JPH02194833A - Production of dry desulfurizing agent for waste gas - Google Patents

Production of dry desulfurizing agent for waste gas

Info

Publication number
JPH02194833A
JPH02194833A JP1014358A JP1435889A JPH02194833A JP H02194833 A JPH02194833 A JP H02194833A JP 1014358 A JP1014358 A JP 1014358A JP 1435889 A JP1435889 A JP 1435889A JP H02194833 A JPH02194833 A JP H02194833A
Authority
JP
Japan
Prior art keywords
gypsum
silicon dioxide
lime
desulfurizing agent
desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1014358A
Other languages
Japanese (ja)
Inventor
Satoshi Kudo
慧 工藤
Tsutomu Ueno
上野 務
Takanori Kuwabara
桑原 隆範
Tadaaki Mizoguchi
忠昭 溝口
Masaru Akagi
勝 赤木
Hiroaki Takeshita
竹下 洋昭
Osamu Kanda
修 神田
Tsukasa Nishimura
西村 士
Ryoichi Miyataka
宮高 良一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Electric Power Co Inc
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hokkaido Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hokkaido Electric Power Co Inc filed Critical Babcock Hitachi KK
Priority to JP1014358A priority Critical patent/JPH02194833A/en
Publication of JPH02194833A publication Critical patent/JPH02194833A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To produce a lime-gypsum-coal ashes based hydrated hardened body having high performance by a simplified method by adding silicon dioxide and/or silicon dioxide-contg. material to a lime-gypsum-coal ashes based raw material and producing a desulfurizing agent. CONSTITUTION:In the case of producing a dry desulfurizing agent for waste gas made of a lime-gypsum-coal ashes based hydrated hardened body, silicon dioxide and/or silicon dioxide-contg. material are added to lime, gypsum and coal ashes. This mixture is kneaded while adding water thereto. The kneaded material is extrusion-molded and the molded body is aged by wet air or steam and thereafter drying treatment is performed therefor. As a result, the lime- gypsum-coal ashes based hydrated hardened body having high performance can be produced at high yield by a simplified method regardless of the kind of the utilized gypsum source.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は排ガス用乾式脱硫剤の製造方法に係り、さらに
詳しくは石灰−石膏−石炭灰(含ケイ酸物質)系水和硬
化物を脱硫剤とする排ガス用乾式脱硫剤の製造方法に関
する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing a dry desulfurization agent for exhaust gas, and more specifically, to a process for desulfurizing a lime-gypsum-coal ash (silicic acid-containing substance) hydrated and cured product. The present invention relates to a method for producing a dry desulfurization agent for exhaust gas.

〔従来の技術〕[Conventional technology]

従来、火力発電所における重油焚、石炭焚ボイラから排
出される硫黄酸化物の除去は、石灰石−石膏法などの湿
式法または活性炭法などの乾式法によって行なわれてい
るが、これらに代わる簡略化された経済的な脱硫方法の
開発が望まれている。
Conventionally, the removal of sulfur oxides emitted from heavy oil-fired and coal-fired boilers in thermal power plants has been carried out using wet methods such as the limestone-gypsum method or dry methods such as the activated carbon method, but there is a simplified alternative method to these methods. It is desired to develop an economical desulfurization method.

一方、本発明者らは、石炭焚ボイラから排出される膨大
な量の石炭灰をより高度に利用した乾式脱硫剤の製造方
法を提案した(特開昭61−209038号公報)。こ
の石炭灰を利用した脱硫剤は、基本的には、第6図の1
段養生破砕法による脱硫剤製造系統図に示すように、消
石灰、石膏および石炭灰からなる原料混合物に水を加え
て得たスラリを、水蒸気雰囲気で加熱、水和硬化させ、
次いで破砕、分級した後、乾燥処理することによって製
造される。
On the other hand, the present inventors have proposed a method for producing a dry desulfurization agent that makes more advanced use of the enormous amount of coal ash discharged from coal-fired boilers (Japanese Patent Application Laid-open No. 209038/1983). Desulfurization agents using this coal ash are basically 1 in Figure 6.
As shown in the diagram of the desulfurization agent production system using the stage curing crushing method, a slurry obtained by adding water to a raw material mixture consisting of slaked lime, gypsum, and coal ash is heated in a steam atmosphere, hydrated and hardened,
It is then manufactured by crushing, classifying, and drying.

前記脱硫剤を用いて乾式脱硫方法を実用化するためには
高活性な脱硫剤を大量に、がっ高歩留まりで製造する技
術を確立することが重要であるため、この発明に関連し
、原料混合物に水を加えて得たスラリを、−旦水蒸気加
熱し、水和硬化させた後に粗砕し、この粗砕物を造粒す
ることによって製品歩留まりを向上させ、再度水蒸気養
生する、2段養生法による脱硫剤の製造方法を提案した
(特願昭61−96926号)。
In order to put the dry desulfurization method into practical use using the desulfurization agent described above, it is important to establish a technology for producing a large amount of highly active desulfurization agent at a high yield. A two-stage curing method in which the slurry obtained by adding water to the mixture is first heated with steam, hydrated and hardened, and then crushed, the crushed product is granulated to improve the product yield, and then steam-cured again. proposed a method for producing a desulfurizing agent by a method (Japanese Patent Application No. 1983-96926).

第7図は、2段養生法による脱硫剤製造系統図、第8回
は、第7図における脱硫装置の全体系統図である。図に
おいて、石炭灰1、消石灰(Ca(OH)2)2および
石1it(CaSO4)3は、各サイロから適正な量が
混合機4に供給されて粉体混合される。均一に混合され
た粉体は、混練機5に送られて適正な量の水18と混練
されてスラリ状とされ、−次永和硬化装置6で水蒸気1
9と接触して成形可能な硬度となるように加熱硬化され
る。この硬化体は、粗砕機7および解砕機8で適当な大
きさとされ、押出し成形機9で成形されて造粒核とされ
、皿型造粒機10で造粒される。直径3〜10+nmに
造粒された硬化体は、水蒸気19が供給される二次水和
硬化装置11で二次硬化され、多孔質な硬化体とされる
。この硬化体は乾燥機12で乾燥され、篩い分は機13
でスクリーニングされた後、脱硫剤サイロ14に貯蔵さ
れ、脱硫吸収塔16に順次供給される。脱硫吸収塔16
に供給された脱硫剤は、ボイラ排ガス20中の硫黄酸化
物と反応した後、使用済脱硫剤17としてその底部から
排出され、その一部は、石膏の代用品として使用される
。また硫黄酸化物が除去された排ガスは、ライン21を
通って大気へ放出される。
FIG. 7 is a system diagram for producing a desulfurizing agent using a two-stage curing method, and Part 8 is an overall system diagram of the desulfurization apparatus shown in FIG. In the figure, appropriate amounts of coal ash 1, slaked lime (Ca(OH)2) 2, and stone 1it (CaSO4) 3 are supplied from each silo to a mixer 4 and mixed into powder. The uniformly mixed powder is sent to a kneader 5 and kneaded with an appropriate amount of water 18 to form a slurry.
9 and is heated and hardened to a moldable hardness. This hardened material is made into an appropriate size by a crusher 7 and a crusher 8, molded into granulation nuclei by an extruder 9, and granulated by a dish-type granulator 10. The cured body granulated to a diameter of 3 to 10+ nm is subjected to secondary curing in a secondary hydration curing device 11 to which water vapor 19 is supplied, and is made into a porous cured body. This hardened material is dried in a dryer 12, and the sieved material is dried in a dryer 13.
After being screened, it is stored in a desulfurization agent silo 14 and sequentially supplied to a desulfurization absorption tower 16. Desulfurization absorption tower 16
After reacting with sulfur oxides in the boiler exhaust gas 20, the desulfurizing agent supplied to the boiler is discharged from the bottom as a used desulfurizing agent 17, a part of which is used as a substitute for gypsum. Further, the exhaust gas from which sulfur oxides have been removed is discharged to the atmosphere through line 21.

しかしながら、前記2段養生法では操作が複雑であると
いった欠点があり、また得られる脱硫剤が、乾燥機、篩
い分は機等を移動する間に微粉化され、脱硫剤の収量の
低下および吸収塔内の圧損の上昇を招き、吸収塔内での
脱硫剤の均一な移動が妨げられ、性能が低下する問題点
があった。
However, the above-mentioned two-stage curing method has the disadvantage that the operation is complicated, and the obtained desulfurizing agent is pulverized while being transferred through dryers and sieves, leading to a decrease in the yield of the desulfurizing agent and absorption. There was a problem in that the pressure drop inside the tower increased, and the uniform movement of the desulfurizing agent within the absorption tower was hindered, resulting in a decrease in performance.

〔発明が解決しようとする課題] さらに本発明者らは、排ガス中のSO□を吸収して生成
したCa5Oaを含む使用済脱硫剤を石膏源として使用
すると、原料混練物の硬化速度および硬度が増大し、脱
硫性能の向上が図られることを見出し、第9図に示すよ
うな1段養生法による脱硫剤の製造方法を提案している
。この製造方法は、石灰、使用済脱硫剤、石炭灰および
水の混練物を押出し成形した後、水蒸気養生を行い、乾
燥して脱硫剤を得るものであり、水蒸気養生操作が1回
でも高性能の脱硫剤が得られる。これはCa(OH)z
、CaSO4および石炭灰が水和硬化体を形成するため
には、石炭灰から5i02などが溶出する必要があり、
使用済脱硫剤中にはすでに石炭灰から)守山したSiO
□分等が活性な状態で存在し、これが新たに添加された
Ca(OH)2および水と速やかに反応するためと考え
られる。
[Problems to be Solved by the Invention] Furthermore, the present inventors have found that when a used desulfurization agent containing Ca5Oa produced by absorbing SO□ in exhaust gas is used as a gypsum source, the curing speed and hardness of the raw material kneaded material will increase. They have found that the desulfurization performance can be improved, and have proposed a method for producing a desulfurization agent using a one-stage curing method as shown in FIG. This manufacturing method involves extruding a mixture of lime, used desulfurization agent, coal ash, and water, followed by steam curing, and drying to obtain the desulfurization agent. Desulfurizing agent is obtained. This is Ca(OH)z
In order for CaSO4 and coal ash to form a hydrated body, 5i02 etc. need to be eluted from the coal ash.
The spent desulfurization agent contains SiO that has already been removed (from coal ash).
This is thought to be because □min etc. exist in an active state and quickly react with the newly added Ca(OH)2 and water.

この方法によると、−度脱硫吸収塔から廃脱硫剤(使用
済脱硫剤)の抜出しが開始されれば、石膏源として例え
ば湿式排煙脱硫副生石膏(排脱石膏)などを調製する必
要がなくなる。しかし、脱硫装置のスタートアンプに際
しては、使用済脱硫剤は入手不可能であるため、排脱石
膏などの石膏源を使用することになる。この場合は1段
養生法では原料混練物の水和硬化速度が小さいため、2
段養生法を採用する必要があるが、スタートアップのた
めだけに2段養生装置を設置しなければならないという
設備的不合理が生ずる。従って、排脱石膏等を石膏源と
する場合にも使用済脱硫剤を使用する場合と同様、1回
の養生操作で高性能の脱硫剤を製造する技術の開発が望
まれる。
According to this method, once waste desulfurization agent (spent desulfurization agent) is started to be extracted from the -degree desulfurization absorption tower, there is no need to prepare, for example, wet flue gas desulfurization byproduct gypsum (exhaust desulfurization gypsum) as a gypsum source. . However, when starting the desulfurization equipment, a used desulfurization agent is not available, so a gypsum source such as waste desulfurization gypsum is used. In this case, in the one-stage curing method, the hydration hardening rate of the raw material kneaded material is slow;
Although it is necessary to adopt a stage curing method, it would be unreasonable in terms of equipment to have to install a two-stage curing device just for startup. Therefore, it is desired to develop a technology that can produce a high-performance desulfurization agent in a single curing operation even when de-sulfurized gypsum or the like is used as a gypsum source, as in the case where a used desulfurization agent is used.

本発明の第1の目的は、使用する石膏源の種類に影響さ
れず、かつ高性能を有する石灰−石膏−石炭灰系水和硬
化体を簡略化された方法で製造することができる排ガス
用乾式脱硫剤の製造方法を提供することにあり、また本
発明の第2の目的は、高性能を有する石灰−石膏−石炭
灰系水和硬化体からなる排ガス用乾式脱硫剤を高歩留り
で製造する方法を提供することにある。
The first object of the present invention is to produce a lime-gypsum-coal ash-based hydrated body with a simplified method that is not affected by the type of gypsum source used and has high performance. A second object of the present invention is to provide a method for producing a dry desulfurization agent, and a second object of the present invention is to produce a dry desulfurization agent for exhaust gas made of a hydrated lime-gypsum-coal ash-based desulfurization agent having high performance at a high yield. The goal is to provide a way to do so.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の第1は、石灰−石膏−石炭灰系水和硬化体を脱
硫剤とする排ガス用乾式脱硫剤の製造方法において、前
記石灰−石膏−石炭灰系原料に、二酸化ケイ素および/
または二酸化ケイ素含有物を添加して脱硫剤を製造する
ことを特徴とする。
The first aspect of the present invention is a method for producing a dry desulfurization agent for exhaust gas using a lime-gypsum-coal ash-based hydrated material as a desulfurization agent, in which silicon dioxide and/or silicon dioxide and/or
Alternatively, a desulfurizing agent is produced by adding a silicon dioxide-containing substance.

上記脱硫剤は、石灰、石膏および石炭灰に二酸化ケイ素
および/または二酸化ケイ素含有物を添加した混合物に
、水を加えて混練し、該混練物を押出し成形して湿空ま
たは蒸気養生した後、乾燥処理を行う方法によって得る
ことが好ましい。
The desulfurization agent is prepared by adding water to a mixture of lime, gypsum, and coal ash and adding silicon dioxide and/or a silicon dioxide-containing material, kneading the mixture, extruding the kneaded product, and curing it in a wet air or steam. It is preferable to obtain it by a method of drying.

本発明の第2は、石灰、石膏、石炭灰および水からなる
混練物を水和硬化させて乾式脱硫剤を製造する方法にお
いて、前記混練物にベントナイトを添加することを特徴
とする。
The second aspect of the present invention is a method for producing a dry desulfurization agent by hydrating and curing a kneaded material consisting of lime, gypsum, coal ash, and water, characterized in that bentonite is added to the kneaded material.

(実施例] 以下、本発明を実施例により詳しく説明する。(Example] Hereinafter, the present invention will be explained in detail with reference to Examples.

第1図は、第1の発明の一実施例を示す脱硫剤の製造系
統図である。この図では、スタートアップ時に石膏源と
して排脱石膏を使用する場合を実線で示し、その後に使
用済脱硫剤を使用する場合を破線で示した。
FIG. 1 is a production system diagram of a desulfurizing agent showing an embodiment of the first invention. In this figure, the solid line indicates the use of degassed gypsum as a gypsum source during startup, and the dashed line indicates the subsequent use of spent desulfurization agent.

脱硫剤の製造原料である消石灰(Ca(OH)z)、排
脱石膏(Ca S O4換算)、石炭灰および二酸化ケ
イ素の使用割合は、それぞれ15〜40重量部、5〜2
0重量部、40〜80重量部および1〜10重量部であ
ることが好ましい。
The usage proportions of slaked lime (Ca(OH)z), removed gypsum (Ca SO4 equivalent), coal ash, and silicon dioxide, which are raw materials for the production of desulfurization agents, are 15 to 40 parts by weight and 5 to 2 parts by weight, respectively.
Preferably, it is 0 parts by weight, 40 to 80 parts by weight, and 1 to 10 parts by weight.

本発明においては、二酸化ケイ素の微細粉末以外に二酸
化ケイ素含有物、例えばシリカゲル、シリカゾル、天然
ゼオライト、酸性白土、ヘントナイトなどを使用するこ
とができる。
In the present invention, silicon dioxide-containing substances such as silica gel, silica sol, natural zeolite, acid clay, hentonite, etc. can be used in addition to the fine powder of silicon dioxide.

また本発明においては、石膏源として排脱石膏が好まし
く用いられるが、2水石膏(CaSO42H20)、半
水石膏(Ca S Oa  ・’AHz O)、または
無水石膏(CaSO4)のいずれの形態であっても使用
することができる。
Further, in the present invention, excreted gypsum is preferably used as a gypsum source, but any form of gypsum dihydrate (CaSO42H20), gypsum hemihydrate (Ca SOa ・'AHz O), or anhydrite (CaSO4) may be used. It can also be used.

前記二酸化ケイ素の添加方法は、他の原料物質と均一に
混合する方法であれば特に制限されないが、排脱石膏を
スラリ状で供給する場合には、排脱石膏スラリ調製時に
同時に添加、混合し、スラリとして供給することが好ま
しい。
The method of adding silicon dioxide is not particularly limited as long as it is mixed uniformly with other raw materials, but if the removed gypsum is supplied in the form of a slurry, it may be added and mixed at the same time when preparing the removed gypsum slurry. , preferably supplied as a slurry.

前記消石灰、二酸化ケイ素、石膏および石炭灰からなる
原料混合物を水で混練する際の水の使用量は、前記原料
混合物100重量部(乾量基準)に対し、35〜50重
量部であることが好ましい。
The amount of water used when kneading the raw material mixture consisting of slaked lime, silicon dioxide, gypsum and coal ash with water may be 35 to 50 parts by weight per 100 parts by weight (dry basis) of the raw material mixture. preferable.

水の最適添加量は、二酸化ケイ素の添加量によって異な
るが、例えば二酸化ケイ素の少量添加によって35%程
度の低水分量でも、二酸化ケイ素を添加しない2段養生
品(水添加量45%)よりも高い性能を有する脱硫剤が
得られる。
The optimal amount of water to add varies depending on the amount of silicon dioxide added, but for example, even if the water content is as low as 35% due to the addition of a small amount of silicon dioxide, it will be more effective than a two-stage cured product (45% water addition) that does not contain silicon dioxide. A desulfurizing agent with high performance can be obtained.

原料混合物に所定量の水を添加した混練物の固さは、針
入度によって評価される。ここで針入度とは、所定太さ
の針に所定の荷重を一定時間かけたときに針が進入する
距離をいい、この値が小さいほど試料が固いことを示す
。第2図に、水の添加量35%および混練時間2分の一
定条件下で二酸化ケイ素の添加量を変えて混練したとき
の混練物の針入度の変化を示した。該針入度は大さ1閣
の針に50gの荷重を5秒間かけたときの針の進入深さ
(M)を測定したものである。二酸化ケイ素を2%添加
すると押出し等の成形操作に耐えられる150以下の針
入度になり、添加量を増すに従い針入度は徐々に下がり
、5%添加すると固い硬度を有する成形物が得られる。
The hardness of a kneaded product obtained by adding a predetermined amount of water to a raw material mixture is evaluated by the penetration degree. Here, the penetration rate refers to the distance that a needle penetrates when a predetermined load is applied to a needle of a predetermined thickness for a predetermined period of time, and the smaller this value is, the harder the sample is. FIG. 2 shows the change in the penetration degree of the kneaded product when the kneaded material was kneaded by changing the amount of silicon dioxide added under constant conditions in which the amount of water added was 35% and the kneading time was 2 minutes. The penetration depth is determined by measuring the penetration depth (M) of a needle when a load of 50 g is applied to the needle for 5 seconds. When 2% of silicon dioxide is added, the penetration becomes 150 or less, which can withstand molding operations such as extrusion, and as the amount added increases, the penetration gradually decreases, and when 5% is added, a molded product with hardness is obtained. .

したがって、二酸化ケイ素の添加量としては1%以上が
好ましく、より好ましくは5%以上添加することによっ
て高い硬度を有する水和硬化体が得られることが示され
た。
Therefore, it was shown that the amount of silicon dioxide added is preferably 1% or more, and more preferably 5% or more to obtain a hydrated cured product having high hardness.

所定の固さを持つ混練物は、押出し機に供給され、直径
2〜10mn+、長さ5〜30mm程度の柱状破断品と
して押出し成形される。脱硫剤の適正サイズは、脱硫性
能だけでなく、吸収塔に詰め込んで被処理ガスを供給し
た際の圧力損失等を考慮して決定される。
The kneaded material having a predetermined hardness is supplied to an extruder and is extruded into a columnar broken product having a diameter of 2 to 10 mm+ and a length of approximately 5 to 30 mm. The appropriate size of the desulfurizing agent is determined not only by the desulfurizing performance but also by taking into account the pressure loss and the like when the gas to be treated is supplied to the absorption tower.

得られた押出し成形物は、必要に応じて微細粒子が除去
された後、蒸気養生され、次いで乾燥処理して脱硫剤と
される。
The obtained extruded product is steam-cured after fine particles are removed if necessary, and then dried to obtain a desulfurization agent.

実施例1〜3 消石灰(Ca(OH)z) 30重壁部および排脱石膏
(CaSO4ベース)16重量部に、比表面積150r
yf/gを有する二酸化ケイ素粉末をそれぞれ3重量部
、5重量部、10重量部(実施例1〜3)、および石炭
灰を総量を100重量部としたときの残部を加えて混合
し、該混合物に水を乾燥混合物100重量部に対して3
5重量部添加し、2分間混練した。該混練物を穴径6 
mm、板厚3.2mmの金型を用いて押出した成形した
。この際、粒子間の相互付着は認められず、円柱状の押
出し成形品が得られた。押出し物を、底面が金網の容器
中に入れ、100°Cの水蒸気中で9時間蒸気養生し、
得られた養生品を130°Cにて2時間加熱乾燥して脱
硫剤とした。
Examples 1 to 3 Slaked lime (Ca(OH)z) 30 parts by weight of the heavy wall and 16 parts by weight of removed gypsum (CaSO4 base), specific surface area 150r
Add and mix 3 parts by weight, 5 parts by weight, and 10 parts by weight of silicon dioxide powder having yf/g (Examples 1 to 3), respectively, and the remainder when the total amount of coal ash is 100 parts by weight. Add water to the mixture at 3 parts per 100 parts by weight of the dry mixture.
5 parts by weight were added and kneaded for 2 minutes. The kneaded material was made into a hole with a diameter of 6
It was extruded and molded using a mold with a plate thickness of 3.2 mm and a plate thickness of 3.2 mm. At this time, no mutual adhesion between particles was observed, and a cylindrical extrusion molded product was obtained. The extrudate was placed in a container with a wire mesh bottom and steam-cured in steam at 100°C for 9 hours.
The obtained cured product was heated and dried at 130°C for 2 hours to obtain a desulfurization agent.

得られた脱硫剤の圧壊強度および比表面積を測定して第
1表に示したが、この表から二酸化ケイ素の添加量が増
えると、硬度および比表面積がともに増加することが示
された。また粒子サイズが6 mm直径X 10 mm
のものを選び出し、その4gを直径30mmの反応管中
の目皿上に置き、温度130′Cで次の組成を持つガス
を流12ff/minで流した。SOz  : 110
00PP、NO:200ppm、CO2: 12%、0
□ :6%、N20:10%、N2 :残。所定時間後
に試料を抜出して残存するアルカリ量を分析することに
よってCaOの利用率を求めたところ、反応時間50時
間におけるCaO利用率は、80.9%(Sin、添加
量=3%)、92.5%(5%)、97%(10%)で
あった。
The crushing strength and specific surface area of the obtained desulfurizing agent were measured and shown in Table 1, and it was shown from this table that as the amount of silicon dioxide added increased, both the hardness and specific surface area increased. Also, the particle size is 6 mm diameter x 10 mm
4 g of the sample was placed on a perforated plate in a reaction tube with a diameter of 30 mm, and a gas having the following composition was flowed at a flow rate of 12 ff/min at a temperature of 130'C. SOz: 110
00PP, NO: 200ppm, CO2: 12%, 0
□: 6%, N20: 10%, N2: remainder. When the utilization rate of CaO was determined by extracting the sample after a predetermined time and analyzing the amount of alkali remaining, the CaO utilization rate at a reaction time of 50 hours was 80.9% (Sin, addition amount = 3%), 92 .5% (5%) and 97% (10%).

第    1    表 実施例4〜6 実施例1において、水蒸気養生9時間を15時間にした
以外は実施例1と同様にして脱硫剤を製造し、得られた
脱硫剤の圧壊強度および比表面積を測定し、結果を第2
表に示した。CaOの利用率は、88.6%(SiO□
添加量3%)、93.1%(5%)、97.0%(10
%)であった。
Table 1 Examples 4 to 6 A desulfurizing agent was produced in the same manner as in Example 1 except that the steam curing period was changed from 9 hours to 15 hours, and the crushing strength and specific surface area of the obtained desulfurizing agent were measured. and the result in the second
Shown in the table. The utilization rate of CaO is 88.6% (SiO□
Addition amount 3%), 93.1% (5%), 97.0% (10
%)Met.

第    2    表 実施例7〜10 実施例2と同様に二酸化ケイ素を5%添加し、9時間の
蒸気養生を行なって調製した脱硫剤を、その中に含有さ
れるアルカリ分がほとんど消費されるまで802含有ガ
スと接触させて使用済脱硫剤に転換した。
Table 2 Examples 7 to 10 A desulfurizing agent prepared by adding 5% silicon dioxide and steam curing for 9 hours in the same manner as in Example 2 was heated until the alkaline content contained therein was almost consumed. It was converted into a spent desulfurization agent by contacting with 802-containing gas.

次にこの使用済脱硫剤38重量部(Ca ’S O4と
して16重量部)、消石灰30重量部および石炭灰32
重量部からなる混合物に、熱水40重量部を添加し、蒸
気養生時間をそれぞれ9.15.20および24時間(
実施例7〜10)とし、その他は実施例1と同様の操作
によって脱硫剤を調製し、脱硫を行った。脱硫反応時間
50時間におけるCaO利用率は、それぞれ86.3%
、92.9%、95.5%および93.9%であった。
Next, 38 parts by weight of this used desulfurization agent (16 parts by weight as Ca'S O4), 30 parts by weight of slaked lime, and 32 parts by weight of coal ash.
40 parts by weight of hot water was added to the mixture consisting of parts by weight, and the steam curing time was 9.15.
Examples 7 to 10), and desulfurization agents were prepared in the same manner as in Example 1, and desulfurization was performed. The CaO utilization rate at desulfurization reaction time of 50 hours was 86.3%.
, 92.9%, 95.5% and 93.9%.

比較例1 消石灰(Ca(OH)z) 30重量部、排脱石膏(C
a S O4ベース)16重量部および石炭灰54重量
部からなる混合物に水を35重量部(乾粉に対する添加
量)添加し、2分間混練した。混練物を穴径6 mm、
板厚3.2 mmの金型を用いて押出したが、押出し直
後に粒子間の相互付着が起こり、円柱状の押出し成形品
が得られなかった。
Comparative Example 1 Slaked lime (Ca(OH)z) 30 parts by weight, removed gypsum (C
To a mixture consisting of 16 parts by weight of a SO4 base) and 54 parts by weight of coal ash, 35 parts by weight of water (the amount added to the dry powder) was added and kneaded for 2 minutes. Pour the kneaded material into a hole with a hole diameter of 6 mm.
Although extrusion was performed using a mold with a plate thickness of 3.2 mm, mutual adhesion between particles occurred immediately after extrusion, and a cylindrical extruded product could not be obtained.

比較例2 比較例1と同様の原料組成および水分量を有する混練物
を、成形可能な固さになるまで2時間水蒸気養生(1次
養生)を行った後、押出し成形を行い、これをさらに9
時間水蒸気養生(2次養生)した。得られた2段養生品
を130°Cにて2時間乾燥して脱硫剤を調製し、実施
例1と同様にして脱硫を行った。脱硫反応時間50時間
におけるCaO利用率を測定したところ70.1%であ
り、二酸化ケイ素を添加したものより著しく性能が劣っ
ていた。
Comparative Example 2 A kneaded material having the same raw material composition and moisture content as Comparative Example 1 was steam-cured for 2 hours (primary curing) until it became moldable, then extruded and further 9
Steam curing (secondary curing) was performed for an hour. The obtained two-stage cured product was dried at 130° C. for 2 hours to prepare a desulfurization agent, and desulfurization was performed in the same manner as in Example 1. The CaO utilization rate after a desulfurization reaction time of 50 hours was measured and found to be 70.1%, which was significantly inferior in performance to the one containing silicon dioxide.

実施例11〜13および比較例3 第3図は、第2の発明の一実施例を示す脱硫剤の製造系
統図である。図において、石炭灰、消石灰、石膏および
ベントナイトは、各サイロから適正な量が供給され、混
合機で粉体混合される。均一に混合された粉体は、混練
機へ送られて適正な量の水が添加されてスラリ状とされ
、水和硬化装置で水蒸気で加温されて水和硬化体となる
。水和硬化された一次永和硬化物は、押出し成形機で処
理できる大きさにまで粗砕機、粉砕機で粉砕され、押出
し成形後、皿型造粒で造粒される。造粒物は二次水和硬
化装置へ送られ、活性をもたすために水蒸気で水和硬化
された後、乾燥機に送られて表面の水分が除去され、篩
い分は機でスクリーニングされ、粒径3〜10IIT[
11のものが脱硫剤として使用され、吸収塔へ送られる
。吸収塔上部へ送られた脱硫剤は、排ガスと接触し、下
部へと移動する間に排ガス中のS02分を吸収する。吸
収性能のなくなった脱硫剤は下部より抜出され、この一
部は使用済脱硫剤として再利用される。
Examples 11 to 13 and Comparative Example 3 FIG. 3 is a production system diagram of a desulfurizing agent showing an example of the second invention. In the figure, coal ash, slaked lime, gypsum, and bentonite are supplied in appropriate amounts from each silo and mixed into powders in a mixer. The uniformly mixed powder is sent to a kneader, where an appropriate amount of water is added to form a slurry, and heated with steam in a hydration curing device to form a hydration-cured product. The hydration-cured primary permanently cured product is crushed by a coarse crusher or a crusher to a size that can be processed by an extrusion molding machine, and after extrusion molding, it is granulated by dish-shaped granulation. The granules are sent to a secondary hydration curing device, where they are hydrated and hardened with steam to make them active, and then sent to a dryer to remove surface moisture, and the sieved material is screened in a machine. , particle size 3-10IIT [
No. 11 is used as a desulfurization agent and sent to the absorption tower. The desulfurizing agent sent to the upper part of the absorption tower comes into contact with the exhaust gas and absorbs S02 in the exhaust gas while moving to the lower part. The desulfurizing agent that has lost its absorption capacity is extracted from the bottom, and a portion of this is reused as used desulfurizing agent.

第4図に、ベントナイトを添加して得られた脱硫剤B、
CおよびD(実施例11〜13)と、ベントナイトを添
加しないで得られた脱硫剤A(比較例3)の圧壊強度の
測定結果を示した。また第5図に、前記脱硫剤A、B、
CおよびDの吸収性能を測定した結果を示した。これら
の図からベントナイトの添加によって脱硫剤の強度およ
び性能が上昇し、その添加量が多いほど効果があること
が示された。
Figure 4 shows desulfurization agent B obtained by adding bentonite,
The measurement results of the crushing strength of C and D (Examples 11 to 13) and desulfurization agent A (Comparative Example 3) obtained without adding bentonite are shown. In addition, FIG. 5 shows the desulfurizing agents A, B,
The results of measuring the absorption performance of C and D are shown. These figures show that the addition of bentonite increases the strength and performance of the desulfurizing agent, and that the greater the amount added, the more effective it is.

ベントナイトを添加しない従来方法で製造した脱硫剤は
、生蒸気と接触するため強度が低く、その結果、乾燥機
出口の篩い機でスクリーニングすると、直径3 mmア
ンダーの脱硫剤が多くなり収■が低くなる。また吸収塔
内部を移動する際に微粉化し、吸収塔の圧力損失の上昇
および脱硫剤の塔内均一移動を妨げる要因となる。さら
に乾燥機では3胴アンダーの脱硫剤をも乾燥させるため
、乾燥に供する熱風がむだになり、ユーティリティが低
下する。しかしながら、本実施例ではヘントナイトの添
加によって脱硫剤の強度および性能が向上し、従来の上
記問題の発生を防止することができる。このような効果
がベントナイトのどのような成分によっているのかは推
測できないが、純成分のSiO□を添加した場合も、同
様な効果が得られている。しかしながら、ベントナイト
の価格は、SiO□の価格の約1/10であるので、本
実施例によれば製造コストを低く抑えることができる。
Desulfurization agents produced by conventional methods without the addition of bentonite have low strength because they come into contact with live steam, and as a result, when screened with a sieve at the dryer outlet, there is a large amount of desulfurization agents with a diameter of 3 mm or less, resulting in low absorption. Become. In addition, it becomes pulverized when moving inside the absorption tower, which causes an increase in the pressure loss of the absorption tower and prevents the desulfurization agent from moving uniformly within the tower. Furthermore, since the dryer also dries the desulfurizing agent in the under three cylinders, the hot air used for drying is wasted, reducing utility. However, in this example, the strength and performance of the desulfurizing agent are improved by adding hentonite, and the above-mentioned conventional problems can be prevented. Although it is not possible to guess which component of bentonite is responsible for such an effect, a similar effect is obtained when the pure component SiO□ is added. However, since the price of bentonite is about 1/10 of the price of SiO□, the manufacturing cost can be kept low according to this embodiment.

〔発明の効果〕〔Effect of the invention〕

本発明の第1の製造方法によれば、脱硫剤製造のスター
トアップ時において、石膏源として排脱石膏等を使用し
ても1段養生法により高性能を有する脱硫剤が得られる
。従って、スタートアップ時のためだけに2段養生法の
装置を設置する必要がなく、経済性に優れる。
According to the first production method of the present invention, a high-performance desulfurization agent can be obtained by a one-stage curing method even if deionized gypsum or the like is used as a gypsum source at the start-up of desulfurization agent production. Therefore, there is no need to install a two-stage curing device only for startup, which is highly economical.

本発明の第2の製造方法によれば、脱硫剤の強度の増加
および吸収性能の上昇を図ることができるので、以下に
示す効果がある。
According to the second manufacturing method of the present invention, it is possible to increase the strength of the desulfurizing agent and the absorption performance, so that the following effects can be obtained.

(1)乾燥装置および吸収塔を移動する間に微粉化され
にくくなり、使用可能な脱硫剤の収量が多くなる。
(1) The desulfurization agent is less likely to be pulverized during movement through the drying device and absorption tower, increasing the yield of usable desulfurization agent.

(2)吸収塔内部での微粉の量が軽減するため圧力損失
が低くなるとともに、吸収塔内の脱硫剤の均一移動がス
ムーズに行なえ、効果的なSO□吸収運転が可能となる
(2) Since the amount of fine powder inside the absorption tower is reduced, the pressure loss is lowered, and the desulfurization agent inside the absorption tower can be moved smoothly, allowing effective SO□ absorption operation.

(3)乾燥装置は、微粉の脱硫剤も乾燥するため、ユー
ティリティ上熱風がむだとなっていたが、微粉が少なく
なり効率のよい乾燥が行なえる。
(3) Since the drying equipment also dries the fine powder of the desulfurizing agent, the hot air used to be wasted in terms of utility, but the drying equipment reduces the amount of fine powder and allows more efficient drying.

(4)強度のみならず性能も上昇するので、二次水和硬
化装置の養生時間を短くでき、蒸気量の低減、装置のコ
ンパクト化が図れ、ランニングコストが削減できる。
(4) Since not only the strength but also the performance increases, the curing time of the secondary hydration curing equipment can be shortened, the amount of steam can be reduced, the equipment can be made more compact, and the running cost can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、第1の発明の一実施例を示す脱硫剤の製造系
統図、第2図は、二酸化ケイ素の添加量と針入度の関係
を示す図、第3図は、第2の発明の一実施例を示す脱硫
剤の製造系統図、第4図はベントナイトの添加量と圧壊
強度の関係を示す図、第5図は、ベントナイトの添加量
と吸収性能の関係を示す図、第6図は、従来技術の1段
養生破砕法による脱硫剤製造系統図、第7図は、従来技
術の2段養生法による脱硫剤製造系統図、第8図は、第
7図における脱硫装置の全体系統図、第9図は、石膏源
として使用済脱硫剤を用いたときの押出し成形を含む1
段養生法による脱硫剤の製造の系統図である。 1・・・石炭灰、2・・・消石灰、3・・・石膏、4・
・・連続混合機、5・・・連続混練機、6・・・−次永
和硬化装置、7・・・粗砕機、8・・・解砕機、9・・
・押出し成形機、10・・・皿型造粒機、11・・・二
次水和硬化装置、12・・・乾燥機、13・−・篩い分
は機、14・・・脱硫剤サイロ、15・・・脱硫ファン
、16・・・脱硫吸収塔、17・・・使用済脱硫剤、1
8・・・水供給ファン、19・・・水蒸気、20・・・
ボイラ排ガス、21・・・処理ガス。
FIG. 1 is a production system diagram of a desulfurizing agent showing one embodiment of the first invention, FIG. 2 is a diagram showing the relationship between the amount of silicon dioxide added and the penetration degree, and FIG. 3 is a diagram showing the relationship between the amount of silicon dioxide added and the penetration FIG. 4 is a diagram showing the relationship between the amount of bentonite added and crushing strength; FIG. 5 is a diagram showing the relationship between the amount of bentonite added and absorption performance; Figure 6 is a desulfurizing agent manufacturing system diagram using the conventional one-stage curing crushing method, Figure 7 is a desulfurizing agent manufacturing system diagram using the conventional two-stage curing method, and Figure 8 is a diagram showing the desulfurizing agent production system in the conventional technology using the two-stage curing method. The overall system diagram, Figure 9, shows 1
It is a system diagram of the production of a desulfurization agent by a stage curing method. 1...Coal ash, 2...Slaked lime, 3...Gypsum, 4.
... Continuous mixer, 5... Continuous kneading machine, 6... - Jieiwa hardening device, 7... Coarse crusher, 8... Crushing machine, 9...
- Extrusion molding machine, 10... Dish-type granulator, 11... Secondary hydration curing device, 12... Dryer, 13... Sieving machine, 14... Desulfurizing agent silo, 15... Desulfurization fan, 16... Desulfurization absorption tower, 17... Used desulfurization agent, 1
8...Water supply fan, 19...Water vapor, 20...
Boiler exhaust gas, 21...processed gas.

Claims (3)

【特許請求の範囲】[Claims] (1)石灰−石膏−石炭灰系水和硬化体を脱硫剤とする
排ガス用乾式脱硫剤の製造方法において、前記石灰−石
膏−石炭灰系原料に、二酸化ケイ素および/または二酸
化ケイ素含有物を添加して脱硫剤を製造することを特徴
とする排ガス用乾式脱硫剤の製造方法。
(1) In a method for producing a dry desulfurization agent for exhaust gas using a hydrated lime-gypsum-coal ash-based desulfurization agent, silicon dioxide and/or a silicon dioxide-containing substance is added to the lime-gypsum-coal ash-based raw material. A method for producing a dry desulfurizing agent for exhaust gas, which comprises adding the desulfurizing agent.
(2)石灰、石膏および石炭灰に二酸化ケイ素および/
または二酸化ケイ素含有物を添加した混合物に、水を加
えて混練し、該混練物を押出し成形して湿空または蒸気
養生した後、乾燥処理を行うことを特徴とする請求項(
1)記載の排ガス用乾式脱硫剤の製造方法。
(2) Lime, gypsum and coal ash with silicon dioxide and/or
Or a claim characterized in that water is added to a mixture to which a silicon dioxide-containing substance is added and kneaded, the kneaded product is extruded and cured in a humid air or steam, and then a drying treatment is performed (
1) The method for producing a dry desulfurization agent for exhaust gas as described above.
(3)石灰、石膏、石炭灰および水からなる混練物を水
和硬化させて乾式脱硫剤を製造する方法において、前記
混練物にベントナイトを添加することを特徴とする排ガ
ス用乾式脱硫剤の製造方法。
(3) Production of a dry desulfurization agent for exhaust gas in a method of producing a dry desulfurization agent by hydrating and curing a kneaded material consisting of lime, gypsum, coal ash, and water, characterized in that bentonite is added to the kneaded material. Method.
JP1014358A 1989-01-24 1989-01-24 Production of dry desulfurizing agent for waste gas Pending JPH02194833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1014358A JPH02194833A (en) 1989-01-24 1989-01-24 Production of dry desulfurizing agent for waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1014358A JPH02194833A (en) 1989-01-24 1989-01-24 Production of dry desulfurizing agent for waste gas

Publications (1)

Publication Number Publication Date
JPH02194833A true JPH02194833A (en) 1990-08-01

Family

ID=11858847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1014358A Pending JPH02194833A (en) 1989-01-24 1989-01-24 Production of dry desulfurizing agent for waste gas

Country Status (1)

Country Link
JP (1) JPH02194833A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090262A1 (en) * 2015-11-27 2017-06-01 株式会社セテック Desulfurizing agent production method
WO2018142538A1 (en) * 2017-02-02 2018-08-09 北海道電力株式会社 Method for operating desulfurization system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090262A1 (en) * 2015-11-27 2017-06-01 株式会社セテック Desulfurizing agent production method
JP2017104855A (en) * 2015-11-27 2017-06-15 株式会社 セテック Production method for dry-type exhaust gas clarifier
WO2018142538A1 (en) * 2017-02-02 2018-08-09 北海道電力株式会社 Method for operating desulfurization system
CN108697978A (en) * 2017-02-02 2018-10-23 北海道电力株式会社 The operation method of desulphurization system

Similar Documents

Publication Publication Date Title
US4772330A (en) Process for producing low water-absorption artificial lightweight aggregate
JP5416486B2 (en) Method for producing zeolite-containing cured body
US20240091743A1 (en) Methods for reactivating passivated mineral residues
JP2686292B2 (en) Method for producing lime-gypsum-coal ash hydrated cured body
JPH02194833A (en) Production of dry desulfurizing agent for waste gas
JP6964299B2 (en) Carbon dioxide fixation method
JPH05261279A (en) Production of desulfurizing agent
US5364572A (en) Process for making high-strength synthetic aggregates
JP4259633B2 (en) Method for producing smoke treatment agent
JPH08206443A (en) Acidic gas absorbent and production thereof
JP2629042B2 (en) Method for producing exhaust gas treating agent
JPH03242226A (en) Production of desulfurizing agent
JP2716574B2 (en) Manufacturing method of dry desulfurization agent for exhaust gas treatment
JP2877268B2 (en) Production method of solid molded product from slurry by-product from wet lime gypsum desulfurization unit
JPH02115039A (en) Manufacture of desulfurization agent
JP2547901B2 (en) Mud treatment agent and treatment method
JP2952227B2 (en) Method for producing exhaust gas treatment agent
JPH06279146A (en) Production of porous ceramics
JP3150497B2 (en) Dry purification method of exhaust gas
JPH0459021A (en) Dry-type desulfurizing method and device therefor
JP2635678B2 (en) Desulfurization method and apparatus using desulfurizing agent containing coal ash as a main component
JPH1033979A (en) Method of manufacturing humidity control material
JPS6297640A (en) Preparation of desulfurizing/denitrating agent
JPH0620555B2 (en) Exhaust gas treatment agent activation method
JPH0316949A (en) Preparation of hardened product of coal ash