WO2010090118A1 - Method for rendering iodine fluoride harmless - Google Patents

Method for rendering iodine fluoride harmless Download PDF

Info

Publication number
WO2010090118A1
WO2010090118A1 PCT/JP2010/051085 JP2010051085W WO2010090118A1 WO 2010090118 A1 WO2010090118 A1 WO 2010090118A1 JP 2010051085 W JP2010051085 W JP 2010051085W WO 2010090118 A1 WO2010090118 A1 WO 2010090118A1
Authority
WO
WIPO (PCT)
Prior art keywords
iodine
gas
detected
alkaline earth
fluoride
Prior art date
Application number
PCT/JP2010/051085
Other languages
French (fr)
Japanese (ja)
Inventor
茂朗 柴山
両川 敦
山田 周平
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2010090118A1 publication Critical patent/WO2010090118A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/24Inter-halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/186Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/44Fluid or fluent reactor fuel
    • G21C3/56Gaseous compositions; Suspensions in a gaseous carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/304Alkali metal compounds of sodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/602Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/604Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/606Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a method capable of efficiently detoxifying iodine fluoride, which is useful as a fluorinating agent, or an etching gas or a cleaning gas used in the electronic or nuclear industry.
  • a dry treatment method and a wet treatment method can be considered.
  • the dry treatment method is particularly effective when the apparatus is compact and easy to operate, there is no trouble caused by the backflow of water as in the wet treatment method, and a large amount of waste liquid treatment cannot be performed or there is no equipment space.
  • Patent Document 1 As a dry treatment method, for example, a dry detoxification method for chlorine trifluoride (Patent Document 1) has been proposed. 3) When the reactant utilization efficiency is low because the reactant is periodically exchanged, there are problems such as high running costs. Especially, the above problems 1) and 2) With respect to iodine fluoride, there has never been a concrete proposal for solving these two problems, and a technique capable of efficiently removing iodine fluoride is desired.
  • An object of the present invention is to provide a method capable of efficiently detoxifying iodine fluoride.
  • the present inventors have obtained alkali metal oxides, alkali metal carbonates, alkaline earth metal carbonates, alkaline earth metals, alkaline earth metal oxides, alkalis.
  • a reagent containing metal hydroxide or alkaline earth metal hydroxide at a specific temperature iodine fluoride can be fixed to the reagent and iodine fluoride can be efficiently removed.
  • the present invention provides an alkali metal oxide, alkali metal carbonate, alkaline earth metal carbonate, alkaline earth metal, alkaline earth metal oxide, alkali metal hydroxide, or alkaline earth metal hydroxide.
  • Iodine fluoride represented by the general formula: IFx at a temperature of 0 ° C. or more and 540 ° C. or less at a temperature of 5 to 100% by mass in total.
  • the iodine component and the fluorine component are fixed to the reaction agent by contacting with a gas containing 10 vol% or less in a concentration of 10 vol% or less.
  • the first method may be an iodine fluoride detoxification method (second method) characterized in that x in the general formula: IFx is 5 or 7.
  • iodine fluoride can be changed to O 2 , H 2 O, etc., which are harmless to the human body, by contacting the above-mentioned reactant with a gas containing iodine fluoride at a temperature of 0 ° C. or higher and 540 ° C. or lower. It becomes possible.
  • fluorine element and iodine element for example, when soda lime is used as a reaction agent, iodine becomes calcium iodate and fluorine becomes calcium fluoride, which are completely fixed simultaneously.
  • the method of the present invention can easily remove iodine fluoride efficiently.
  • the reactant used in the present invention is an alkali metal oxide, alkali metal carbonate, alkaline earth metal carbonate, alkaline earth metal, alkaline earth metal oxide, alkali metal hydroxide, or alkaline earth metal hydroxide. Any material containing 5% by mass to 100% by mass in total can be used.
  • alkali metal oxide examples include lithium oxide, sodium oxide, potassium oxide, rubidium oxide, cesium oxide, etc.
  • lithium oxide, sodium oxide, or oxide is preferable because it can be used in a granular form.
  • Zeolite containing potassium is preferred, and specific examples include molecular sieves.
  • alkali metal carbonate examples include lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, and cesium carbonate.
  • Sodium carbonate or potassium carbonate is preferable because it can be used in a granular form.
  • alkaline earth metal carbonate examples include calcium carbonate, magnesium carbonate, strontium carbonate, barium carbonate, and the like, and calcium carbonate or magnesium carbonate is preferable because it can be used in a granular form.
  • alkaline earth metal examples include calcium, magnesium, strontium, barium and the like.
  • calcium or magnesium is preferable because it can be used in a granular form.
  • alkaline earth metal oxide examples include calcium oxide, magnesium oxide, strontium oxide, and barium oxide.
  • calcium oxide or magnesium oxide is preferable because it can be used in a granular form.
  • alkali metal hydroxide examples include lithium hydroxide, sodium hydroxide, and potassium hydroxide.
  • potassium hydroxide or sodium hydroxide is preferable because it can be used in a granular form.
  • alkaline earth metal hydroxide examples include calcium hydroxide, magnesium hydroxide, strontium hydroxide, barium hydroxide and the like, but calcium hydroxide or hydroxide can be used in the form of granules. Magnesium is preferred.
  • a method of introducing a gas containing iodine fluoride into a reaction tube filled with the reactant can be used.
  • the flow rate of the gas containing iodine fluoride has a superficial velocity (flow rate / volume per unit time) of 1000 Hr ⁇ 1 or less. It is preferable to make it. Exceeding this speed is not preferable because the gas may not decompose and pass through the reaction tube. Furthermore, in order to increase the removal efficiency, 50 Hr ⁇ 1 or less is desirable.
  • the temperature when contacting with iodine fluoride is 0 ° C. or higher, the reaction between iodine fluoride and the reactant occurs, but it is preferably 100 ° C. or higher in order to increase the removal efficiency. Further, when the temperature becomes 550 ° C. or higher, iodine fixed to the reactant, for example, calcium iodate, decomposes and liberates an iodine component, so that it is necessary to contact at 540 ° C. or lower.
  • iodine fixed to the reactant for example, calcium iodate
  • the means and method for heating the reactant filled in the reaction tube are not particularly limited as long as it can be heated to the above-mentioned desired temperature.
  • an electric heater can be used in an external heating type or an internal heating type.
  • the external heating type when the internal temperature does not rise to a desired temperature due to the large diameter of the reaction tube, it is desirable to install a heater in the center of the reaction tube.
  • a fluororesin or a metal material can be used at room temperature. Above 100 ° C., it is preferable to use a metal material, and a relatively inexpensive material such as SUS304 can also be used.
  • a reaction tube at 300 ° C. or higher and continuously for a long period of time, it is preferable to use a Ni alloy such as Hastelloy or Monel.
  • a PTFE or metal gasket for the flange of the reaction tube.
  • the reaction tube is configured in a series format by installing a second stage or a plurality of reaction tubes as a backup for the first stage.
  • the operation method is to install a gas detector at the outlet of the first stage, and when the hydrogen fluoride and iodine reach a certain concentration or more, the first stage Replace drugs.
  • two reaction tubes can be installed in the first stage in a parallel format, and continuous use can be performed while switching the two first stage.
  • the reaction between iodine fluoride and the reactant is an exothermic reaction
  • a gas containing a high concentration of iodine fluoride is circulated through the reaction tube
  • the heat of reaction between iodine fluoride and the reactant increases, resulting in an increase in temperature.
  • the reactant is a hydroxide
  • the water generated by the reaction is vaporized and discharged.
  • a gas containing a high concentration of iodine fluoride is circulated through the reaction tube, the water generated by an abrupt reaction. Since there is a high possibility that a part of the reactant remains in the reactant and the reactant is consolidated, there is a possibility that the reaction tube may be blocked.
  • the concentration of iodine fluoride in the gas when it is brought into contact with the reactant is preferably 10 vol% or less. Further, considering the durability of the apparatus, it is preferably 5 vol% or less, more preferably 1 vol% or less. Further, the lower limit of the concentration is not particularly limited, but is preferably 0.01 vol% or more, more preferably 0.1 vol% or more, for industrially efficient treatment.
  • Example 1 As a reactant, 300 g of soda lime (soda lime No. 2, manufactured by Wako Pure Chemical Industries, Ltd., medium granular, NaOH content 5 mass%, Ca (OH) 2 content 80 mass%, moisture 15 mass%) was filled. A reaction tube with a heater having a diameter of 1 inch and a length of 200 cm (manufactured by SUS304) was used, and the heater was used at a predetermined temperature (500 ° C .: Example 5, 100 ° C .: Examples 1-3 and 6, 5 ° C .: Example 4).
  • reaction tube outlet gas was measured using a gas detector tube for iodine gas (manufactured by Gastec, No. 9L) (detection lower limit: 0.2 ppm).
  • the gas distribution was completed when 10 g of IF 7 was distributed in total.
  • Example 7 The same procedure as in Example 1 was carried out except that Ca (granularity manufactured by Wako Pure Chemical Industries, Ltd., purity 99%) was used as the reactant.
  • Example 8 The same procedure as in Example 1 was performed except that CaO (quick lime manufactured by Wako Pure Chemical Industries, Ltd., purity: 98%) was crushed until the particle size became 5 to 15 mm.
  • CaO quick lime manufactured by Wako Pure Chemical Industries, Ltd., purity: 98%) was crushed until the particle size became 5 to 15 mm.
  • Example 9 Molecular sieve 4A as a reaction agent (Union Showa Co., Ltd., (Na 2 O) 6 (Al 2 O 3 ) 6 (SiO 2 ) 12 ] ⁇ 27H 2 O, Na 2 O content: 17.0 mass%) The same procedure as in Example 1 was performed except that was used.
  • Example 10 Molecular sieve 13X as a reactant (Union Showa Co., Ltd., (Na 2 O) 43 (Al 2 O 3 ) 43 (SiO 2 ) 106 ] ⁇ 276H 2 O, Na 2 O content: 14.5% by mass) The same procedure as in Example 1 was performed except that was used.
  • Example 11 The same procedure as in Example 1 was carried out except that Na 2 CO 3 (sodium carbonate manufactured by Wako Pure Chemical Industries, Ltd., purity 99.5%) was used as the reactant.
  • Na 2 CO 3 sodium carbonate manufactured by Wako Pure Chemical Industries, Ltd., purity 99.5%
  • Example 12 The same procedure as in Example 1 was performed except that CaCO 3 (calcium carbonate manufactured by Wako Pure Chemical Industries, Ltd., purity: 98%) was used as the reactant.
  • CaCO 3 calcium carbonate manufactured by Wako Pure Chemical Industries, Ltd., purity: 98%) was used as the reactant.
  • Example 1 The same procedure as in Example 1 was performed except that 30 g of silicon (particle size 5 to 15 mm, purity 98%, manufactured by Kinsei Matec Co., Ltd.) was used as a reactant.
  • Example 2 The same procedure as in Example 1 was performed except that the predetermined temperature was set to ⁇ 10 ° C. (Comparative Example 2) and 600 ° C. (Comparative Example 3) with a heater.
  • Example 4 The same operation as in Example 1 was performed except that the IF 7 concentration was 12 vol%.
  • Table 1 shows the results of the above Examples and Comparative Examples.
  • Example 13 The same procedure as in Example 1 was performed except that IF 5 was used instead of IF 7 as iodine fluoride in the flowing gas.
  • Example 14 The same procedure as in Example 2 was performed except that IF 5 was used instead of IF 7 as iodine fluoride in the flowing gas.
  • Example 15 The same procedure as in Example 3 was performed except that IF 5 was used instead of IF 7 as iodine fluoride in the flowing gas.
  • Example 16 The same procedure as in Example 4 was performed except that IF 5 was used instead of IF 7 as iodine fluoride in the flowing gas.
  • Example 17 The same operation as in Example 5 was performed except that IF 5 was used instead of IF 7 as iodine fluoride in the flowing gas.
  • Example 18 The same procedure as in Example 6 was performed except that IF 5 was used instead of IF 7 as iodine fluoride in the flowing gas.
  • Example 19 The same operation as in Example 7 was conducted except that IF 5 was used instead of IF 7 as iodine fluoride in the flowing gas.
  • Example 20 The same procedure as in Example 8 was performed except that IF 5 was used instead of IF 7 as iodine fluoride in the flowing gas.
  • Example 21 The same procedure as in Example 9 was performed except that IF 5 was used instead of IF 7 as iodine fluoride in the flowing gas.
  • Example 22 The same procedure as in Example 10 was performed except that IF 5 was used instead of IF 7 as iodine fluoride in the flowing gas.
  • Example 23 The same procedure as in Example 11 was performed except that IF 5 was used instead of IF 7 as iodine fluoride in the flowing gas.
  • Example 24 The same operation as in Example 12 was performed except that IF 5 was used instead of IF 7 as iodine fluoride in the flowing gas.
  • Comparative Example 5 The same operation as in Comparative Example 1 was conducted except that IF 5 was used instead of IF 7 as iodine fluoride in the flowing gas.
  • Comparative Example 8 The same operation as in Comparative Example 4 was conducted except that IF 5 was used instead of IF 7 as iodine fluoride in the flowing gas.
  • Table 2 shows the results of Examples 13 to 24 and Comparative Examples 5 to 8.
  • Example 25 to 28 As a reactant, 250 g of soda lime (soda lime No. 2, manufactured by Wako Pure Chemical Industries, Ltd., medium granular, NaOH content 5 mass%, Ca (OH) 2 content 80 mass%, moisture 15 mass%) is dried. What was dried at 120 ° C. for 12 hours in the machine was used. A reaction tube with a heater having a diameter of 1 inch and a length of 100 cm (made of SUS304) filled with the reactant was used, and the heater was used at a predetermined temperature (25 ° C .: Examples 25 and 26, 100 ° C .: Example 27, 200 ° C.).
  • a predetermined IF 5 concentrations IF 5 from IF 5 cylinder with N 2 a carrier gas (1.5 vol%: examples 25 and 26,0.9Vol%: eXAMPLE 27
  • the IF 5 gas diluted to 28) was allowed to flow through the reaction tube at a predetermined flow rate (600 ml / min: Example 25, 240 ml / min: Examples 26 to 28) under atmospheric pressure.
  • the outlet gas of the reaction tube was measured using an HF gas detector (manufactured by Shin Cosmos, XPS-7), and when the HF concentration showed 3 volppm or more, it was considered that the reactant had broken through, and IF 5 flow was stopped. . After purging the reaction tube with N 2 , heating was terminated.
  • the residence time was determined from the flow rate of IF 5 gas and the volume of the reaction tube (empty state).
  • the main reaction at the time of IF 5 removal is estimated as the following equation, and the theoretical removal amount of IF 5 is defined as the theoretical removal amount of IF 5 corresponding to 1 mole of iodine pentafluoride per 3 moles of calcium hydroxide. Utilization efficiency (%) was obtained as a percentage of the actual IF 5 circulation volume for.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Disclosed is a method for rendering iodine fluoride harmless, which is characterized in that a reagent, which contains not less than 5% by mass but not more than 100% by mass of an alkali metal oxide, an alkali metal carbonate, an alkaline earth metal carbonate, an alkaline earth metal, an alkaline earth metal oxide, an alkali metal hydroxide or an alkaline earth metal hydroxide in total, is brought into contact and reacted with a gas, which contains iodine fluoride represented by the following general formula: IFx (wherein x represents 1, 3, 5 or 7) at a concentration not more than 10 vol%, at a temperature of not less than 0˚C but not more than 540˚C, so that the iodine component and the fluorine component are immobilized on the reagent.  By this method, iodine fluoride can be efficiently rendered harmless.

Description

フッ化ヨウ素の除害方法How to remove iodine fluoride
 本発明は、フッ素化剤、あるいは電子または原子力産業に用いられるエッチングガスやクリーニングガスとして有用な、フッ化ヨウ素を効率的に除害することができる方法に関するものである。 The present invention relates to a method capable of efficiently detoxifying iodine fluoride, which is useful as a fluorinating agent, or an etching gas or a cleaning gas used in the electronic or nuclear industry.
発明の背景Background of the Invention
 三フッ化塩素や四フッ化珪素等のハロゲン化物の除害方法としては、乾式処理法と湿式処理法が考えられる。乾式処理法は、装置がコンパクトで操作も簡便であり、湿式処理法のような水の逆流によるトラブルも無く、また大量の廃液処理ができない場合や装置スペースが無い場合には特に有効である。 As a method for detoxifying halides such as chlorine trifluoride and silicon tetrafluoride, a dry treatment method and a wet treatment method can be considered. The dry treatment method is particularly effective when the apparatus is compact and easy to operate, there is no trouble caused by the backflow of water as in the wet treatment method, and a large amount of waste liquid treatment cannot be performed or there is no equipment space.
 乾式処理法では、例えば、三フッ化塩素についての乾式除害法(特許文献1)が提案されているが、1)反応後のハロゲン化合物の遊離、2)反応剤固結の目詰まりによるトラブルの発生、3)定期的に反応剤を交換するため反応剤の利用効率が低い場合にはランニングコストがかかる等の問題点があり、特に前記問題点の1)と2)については、運転上重要であり、フッ化ヨウ素については、これら二つの問題点を解決する具体的な提案はこれまでに無く、フッ化ヨウ素を効率的に除害できる技術が望まれている。 As a dry treatment method, for example, a dry detoxification method for chlorine trifluoride (Patent Document 1) has been proposed. 3) When the reactant utilization efficiency is low because the reactant is periodically exchanged, there are problems such as high running costs. Especially, the above problems 1) and 2) With respect to iodine fluoride, there has never been a concrete proposal for solving these two problems, and a technique capable of efficiently removing iodine fluoride is desired.
特開平3-229618号公報JP-A-3-229618
 本発明の目的は、フッ化ヨウ素を効率的に除害できる方法を提供することである。 An object of the present invention is to provide a method capable of efficiently detoxifying iodine fluoride.
 本発明者らは、上記目的を達成するため、鋭意検討を重ねた結果、アルカリ金属酸化物、アルカリ金属炭酸塩、アルカリ土類金属炭酸塩、アルカリ土類金属、アルカリ土類金属酸化物、アルカリ金属水酸化物、またはアルカリ土類金属水酸化物を含有した反応剤を特定の温度で使用することで、フッ化ヨウ素を該反応剤に固定し、効率的にフッ化ヨウ素を除害できることを見出し、本発明に到ったものである。 As a result of intensive studies to achieve the above object, the present inventors have obtained alkali metal oxides, alkali metal carbonates, alkaline earth metal carbonates, alkaline earth metals, alkaline earth metal oxides, alkalis. By using a reagent containing metal hydroxide or alkaline earth metal hydroxide at a specific temperature, iodine fluoride can be fixed to the reagent and iodine fluoride can be efficiently removed This is the headline and the present invention.
 すなわち、本発明は、アルカリ金属酸化物、アルカリ金属炭酸塩、アルカリ土類金属炭酸塩、アルカリ土類金属、アルカリ土類金属酸化物、アルカリ金属水酸化物、またはアルカリ土類金属水酸化物を合計で5質量%以上100質量%以下含有する反応剤を0℃以上540℃以下の温度で、一般式:IFxで表されるフッ化ヨウ素(ただし、xは1、3、5、7のいずれか一つを示す。)を10vol%以下の濃度で含有するガスと接触させて反応させることにより、ヨウ素成分およびフッ素成分を該反応剤に固定することを特徴とするフッ化ヨウ素の除害方法(第1方法)を提供するものである。 That is, the present invention provides an alkali metal oxide, alkali metal carbonate, alkaline earth metal carbonate, alkaline earth metal, alkaline earth metal oxide, alkali metal hydroxide, or alkaline earth metal hydroxide. Iodine fluoride represented by the general formula: IFx at a temperature of 0 ° C. or more and 540 ° C. or less at a temperature of 5 to 100% by mass in total. And the iodine component and the fluorine component are fixed to the reaction agent by contacting with a gas containing 10 vol% or less in a concentration of 10 vol% or less. (First method) is provided.
 さらに、第1方法は、該一般式:IFxのxが5または7であることを特徴とするフッ化ヨウ素の除害方法(第2方法)であってもよい。 Furthermore, the first method may be an iodine fluoride detoxification method (second method) characterized in that x in the general formula: IFx is 5 or 7.
 本発明は、上述の反応剤を0℃以上540℃以下の温度でフッ化ヨウ素を含有するガスと接触させることによって、フッ化ヨウ素を人体に無害なO2、H2Oなどに換えることが可能となる。また、フッ素元素及びヨウ素元素については、例えばソーダライムを反応剤として用いた場合は、ヨウ素はヨウ素酸カルシウム、フッ素はフッ化カルシウムになり、同時に完全に固定化される。 In the present invention, iodine fluoride can be changed to O 2 , H 2 O, etc., which are harmless to the human body, by contacting the above-mentioned reactant with a gas containing iodine fluoride at a temperature of 0 ° C. or higher and 540 ° C. or lower. It becomes possible. As for fluorine element and iodine element, for example, when soda lime is used as a reaction agent, iodine becomes calcium iodate and fluorine becomes calcium fluoride, which are completely fixed simultaneously.
詳細な説明Detailed description
 本発明の方法により、容易にフッ化ヨウ素の効率的な除害をすることができる。 The method of the present invention can easily remove iodine fluoride efficiently.
 以下、本発明を更に詳述する。 Hereinafter, the present invention will be described in further detail.
 本発明において用いる反応剤は、アルカリ金属酸化物、アルカリ金属炭酸塩、アルカリ土類金属炭酸塩、アルカリ土類金属、アルカリ土類金属酸化物、アルカリ金属水酸化物、またはアルカリ土類金属水酸化物を合計で5質量%以上100質量%以下含有したものであれば使用できる。 The reactant used in the present invention is an alkali metal oxide, alkali metal carbonate, alkaline earth metal carbonate, alkaline earth metal, alkaline earth metal oxide, alkali metal hydroxide, or alkaline earth metal hydroxide. Any material containing 5% by mass to 100% by mass in total can be used.
アルカリ金属酸化物としては、酸化リチウム、酸化ナトリウム、酸化カリウム、酸化ルビジウム、酸化セシウム等が挙げられるが、中でも、顆粒状の形で用いることができることが望ましいため、酸化リチウム、酸化ナトリウム、または酸化カリウムを含む、ゼオライトが好ましく、具体的には、モレキュラーシーブが挙げられる。 Examples of the alkali metal oxide include lithium oxide, sodium oxide, potassium oxide, rubidium oxide, cesium oxide, etc. Among them, lithium oxide, sodium oxide, or oxide is preferable because it can be used in a granular form. Zeolite containing potassium is preferred, and specific examples include molecular sieves.
アルカリ金属炭酸塩としては、例えば、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、炭酸セシウム等が挙げられるが、顆粒状の形で用いることができる点で炭酸ナトリウムまたは炭酸カリウムが好ましい。 Examples of the alkali metal carbonate include lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, and cesium carbonate. Sodium carbonate or potassium carbonate is preferable because it can be used in a granular form.
アルカリ土類金属炭酸塩としては、例えば、炭酸カルシウム、炭酸マグネシウム、炭酸ストロンチウム、炭酸バリウム等が挙げられるが、顆粒状の形で用いることができる点で炭酸カルシウムまたは炭酸マグネシウムが好ましい。 Examples of the alkaline earth metal carbonate include calcium carbonate, magnesium carbonate, strontium carbonate, barium carbonate, and the like, and calcium carbonate or magnesium carbonate is preferable because it can be used in a granular form.
アルカリ土類金属としては、例えば、カルシウム、マグネシウム、ストロンチウム、バリウム等が挙げられるが、中でも、顆粒状の形で用いることができる点でカルシウムまたはマグネシウムが好ましい。 Examples of the alkaline earth metal include calcium, magnesium, strontium, barium and the like. Among them, calcium or magnesium is preferable because it can be used in a granular form.
アルカリ土類金属酸化物としては、例えば、酸化カルシウム、酸化マグネシウム、酸化ストロンチウム、酸化バリウム等が挙げられるが、中でも、顆粒状の形で用いることができる点で酸化カルシウムまたは酸化マグネシウムが好ましい。 Examples of the alkaline earth metal oxide include calcium oxide, magnesium oxide, strontium oxide, and barium oxide. Among these, calcium oxide or magnesium oxide is preferable because it can be used in a granular form.
アルカリ金属水酸化物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等が挙げられるが、中でも、顆粒状の形で用いることができる点で水酸化カリウムまたは水酸化ナトリウムが好ましい。 Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, and potassium hydroxide. Among them, potassium hydroxide or sodium hydroxide is preferable because it can be used in a granular form.
アルカリ土類金属水酸化物としては、例えば、水酸化カルシウム、水酸化マグネシウム、水酸化ストロンチウム、水酸化バリウム等が挙げられるが、顆粒状の形で用いることができる点で水酸化カルシウムまたは水酸化マグネシウムが好ましい。 Examples of the alkaline earth metal hydroxide include calcium hydroxide, magnesium hydroxide, strontium hydroxide, barium hydroxide and the like, but calcium hydroxide or hydroxide can be used in the form of granules. Magnesium is preferred.
 反応剤をフッ化ヨウ素と接触させて反応させる方法として、反応剤が充填されている反応管にフッ化ヨウ素を含有するガス導入させる方法を用いることができる。この方法を用いる場合、フッ化ヨウ素を含有するガスを反応管に導入する際、フッ化ヨウ素を含有するガスの流量は、その空塔速度(単位時間当たりの流量/容積)を1000Hr-1以下にすることが好ましい。この速度を超えるとガスが分解せず反応管を通過する場合があり好ましくない。さらに、除去効率を上げるためには、50Hr-1以下が望ましい。 As a method of reacting the reactant with iodine fluoride, a method of introducing a gas containing iodine fluoride into a reaction tube filled with the reactant can be used. When this method is used, when the gas containing iodine fluoride is introduced into the reaction tube, the flow rate of the gas containing iodine fluoride has a superficial velocity (flow rate / volume per unit time) of 1000 Hr −1 or less. It is preferable to make it. Exceeding this speed is not preferable because the gas may not decompose and pass through the reaction tube. Furthermore, in order to increase the removal efficiency, 50 Hr −1 or less is desirable.
 フッ化ヨウ素と接触させる時の温度は、0℃以上であればフッ化ヨウ素と反応剤との反応は起きるが、除去効率を上げるためには、100℃以上が好ましい。また、550℃以上になると反応剤に固定されたヨウ素、例えば、ヨウ素酸カルシウムが、分解してヨウ素成分が遊離することから、540℃以下で接触させることが必要である。 If the temperature when contacting with iodine fluoride is 0 ° C. or higher, the reaction between iodine fluoride and the reactant occurs, but it is preferably 100 ° C. or higher in order to increase the removal efficiency. Further, when the temperature becomes 550 ° C. or higher, iodine fixed to the reactant, for example, calcium iodate, decomposes and liberates an iodine component, so that it is necessary to contact at 540 ° C. or lower.
 反応管に充填されている反応剤を加熱する手段、方式は、上記の所望の温度に加熱できれば特に限定されず、例えば、電気ヒータを外熱式または内熱式で用いることができる。外熱式において、反応管の径が大きいことにより内部の温度が所望の温度まで上がらない場合は、反応管内中央にヒータを設置することが望ましい。 The means and method for heating the reactant filled in the reaction tube are not particularly limited as long as it can be heated to the above-mentioned desired temperature. For example, an electric heater can be used in an external heating type or an internal heating type. In the external heating type, when the internal temperature does not rise to a desired temperature due to the large diameter of the reaction tube, it is desirable to install a heater in the center of the reaction tube.
 反応管の材質は、室温では、フッ素樹脂や金属材料が使用可能である。100℃以上においては、金属材料を使用することが好ましく、SUS304のような比較的安価な材料も使用可能である。300℃以上で且つ長期間連続的に反応管を使用する場合には、ハステロイやモネル等のNi合金を使用することが好ましい。反応管のフランジ等のガスケットはPTFE製や金属製を使用することが望ましい。さらに、PTFE製のガスケットを使用する場合は、フッ化ヨウ素が凝縮しないように、フランジ部に冷却ジャケットを設けることが望ましい。例えばフッ化ヨウ素がIF5の場合は、冷却ジャケットに30~50℃の冷却水を循環させることが望ましい。 As the material of the reaction tube, a fluororesin or a metal material can be used at room temperature. Above 100 ° C., it is preferable to use a metal material, and a relatively inexpensive material such as SUS304 can also be used. When using a reaction tube at 300 ° C. or higher and continuously for a long period of time, it is preferable to use a Ni alloy such as Hastelloy or Monel. It is desirable to use a PTFE or metal gasket for the flange of the reaction tube. Further, when a PTFE gasket is used, it is desirable to provide a cooling jacket on the flange portion so that iodine fluoride does not condense. For example, when iodine fluoride is IF 5 , it is desirable to circulate cooling water at 30 to 50 ° C. in the cooling jacket.
 反応管の構成は、1段目のバックアップとして2段目または更に複数の反応管を設置し、シリーズ形式に配置することが望ましい。例えばシリーズ形式に反応管が2段配置されている場合、その運用方法は、1段目の出口にガス検知器を設置し、フッ化水素、ヨウ素が一定濃度以上に達した時点で1段目の薬剤を交換する。さらに、連続して除害を行う場合は、1段目に反応管を2基パラレル形式に設置し、1段目の2基を切り替えながら連続使用を行うことができる。 It is desirable that the reaction tube is configured in a series format by installing a second stage or a plurality of reaction tubes as a backup for the first stage. For example, when two stages of reaction tubes are arranged in the series format, the operation method is to install a gas detector at the outlet of the first stage, and when the hydrogen fluoride and iodine reach a certain concentration or more, the first stage Replace drugs. Furthermore, when performing detoxification continuously, two reaction tubes can be installed in the first stage in a parallel format, and continuous use can be performed while switching the two first stage.
 反応管の出口には、薬剤の微粉体による配管の閉塞を防ぐため、金属製のフィルターを設置することが望ましい。また、出口フランジのガス口にも、ステンレス製の金網を差し込むことが望ましい。 It is desirable to install a metal filter at the outlet of the reaction tube in order to prevent the piping from being clogged with fine chemical powder. It is also desirable to insert a stainless steel wire mesh into the gas port of the outlet flange.
 反応管出口や配管は、水の凝縮を防ぐために、配管のヒータトレースやデミスターの設置等を行うことが望ましい。また、凝縮した際のトラブル防止のために、管内のガスの流れは、ダウンフローで行うことが望ましい。 It is desirable to install piping heater traces and demisters at the reaction tube outlet and piping to prevent water condensation. Further, in order to prevent troubles when condensed, it is desirable that the gas flow in the pipe is performed in a down flow.
 フッ化ヨウ素と反応剤の反応は発熱反応であるため、フッ化ヨウ素を高濃度含有するガスを反応管に流通させると、フッ化ヨウ素と反応剤との反応熱が大きくなるため、温度上昇が大きくなり装置の耐久性に問題が生じる虞がある。特に、反応剤が水酸化物の場合は、反応により発生する水は気化して排出されるが、フッ化ヨウ素を高濃度含有するガスを反応管に流通させると、急激な反応で発生する水の一部が反応剤に残存して反応剤が固結する可能性が高くなるため、反応管の閉塞が生じる虞がある。 Since the reaction between iodine fluoride and the reactant is an exothermic reaction, if a gas containing a high concentration of iodine fluoride is circulated through the reaction tube, the heat of reaction between iodine fluoride and the reactant increases, resulting in an increase in temperature. There is a possibility that a problem will occur in durability of the device. In particular, when the reactant is a hydroxide, the water generated by the reaction is vaporized and discharged. However, if a gas containing a high concentration of iodine fluoride is circulated through the reaction tube, the water generated by an abrupt reaction. Since there is a high possibility that a part of the reactant remains in the reactant and the reactant is consolidated, there is a possibility that the reaction tube may be blocked.
 したがって、反応剤に接触させる時のガス中のフッ化ヨウ素の濃度は、10vol%以下が好ましく、さらに装置の耐久性を考慮すると、5vol%以下が好ましく、1vol%以下がより好ましい。また、濃度の下限は特に限定されないが、工業的に効率よく処理するためには0.01vol%以上が好ましく、0.1vol%以上がより好ましい。 Therefore, the concentration of iodine fluoride in the gas when it is brought into contact with the reactant is preferably 10 vol% or less. Further, considering the durability of the apparatus, it is preferably 5 vol% or less, more preferably 1 vol% or less. Further, the lower limit of the concentration is not particularly limited, but is preferably 0.01 vol% or more, more preferably 0.1 vol% or more, for industrially efficient treatment.
 また、反応剤に接触させる時のガス中のフッ化ヨウ素の濃度を所望の濃度にするには、N2、He等の不活性ガスで希釈することが望ましい。 In order to obtain a desired concentration of iodine fluoride in the gas when it is brought into contact with the reactant, it is desirable to dilute with an inert gas such as N 2 or He.
 以下、実施例により本発明を具体的に説明するが、本発明は下記実施例に制限されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to the following examples.
 [実施例1~6]
 反応剤としてソーダライム300g(和光純薬工業(株)製のソーダ石灰2号、中粒状、NaOH含有量5質量%、Ca(OH)2含有量80質量%、水分15質量%)を充填した直径1inch、長さ200cmのヒータ付反応管(SUS304製)を用い、該ヒータにて所定の温度(500℃:実施例5、100℃:実施例1~3および6、5℃:実施例4)に加温し、N2で所定のIF7濃度(9vol%:実施例6、1vol%:実施例1、4、および5、0.1vol%:実施例2、0.01vol%:実施例3)に希釈したIF7ガスを大気圧の下、240ml/minの流速で反応管に流通させた。この時、反応管の出口ガスを超純水を吸収液とするバブラーに通して、固定化されないフッ素成分を該吸収液に吸収させた。その後、該吸収液をイオンクロマトグラフィーによりフッ素イオン濃度を求め、求められたフッ素イオン濃度から反応管出口ガス中のフッ素元素濃度を求めた(検出下限:3ppm)。また、反応管出口ガスをヨウ素ガス用のガス検知管(ガステック製、No.9L)を用いて測定した(検出下限:0.2ppm)。ガス流通は、IF7を全量10g流通したところで完了とした。
[Examples 1 to 6]
As a reactant, 300 g of soda lime (soda lime No. 2, manufactured by Wako Pure Chemical Industries, Ltd., medium granular, NaOH content 5 mass%, Ca (OH) 2 content 80 mass%, moisture 15 mass%) was filled. A reaction tube with a heater having a diameter of 1 inch and a length of 200 cm (manufactured by SUS304) was used, and the heater was used at a predetermined temperature (500 ° C .: Example 5, 100 ° C .: Examples 1-3 and 6, 5 ° C .: Example 4). ) And N 2 with a predetermined IF 7 concentration (9 vol%: Example 6, 1 vol%: Examples 1, 4, and 5, 0.1 vol%: Example 2, 0.01 vol%: Example The IF 7 gas diluted in 3) was circulated through the reaction tube at a flow rate of 240 ml / min under atmospheric pressure. At this time, the outlet gas of the reaction tube was passed through a bubbler using ultrapure water as an absorption liquid, and the fluorine component that was not immobilized was absorbed into the absorption liquid. Then, the fluorine ion concentration of the absorbing solution was determined by ion chromatography, and the fluorine element concentration in the reaction tube outlet gas was determined from the determined fluorine ion concentration (lower detection limit: 3 ppm). The reaction tube outlet gas was measured using a gas detector tube for iodine gas (manufactured by Gastec, No. 9L) (detection lower limit: 0.2 ppm). The gas distribution was completed when 10 g of IF 7 was distributed in total.
 その結果、ガス流通は、完了できた。また、吸収液からフッ素元素は検出されず、ガス検知管測定でもヨウ素は検出されなかった。 As a result, gas distribution was completed. In addition, no elemental fluorine was detected from the absorbing solution, and iodine was not detected by gas detector tube measurement.
[実施例7]
 反応剤としてCa(和光純薬工業(株)製の粒状、純度99%)を使用する以外は実施例1と同様に行った。
[Example 7]
The same procedure as in Example 1 was carried out except that Ca (granularity manufactured by Wako Pure Chemical Industries, Ltd., purity 99%) was used as the reactant.
 その結果、ガス流通は、完了できた。また、吸収液からフッ素元素は検出されず、ガス検知管測定でもヨウ素は検出されなかった。 As a result, gas distribution was completed. In addition, no elemental fluorine was detected from the absorbing solution, and iodine was not detected by gas detector tube measurement.
[実施例8]
 反応剤としてCaO(和光純薬工業(株)製の生石灰、純度98%)を粒径が5~15mmになるまで破砕したものを使用する以外は実施例1と同様に行った。
[Example 8]
The same procedure as in Example 1 was performed except that CaO (quick lime manufactured by Wako Pure Chemical Industries, Ltd., purity: 98%) was crushed until the particle size became 5 to 15 mm.
 その結果、ガス流通は、完了できた。また、吸収液からフッ素元素は検出されず、ガス検知管測定でもヨウ素は検出されなかった。 As a result, gas distribution was completed. In addition, no elemental fluorine was detected from the absorbing solution, and iodine was not detected by gas detector tube measurement.
[実施例9]
 反応剤としてモレキュラーシーブ4A(ユニオン昭和(株)製、(Na2O)6(Al23)6(SiO2)12〕・27H2O、Na2O含有量:17.0質量%)を使用する以外は実施例1と同様に行った。
[Example 9]
Molecular sieve 4A as a reaction agent (Union Showa Co., Ltd., (Na 2 O) 6 (Al 2 O 3 ) 6 (SiO 2 ) 12 ] · 27H 2 O, Na 2 O content: 17.0 mass%) The same procedure as in Example 1 was performed except that was used.
 その結果、ガス流通は、完了できた。また、吸収液からフッ素元素は検出されず、ガス検知管測定でもヨウ素は検出されなかった。 As a result, gas distribution was completed. In addition, no elemental fluorine was detected from the absorbing solution, and iodine was not detected by gas detector tube measurement.
[実施例10]
 反応剤としてモレキュラーシーブ13X(ユニオン昭和(株)製、(Na2O)43(Al23)43(SiO2)106〕・276H2O、Na2O含有量:14.5質量%)を使用する以外は実施例1と同様に行った。
[Example 10]
Molecular sieve 13X as a reactant (Union Showa Co., Ltd., (Na 2 O) 43 (Al 2 O 3 ) 43 (SiO 2 ) 106 ] · 276H 2 O, Na 2 O content: 14.5% by mass) The same procedure as in Example 1 was performed except that was used.
 その結果、ガス流通は、完了できた。また、吸収液からフッ素元素は検出されず、ガス検知管測定でもヨウ素は検出されなかった。 As a result, gas distribution was completed. In addition, no elemental fluorine was detected from the absorbing solution, and iodine was not detected by gas detector tube measurement.
[実施例11]
 反応剤としてNa2CO3(和光純薬工業(株)製の炭酸ナトリウム、純度99.5%)を使用する以外は実施例1と同様に行った。
[Example 11]
The same procedure as in Example 1 was carried out except that Na 2 CO 3 (sodium carbonate manufactured by Wako Pure Chemical Industries, Ltd., purity 99.5%) was used as the reactant.
 その結果、ガス流通は、完了できた。また、吸収液からフッ素元素は検出されず、ガス検知管測定でもヨウ素は検出されなかった。 As a result, gas distribution was completed. In addition, no elemental fluorine was detected from the absorbing solution, and iodine was not detected by gas detector tube measurement.
[実施例12]
 反応剤としてCaCO3(和光純薬工業(株)製の炭酸カルシウム、純度98%)を使用する以外は実施例1と同様に行った。
[Example 12]
The same procedure as in Example 1 was performed except that CaCO 3 (calcium carbonate manufactured by Wako Pure Chemical Industries, Ltd., purity: 98%) was used as the reactant.
 その結果、ガス流通は、完了できた。また、吸収液からフッ素元素は検出されず、ガス検知管測定でもヨウ素は検出されなかった。 As a result, gas distribution was completed. In addition, no elemental fluorine was detected from the absorbing solution, and iodine was not detected by gas detector tube measurement.
[比較例1]
 反応剤としてシリコン(キンセイマテック(株)製の粒径5~15mm、純度98%)を30g使用する以外は実施例1と同様に行った。
[Comparative Example 1]
The same procedure as in Example 1 was performed except that 30 g of silicon (particle size 5 to 15 mm, purity 98%, manufactured by Kinsei Matec Co., Ltd.) was used as a reactant.
 その結果、流通開始直後からフッ素元素濃度が7%検出され、フッ素元素成分は、固定化できないことを確認した。ヨウ素については、ガス検知管の検出上限(12ppm)を超える値を検出し、固定化できないことを確認した。 As a result, 7% of the fluorine element concentration was detected immediately after the start of distribution, and it was confirmed that the fluorine element component could not be immobilized. About iodine, the value exceeding the detection upper limit (12 ppm) of a gas detector tube was detected, and it was confirmed that immobilization was impossible.
[比較例2、3]
 ヒータにて所定の温度を、-10℃(比較例2)、600℃(比較例3)にする以外は実施例1と同様に行った。
[Comparative Examples 2 and 3]
The same procedure as in Example 1 was performed except that the predetermined temperature was set to −10 ° C. (Comparative Example 2) and 600 ° C. (Comparative Example 3) with a heater.
 その結果、温度が-10℃では、流通中は、フッ素元素もヨウ素元素も検出されなかったが、IF7を3.2g流通させたところで、反応管の内圧が上昇し、ガスを流通できなくなった。また、温度が600℃では、流通直後フッ素元素は検出されなかったが、ヨウ素については、検出上限(12ppm)を超える値が検出されたため、ガス流通を終了した。 As a result, when the temperature was −10 ° C., neither fluorine element nor iodine element was detected during the flow, but when 3.2 g of IF 7 was passed, the internal pressure of the reaction tube increased and the gas could not flow. It was. Further, at a temperature of 600 ° C., no fluorine element was detected immediately after distribution, but for iodine, a value exceeding the upper limit of detection (12 ppm) was detected, and thus gas distribution was terminated.
[比較例4]
 IF7濃度を12vol%とする以外は実施例1と同様に行った。
[Comparative Example 4]
The same operation as in Example 1 was performed except that the IF 7 concentration was 12 vol%.
 その結果、流通中は、フッ素元素もヨウ素元素も検出されなかったが、IF7を5.6g流通させたところで、反応管の内圧が上昇し、ガスを流通できなくなった。 As a result, neither fluorine nor iodine was detected during the flow, but when 5.6 g of IF 7 was flowed, the internal pressure of the reaction tube increased and gas could not flow.
 上記実施例および比較例の結果を表1に示す。 Table 1 shows the results of the above Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例13]
 流通するガス中のフッ化ヨウ素としてIF7の代わりにIF5を使用する以外は実施例1と同様に行った。
[Example 13]
The same procedure as in Example 1 was performed except that IF 5 was used instead of IF 7 as iodine fluoride in the flowing gas.
 その結果、ガス流通は、完了できた。また、吸収液からフッ素元素は検出されず、ガス検知管測定でもヨウ素は検出されなかった。 As a result, gas distribution was completed. In addition, no elemental fluorine was detected from the absorbing solution, and iodine was not detected by gas detector tube measurement.
[実施例14]
 流通するガス中のフッ化ヨウ素としてIF7の代わりにIF5を使用する以外は実施例2と同様に行った。
[Example 14]
The same procedure as in Example 2 was performed except that IF 5 was used instead of IF 7 as iodine fluoride in the flowing gas.
 その結果、ガス流通は、完了できた。また、吸収液からフッ素元素は検出されず、ガス検知管測定でもヨウ素は検出されなかった。 As a result, gas distribution was completed. In addition, no elemental fluorine was detected from the absorbing solution, and iodine was not detected by gas detector tube measurement.
[実施例15]
 流通するガス中のフッ化ヨウ素としてIF7の代わりにIF5を使用する以外は実施例3と同様に行った。
[Example 15]
The same procedure as in Example 3 was performed except that IF 5 was used instead of IF 7 as iodine fluoride in the flowing gas.
 その結果、ガス流通は、完了できた。また、吸収液からフッ素元素は検出されず、ガス検知管測定でもヨウ素は検出されなかった。 As a result, gas distribution was completed. In addition, no elemental fluorine was detected from the absorbing solution, and iodine was not detected by gas detector tube measurement.
[実施例16]
 流通するガス中のフッ化ヨウ素としてIF7の代わりにIF5を使用する以外は実施例4と同様に行った。
[Example 16]
The same procedure as in Example 4 was performed except that IF 5 was used instead of IF 7 as iodine fluoride in the flowing gas.
 その結果、ガス流通は、完了できた。また、吸収液からフッ素元素は検出されず、ガス検知管測定でもヨウ素は検出されなかった。 As a result, gas distribution was completed. In addition, no elemental fluorine was detected from the absorbing solution, and iodine was not detected by gas detector tube measurement.
[実施例17]
 流通するガス中のフッ化ヨウ素としてIF7の代わりにIF5を使用する以外は実施例5と同様に行った。
[Example 17]
The same operation as in Example 5 was performed except that IF 5 was used instead of IF 7 as iodine fluoride in the flowing gas.
 その結果、ガス流通は、完了できた。また、吸収液からフッ素元素は検出されず、ガス検知管測定でもヨウ素は検出されなかった。 As a result, gas distribution was completed. In addition, no elemental fluorine was detected from the absorbing solution, and iodine was not detected by gas detector tube measurement.
[実施例18]
 流通するガス中のフッ化ヨウ素としてIF7の代わりにIF5を使用する以外は実施例6と同様に行った。
[Example 18]
The same procedure as in Example 6 was performed except that IF 5 was used instead of IF 7 as iodine fluoride in the flowing gas.
 その結果、ガス流通は、完了できた。また、吸収液からフッ素元素は検出されず、ガス検知管測定でもヨウ素は検出されなかった。 As a result, gas distribution was completed. In addition, no elemental fluorine was detected from the absorbing solution, and iodine was not detected by gas detector tube measurement.
[実施例19]
 流通するガス中のフッ化ヨウ素としてIF7の代わりにIF5を使用する以外は実施例7と同様に行った。
[Example 19]
The same operation as in Example 7 was conducted except that IF 5 was used instead of IF 7 as iodine fluoride in the flowing gas.
 その結果、ガス流通は、完了できた。また、吸収液からフッ素元素は検出されず、ガス検知管測定でもヨウ素は検出されなかった。 As a result, gas distribution was completed. In addition, no elemental fluorine was detected from the absorbing solution, and iodine was not detected by gas detector tube measurement.
[実施例20]
 流通するガス中のフッ化ヨウ素としてIF7の代わりにIF5を使用する以外は実施例8と同様に行った。
[Example 20]
The same procedure as in Example 8 was performed except that IF 5 was used instead of IF 7 as iodine fluoride in the flowing gas.
 その結果、ガス流通は、完了できた。また、吸収液からフッ素元素は検出されず、ガス検知管測定でもヨウ素は検出されなかった。 As a result, gas distribution was completed. In addition, no elemental fluorine was detected from the absorbing solution, and iodine was not detected by gas detector tube measurement.
[実施例21]
 流通するガス中のフッ化ヨウ素としてIF7の代わりにIF5を使用する以外は実施例9と同様に行った。
[Example 21]
The same procedure as in Example 9 was performed except that IF 5 was used instead of IF 7 as iodine fluoride in the flowing gas.
 その結果、ガス流通は、完了できた。また、吸収液からフッ素元素は検出されず、ガス検知管測定でもヨウ素は検出されなかった。 As a result, gas distribution was completed. In addition, no elemental fluorine was detected from the absorbing solution, and iodine was not detected by gas detector tube measurement.
[実施例22]
 流通するガス中のフッ化ヨウ素としてIF7の代わりにIF5を使用する以外は実施例10と同様に行った。
[Example 22]
The same procedure as in Example 10 was performed except that IF 5 was used instead of IF 7 as iodine fluoride in the flowing gas.
 その結果、ガス流通は、完了できた。また、吸収液からフッ素元素は検出されず、ガス検知管測定でもヨウ素は検出されなかった。 As a result, gas distribution was completed. In addition, no elemental fluorine was detected from the absorbing solution, and iodine was not detected by gas detector tube measurement.
[実施例23]
 流通するガス中のフッ化ヨウ素としてIF7の代わりにIF5を使用する以外は実施例11と同様に行った。
[Example 23]
The same procedure as in Example 11 was performed except that IF 5 was used instead of IF 7 as iodine fluoride in the flowing gas.
 その結果、ガス流通は、完了できた。また、吸収液からフッ素元素は検出されず、ガス検知管測定でもヨウ素は検出されなかった。 As a result, gas distribution was completed. In addition, no elemental fluorine was detected from the absorbing solution, and iodine was not detected by gas detector tube measurement.
[実施例24]
 流通するガス中のフッ化ヨウ素としてIF7の代わりにIF5を使用する以外は実施例12と同様に行った。
[Example 24]
The same operation as in Example 12 was performed except that IF 5 was used instead of IF 7 as iodine fluoride in the flowing gas.
 その結果、ガス流通は、完了できた。また、吸収液からフッ素元素は検出されず、ガス検知管測定でもヨウ素は検出されなかった。 As a result, gas distribution was completed. In addition, no elemental fluorine was detected from the absorbing solution, and iodine was not detected by gas detector tube measurement.
[比較例5]
 流通するガス中のフッ化ヨウ素としてIF7の代わりにIF5を使用する以外は比較例1と同様に行った。
[Comparative Example 5]
The same operation as in Comparative Example 1 was conducted except that IF 5 was used instead of IF 7 as iodine fluoride in the flowing gas.
 その結果、流通開始直後からフッ素元素濃度が5%以上検出され、フッ素元素成分は、固定化できないことを確認した。ヨウ素については、ガス検知管の検出上限(12ppm)を超える値を検出し、固定化できないことを確認した。 As a result, it was confirmed that the fluorine element concentration was detected 5% or more immediately after the start of distribution, and the fluorine element component could not be immobilized. About iodine, the value exceeding the detection upper limit (12 ppm) of a gas detector tube was detected, and it was confirmed that immobilization was impossible.
[比較例6]
 流通するガス中のフッ化ヨウ素としてIF7の代わりにIF5を使用する以外は比較例2と同様に行った。
[Comparative Example 6]
Except using IF 5 instead of IF 7 as fluoride iodine in the gas flowing was carried out in the same manner as in Comparative Example 2.
 その結果、流通中は、フッ素元素もヨウ素元素も検出されなかったが、IF5を5.2g流通させたところで、反応管の内圧が上昇し、ガスを流通できなくなった。 As a result, neither fluorine element nor iodine element was detected during distribution, but when 5.2 g of IF 5 was passed, the internal pressure of the reaction tube increased, and gas could not be passed.
[比較例7]
 流通するガス中のフッ化ヨウ素としてIF7の代わりにIF5を使用する以外は比較例3と同様に行った。
[Comparative Example 7]
Except using IF 5 instead of IF 7 as fluoride iodine in the gas flowing was carried out in the same manner as in Comparative Example 3.
 その結果、流通直後でフッ素元素は検出されなかったが、ヨウ素については、ガス検知管の検出上限(12ppm)を超える値が検出されたため、ガス流通を終了した。 As a result, elemental fluorine was not detected immediately after distribution, but for iodine, a value exceeding the detection upper limit (12 ppm) of the gas detector tube was detected, so the gas distribution was terminated.
[比較例8]
 流通するガス中のフッ化ヨウ素としてIF7の代わりにIF5を使用する以外は比較例4と同様に行った。
[Comparative Example 8]
The same operation as in Comparative Example 4 was conducted except that IF 5 was used instead of IF 7 as iodine fluoride in the flowing gas.
 その結果、流通中は、フッ素元素もヨウ素元素も検出されなかったが、IF5を7.6g流通させたところで、反応管の内圧が上昇し、ガスを流通できなくなった。 As a result, neither fluorine element nor iodine element was detected during the flow, but when 7.6 g of IF 5 was passed, the internal pressure of the reaction tube increased and gas could not be passed.
 上記実施例13~24および比較例5~8の結果を表2に示す。 Table 2 shows the results of Examples 13 to 24 and Comparative Examples 5 to 8.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[実施例25~28]
 反応剤として、ソーダライム250g(和光純薬工業(株)製のソーダ石灰2号、中粒状、NaOH含有量5質量%、Ca(OH)2含有量80質量%、水分15質量%)を乾燥機内で120℃にて12時間乾燥させたものを使用した。この反応剤を充填した直径1inch、長さ100cmのヒータ付反応管(SUS304製)を用い、該ヒータにて所定の温度(25℃:実施例25および26、100℃:実施例27、200℃:実施例28)に加温し、IF5ボンベからのIF5をキャリアーガスであるN2で所定のIF5濃度(1.5vol%:実施例25および26、0.9vol%:実施例27および28)に希釈したIF5ガスを大気圧の下、所定の流速(600ml/min:実施例25、240ml/min:実施例26~28)で反応管に流通させた。
[Examples 25 to 28]
As a reactant, 250 g of soda lime (soda lime No. 2, manufactured by Wako Pure Chemical Industries, Ltd., medium granular, NaOH content 5 mass%, Ca (OH) 2 content 80 mass%, moisture 15 mass%) is dried. What was dried at 120 ° C. for 12 hours in the machine was used. A reaction tube with a heater having a diameter of 1 inch and a length of 100 cm (made of SUS304) filled with the reactant was used, and the heater was used at a predetermined temperature (25 ° C .: Examples 25 and 26, 100 ° C .: Example 27, 200 ° C.). : warmed to example 28), a predetermined IF 5 concentrations IF 5 from IF 5 cylinder with N 2 a carrier gas (1.5 vol%: examples 25 and 26,0.9Vol%: eXAMPLE 27 The IF 5 gas diluted to 28) was allowed to flow through the reaction tube at a predetermined flow rate (600 ml / min: Example 25, 240 ml / min: Examples 26 to 28) under atmospheric pressure.
 反応管の出口ガスをHFガス検出器(新コスモス製、XPS-7)を用いて測定し、HF濃度が3volppm以上を示したときに反応剤が破過したとみなし、IF5流通を停止した。反応管内をN2でパージした後、加熱を終了した。 The outlet gas of the reaction tube was measured using an HF gas detector (manufactured by Shin Cosmos, XPS-7), and when the HF concentration showed 3 volppm or more, it was considered that the reactant had broken through, and IF 5 flow was stopped. . After purging the reaction tube with N 2 , heating was terminated.
 IF5ガスの流速と反応管の容積(空状態)から滞在時間を求めた。また、IF5除去時の主要な反応を次式と推定し、水酸化カルシウム3モルに対して5フッ化ヨウ素1モルに相当する量をIF5の理論除去量として、IF5の理論除去量に対する実際のIF5流通量を百分率で求めたものを利用効率(%)とした。 The residence time was determined from the flow rate of IF 5 gas and the volume of the reaction tube (empty state). In addition, the main reaction at the time of IF 5 removal is estimated as the following equation, and the theoretical removal amount of IF 5 is defined as the theoretical removal amount of IF 5 corresponding to 1 mole of iodine pentafluoride per 3 moles of calcium hydroxide. Utilization efficiency (%) was obtained as a percentage of the actual IF 5 circulation volume for.
 推定した主要反応式:
IF5+3Ca(OH)2 → 0.5Ca(IO3)2+2.5CaF2+3H2
尚、IF5流通量の実測値は、IF5ガスの流通開始から破過までのIF5ボンベの重量変化から求め、IF5の理論除去量は、使用したソーダライム中の水酸化カルシウム量から求めた。
Estimated main reaction formula:
IF 5 + 3Ca (OH) 2 → 0.5Ca (IO 3 ) 2 + 2.5CaF 2 + 3H 2 O
Incidentally, the measured value of the IF 5 distribution volume is determined from the weight change of the IF 5 cylinders until breakthrough from circulation initiation of IF 5 gas, the theoretical amount of removal IF 5 is calcium hydroxide content in the soda-lime used Asked.
上記実施例25~28の結果を表3に示す。 The results of Examples 25 to 28 are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Claims (2)

  1. アルカリ金属酸化物、アルカリ金属炭酸塩、アルカリ土類金属炭酸塩、アルカリ土類金属、アルカリ土類金属酸化物、アルカリ金属水酸化物、またはアルカリ土類金属水酸化物を合計で5質量%以上100質量%以下含有する反応剤を0℃以上540℃以下の温度で、一般式:IFxで表されるフッ化ヨウ素(ただし、xは1、3、5、7のいずれか一つを示す。)を10vol%以下の濃度で含有するガスと接触させて反応させることにより、ヨウ素成分およびフッ素成分を該反応剤に固定することを特徴とするフッ化ヨウ素の除害方法。 5% by mass or more in total of alkali metal oxide, alkali metal carbonate, alkaline earth metal carbonate, alkaline earth metal, alkaline earth metal oxide, alkali metal hydroxide, or alkaline earth metal hydroxide Iodine fluoride represented by the general formula: IFx (where x represents any one of 1, 3, 5, and 7) at a temperature of 0 ° C. or more and 540 ° C. or less of a reactant containing 100% by mass or less. The iodine fluoride and fluorine components are fixed to the reactant by contacting them with a gas containing 10 vol% or less of a gas containing 10 vol% or less.
  2. 該一般式:IFxのxが5または7であることを特徴とする請求項1記載のフッ化ヨウ素の除害方法。 The method for removing iodine fluoride according to claim 1, wherein x in the general formula: IFx is 5 or 7.
PCT/JP2010/051085 2009-02-09 2010-01-28 Method for rendering iodine fluoride harmless WO2010090118A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009027742 2009-02-09
JP2009-027742 2009-02-09
JP2009125132 2009-05-25
JP2009-125132 2009-05-25
JP2010-013290 2010-01-25
JP2010013290A JP5771896B2 (en) 2009-02-09 2010-01-25 How to remove iodine fluoride

Publications (1)

Publication Number Publication Date
WO2010090118A1 true WO2010090118A1 (en) 2010-08-12

Family

ID=42542017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051085 WO2010090118A1 (en) 2009-02-09 2010-01-28 Method for rendering iodine fluoride harmless

Country Status (2)

Country Link
JP (1) JP5771896B2 (en)
WO (1) WO2010090118A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113164862A (en) * 2018-12-21 2021-07-23 昭和电工株式会社 Method for removing halogen fluoride, method for quantitatively analyzing gas-containing component in halogen fluoride mixed gas, and quantitative analyzer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6201496B2 (en) * 2013-08-02 2017-09-27 セントラル硝子株式会社 IF7-derived iodine fluoride compound recovery method and recovery device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0494723A (en) * 1990-08-10 1992-03-26 Central Glass Co Ltd Dry process for treatment of waste gas containing chlorine fluoride
JP2000254438A (en) * 1999-03-12 2000-09-19 Showa Denko Kk Treatment, treating agent and treating device for halogen fluoride-containing waste gas
JP2004249285A (en) * 2003-01-29 2004-09-09 Showa Denko Kk Method of decomposing fluoride compound

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3004204B2 (en) * 1996-02-22 2000-01-31 勇藏 森 Purification and recovery method of plasma CVM exhaust gas
JP4357018B2 (en) * 1998-11-25 2009-11-04 関東電化工業株式会社 Detoxification method using halogenated gas treatment agent
JP3816841B2 (en) * 2002-06-25 2006-08-30 日本パイオニクス株式会社 Purifying agent and purifying method for gas containing nitrogen fluoride
JP2004181300A (en) * 2002-11-29 2004-07-02 Kanto Denka Kogyo Co Ltd Treating agent for oxidative gas and acidic gas, and detoxifying method using the treating agent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0494723A (en) * 1990-08-10 1992-03-26 Central Glass Co Ltd Dry process for treatment of waste gas containing chlorine fluoride
JP2000254438A (en) * 1999-03-12 2000-09-19 Showa Denko Kk Treatment, treating agent and treating device for halogen fluoride-containing waste gas
JP2004249285A (en) * 2003-01-29 2004-09-09 Showa Denko Kk Method of decomposing fluoride compound

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113164862A (en) * 2018-12-21 2021-07-23 昭和电工株式会社 Method for removing halogen fluoride, method for quantitatively analyzing gas-containing component in halogen fluoride mixed gas, and quantitative analyzer
EP3900810A4 (en) * 2018-12-21 2022-09-07 Showa Denko K.K. Method for removing halogen fluoride, quantitative analysis method for gas component contained in halogen fluoride mixed gas, and quantitative analyzer
US11779877B2 (en) 2018-12-21 2023-10-10 Resonac Corporation Method for removing halogen fluoride, quantitative analysis method for gas component contained in halogen fluoride mixed gas, and quantitative analyzer

Also Published As

Publication number Publication date
JP2011005477A (en) 2011-01-13
JP5771896B2 (en) 2015-09-02

Similar Documents

Publication Publication Date Title
AU685691B2 (en) Method and compositions for chlorine dioxide manufacture
JP4488545B2 (en) Treatment method, treatment agent and treatment apparatus for exhaust gas containing halogen fluoride
EP1732669B1 (en) Method and apparatus for treating gas containing fluorine-containing compounds
WO2007135823A1 (en) Method of removing halogen gas and remover for halogen gas
KR102616989B1 (en) Halogen fluoride removal method, quantitative analysis method of gas components contained in halogen fluoride mixed gas, and quantitative analysis device
WO2003033115A1 (en) Method for removing halogen-containing gas
JP2017141150A (en) Purification method of fluorine compound gas
JPH07308538A (en) Cleaner for harmful gas
JP2011139987A (en) Method for treating purged exhaust gas and use as hydrogen source
JP2010076972A (en) Method for treating impure rare gas
JP5771896B2 (en) How to remove iodine fluoride
JP2005305414A (en) Detoxifying method for chlorine gas
JP2004351364A (en) Method, agent and apparatus for treating exhaust gas containing halogenated inorganic gas containing chlorine trifluoride
JP2008110339A (en) Method for removal of chlorine gas
JPH06177B2 (en) Method for treating exhaust gas containing C1F (bottom 3)
JPH04122420A (en) Method and device for removing fluorine and/or inorganic fluoride
JP2008214187A (en) Carbonyl fluoride having reduced content of hydrogen fluoride and method for producing the same
JP2011143329A (en) Apparatus for detoxifying gas comprising chlorine trifluoride
JPH0494723A (en) Dry process for treatment of waste gas containing chlorine fluoride
JP2014180634A (en) Apparatus and method for treatment of perfluoride and program
US6309618B1 (en) Method for treating exhaust gas containing fluorine-containing interhalogen compound, and treating agent and treating apparatus
JPH0716582B2 (en) Method for removing gaseous acidic halogen compounds
KR100684201B1 (en) Method for the abatement of waste gas comprising fluorine and its adsorption column device
JP2691927B2 (en) How to remove harmful components
JP4831924B2 (en) HF-containing gas dry processing apparatus and processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10738452

Country of ref document: EP

Kind code of ref document: A1