィードバックで制御することにより排出する塩化水素や硫黄酸化物濃度の濃度レベルを調整したり、あるいは、煙道入り口付近の塩化水素や硫黄酸化物の濃度を監視する装置を設置し、入口酸性排ガス濃度に応じて排ガス処理剤の添加量を調整することが好ましい。
Addition amount of exhaust gas treatment agent to acidic exhaust gas is added so that the total amount of magnesium hydroxide and calcium hydroxide is 0.5 to 5.0 equivalents with respect to the total of hydrogen chloride and sulfur oxide in acidic exhaust gas It is preferable to do. By adding the exhaust gas treatment agent in such an amount, the alkalinity of fly ash can be easily adjusted to the range described later, the amount of heavy metal fixing agent added can be greatly reduced, and heavy metal elution is stabilized. Can be easily prevented.
In addition, the amount of the exhaust gas treating agent added is preferably 0.7 to 4.0 equivalents in the first method, and preferably 0.6 to 1.5 equivalents in the second method.
In order to add an appropriate amount of the exhaust gas treatment agent as described above, a device that monitors the concentration of hydrogen chloride and sulfur oxide at the outlet is installed, and the amount of exhaust gas treatment agent added is controlled by feedback. Adjust the concentration level of hydrogen and sulfur oxide concentration, or install a device to monitor the concentration of hydrogen chloride and sulfur oxide near the flue entrance, and add the amount of exhaust gas treatment agent according to the inlet acidic exhaust gas concentration Is preferably adjusted.
排ガス処理剤中の粉体は、本発明の効果を阻害しない範囲で、水酸化マグネシウム及び水酸化カルシウム以外の構成成分を含有していてもよい。例えば、排ガスのダイオキシンを処理する活性炭やバグフィルターのろ過助剤として使用される珪藻土等と配合し排ガス処理剤として添加することは、添加設備を節約できるケースもあり、有用な方法である。また、後述する無機重金属固定剤、酸性中和剤及びキレート剤等の重金属固定剤を配合しても良い。この際、製品の配合上、粉体の重金属固定剤が好ましい。 The powder in the exhaust gas treating agent may contain components other than magnesium hydroxide and calcium hydroxide as long as the effects of the present invention are not impaired. For example, blending with activated carbon for treating dioxins in exhaust gas or diatomaceous earth used as a filter aid for bag filters and adding it as an exhaust gas treatment agent is a useful method because there are cases where the addition equipment can be saved. Moreover, you may mix | blend heavy metal fixing agents, such as the inorganic heavy metal fixing agent mentioned later, an acidic neutralizer, and a chelating agent. In this case, a powdered heavy metal fixing agent is preferable in terms of blending of products.
酸性排ガスに排ガス処理剤を添加する手段は特に制限されない。例えば、図1に示す酸性排ガス処理システム8では、排ガス処理剤供給装置3の薬剤貯留槽に入れられた排ガス処理剤は、ブロアー等により薬注ホースを経由して搬送され、煙道2に設置されたノズルから煙道2の酸性排ガスに吹き付けられる。排ガス処理剤は、粉体の形態で用いてもよいし、粉体を水等に分散して分散液の形態として用いてもよい。また、分散液を煙道2の酸性排ガスに噴霧する際には、一流体もしくは二流体等の分散ノズルを用い、排ガスに噴霧してよいし、減温塔の噴霧水とともに排ガスに噴霧し接触させてもよい。
排ガス処理剤を添加する際の酸性排ガスの温度は、特に制限はない。排ガス処理剤は、集塵機において酸性ガスと反応することから、集塵温度は100〜300℃であることが好ましく、130〜230℃であることがより好ましい。
The means for adding the exhaust gas treating agent to the acidic exhaust gas is not particularly limited. For example, in the acidic exhaust gas treatment system 8 shown in FIG. 1, the exhaust gas treatment agent put in the chemical storage tank of the exhaust gas treatment agent supply device 3 is conveyed via a chemical injection hose by a blower or the like and installed in the flue 2. It is sprayed to the acidic exhaust gas of the flue 2 from the nozzle made. The exhaust gas treating agent may be used in the form of a powder, or may be used in the form of a dispersion by dispersing the powder in water or the like. In addition, when spraying the dispersion liquid on the acidic exhaust gas in the flue 2, it may be sprayed on the exhaust gas using a dispersion nozzle of one fluid or two fluids, or sprayed on the exhaust gas together with the spray water of the temperature-decreasing tower. You may let them.
The temperature of the acidic exhaust gas when adding the exhaust gas treating agent is not particularly limited. Since the exhaust gas treating agent reacts with acid gas in the dust collector, the dust collection temperature is preferably 100 to 300 ° C, and more preferably 130 to 230 ° C.
第一の方法においては、排ガス処理剤を添加した後の飛灰のpH8.3終点における酸消費量から規定されるアルカリ度を150 mgCaCO3/g以下とする。飛灰のアルカリ度を前記範囲とすることにより、無機重金属固定剤及び/又は酸性中和剤の添加量を大幅に削減しやすくできるとともに、重金属の溶出を安定的に防止しやすくできる。同アルカリ度は120 mgCaCO3/g以下であることが好ましく、90 mgCaCO3/g以下であることがより好ましい。
また、第二の方法においては、排ガス処理剤を添加した後の飛灰のpH8.3終点における酸消費量から規定されるアルカリ度を55mgCaCO3/g未満とする。飛灰のアルカリ度を前記範囲とすることにより、キレート系重金属固定剤の添加量を大幅に削減しやすくできるとともに、重金属の溶出を安定的に防止しやすくできる。同アルカリ度は52mgCaCO3/g以下であることがより好ましい。また、アルカリ度を55mgCaCO3/g未満とした場合の効果は、排ガス処理剤を添加した後の飛灰の液固比10における溶出液のpHを11.8以下とすることにより、より顕著なものとすることができる。排ガス処理剤を添加した後の飛灰の液固比10における溶出液のpHは、11.6以下とすることがより好ましい。
なお、第一及び第二の方法において、排ガス処理剤を添加した後の飛灰のpH8.3終点における酸消費量から規定されるアルカリ度の下限については特に制限はないが、酸性排ガスの処理を確実に行なう観点から、例えば10mgCaCO3/g以上、好ましくは20mgCaCO3/g以上とすることができる。
In the first method, the alkalinity defined from the acid consumption in pH8.3 end point of fly ash after the addition of the exhaust gas treatment agent and 150 mgCaCO 3 / g or less. By setting the alkalinity of the fly ash in the above range, the amount of inorganic heavy metal fixing agent and / or acidic neutralizing agent can be greatly reduced, and elution of heavy metals can be easily prevented stably. The alkalinity is preferably 120 mgCaCO 3 / g or less, and more preferably 90 mgCaCO 3 / g or less.
In the second method, the alkalinity defined from the acid consumption at the pH 8.3 end point of the fly ash after adding the exhaust gas treating agent is set to less than 55 mg CaCO 3 / g. By making the alkalinity of fly ash within the above range, the amount of chelate heavy metal fixing agent added can be greatly reduced, and elution of heavy metals can be easily prevented stably. The alkalinity is more preferably 52 mgCaCO 3 / g or less. Further, the effect when the alkalinity is less than 55 mg CaCO 3 / g is more remarkable when the pH of the eluate at the liquid-solid ratio of 10 after adding the exhaust gas treatment agent is 11.8 or less. Can be. The pH of the eluate at a liquid-solid ratio of 10 after adding the exhaust gas treating agent is more preferably 11.6 or less.
In the first and second methods, there is no particular limitation on the lower limit of alkalinity defined by the acid consumption at the pH 8.3 end point of the fly ash after the addition of the exhaust gas treatment agent. From the viewpoint of reliably performing the above, for example, it can be 10 mg CaCO 3 / g or more, preferably 20 mg CaCO 3 / g or more.
(飛灰の集塵工程)
酸性排ガスに排ガス処理剤を添加した後は、飛灰の集塵工程を行う。飛灰の集塵はバグフィルター等の公知の集塵機で行うことができる。
(Dust collection process of fly ash)
After the exhaust gas treatment agent is added to the acidic exhaust gas, a fly ash dust collecting step is performed. Fly ash can be collected by a known dust collector such as a bag filter.
(重金属の固定工程)
飛灰を集塵した後は、集塵した飛灰に対して重金属固定剤を添加する工程を行い、重金属の固定を行う。飛灰中の重金属としては、鉛が代表例であり、その他、カドミウム、クロム、砒素、セレン、水銀等が挙げられる。
重金属固定剤としては、第一の方法では、無機重金属固定剤及び/又は酸性中和剤を用いることができる。無機重金属固定剤としては、リン酸系化合物、二酸化ケイ素系化合物、鉄含有化合物及び酸性中和剤が挙げられ、これらから選ばれる少なくとも一種以上を用いることができる。
また、第二の方法で用いる重金属固定剤としては、キレート系重金属固定剤が挙げられる。
なお、本発明の効果を阻害しない範囲で、第一の方法においてキレート系重金属固定剤を用いること、第二の方法において無機重金属固定剤及び/又は酸性中和剤を用いることは差し支えない。
(Heavy metal fixing process)
After collecting the fly ash, a step of adding a heavy metal fixing agent to the collected fly ash is performed to fix the heavy metal. As a heavy metal in fly ash, lead is a typical example, and other examples include cadmium, chromium, arsenic, selenium, mercury and the like.
As the heavy metal fixing agent, in the first method, an inorganic heavy metal fixing agent and / or an acidic neutralizing agent can be used. Examples of the inorganic heavy metal fixing agent include phosphoric acid compounds, silicon dioxide compounds, iron-containing compounds, and acidic neutralizers, and at least one selected from these can be used.
The heavy metal fixing agent used in the second method includes a chelate heavy metal fixing agent.
It should be noted that the chelate heavy metal fixing agent can be used in the first method and the inorganic heavy metal fixing agent and / or the acidic neutralizing agent can be used in the second method as long as the effects of the present invention are not impaired.
リン酸系化合物は、処分場における重金属の長期固定効果を示し、環境保護の観点から有効な材料である。リン酸系化合物は、例えば重金属である鉛と反応し、鉛クロロピロモルファイトや鉛ピロモルファイトを形成し、鉱物の形態で鉛を固定することができる。 Phosphoric acid compounds exhibit a long-term fixing effect of heavy metals at a disposal site, and are effective materials from the viewpoint of environmental protection. A phosphoric acid compound reacts with lead which is a heavy metal, for example, forms lead chloropyromorphite or lead pyromorphite, and can fix lead in the form of a mineral.
リン酸系化合物としては、リン酸を含有していれば特に制限なく用いることができ、リン酸塩であっても鉱物であっても良い。
リン酸系化合物としては、例えば、正リン酸(オルソリン酸)、ポリリン酸、メタリン酸、次リン酸、亜リン酸、次亜リン酸、ピロリン酸、過リン酸、第一リン酸ソーダ、第二リン酸ソーダ、第三リン酸ソーダ、第一リン酸カリウム、第二リン酸カリウム、第三リン酸カリウム、第一リン酸カルシウム、第二リン酸カルシウム、第一リン酸マグネシウム、第二リン酸マグネシウム、第一リン酸アンモニウム、第二リン酸アンモニウム、過燐酸石灰、トリポリリン酸ナトリウム、トリポリリン酸カリウム、ヘキサメタリン酸ナトリウム、ヘキサメタリン酸カリウム、ピロリン酸ナトリウム、ピロリン酸カリウム、亜リン酸ナトリウム、亜リン酸カリウム、次亜リン酸ナトリウム、次亜リン酸カリウム等が挙げられる。
これらの中でも、正リン酸、第一リン酸塩、第二リン酸塩、第三リン酸塩、トリポリリン酸塩、ヘキサメタリン酸塩、ピロリン酸塩、ヒドロキシアパタイトの形態を有する鉱物、特に燐灰石(アパタイト化合物)が良好な重金属固定効果を示す。
リン酸系化合物は、重金属の中でも、鉛の固定化に特に有用である。
The phosphoric acid compound can be used without particular limitation as long as it contains phosphoric acid, and may be a phosphate or a mineral.
Examples of the phosphoric acid compound include orthophosphoric acid (orthophosphoric acid), polyphosphoric acid, metaphosphoric acid, hypophosphoric acid, phosphorous acid, hypophosphorous acid, pyrophosphoric acid, superphosphoric acid, sodium monophosphate, Sodium diphosphate, tribasic sodium phosphate, primary potassium phosphate, secondary potassium phosphate, tertiary potassium phosphate, primary calcium phosphate, secondary calcium phosphate, primary magnesium phosphate, secondary magnesium phosphate, secondary Ammonium monophosphate, dibasic ammonium phosphate, lime superphosphate, sodium tripolyphosphate, potassium tripolyphosphate, sodium hexametaphosphate, potassium hexametaphosphate, sodium pyrophosphate, potassium pyrophosphate, sodium phosphite, potassium phosphite, Examples thereof include sodium phosphite and potassium hypophosphite.
Among these, minerals having the form of orthophosphoric acid, primary phosphate, secondary phosphate, tertiary phosphate, tripolyphosphate, hexametaphosphate, pyrophosphate, hydroxyapatite, especially apatite (apatite Compound) exhibits a good heavy metal fixing effect.
Phosphoric acid compounds are particularly useful for immobilization of lead among heavy metals.
二酸化ケイ素含有化合物は、飛灰中のカルシウム成分と、二酸化ケイ素とが反応してケイ酸カルシウム鉱物(3CaO・2SiO2・3H2O)を生成して、該鉱物の中に重金属を封じ込める効果、並びに二酸化ケイ素が直接重金属に作用して、難溶性の重金属ケイ酸塩(PbSiO3等)を生成することにより重金属を固定する効果が得られると考えられる。二酸化ケイ素含有化合物の重金属固定は、飛灰中のアルカリ含有量の影響を受け、飛灰中のアルカリ含有量が多大な場合、必要添加量が増加する。従って、本発明により、二酸化ケイ素含有化合物においても必要添加量を大幅に削減することができる。 The silicon dioxide-containing compound has the effect of containing calcium metal in fly ash and silicon dioxide to produce calcium silicate mineral (3CaO · 2SiO 2 · 3H 2 O) and encapsulating heavy metals in the mineral, In addition, it is considered that the effect of fixing the heavy metal can be obtained by the silicon dioxide directly acting on the heavy metal to form a hardly soluble heavy metal silicate (PbSiO 3 or the like). The heavy metal fixation of the silicon dioxide-containing compound is affected by the alkali content in the fly ash, and if the alkali content in the fly ash is large, the required addition amount increases. Therefore, according to the present invention, the required addition amount can be greatly reduced even in the silicon dioxide-containing compound.
二酸化ケイ素含有化合物は、SiO2成分を有する化合物であれば特に制限なく用いることができ、二酸化ケイ素そのものであってもよいし、塩であっても鉱物であってもよい。
二酸化ケイ素含有化合物は、ケイ酸ナトリウム、ケイ酸カリウム等のアルカリ金属やアルカリ土類金属を含むケイ酸塩、シリカヒューム、シリカゲル、活性白土、ゼオライト、ベントナイト、カオリナイト、ハロイサイト、アンチゴライト、パイオライト、タルク、モンモリロナイト、サボナイト、パーミキュライト、白雲母、バラゴナイト、イライト、金雲母、黒雲母、マーガライト、ザンソフィライト、ドンパサイト、スドウ石、クリノクロア、シャモサイト、セピオライト、パリゴルスカイト、イモゴライト、アロフェン及びヒシンゲライト等のケイ酸塩鉱物などが挙げられる。
二酸化ケイ素含有化合物は、重金属の中でも、鉛の固定化に特に有用である。
The silicon dioxide-containing compound can be used without particular limitation as long as it is a compound having a SiO 2 component, and may be silicon dioxide itself, a salt, or a mineral.
Silicon dioxide-containing compounds include silicates containing alkali metals and alkaline earth metals such as sodium silicate and potassium silicate, silica fume, silica gel, activated clay, zeolite, bentonite, kaolinite, halloysite, antigolite, piolite. Wright, talc, montmorillonite, savonite, permiculite, muscovite, barragonite, illite, phlogopite, biotite, margarite, zansophylite, donpasite, sudite, clinochlore, chamosite, sepiolite, palygorskite, imogolite, allophane, and hychinguerite And silicate minerals.
Silicon dioxide-containing compounds are particularly useful for immobilizing lead among heavy metals.
鉄含有化合物としては、鉄を含有していれば良く、塩化第一鉄、塩化第二鉄、硫酸第一鉄、硫酸第二鉄、ポリ硫酸第二鉄、鉄粉等が挙げられる。
鉄含有化合物は、重金属の中でも、六価クロム、砒素、セレン及び水銀の固定化に特に有用である。
The iron-containing compound only needs to contain iron, and examples thereof include ferrous chloride, ferric chloride, ferrous sulfate, ferric sulfate, polyferric sulfate, and iron powder.
Iron-containing compounds are particularly useful for immobilization of hexavalent chromium, arsenic, selenium and mercury among heavy metals.
酸性中和剤は、重金属の溶出量を低下させる役割を有する。酸性中和剤も飛灰に残存するアルカリの影響を受け、残存飛灰中のアルカリ含有量が多大な場合、必要添加量が増加する。従って、本発明により、酸性中和剤も必要添加量を大幅に削減することができる。
酸性中和剤としては、塩酸、硫酸、硝酸、塩化アルミニウム、ポリ塩化アルミニウム、硫酸アルミニウム等が例示できる。
酸性中和剤は単独で用いても良いが、重金属の溶出をさらに抑えるという観点からは、上述の無機重金属固定剤と併用して用いることが好ましい。また、無機重金属固定剤と酸性中和剤とを併用した場合、高価である無機重金属固定剤の使用量を低減できる点で好適である。さらに、中和剤とキレート系重金属固定剤を併用しても本発明の効果は得られる。
The acidic neutralizing agent has a role of reducing the elution amount of heavy metals. The acidic neutralizer is also affected by the alkali remaining in the fly ash, and if the alkali content in the remaining fly ash is large, the required addition amount increases. Therefore, according to the present invention, the necessary addition amount of the acidic neutralizer can be greatly reduced.
Examples of the acidic neutralizer include hydrochloric acid, sulfuric acid, nitric acid, aluminum chloride, polyaluminum chloride, aluminum sulfate and the like.
The acidic neutralizer may be used alone, but is preferably used in combination with the above-described inorganic heavy metal fixing agent from the viewpoint of further suppressing elution of heavy metals. Moreover, when an inorganic heavy metal fixing agent and an acidic neutralizing agent are used in combination, it is preferable in that the amount of the expensive inorganic heavy metal fixing agent can be reduced. Furthermore, the effect of the present invention can be obtained even when a neutralizing agent and a chelate heavy metal fixing agent are used in combination.
キレート剤は、飛灰中の重金属と難溶性のキレート化合物を形成して、重金属を固定する作用を有する。本発明においては、飛灰のアルカリ度や溶出液のpHを上述の範囲とすることにより、キレート剤においても必要添加量を削減することができる。これは、上述した飛灰性状により、飛灰からの鉛の溶出量を大幅に削減でき、これにより、キレート剤の必要添加量を削減できたものと考えられる。 The chelating agent has an action of fixing a heavy metal by forming a sparingly soluble chelate compound with the heavy metal in the fly ash. In the present invention, the required addition amount of the chelating agent can be reduced by adjusting the alkalinity of the fly ash and the pH of the eluate within the above-mentioned ranges. This is considered to be due to the fact that the amount of lead elution from the fly ash can be greatly reduced due to the above-described fly ash properties, thereby reducing the necessary amount of chelating agent added.
キレート剤としては、キレート化合物の形成により重金属を固定する効果を有すれば良く、特に制限はない。このようなキレート剤としては、ピペラジンジチオカルバミン酸塩、ジエチルジチオカルバミン酸塩、ジメチルジチオカルバミン酸塩、ジブチルジチオカルバミン酸塩等のジチオカルバミン酸塩類、ポリアルキレンポリアミンやポリエチレンイミン等のポリアミン類が挙げられる。
キレート剤は、重金属の中でも、鉛、水銀の固定化に特に有用である。
The chelating agent is not particularly limited as long as it has an effect of fixing heavy metals by forming a chelate compound. Examples of such chelating agents include piperazine dithiocarbamate, diethyldithiocarbamate, dimethyldithiocarbamate, dithiocarbamate such as dibutyldithiocarbamate, and polyamines such as polyalkylenepolyamine and polyethyleneimine.
Chelating agents are particularly useful for immobilizing lead and mercury among heavy metals.
重金属固定剤の添加量は、重金属固定剤の種類、飛灰のアルカリ度や、飛灰中の重金属の量によっても異なるため一概には言えないが、飛灰に対して0.1〜30質量%であることが好ましく、1〜25質量%であることがより好ましい。 The amount of heavy metal fixing agent added varies depending on the type of heavy metal fixing agent, the alkalinity of fly ash, and the amount of heavy metal in the fly ash. %, Preferably 1 to 25% by mass.
第一の方法においては、無機重金属固定剤及び/又は酸性中和剤を添加した後の飛灰の液固比(L/S)が10の場合の溶出液のpHを8.0〜11.5とすることが好ましく、特に9.0〜10.5であることがより好ましい。溶出液のpHを前記範囲とすることにより、鉛等重金属の溶出を効果的に防止できるとともに水酸化マグネシウムの溶解を抑え、水酸化マグネシウムの含有量に相当するアルカリ度が低減され、無機重金属固定剤及び/又は酸性中和剤の添加量削減に寄与できる。 In the first method, the pH of the eluate when the liquid solid-solid ratio (L / S) of the fly ash after adding the inorganic heavy metal fixing agent and / or the acidic neutralizer is 10 is 8.0 to 11. 5 is preferable, and 9.0 to 10.5 is particularly preferable. By adjusting the pH of the eluate to the above range, elution of heavy metals such as lead can be effectively prevented, dissolution of magnesium hydroxide is suppressed, alkalinity corresponding to the content of magnesium hydroxide is reduced, and inorganic heavy metal fixation This can contribute to a reduction in the amount of the agent and / or acidic neutralizer.
飛灰に無機重金属固定剤、中和剤、キレート系重金属固定剤を添加する手段は特に制限されない。例えば、図1に示すような酸性排ガス処理システムでは、集塵した飛灰は飛灰処理装置に排出され、該装置内で、薬剤添加手段により、無機重金属固定剤、中和剤、キレート系重金属固定剤を添加することができる。
無機重金属固定剤、中和剤、キレート系重金属固定剤は、粉体の形態で用いてもよいが、粉体を水等に溶解又は分散する等して液状の形態として用いることが好ましい。
The means for adding the inorganic heavy metal fixing agent, neutralizing agent, and chelate heavy metal fixing agent to the fly ash is not particularly limited. For example, in an acidic exhaust gas treatment system as shown in FIG. 1, the collected fly ash is discharged to a fly ash treatment device, and in this device, an inorganic heavy metal fixing agent, a neutralizing agent, a chelate heavy metal is added by a chemical addition means. A fixative can be added.
The inorganic heavy metal fixing agent, neutralizing agent, and chelate heavy metal fixing agent may be used in the form of powder, but it is preferable to use the powder in a liquid form by dissolving or dispersing the powder in water or the like.
次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。 EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
(A.排ガス処理剤)
[参考例A−1、A−2]
一般的に酸性排ガス処理に使用される水酸化カルシウム(参考例A−1:JIS特号水酸化カルシウム、参考例A−2:高反応水酸化カルシウム)のアルカリ度を上述の測定方法に基づいて測定した。結果を表1に示す。
(A. Exhaust gas treatment agent)
[Reference Examples A-1, A-2]
In general, the alkalinity of calcium hydroxide (Reference Example A-1: JIS Special Calcium Hydroxide, Reference Example A-2: Highly Reactive Calcium Hydroxide) used for acidic exhaust gas treatment is based on the above-described measurement method. It was measured. The results are shown in Table 1.
[参考例A−3〜A−5]
ドロマイトを原料として、以下の手法により、参考例A−3〜A−5の排ガス処理剤(水酸化ドロマイト)を得た。参考例A−3〜A−5の水酸化ドロマイトの粉体特性及びアルカリ度を表1に示す。なお、表1の「Mg:Ca」の値は、EDTA滴定法により算出した。
[Reference Examples A-3 to A-5]
By using dolomite as a raw material, exhaust gas treating agents (hydroxide dolomite) of Reference Examples A-3 to A-5 were obtained by the following method. Table 1 shows the powder characteristics and alkalinity of the dolomite hydroxides of Reference Examples A-3 to A-5. In addition, the value of “Mg: Ca” in Table 1 was calculated by the EDTA titration method.
(参考例A−3の水酸化ドロマイトの製造)
ドロマイトをロータリーキルンで1100〜1200℃で加熱、焼成した。本焼成工程の所要時間は約3時間であった。この軽焼ドロマイトをインペラブレーカーで4 mmアンダーに破砕した。
次いで、軽焼ドロマイトに対して、消化水を95%となるよう添加し、十分熟成消化させた。この後、乾燥、粉砕、分級機能を持った装置で参考例A−3の水酸化ドロマイトを得た。以下、参考例A−3で得られた水酸化ドロマイトを「水酸化ドロマイトa」という場合がある。
(参考例A−4の水酸化ドロマイトの製造)
軽焼ドロマイトの消化水に、軽焼ドロマイトに対してジエチレングリコールが0.48%となるように添加した以外は、実施例1と同様にして水酸化ドロマイトを製造した。以下、参考例A−4で得られた水酸化ドロマイトを「水酸化ドロマイトb」という場合がある。
(参考例A−5の水酸化ドロマイトの製造)
軽焼ドロマイトの消化水に、軽焼ドロマイトあたりジエチレングリコールが0.95%となるように溶解させた以外は、実施例1と同様にして水酸化ドロマイトを得た。以下、参考例A−5で得られた水酸化ドロマイトを「水酸化ドロマイトc」という場合がある。
(Production of hydroxylated dolomite of Reference Example A-3)
Dolomite was heated and fired at 1100 to 1200 ° C. in a rotary kiln. The time required for the main baking process was about 3 hours. This light-burned dolomite was crushed to 4 mm under by an impeller breaker.
Next, digested water was added to the light-burned dolomite so as to be 95%, and it was fully aged and digested. Thereafter, the dolomite hydroxide of Reference Example A-3 was obtained with an apparatus having drying, pulverization and classification functions. Hereinafter, the hydroxide dolomite obtained in Reference Example A-3 may be referred to as “hydroxy dolomite a”.
(Production of hydroxylated dolomite of Reference Example A-4)
Hydroxide dolomite was produced in the same manner as in Example 1 except that diethylene glycol was added to the digested water of light-burned dolomite so that the amount of diethylene glycol was 0.48% with respect to light-burned dolomite. Hereinafter, the hydroxide dolomite obtained in Reference Example A-4 may be referred to as “hydroxy dolomite b”.
(Production of hydroxylated dolomite of Reference Example A-5)
Hydroxide dolomite was obtained in the same manner as in Example 1 except that diethylene glycol was dissolved in the digested water of lightly burned dolomite so that the amount of diethylene glycol was 0.95%. Hereinafter, the hydroxide dolomite obtained in Reference Example A-5 may be referred to as “hydroxy dolomite c”.
表1から明らかなように、参考例A3〜A5の排ガス処理剤(水酸化ドロマイト)は、参考例A−1及びA−2の一般的な水酸化カルシウムに比べて、アルカリ剤自体のアルカリ度を29〜34%と大幅に低下できることが分かる。 As is apparent from Table 1, the exhaust gas treatment agent (dolomite hydroxide) of Reference Examples A3 to A5 is more alkaline than the general calcium hydroxide of Reference Examples A-1 and A-2. It can be seen that it can be significantly reduced to 29-34%.
(B.排ガス処理剤の添加工程)
[参考例B−1〜B−5]
カラムに各排ガス処理剤(参考例B−1:JIS特号水酸化カルシウム、参考例B−2:高反応水酸化カルシウム、参考例B−3:水酸化ドロマイトa、参考例B−4:水酸化ドロマイトb、参考例B−5:水酸化ドロマイトc)を0.5g充填し、酸性排ガスを模して作製したガス(HCl:1000ppm、SO2:100ppm、H2O:20%、N2:残部(Balance))を流速900cm3/minの速さで75分間通過させ、温度170℃と190℃の2条件で反応させ、酸性成分であるHCl及びSO2除去率を測定した。
酸性成分の除去率は、HClについては未反応HClを冷却したトラップに凝縮させ、0.1MのNaOH水溶液を中和滴定して算出した。SO2については、未反応SO2をH2O2水溶液で捕集して、0.1MのNaOH水溶液を中和滴定して算出した。結果を表2に示す。
(B. Addition process of exhaust gas treatment agent)
[Reference Examples B-1 to B-5]
Each exhaust gas treating agent (reference example B-1: JIS special calcium hydroxide, reference example B-2: highly reactive calcium hydroxide, reference example B-3: dolomite hydroxide a, reference example B-4: water Gas (HCl: 1000 ppm, SO 2 : 100 ppm, H 2 O: 20%, N 2 ) filled with 0.5 g of oxidized dolomite b, Reference Example B-5: Hydroxide dolomite c) : The balance (Balance) was passed for 75 minutes at a flow rate of 900 cm 3 / min, reacted at two temperatures of 170 ° C. and 190 ° C., and the removal rates of HCl and SO 2 as acidic components were measured.
The removal rate of acidic components was calculated by condensing unreacted HCl in a cooled trap and neutralizing and titrating a 0.1 M NaOH aqueous solution. The SO 2 was calculated by collecting unreacted SO 2 with an aqueous H 2 O 2 solution and neutralizing and titrating a 0.1 M NaOH aqueous solution. The results are shown in Table 2.
参考例B−3〜B−5の排ガス処理剤(水酸化ドロマイト)は、170℃及び190℃において、参考例B−1のJIS特号水酸化カルシウムと同等以上の酸性排ガス処理性能を示し、実用に供する酸性排ガス処理性能を有することが分かる。また、参考例B−3〜B−5の結果から、BET比表面積の上昇に伴い酸性排ガス処理性能が向上することが分かる。さらに、参考例B−2と参考例B−5との排ガス処理剤はBET比表面積が同一であるが、参考例B−5の方が酸性排ガス除去性能に優れている。この結果により、水酸化カルシウム及び水酸化マグネシウムを併用することにより、水酸化カルシウム単体よりも、酸性排ガス除去性能を向上できることが分かる。 The exhaust gas treating agent (hydroxide dolomite) of Reference Examples B-3 to B-5 shows acidic exhaust gas treatment performance equal to or higher than that of JIS special calcium hydroxide of Reference Example B-1 at 170 ° C. and 190 ° C., It can be seen that it has acidic exhaust gas treatment performance for practical use. Moreover, from the results of Reference Examples B-3 to B-5, it is understood that the acidic exhaust gas treatment performance is improved as the BET specific surface area is increased. Further, the exhaust gas treating agents of Reference Example B-2 and Reference Example B-5 have the same BET specific surface area, but Reference Example B-5 is superior in acidic exhaust gas removal performance. From this result, it can be seen that the combined use of calcium hydroxide and magnesium hydroxide can improve the performance of removing acidic exhaust gas as compared with calcium hydroxide alone.
(C.排ガス処理剤の添加工程、並びに無機重金属固定剤、酸性中和剤、キレート系重金属固定剤の添加工程)
[比較例1]
酸性排ガスの濃度変動が激しい産業廃棄物焼却炉(排ガス量14,000Nm3/h(乾き)、排ガス水分 10%)において、高反応水酸化カルシウムを添加する前の煙道に、塩化水素測定機器(京都電子工業社製、HL−22)と、硫黄酸化物濃度測定装置(堀場製作所社、PG−337)を設置し、入口塩化水素濃度及び硫黄酸化物濃度を測定した。なお、本試験期間中、SO2濃度は、1〜7ppmと低く、影響が軽微であったため、排ガス処理剤の添加当量は、入口塩化水素濃度をもとに試算した。
排ガス処理剤は、粉体切出装置を設置し、バグフィルター前段の煙道に高反応水酸化カルシウム(参考例A−2の排ガス処理剤)を添加した。この際、出口に設置された塩化水素測定機器(京都電子工業社製、KLA−1)で測定される信号を元に出口のHCl濃度を200ppmを目標とし、フィードバック制御を実施した。
上記添加条件で安定した後、3〜10時間かけて飛灰を定期的に採取し、採取した各飛灰中のアルカリ度(pH8.3終点)を測定するとともに、採取した飛灰のうちの一つの飛灰について重金属の溶出試験(環境庁告示13号試験)を行い、重金属固定剤及び酸性中和剤の必要添加量を評価した。また、各種重金属固定剤(リン酸系化合物、二酸化ケイ素系化合物、鉄含有化合物及びキレート剤)及び酸性中和剤を添加して、重金属の溶出量を評価した。
酸性排ガスの処理結果を表3、飛灰のアルカリ度を表4に示す。また、重金属溶出試験を行った飛灰の性状(含有量)を表5、各種重金属固定剤の添加による重金属の溶出量及び該溶出量から求めた薬剤の必要添加量の結果を表6に示す。
(C. Addition step of exhaust gas treatment agent and addition step of inorganic heavy metal fixing agent, acidic neutralizing agent, chelate heavy metal fixing agent)
[Comparative Example 1]
In an industrial waste incinerator (exhaust gas volume: 14,000 Nm 3 / h (dry), exhaust gas moisture: 10%), the hydrogen chloride measuring device ( HL-22) manufactured by Kyoto Electronics Industry Co., Ltd. and a sulfur oxide concentration measuring device (Horiba Seisakusho, PG-337) were installed, and the inlet hydrogen chloride concentration and sulfur oxide concentration were measured. During the test period, the SO 2 concentration was as low as 1 to 7 ppm and the influence was slight. Therefore, the addition equivalent of the exhaust gas treating agent was calculated based on the inlet hydrogen chloride concentration.
For the exhaust gas treatment agent, a powder cutting device was installed, and highly reactive calcium hydroxide (exhaust gas treatment agent of Reference Example A-2) was added to the flue before the bag filter. At this time, feedback control was performed with a target HCl concentration of 200 ppm based on a signal measured by a hydrogen chloride measuring device (KLA-1 manufactured by Kyoto Electronics Industry Co., Ltd.) installed at the outlet.
After stabilizing under the above-mentioned addition conditions, fly ash is periodically collected over 3 to 10 hours, and the alkalinity (pH 8.3 end point) in each collected fly ash is measured. One fly ash was subjected to a heavy metal elution test (Environment Agency Notification No. 13 test) to evaluate the necessary addition amounts of heavy metal fixing agent and acidic neutralizer. Various heavy metal fixing agents (phosphoric acid compounds, silicon dioxide compounds, iron-containing compounds and chelating agents) and acidic neutralizers were added to evaluate the elution amount of heavy metals.
Table 3 shows the treatment results of acidic exhaust gas, and Table 4 shows the alkalinity of fly ash. Further, Table 5 shows the properties (contents) of the fly ash subjected to the heavy metal elution test, and Table 6 shows the results of the elution amount of heavy metal by addition of various heavy metal fixing agents and the required addition amount of the drug obtained from the elution amount. .
[実施例1]
排ガス処理剤を水酸化ドロマイトcに変更した以外は、比較例1と同一の方法で重金属の溶出量等を評価した。結果を表3〜5、7に示す。
[Example 1]
Except for changing the exhaust gas treatment agent to dolomite hydroxide c, the elution amount of heavy metals and the like were evaluated by the same method as in Comparative Example 1. The results are shown in Tables 3-5 and 7.
[比較例2]
出口のHCl濃度を100ppmを目標としてフィードバックした以外は、比較例1と同一の方法で重金属の溶出量等を評価した。結果を表3〜5、8に示す。
[Comparative Example 2]
Except for feeding back the HCl concentration at the outlet with a target of 100 ppm, the elution amount of heavy metals and the like were evaluated by the same method as in Comparative Example 1. The results are shown in Tables 3-5 and 8.
[実施例2]
排ガス処理剤を水酸化ドロマイトcに変更した以外は、比較例2と同一の方法で重金属の溶出量等を評価した。結果を表3〜5、9に示す。
[Example 2]
Except for changing the exhaust gas treatment agent to dolomite hydroxide c, the elution amount of heavy metals and the like were evaluated by the same method as in Comparative Example 2. The results are shown in Tables 3-5 and 9.
[実施例3]
出口のHCl濃度を50ppmを目標としてフィードバックした以外は、実施例2と同一の方法で重金属の溶出量等を評価した。結果を表3〜5、10に示す。
[Example 3]
Except for feeding back the HCl concentration at the outlet with a target of 50 ppm, the elution amount of heavy metals and the like were evaluated by the same method as in Example 2. The results are shown in Tables 3-5 and 10.
<O2換算値>
O2換算値(ppm)=実測値(ppm)×(21%−12%)÷(21%−酸素濃度(%))
<消石灰添加当量;比較例1、2>
消石灰添加当量=A ÷ [ ( ( B ÷0.614÷1000÷36.5×74÷2×C÷1000) + ( D ÷0.35÷1000÷64×74×C÷1000)}
A:消石灰添加量(kg/h)
B:入口HCl濃度 [実測値] (ppm)
C:排ガス量[乾き] (Nm3/h)
D:入口SO2濃度 [実測値(ppm)
<水酸化ドロマイト添加当量;実施例1〜3>
水酸化ドロマイト添加当量=E÷[ ((B÷0.614÷1000÷36.5×(58+74)÷4×C÷1000) + ( D ÷0.35÷1000÷64×(58+74)÷2×C÷1000)}
E:水酸化ドロマイト添加量(kg/h)
<O 2 equivalent value>
O 2 conversion value (ppm) = actual value (ppm) × (21% −12%) ÷ (21% −oxygen concentration (%))
<Slaked lime addition equivalent; Comparative Examples 1 and 2>
Slaked lime addition equivalent = A ÷ [((B ÷ 0.614 ÷ 1000 ÷ 36.5 × 74 ÷ 2 × C ÷ 1000) + (D ÷ 0.35 ÷ 1000 ÷ 64 × 74 × C ÷ 1000)}
A: Slaked lime addition amount (kg / h)
B: HCl concentration at the inlet [actual measurement value] (ppm)
C: Exhaust gas amount [dry] (Nm 3 / h)
D: Inlet SO 2 concentration [actual value (ppm)
<Additional equivalent of hydroxide dolomite; Examples 1 to 3>
Hydroxide dolomite addition equivalent = E ÷ [((B ÷ 0.614 ÷ 1000 ÷ 36.5 × (58 + 74) ÷ 4 × C ÷ 1000) + (D ÷ 0.35 ÷ 1000 ÷ 64 × (58 + 74) ÷ 2 × C ÷ 1000)}
E: Hydroxyl dolomite addition amount (kg / h)
比較例1の酸性排ガス処理方法では、入口のHCl濃度の平均856ppm(O2換算)に対し、出口HCl濃度の平均は175ppm(O2換算)であり、適正に酸性排ガスを処理することができた。この際、排ガス処理剤の添加量は31kg/hであり、入口の塩化水素及び硫黄酸化物に対する排ガス処理剤の添加当量は1.6当量であった(表3)。
しかし、比較例1における飛灰のアルカリ度は、155mgCaCO3/gと高く(表4)、重金属固定剤及び/又は酸性中和剤の必要添加量は、いずれも多量であった(表6)。
Under acidic exhaust gas treatment process of Comparative Example 1, with respect to the average of the inlet of the HCl concentration 856ppm (O 2 equivalent), the average outlet HCl concentration was 175 ppm (O 2 equivalent), it can be properly process the acidic flue gas It was. At this time, the addition amount of the exhaust gas treatment agent was 31 kg / h, and the addition equivalent of the exhaust gas treatment agent to the hydrogen chloride and sulfur oxide at the inlet was 1.6 equivalents (Table 3).
However, the alkalinity of the fly ash in Comparative Example 1 was as high as 155 mg CaCO 3 / g (Table 4), and the necessary addition amounts of heavy metal fixing agent and / or acidic neutralizer were both large (Table 6). .
実施例1の酸性排ガス処理方法では、入口のHCl濃度1186ppm(O2換算)に対し、出口HCl濃度は181ppm(O2換算)であり、適正に酸性排ガスを処理することができた。この際、排ガス処理剤の添加量は、23kg/hであり、入口の塩化水素及び硫黄酸化物に対する排ガス処理剤の添加当量は1.0当量であり、比較例1よりも排ガス処理剤の添加量を削減できるものであった(表3)。実施例1における飛灰のアルカリ度は、52mgCaCO3/gであり、比較例1に比べ、飛灰中のアルカリ度を66%と大幅に削減できることが分かる(表4)。また、実施例1における無機重金属固定剤及び/又は酸性中和剤の必要添加量は、比較例1に比べて75〜95%と大幅に削減できるものであった(表7)。
実施例1では、キレート系重金属固定剤である薬剤i(40%ピペラジンジチオカルバミン酸カリウム水溶液)においても、比較例1に比べて添加量を20%削減することができた。実施例1の飛灰は、アルカリ度が52mgCaCO3/gまで低減され、重金属固定剤を添加しない状態での飛灰からの鉛の溶出が大幅に低減し、キレート系重金属固定剤においても本発明の効果が発揮できたものと考える。
Under acidic exhaust gas treatment process of Example 1, with respect to the inlet of the HCl concentration 1186ppm (O 2 equivalent), the outlet HCl concentration is 181ppm (O 2 equivalent), it was able to properly process the acidic gas. At this time, the addition amount of the exhaust gas treatment agent is 23 kg / h, the addition equivalent of the exhaust gas treatment agent to the hydrogen chloride and sulfur oxide at the inlet is 1.0 equivalent, and the addition of the exhaust gas treatment agent is more than that of Comparative Example 1. The amount could be reduced (Table 3). The alkalinity of the fly ash in Example 1 is 52 mg CaCO 3 / g, and it can be seen that the alkalinity in the fly ash can be greatly reduced to 66% as compared with Comparative Example 1 (Table 4). Moreover, the required addition amount of the inorganic heavy metal fixing agent and / or the acidic neutralizing agent in Example 1 was significantly reduced to 75 to 95% as compared with Comparative Example 1 (Table 7).
In Example 1, the drug i (40% piperazine dithiocarbamate aqueous solution), which is a chelate heavy metal fixing agent, could be reduced by 20% compared to Comparative Example 1. In the fly ash of Example 1, the alkalinity is reduced to 52 mg CaCO 3 / g, the elution of lead from the fly ash without adding a heavy metal fixing agent is greatly reduced, and the present invention is also applied to a chelate heavy metal fixing agent. I think that the effect of was able to be demonstrated.
比較例2の酸性排ガス処理方法では、入口のHCl濃度1432ppm(O2換算)に対し、出口HCl濃度は95ppm(O2換算)であり、適正に酸性排ガスを処理することができた。この際、排ガス処理剤の添加量は44kg/hであり、入口の塩化水素及び硫黄酸化物に対する排ガス処理剤の添加当量は1.5当量であった(表3)。
しかし、比較例2における飛灰のアルカリ度は、195mgCaCO3/gであり(表4)、重金属固定剤及び/又は酸性中和剤の必要添加量は、いずれも多量であった(表8)。
Under acidic exhaust gas treatment process of Comparative Example 2, to the inlet of the HCl concentration 1432ppm (O 2 equivalent), the outlet HCl concentration is 95 ppm (O 2 equivalent), it was able to properly process the acidic gas. At this time, the addition amount of the exhaust gas treatment agent was 44 kg / h, and the addition equivalent of the exhaust gas treatment agent to the hydrogen chloride and sulfur oxide at the inlet was 1.5 equivalents (Table 3).
However, the alkalinity of the fly ash in Comparative Example 2 was 195 mg CaCO 3 / g (Table 4), and the necessary addition amounts of heavy metal fixing agent and / or acidic neutralizer were both large (Table 8). .
実施例2の酸性排ガス処理方法では、入口のHCl濃度の平均946ppm(O2換算)に対し、出口HCl濃度の平均は90ppm(O2換算)であり、適正に酸性排ガスを処理することができた。この際、排ガス処理剤の添加量は、29kg/hであり、比較例2よりも排ガス処理剤の添加量を削減できるものであったであった(表3)。実施例2における飛灰のアルカリ度は、56mgCaCO3/gであり、比較例2に比べ、飛灰中のアルカリ度を71%と大幅に削減できることが分かる(表4)。また、実施例2における無機重金属固定剤及び/又は酸性中和剤の必要添加量は、比較例2に比べて67〜88%と大幅に削減できるものであった(表9)。
ただし、キレート系重金属固定剤である薬剤i(40%ピペラジンジチオカルバミン酸カリウム水溶液)においては、必要添加量が3%であり、比較例2と変わらない結果であった。これは、飛灰のアルカリ度が59mgCaCO3/gであり、本アルカリ度ではキレート系重金属固定剤を用いても飛灰からの鉛の溶出量が低下せず、効果がなかったものと考えられる。
Under acidic exhaust gas treatment process of Example 2, with respect to the average of the inlet of the HCl concentration 946ppm (O 2 equivalent), the average outlet HCl concentration is 90 ppm (O 2 equivalent), it can be properly process the acidic flue gas It was. At this time, the amount of the exhaust gas treating agent added was 29 kg / h, and the amount of the exhaust gas treating agent added could be reduced as compared with Comparative Example 2 (Table 3). The alkalinity of the fly ash in Example 2 is 56 mg CaCO 3 / g, and it can be seen that the alkalinity in the fly ash can be significantly reduced to 71% as compared with Comparative Example 2 (Table 4). Moreover, the required addition amount of the inorganic heavy metal fixing agent and / or the acid neutralizing agent in Example 2 was able to be greatly reduced to 67 to 88% as compared with Comparative Example 2 (Table 9).
However, in the medicine i (40% piperazine dithiocarbamate aqueous solution) which is a chelate heavy metal fixing agent, the required addition amount is 3%, which is the same result as in Comparative Example 2. This is because fly ash has an alkalinity of 59 mg CaCO 3 / g, and in this alkalinity, even if a chelate heavy metal fixing agent is used, the amount of lead elution from the fly ash is not lowered, and it is considered that there was no effect. .
また、実施例1及び2の処理飛灰を用い、アルカリ度及び液固比10における溶出液のpHと、重金属固定剤無添加の状態でPb溶出量を調査した。結果を表11に示す。
実施例1の処理飛灰(水酸化ドロマイトcを添加して出口Hcl濃度を200ppmで処理した飛灰)は、アルカリ度が47〜52mgCaCO3/gの範囲であり、溶出液のpHは11.2〜11.6の範囲であり、Pbの溶出量は、2.2〜7.9mg/Lであった。
一方、実施例2の処理飛灰(水酸化ドロマイトcを添加し、出口Hcl濃度を100ppmで処理した飛灰)は、アルカリ含有量が55〜70mgCaCO3/gの範囲であり、溶出液のpHは11.9〜12.0の範囲であり、Pbの溶出量は、52.3〜85.2mg/Lと大量であった。
本結果からアルカリ含有量を55mgCaCO3/g未満とすること、好ましくはさらに、液固比10の溶出試験におけるpHを11.8以下に飛灰の性状を改質することにより、キレート系重金属固定剤の添加量を削減できる効果が得られると考えられる。
The treated fly ash of Example 1 (fly ash added with dolomite hydroxide c and treated with an outlet Hcl concentration of 200 ppm) has an alkalinity in the range of 47 to 52 mg CaCO 3 / g, and the pH of the eluate is 11. The elution amount of Pb was 2.2 to 7.9 mg / L.
On the other hand, the treated fly ash of Example 2 (fly ash added with dolomite hydroxide c and treated with an outlet Hcl concentration of 100 ppm) has an alkali content in the range of 55 to 70 mg CaCO 3 / g, and the pH of the eluate Was in the range of 11.9 to 12.0, and the elution amount of Pb was as large as 52.3 to 85.2 mg / L.
From this result, the alkali content is set to less than 55 mg CaCO 3 / g, and further, the chelate heavy metal immobilization is performed by modifying the properties of fly ash to a pH of 11.8 or less in an elution test with a liquid-solid ratio of 10. It is thought that the effect which can reduce the addition amount of an agent is acquired.
実施例3の酸性排ガス処理方法では、入口のHCl濃度の平均682ppm(O2換算)に対し、出口HCl濃度の平均は43ppm(O2換算)であり、適正に酸性排ガスを処理することができた。この際、排ガス処理剤の添加量は、51kg/hであり、入口の塩化水素及び硫黄酸化物に対する排ガス処理剤の添加当量は3.8当量であった(表3)。実施例3における飛灰のアルカリ度は、84mgCaCO3/gである(表4)。また、表10から、実施例3では、重金属の溶出を抑えるための重金属固定剤及び/又は酸性中和剤の添加量が少量で済むことが分かる。 Under acidic exhaust gas treatment process of Example 3, with respect to the average of the inlet of the HCl concentration 682ppm (O 2 equivalent), the average outlet HCl concentration is 43 ppm (O 2 equivalent), can be properly process the acidic flue gas It was. At this time, the addition amount of the exhaust gas treatment agent was 51 kg / h, and the addition equivalent of the exhaust gas treatment agent to the hydrogen chloride and sulfur oxide at the inlet was 3.8 equivalents (Table 3). The alkalinity of the fly ash in Example 3 is 84 mg CaCO 3 / g (Table 4). Table 10 shows that in Example 3, the amount of heavy metal fixing agent and / or acidic neutralizing agent added to suppress elution of heavy metals is small.
1:減温塔
2:煙道
3:排ガス処理剤供給装置
4:集塵機
5:吸引ファン
6:飛灰処理装置
7:灰ピット
8:酸性排ガス処理システム
1: Temperature reduction tower 2: Flue 3: Exhaust gas treatment agent supply device 4: Dust collector 5: Suction fan 6: Fly ash treatment device 7: Ash pit 8: Acidic exhaust gas treatment system
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013228373A JP6199698B2 (en) | 2013-11-01 | 2013-11-01 | Acid exhaust gas treatment method and exhaust gas treatment agent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013228373A JP6199698B2 (en) | 2013-11-01 | 2013-11-01 | Acid exhaust gas treatment method and exhaust gas treatment agent |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015085303A true JP2015085303A (en) | 2015-05-07 |
JP6199698B2 JP6199698B2 (en) | 2017-09-20 |
Family
ID=53048701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013228373A Active JP6199698B2 (en) | 2013-11-01 | 2013-11-01 | Acid exhaust gas treatment method and exhaust gas treatment agent |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6199698B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5939328B1 (en) * | 2015-03-04 | 2016-06-22 | 栗田工業株式会社 | Compound treatment agent for acid gas and heavy metal, and method for treating acid gas and heavy metal |
JP2016159270A (en) * | 2015-03-04 | 2016-09-05 | 栗田工業株式会社 | Composite treatment agent of acidic gas and heavy metal, and treatment method of acidic gas and heavy metal |
JP2017104855A (en) * | 2015-11-27 | 2017-06-15 | 株式会社 セテック | Production method for dry-type exhaust gas clarifier |
JP2018531144A (en) * | 2015-06-22 | 2018-10-25 | エス.ア.ロイスト ルシェルシュ エ デヴロップマン | Apparatus and method for treating exhaust gas |
JP2020006330A (en) * | 2018-07-10 | 2020-01-16 | エスエヌ環境テクノロジー株式会社 | Soot and dust treatment apparatus, incineration facility, and soot and dust treatment method |
WO2020148955A1 (en) * | 2019-01-15 | 2020-07-23 | 栗田工業株式会社 | Exhaust gas treatment system and exhaust gas treatment method |
CN111957711A (en) * | 2020-07-09 | 2020-11-20 | 浙江大学 | Method for efficiently solidifying waste incineration fly ash based on inorganic oligomer polymerization reaction |
JP2021166976A (en) * | 2020-04-13 | 2021-10-21 | 栗田工業株式会社 | Exhaust gas treatment system and exhaust gas treatment method |
CN114471101A (en) * | 2022-03-15 | 2022-05-13 | 金华职业技术学院 | Exhaust gas purification system |
US11810991B2 (en) | 2018-10-05 | 2023-11-07 | Lg Electronics Inc. | Solar cell panel |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61157328A (en) * | 1984-12-28 | 1986-07-17 | Hitachi Zosen Corp | Purification of exhaust gas by dry dolomite method |
JPS61287420A (en) * | 1985-04-24 | 1986-12-17 | オサケ イフテイオ タンペラ ア−ベ− | Removal of gaseous sulfur compound from flue gas of furnace |
JPH0999215A (en) * | 1995-10-06 | 1997-04-15 | Kanegafuchi Chem Ind Co Ltd | Treatment of waste gas and smoke dust |
JPH09248541A (en) * | 1996-03-14 | 1997-09-22 | Kanegafuchi Chem Ind Co Ltd | Waste treatment |
JPH09248423A (en) * | 1996-03-14 | 1997-09-22 | Kanegafuchi Chem Ind Co Ltd | Processing agent for exhaust gas and treatment of exhaust gas and fly ash |
JPH11179143A (en) * | 1997-12-25 | 1999-07-06 | Sumitomo Heavy Ind Ltd | Method for treating exhaust gas |
JPH11197445A (en) * | 1998-01-06 | 1999-07-27 | Yoshizawa Lime Industry Co Ltd | Exhaust gas treatment agent and its preparation |
JP2000063116A (en) * | 1998-08-14 | 2000-02-29 | Okutama Kogyo Co Ltd | New calcium hydroxide, its production and acidic gas- treating agent including the same as effective component |
JP2000070668A (en) * | 1998-08-26 | 2000-03-07 | Toyota Motor Corp | Exhaust gas desalting method in waste combustion furnace |
JP2003026421A (en) * | 2001-07-17 | 2003-01-29 | Tosoh Corp | High-specific-surface-area slaked lime and method of manufacturing the same and application for the same |
JP2003093837A (en) * | 2001-09-26 | 2003-04-02 | Okutama Kogyo Co Ltd | Exhaust gas treatment agent |
JP2004261809A (en) * | 2004-06-04 | 2004-09-24 | Tosoh Corp | Method of deciding required addition amount of liquid chelating agent for fly ash treatment |
JP2005320207A (en) * | 2004-05-10 | 2005-11-17 | Takashi Yasue | Slaked dolomite powder and manufacturing method thereof |
JP2007260553A (en) * | 2006-03-28 | 2007-10-11 | Kurita Water Ind Ltd | Treatment method of exhaust gas and fly ash of incineration plant |
JP2008255007A (en) * | 2008-05-26 | 2008-10-23 | Ube Material Industries Ltd | High reactive slaked lime |
JP2010042970A (en) * | 2008-08-18 | 2010-02-25 | Ube Material Industries Ltd | Slaked lime and method for producing the same |
JP2010180086A (en) * | 2009-02-04 | 2010-08-19 | Yoshizawa Lime Industry | Method for producing slaked lime |
JP2012187517A (en) * | 2011-03-10 | 2012-10-04 | Kurita Water Ind Ltd | Detoxification method of solid waste containing heavy metal |
-
2013
- 2013-11-01 JP JP2013228373A patent/JP6199698B2/en active Active
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61157328A (en) * | 1984-12-28 | 1986-07-17 | Hitachi Zosen Corp | Purification of exhaust gas by dry dolomite method |
JPS61287420A (en) * | 1985-04-24 | 1986-12-17 | オサケ イフテイオ タンペラ ア−ベ− | Removal of gaseous sulfur compound from flue gas of furnace |
JPH0999215A (en) * | 1995-10-06 | 1997-04-15 | Kanegafuchi Chem Ind Co Ltd | Treatment of waste gas and smoke dust |
JPH09248541A (en) * | 1996-03-14 | 1997-09-22 | Kanegafuchi Chem Ind Co Ltd | Waste treatment |
JPH09248423A (en) * | 1996-03-14 | 1997-09-22 | Kanegafuchi Chem Ind Co Ltd | Processing agent for exhaust gas and treatment of exhaust gas and fly ash |
JPH11179143A (en) * | 1997-12-25 | 1999-07-06 | Sumitomo Heavy Ind Ltd | Method for treating exhaust gas |
JPH11197445A (en) * | 1998-01-06 | 1999-07-27 | Yoshizawa Lime Industry Co Ltd | Exhaust gas treatment agent and its preparation |
JP2000063116A (en) * | 1998-08-14 | 2000-02-29 | Okutama Kogyo Co Ltd | New calcium hydroxide, its production and acidic gas- treating agent including the same as effective component |
JP2000070668A (en) * | 1998-08-26 | 2000-03-07 | Toyota Motor Corp | Exhaust gas desalting method in waste combustion furnace |
JP2003026421A (en) * | 2001-07-17 | 2003-01-29 | Tosoh Corp | High-specific-surface-area slaked lime and method of manufacturing the same and application for the same |
JP2003093837A (en) * | 2001-09-26 | 2003-04-02 | Okutama Kogyo Co Ltd | Exhaust gas treatment agent |
JP2005320207A (en) * | 2004-05-10 | 2005-11-17 | Takashi Yasue | Slaked dolomite powder and manufacturing method thereof |
JP2004261809A (en) * | 2004-06-04 | 2004-09-24 | Tosoh Corp | Method of deciding required addition amount of liquid chelating agent for fly ash treatment |
JP2007260553A (en) * | 2006-03-28 | 2007-10-11 | Kurita Water Ind Ltd | Treatment method of exhaust gas and fly ash of incineration plant |
JP2008255007A (en) * | 2008-05-26 | 2008-10-23 | Ube Material Industries Ltd | High reactive slaked lime |
JP2010042970A (en) * | 2008-08-18 | 2010-02-25 | Ube Material Industries Ltd | Slaked lime and method for producing the same |
JP2010180086A (en) * | 2009-02-04 | 2010-08-19 | Yoshizawa Lime Industry | Method for producing slaked lime |
JP2012187517A (en) * | 2011-03-10 | 2012-10-04 | Kurita Water Ind Ltd | Detoxification method of solid waste containing heavy metal |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016159269A (en) * | 2015-03-04 | 2016-09-05 | 栗田工業株式会社 | Composite treating agent for sour gas and heavy metal, and method for treating sour gas and heavy metal |
JP2016159270A (en) * | 2015-03-04 | 2016-09-05 | 栗田工業株式会社 | Composite treatment agent of acidic gas and heavy metal, and treatment method of acidic gas and heavy metal |
JP5939328B1 (en) * | 2015-03-04 | 2016-06-22 | 栗田工業株式会社 | Compound treatment agent for acid gas and heavy metal, and method for treating acid gas and heavy metal |
US10788207B2 (en) | 2015-06-22 | 2020-09-29 | S.A. Lhoist Recherche Et Developpement | Device and method for treating flue gases |
JP2018531144A (en) * | 2015-06-22 | 2018-10-25 | エス.ア.ロイスト ルシェルシュ エ デヴロップマン | Apparatus and method for treating exhaust gas |
JP2017104855A (en) * | 2015-11-27 | 2017-06-15 | 株式会社 セテック | Production method for dry-type exhaust gas clarifier |
JP2020006330A (en) * | 2018-07-10 | 2020-01-16 | エスエヌ環境テクノロジー株式会社 | Soot and dust treatment apparatus, incineration facility, and soot and dust treatment method |
US11810991B2 (en) | 2018-10-05 | 2023-11-07 | Lg Electronics Inc. | Solar cell panel |
WO2020148955A1 (en) * | 2019-01-15 | 2020-07-23 | 栗田工業株式会社 | Exhaust gas treatment system and exhaust gas treatment method |
CN113301984A (en) * | 2019-01-15 | 2021-08-24 | 栗田工业株式会社 | Exhaust gas treatment system and exhaust gas treatment method |
CN113301984B (en) * | 2019-01-15 | 2022-12-27 | 栗田工业株式会社 | Exhaust gas treatment system and exhaust gas treatment method |
JP2020110773A (en) * | 2019-01-15 | 2020-07-27 | 栗田工業株式会社 | Exhaust gas treatment system and exhaust gas treatment method |
JP2021166976A (en) * | 2020-04-13 | 2021-10-21 | 栗田工業株式会社 | Exhaust gas treatment system and exhaust gas treatment method |
CN111957711A (en) * | 2020-07-09 | 2020-11-20 | 浙江大学 | Method for efficiently solidifying waste incineration fly ash based on inorganic oligomer polymerization reaction |
CN114471101A (en) * | 2022-03-15 | 2022-05-13 | 金华职业技术学院 | Exhaust gas purification system |
Also Published As
Publication number | Publication date |
---|---|
JP6199698B2 (en) | 2017-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6199698B2 (en) | Acid exhaust gas treatment method and exhaust gas treatment agent | |
JP5359955B2 (en) | How to prevent elution of heavy metals | |
JP5975130B1 (en) | Compound treatment agent for acid gas and heavy metal, and method for treating acid gas and heavy metal | |
JP2015178049A (en) | Acidic waste gas-treating agent and method for preventing elution of heavy metals | |
JPWO2009001719A1 (en) | Hazardous substance insolubilizer and method of insolubilizing hazardous substances | |
JP5939328B1 (en) | Compound treatment agent for acid gas and heavy metal, and method for treating acid gas and heavy metal | |
MXPA06012284A (en) | Air pollution control. | |
JP2010221150A (en) | Method and apparatus for treatment of combustion exhaust gas | |
KR20160074807A (en) | Method for producing acidic gas and heavy metals adsorbent using blast furnace slag | |
WO2016185033A1 (en) | Lime-based sorbent composition for mercury removal and its manufacturing process | |
JP2021109796A (en) | Method for producing sulfur-based composition and cement composition, system for producing cement composition, and cement-based solidifying material | |
JP6271081B2 (en) | Hazardous substance insolubilizing agent and method for insolubilizing hazardous substances | |
JP4893059B2 (en) | Treatment method of exhaust gas and fly ash from incineration facilities | |
TWI469821B (en) | A method for treating solid containing heavy metal | |
KR20190116663A (en) | Composition for desulfurizing and stabilizing heavy metals | |
JP2012036243A (en) | Material and method for preventing elution of heavy metal | |
CN108939904B (en) | Desulfurizing agent composition and application thereof in cement clinker production | |
CA2208142A1 (en) | Waste gas and dust treatment method | |
JP5895035B2 (en) | Highly reactive slaked lime, method for producing the same, and exhaust gas treating agent | |
JP2010279930A (en) | Exhaust gas treatment method | |
JP5691211B2 (en) | Combustion exhaust gas treatment method | |
KR20160075018A (en) | Dehydration material manufacturing method of sludge with high water containing rate and dehydration material of the same | |
JP5070815B2 (en) | Exhaust gas treatment method | |
CN112742206A (en) | Flue gas fly ash pre-stabilization treatment method in waste incineration power generation | |
JP5648917B2 (en) | Heavy metal insolubilizing material and heavy metal insolubilizing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160920 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170410 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170418 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170616 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170801 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170824 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6199698 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |