JP2010076972A - Method for treating impure rare gas - Google Patents

Method for treating impure rare gas Download PDF

Info

Publication number
JP2010076972A
JP2010076972A JP2008246957A JP2008246957A JP2010076972A JP 2010076972 A JP2010076972 A JP 2010076972A JP 2008246957 A JP2008246957 A JP 2008246957A JP 2008246957 A JP2008246957 A JP 2008246957A JP 2010076972 A JP2010076972 A JP 2010076972A
Authority
JP
Japan
Prior art keywords
gas
treated
hydrogen
halogen compound
impure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008246957A
Other languages
Japanese (ja)
Inventor
Kazuhiro Miyazawa
和浩 宮澤
Yoshio Ishihara
良夫 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2008246957A priority Critical patent/JP2010076972A/en
Publication of JP2010076972A publication Critical patent/JP2010076972A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently and inexpensively recover a rare gas such as neon, xenon from an impure rare gas as a gas to be treated containing the rare gas such as neon, xenon and impurities of a halogen compound, hydrogen and hydrocarbon. <P>SOLUTION: The gas to be treated containing the rare gas such as neon, xenon and the halogen compound, hydrogen and hydrocarbon as impurities is sent to halogen removing columns 4a (4b) and is reacted with a reacting agent such as iron oxide to remove the halogen compound and then oxygen is added into the gas to be treated and introduced into an oxidation column 6 to oxidize hydrogen and hydrocarbon using an oxidation catalyst to obtain a gas to be treated containing water and carbon dioxide and the gas to be treated is sent to dehydration columns 11a (11b) filled with zeolite or the like to remove water. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、ネオン、キセノン、クリプトンなどの希ガスとハロゲン化合物、水素、炭化水素などの不純物とからなる不純希ガスから不純物を除去して希ガスを回収する処理方法および処理装置ならびに希ガスの回収装置に関する。   The present invention relates to a processing method and apparatus for removing a rare gas by removing impurities from an impure noble gas composed of a rare gas such as neon, xenon, or krypton and an impurity such as a halogen compound, hydrogen, or hydrocarbon, and a rare gas It relates to a recovery device.

キセノンランプやガスレーザー発振装置では、ネオン、キセノンなどの希ガスに、発光励起のために塩化水素(HCl)、臭化エチル(CBr)などのハロゲン化合物が少量添加された混合ガスが用いられている。
このような混合ガスは、高価な希ガスが含まれているので回収され、回収された混合ガスから希ガスを精製して回収している。
In a xenon lamp or a gas laser oscillator, a mixed gas in which a small amount of a halogen compound such as hydrogen chloride (HCl) or ethyl bromide (C 2 H 5 Br) is added to a rare gas such as neon or xenon for excitation of light emission. Is used.
Such a mixed gas is recovered because it contains an expensive rare gas, and the rare gas is purified and recovered from the recovered mixed gas.

ところが、この混合ガスにあっては、発光励起に伴ってハロゲン化合物が分解し、ハロゲン化合物以外に水素、炭化水素などの副生物が生成し、この副生物が回収したガスに含まれている。
例えば、ネオンに塩化水素を添加した混合ガスでは、発光励起に伴って、ネオン以外に不純物として、塩化水素、水素、塩素を含む混合ガスとなる。
また、ネオンとキセノンに臭化エチルを添加した混合ガスでは、発光励起に伴って、ネオン、キセノン以外に、不純物としてメタン、エチレン、臭化水素、臭素を含む混合ガスとなる。このような混合ガスを不純希ガスと呼ぶ。
したがって、この種の不純希ガスから希ガスを回収するには、このような不純物を予め除去する必要がある。
However, in this mixed gas, the halogen compound is decomposed along with the excitation of light emission, and by-products such as hydrogen and hydrocarbons are generated in addition to the halogen compound, and this by-product is contained in the recovered gas.
For example, a mixed gas obtained by adding hydrogen chloride to neon becomes a mixed gas containing hydrogen chloride, hydrogen, and chlorine as impurities in addition to neon, along with emission excitation.
In addition, a mixed gas obtained by adding ethyl bromide to neon and xenon becomes a mixed gas containing methane, ethylene, hydrogen bromide, and bromine as impurities in addition to neon and xenon in accordance with emission excitation. Such a mixed gas is called an impure noble gas.
Therefore, in order to recover the rare gas from this kind of impure noble gas, it is necessary to remove such impurities in advance.

特開2001−232134号公報には、KrFエキシマレーザ発振器から回収された不純ネオンガスから高純度ネオンを回収する方法が開示されている。
この方法は、低温吸着分離によるもので、初めに不純ネオンガスからフッ素を除去し、ついで冷却してクリプトンを低温吸着により除去し、さらに冷却して不純物を低温吸着により除去して高純度ネオンを得るものである。
Japanese Patent Application Laid-Open No. 2001-232134 discloses a method for recovering high-purity neon from impure neon gas recovered from a KrF excimer laser oscillator.
This method is based on low temperature adsorption separation. First, fluorine is removed from impure neon gas, then cooled to remove krypton by low temperature adsorption, and further cooled to remove impurities by low temperature adsorption to obtain high purity neon. Is.

この先行発明の処理方法により、上述の不純希ガスを処理しようとすると、前記不純物を効率よく分離、除去することが困難である不都合があり、さらに低温吸着によるため低温とするための設備コスト、運転コストが嵩むと言う問題がある。
特開2001−232134号公報
When trying to process the above-mentioned impure noble gas by the processing method of the prior invention, there is a disadvantage that it is difficult to efficiently separate and remove the impurities, and further, the equipment cost for reducing the temperature due to low temperature adsorption, There is a problem that the operating cost increases.
JP 2001-232134 A

よって、本発明における課題は、ネオン、キセノン、クリプトンなどの希ガスと不純物としてハロゲン化合物、水素、炭化水素とを含む不純希ガスから、ネオン、キセノン、クリプトンなどの希ガスを効率よく、低コストで回収できるようにすることにある。   Therefore, an object of the present invention is to efficiently produce a rare gas such as neon, xenon, or krypton from a rare gas such as neon, xenon, or krypton and an impure noble gas containing impurities such as a halogen compound, hydrogen, or hydrocarbon. It is to be able to collect with.

かかる課題を解決するために、
請求項1にかかる発明は、希ガスと、不純物としてのハロゲン化合物と水素もしくはハロゲン化合物と水素と炭化水素を含む不純希ガスを被処理ガスとし、この被処理ガスから、ハロゲン化合物を除去し、ついでこの被処理ガスに酸素を添加して水素もしくは炭化水素を酸化して水もしくは水と炭酸ガスを含む被処理ガスとし、この被処理ガスから水を除去することを特徴とする不純希ガスの処理方法である。
To solve this problem,
The invention according to claim 1 uses a noble gas and an impurity such as a halogen compound and hydrogen as impurities, or an impure noble gas containing a halogen compound, hydrogen and hydrocarbon as a treatment gas, and removes the halogen compound from the treatment gas. Next, oxygen is added to the gas to be treated to oxidize hydrogen or hydrocarbons to form a gas to be treated containing water or water and carbon dioxide gas, and an impurity of an impure noble gas characterized by removing water from the gas to be treated It is a processing method.

請求項2にかかる発明は、前記ハロゲン化合物の除去が、被処理ガスを吸着剤または金属酸化物からなる反応剤に接触させるものである請求項1記載の不純希ガスの処理方法である。
請求項3にかかる発明は、前記酸化が金属触媒によるものである請求項1記載の不純希ガスの処理方法である。
The invention according to claim 2 is the method for treating an impure noble gas according to claim 1, wherein the removal of the halogen compound is to bring the gas to be treated into contact with an adsorbent or a reactant made of a metal oxide.
The invention according to claim 3 is the method of treating an impure noble gas according to claim 1, wherein the oxidation is performed by a metal catalyst.

請求項4にかかる発明は、請求項1ないし3のいずれかに記載された不純希ガスの処理方法により不純物が除去された希ガスを含むガスを圧力スイング吸着法により精製し、希ガスを回収することを特徴とする希ガスの回収方法である。   According to a fourth aspect of the present invention, a gas containing a rare gas from which impurities have been removed by the impure noble gas processing method according to any one of the first to third aspects is purified by a pressure swing adsorption method, and the rare gas is recovered. This is a noble gas recovery method.

請求項5にかかる発明は、希ガスと、不純物としてのハロゲン化合物と水素もしくはハロゲン化合物と水素と炭化水素を含む不純希ガスを被処理ガスとし、この被処理ガスを導入してハロゲン化合物を除去するハロゲン除去部と、このハロゲン除去部から導出された被処理ガスに酸素を添加して酸化する酸化部と、この酸化部から導出された被処理ガス中の水を除去する水除去部を備えた不純希ガスの処理装置である。
請求項6にかかる発明は、請求項5記載の処理装置の水除去部の後段に圧力スイング吸着法により希ガスを回収する精製装置を設けたことを特徴とする希ガスの回収装置である。
In the invention according to claim 5, a rare gas and a halogen compound and hydrogen as impurities or an impure noble gas containing a halogen compound, hydrogen and hydrocarbon are treated gas, and the treated gas is introduced to remove the halogen compound. A halogen removing unit, an oxidizing unit that adds oxygen to the gas to be processed derived from the halogen removing unit and oxidizes, and a water removing unit that removes water in the gas to be processed derived from the oxidizing unit. It is a processing apparatus for impure noble gases.
The invention according to claim 6 is the rare gas recovery apparatus characterized in that a purification device for recovering the rare gas by the pressure swing adsorption method is provided after the water removal section of the treatment apparatus according to claim 5.

本発明によれば、処理過程全体における処理温度が常温ないし200℃程度とされるので、設備コスト、運転コストは低温吸着分離によるものに比較して格段に低くなる。また、不純物の除去も良好に行え、後工程での希ガスの精製が容易になる。
さらに、処理過程の初めにハロゲン化合物を除去しているので、次工程での処理に際して機器の腐食が防止される。
また、後段における圧力スイング吸着法による精製の際、吸着剤の分離機能を損ねるハロゲン化合物、水が除去されているので、問題なく希ガスを回収することができる。
According to the present invention, since the processing temperature in the entire processing process is set to room temperature to about 200 ° C., the equipment cost and the operation cost are remarkably reduced as compared with those by low temperature adsorption separation. Moreover, impurities can be removed well, and the purification of the rare gas in the subsequent process becomes easy.
Furthermore, since the halogen compound is removed at the beginning of the treatment process, corrosion of the equipment is prevented during the treatment in the next step.
In addition, since the halogen compound and water that impair the separation function of the adsorbent are removed during the purification by the pressure swing adsorption method in the latter stage, the rare gas can be recovered without any problem.

図1は、本発明の処理装置の一例を示すものである。
被処理ガスは、管1から一旦バッファタンク2に送られて貯えられ、ここから質量流量計3を通って、その規定量がハロゲン除去筒4a(4b)に導入される。
被処理ガスは、上述のように、ネオン、キセノン、クリプトンの希ガスと不純物としてのメタン、エチレンなどの炭化水素、水素、塩化水素、塩素、臭化水素、臭素などのハロゲン化合物とからなるものであって、回収元の種類によってその組成は一部変化する。
FIG. 1 shows an example of the processing apparatus of the present invention.
The gas to be treated is once sent from the pipe 1 to the buffer tank 2 and stored therein, and from there through the mass flow meter 3, the prescribed amount is introduced into the halogen removal cylinder 4 a (4 b).
As described above, the gas to be treated is composed of noble gases such as neon, xenon and krypton and hydrocarbons such as methane and ethylene as impurities, and halogen compounds such as hydrogen, hydrogen chloride, chlorine, hydrogen bromide and bromine. However, the composition varies partially depending on the type of collection source.

ここで、レーザ発振器に5vol%の塩化水素を含むネオンが励起用ガスとして常温常圧換算で15リットル封入されているケースを考える。このケースではレーザ発振器の使用時間が約200時間で励起用ガスが交換のために排出される。この排出ガスには、水素2.5vol%以下、塩化水素5vol%以下が含まれている。
この排出ガスを排出した後に、約75リットルの高純度ネオンによりガスパージを行う。パージ後のネオンガスには、レーザ発振器内部に滞留、吸着されていた微量の水素、塩化水素が含まれる。
Here, consider a case where 15 liters of neon containing 5 vol% hydrogen chloride is enclosed in the laser oscillator as an excitation gas in terms of normal temperature and normal pressure. In this case, the use time of the laser oscillator is about 200 hours, and the excitation gas is discharged for replacement. This exhaust gas contains 2.5 vol% or less of hydrogen and 5 vol% or less of hydrogen chloride.
After exhausting this exhaust gas, a gas purge is performed with about 75 liters of high purity neon. The neon gas after the purge contains a trace amount of hydrogen and hydrogen chloride that have stayed and adsorbed inside the laser oscillator.

かくして、約15リットルの排出ガスと約75リットルのパージガスとが約200時間毎にレーザ発振器から排出されることになり、約90リットルのガスが被処理ガスとなる。この被処理ガス中の水素、塩化水素の濃度は、パージガスにより約1/5に希釈されていることになる。
以下の説明では、このレーザ発振器から排出されるネオンと水素と塩化水素とからなる不純希ガスを被処理ガスとして処理する例を主に述べ、必要に応じてこれ以外の成分、例えばキセノン、クリプトン、炭化水素などが含まれた場合についても補足して説明を行うこととする。
Thus, about 15 liters of exhaust gas and about 75 liters of purge gas are exhausted from the laser oscillator every about 200 hours, and about 90 liters of gas becomes the gas to be treated. The concentration of hydrogen and hydrogen chloride in the gas to be treated is diluted to about 1/5 with the purge gas.
In the following description, an example in which an impure noble gas composed of neon, hydrogen, and hydrogen chloride discharged from the laser oscillator is treated as a gas to be treated will be mainly described, and other components such as xenon and krypton may be used as necessary. In addition, the case where hydrocarbons are included will be described supplementarily.

ハロゲン除去筒4a(4b)はハロゲン除去部を構成するもので、その内部には吸着剤または反応剤が充填されており、被処理ガス中のハロゲン化合物を除去するものである。
吸着剤には活性炭が用いられ、反応剤にはカルシウム、ストロンチウム、鉄、銅、亜鉛などの金属の酸化物をゼオライト、活性炭、アルミナなどの担体に担持したものが用いられる。
The halogen removing cylinder 4a (4b) constitutes a halogen removing section, and the inside thereof is filled with an adsorbent or a reactive agent, and removes a halogen compound in the gas to be treated.
Activated carbon is used as the adsorbent, and the reactant is a metal oxide such as calcium, strontium, iron, copper, or zinc supported on a support such as zeolite, activated carbon, or alumina.

また、被処理ガス中にキセノンが含まれている場合には、前記担体としてカリウムイオン交換A型ゼオライトを用いた反応剤が好適である。カリウムイオン交換A型ゼオライトはキセノンをほとんど吸着しない性質を有しているので、これを担体とすることでキセノンがハロゲン除去筒4a(4b)で吸着されずに後段に流れて無駄なく回収することができ、被処理ガス中に含まれているキセノンの98%以上を後段に流すことができる。   When xenon is contained in the gas to be treated, a reactant using potassium ion exchange A-type zeolite as the carrier is suitable. Since potassium ion exchange type A zeolite has the property of hardly adsorbing xenon, xenon can be recovered without waste by adsorbing it in the halogen removal cylinder 4a (4b) without being adsorbed by the halogen removal cylinder 4a (4b). 98% or more of the xenon contained in the gas to be treated can be allowed to flow downstream.

反応剤として酸化鉄を担持したものを用いたときの反応例を以下に示す。
2Fe+12HCl→6FeCl+6HO+O
2Fe+18HCl→6FeCl+8HO+H
Fe3O+3Cl→3FeCl+2O
2Fe+9Cl→6FeCl+4O
An example of the reaction when using iron oxide supported as a reactant is shown below.
2Fe 3 O 4 + 12HCl → 6FeCl 2 + 6H 2 O + O 2
2Fe 3 O 4 + 18HCl → 6FeCl 2 + 8H 2 O + H 2
Fe3O 4 + 3Cl 2 → 3FeCl 2 + 2O 2
2Fe 3 O 4 + 9Cl 2 → 6FeCl 3 + 4O 2

この反応において反応熱が生成するが、塩化水素、塩素の濃度が1vol%以下であるので、反応剤温度が急激に上昇することはない。
ハロゲン除去筒4a(4b)での反応温度は30〜60℃とされ、圧力は0〜10kPa(ゲージ圧)とされる。
In this reaction, reaction heat is generated, but the concentration of hydrogen chloride and chlorine is 1 vol% or less, so that the temperature of the reactant does not rise rapidly.
The reaction temperature in the halogen removal cylinder 4a (4b) is 30 to 60 ° C., and the pressure is 0 to 10 kPa (gauge pressure).

図1に示した例では、ハロゲン除去筒4a(4b)は二筒構成となっており、一方をハロゲン化合物の除去に用い、他方を吸着剤あるいは反応剤の交換および待機として、交互に用いるようにしているが、一筒構成としてもよい。被処理ガスが常時連続して供給される場合だけではなく、上述のように、例えば約200時間毎に間隔をあけて供給されることもあるからである。   In the example shown in FIG. 1, the halogen removing cylinder 4a (4b) has a two-cylinder structure, one is used for removing halogen compounds, and the other is used alternately for adsorbent or reactant exchange and standby. However, it may be a one-tube configuration. This is because not only when the gas to be treated is always supplied continuously, but also as described above, for example, it may be supplied at intervals of about 200 hours.

ハロゲン除去筒4a(4b)においてハロゲン化合物が除去された被処理ガスは、管5を流れて酸化筒6に送られるがその途中において酸素が添加される。この酸素は図示しない酸素供給源から質量流量計7を通り、その規定量が管5に流入し、被処理ガスと合流して酸化筒6に導入されるようになっている。   The to-be-processed gas from which the halogen compound has been removed in the halogen removal cylinder 4a (4b) flows through the pipe 5 and is sent to the oxidation cylinder 6, but oxygen is added in the middle thereof. This oxygen passes from the oxygen supply source (not shown) through the mass flow meter 7, and the prescribed amount flows into the pipe 5, joins the gas to be processed, and is introduced into the oxidation cylinder 6.

酸化筒6は酸化部を構成するもので、その内部には、酸化触媒が充填されている。この酸化触媒には、白金、パラジウム、金、銀、ニッケルの群から選ばれた1種以上の触媒金属をアルミナなどの担体に担持したものが用いられる。
酸化筒6の外周にはヒータ8が設けられ、酸化筒6内部を50〜300℃、好ましくは80〜200℃の温度に保つように構成されている。
The oxidation cylinder 6 constitutes an oxidation part, and the inside thereof is filled with an oxidation catalyst. As this oxidation catalyst, a catalyst in which one or more kinds of catalytic metals selected from the group of platinum, palladium, gold, silver and nickel are supported on a carrier such as alumina is used.
A heater 8 is provided on the outer periphery of the oxidation cylinder 6 so that the inside of the oxidation cylinder 6 is maintained at a temperature of 50 to 300 ° C., preferably 80 to 200 ° C.

被処理ガスに添加される酸素流量は、被処理ガスに含まれると想定される水素流量あるいは水素流量と炭化水素流量の合計量の0.5倍量〜2倍量、好ましくは0.7倍量〜1.5倍量とされる。
酸素が添加された被処理ガスは、酸化筒6内に導入されると、内部の酸化触媒の作用により酸化され、被処理ガス中の水素は水に、炭化水素が含まれている場合には炭化水素は水と炭酸ガスに変化する。反応温度は50〜300℃、好ましくは80〜200℃とされる。
The flow rate of oxygen added to the gas to be processed is 0.5 to 2 times, preferably 0.7 times the hydrogen flow rate or the total amount of the hydrogen flow rate and the hydrocarbon flow rate assumed to be contained in the gas to be processed. The amount is 1.5 to 1.5 times.
When the gas to be treated to which oxygen has been added is introduced into the oxidation cylinder 6, it is oxidized by the action of the internal oxidation catalyst, and the hydrogen in the gas to be treated contains water and hydrocarbons. Hydrocarbons turn into water and carbon dioxide. The reaction temperature is 50 to 300 ° C, preferably 80 to 200 ° C.

酸化筒6から導出される被処理ガスは、熱交換器9に導入されて冷却される。この熱交換器9の操作温度は5〜80℃、好ましくは15〜35℃とされる。被処理ガスが熱交換器9で冷却されても、酸化筒6で生成する水の量はわずかであるので、結露することはない。また、被処理ガスが冷却されるので、酸化筒6の後段に設けらている種々の弁の耐熱温度を超えることはない。   The gas to be treated derived from the oxidation cylinder 6 is introduced into the heat exchanger 9 and cooled. The operating temperature of the heat exchanger 9 is 5 to 80 ° C, preferably 15 to 35 ° C. Even if the gas to be treated is cooled by the heat exchanger 9, the amount of water generated by the oxidation cylinder 6 is very small, so that no condensation occurs. Further, since the gas to be treated is cooled, the heat resistance temperature of various valves provided in the subsequent stage of the oxidation cylinder 6 is not exceeded.

熱交換器9から導出された温度5〜80℃の被処理ガスは、管10を流れて水除去部となる脱水筒11a(11b)に送り込まれる。この脱水筒11a(11b)には、ゼオライト、活性炭、アルミナなどの吸着剤が充填されており、被処理ガス中の水がこの吸着剤に吸着されて除去され、脱水筒11a(11b)から導出される被処理ガスはネオンと未反応の酸素からなる混合ガスとなる。この混合ガスは、管12を経て図示しないPSA精製装置に送られて、ネオンが回収される。
被処理ガスに炭化水素が含まれている場合には、脱水筒11a(11b)から導出される被処理ガスには、未反応の酸素と炭酸ガスが含まれる。この混合ガスも管12を経て図示しないPSA精製装置に送られて、希ガスが回収される。
The gas to be treated having a temperature of 5 to 80 ° C. derived from the heat exchanger 9 flows through the pipe 10 and is sent to the dehydration cylinder 11a (11b) serving as a water removal unit. The dehydrating cylinder 11a (11b) is filled with an adsorbent such as zeolite, activated carbon, or alumina, and water in the gas to be treated is adsorbed and removed by the adsorbent and is derived from the dehydrating cylinder 11a (11b). The gas to be treated is a mixed gas composed of neon and unreacted oxygen. This mixed gas is sent to a PSA purifier (not shown) through a pipe 12 and neon is recovered.
In the case where hydrocarbons are contained in the gas to be treated, the gas to be treated derived from the dehydration cylinder 11a (11b) contains unreacted oxygen and carbon dioxide gas. This mixed gas is also sent to the PSA purifier (not shown) through the pipe 12, and the rare gas is recovered.

被処理ガスにキセノンが含まれている場合には、先と同様に吸着剤としてカリウムイオン交換A型ゼオライトが好適である。カリウムイオン交換A型ゼオライトはキセノンをほとんど吸着しない性質を有しているので、これを用いることでキセノンが脱水筒11a(11b)で吸着されずに後段に流れて無駄なく回収することができ、被処理ガス中に含まれているキセノンの98%以上を後段に流すことができる。   When xenon is contained in the gas to be treated, potassium ion exchange A-type zeolite is suitable as the adsorbent as before. Since the potassium ion exchange type A zeolite has a property of hardly adsorbing xenon, by using this, xenon can be recovered without waste by flowing to the subsequent stage without being adsorbed by the dehydrating cylinder 11a (11b), 98% or more of the xenon contained in the gas to be treated can be passed to the subsequent stage.

この実施形態では、2基の脱水筒11a、11bが用いられており、一方の脱水筒11aが水の吸着工程にあるときは、他方の脱水筒11bが吸着剤の再生工程あるいは待機工程とされ、この操作を交互に繰り返すことで連続的に水を除去することができる。
被処理ガスの導入が間欠的であれば、1基の脱水筒11aで吸着工程と再生工程を繰り返すことで処理を行うことができる。
In this embodiment, two dehydration cylinders 11a and 11b are used. When one dehydration cylinder 11a is in the water adsorption process, the other dehydration cylinder 11b is used as an adsorbent regeneration process or standby process. By repeating this operation alternately, water can be removed continuously.
If the introduction of the gas to be treated is intermittent, the treatment can be performed by repeating the adsorption process and the regeneration process with one dehydrating cylinder 11a.

この脱水筒11a(11b)の運転は、通常の温度スイング吸着法によって行われ、5〜80℃の低温にて吸着を行い、100〜300℃の高温にて再生を行う。再生は、100〜300℃、好ましくは150〜250℃に加熱された窒素、アルゴン、乾燥空気などを管13から脱水筒11a(11b)に導入することで行われる。   The operation of the dehydrating cylinder 11a (11b) is performed by a normal temperature swing adsorption method, performing adsorption at a low temperature of 5 to 80 ° C., and regeneration at a high temperature of 100 to 300 ° C. Regeneration is performed by introducing nitrogen, argon, dry air, or the like heated to 100 to 300 ° C., preferably 150 to 250 ° C., from the tube 13 into the dehydrating cylinder 11a (11b).

脱水筒11a(11b)から導出された混合ガスは、図示しないPSA(圧力スイング吸着法)精製装置に送られて精製され、希ガスが回収される。
本発明の希ガスの回収装置は、このPSA精製装置と上述の処理装置とで構成される。
The mixed gas derived from the dehydrating cylinder 11a (11b) is sent to a PSA (pressure swing adsorption method) purification device (not shown) and purified, and the rare gas is recovered.
The rare gas recovery apparatus of the present invention includes the PSA purification apparatus and the above-described processing apparatus.

上述の処理装置の脱水筒11a(11b)から導出される混合ガス(以下、希ガス回収用ガスと言う。)の組成は、被処理ガスの組成によって異なるが、ネオン、キセノン、クリプトン、酸素、炭酸ガスのいずれか2種以上を含むものとなり、例えばネオンと酸素を含む希ガス回収用ガス、ネオンとキセノンと酸素と炭酸ガスを含む希ガス回収用ガス、クリプトンと酸素と炭酸ガスを含む希ガス回収用ガスなどが導出される。   The composition of the mixed gas derived from the dehydration cylinder 11a (11b) of the above-described processing apparatus (hereinafter referred to as a rare gas recovery gas) varies depending on the composition of the gas to be processed, but neon, xenon, krypton, oxygen, It contains any two or more of carbon dioxide, for example, rare gas recovery gas containing neon and oxygen, rare gas recovery gas containing neon, xenon, oxygen and carbon dioxide, rare gas containing krypton, oxygen and carbon dioxide Gas for gas recovery is derived.

このため、この希ガス回収用ガスの組成に応じて、また回収する希ガスが1種の場合あるいは2種の場合に応じてPSA精製装置を構成する必要がある。   Therefore, it is necessary to configure the PSA purifier according to the composition of the rare gas recovery gas and according to the case where the rare gas to be recovered is one type or two types.

例えば、ネオンと酸素を含む希ガス回収用ガスからネオンを回収する場合には、吸着剤として活性炭を充填した吸着筒を備えた周知のPSA精製装置が用いられる。この場合、精製後のネオンには数十ppmの酸素が残留することがあり、そのような場合にはさらにゲッター式精製装置に導入すれば、酸素を数十ppbまで低減できる。   For example, when neon is recovered from a rare gas recovery gas containing neon and oxygen, a well-known PSA purifier equipped with an adsorption cylinder filled with activated carbon as an adsorbent is used. In this case, several tens of ppm of oxygen may remain in the neon after purification. In such a case, oxygen can be reduced to several tens of ppb if it is further introduced into a getter type purification apparatus.

また、ネオンとキセノンと酸素と炭酸ガスを含む希ガス回収用ガスからネオンを回収する場合には、吸着剤として活性炭を充填した吸着筒を備えたPSA精製装置が用いられる。この時、PSA精製装置の排気側に排出された排ガスには、キセノンがかなり含まれており、これ以外に酸素、炭酸ガス、ネオンも含まれている。この排ガスからキセノンを回収するには、この排ガス中の炭酸ガスをNa−Xゼオライトなどの吸着剤により除去したのち、特開2006−61831号公報に開示されているPSA精製装置を用い、活性炭を吸着剤とすることで可能となる。   Further, when neon is recovered from a rare gas recovery gas containing neon, xenon, oxygen, and carbon dioxide, a PSA purifier having an adsorption cylinder filled with activated carbon as an adsorbent is used. At this time, the exhaust gas discharged to the exhaust side of the PSA purifier contains a considerable amount of xenon, and in addition, oxygen, carbon dioxide, and neon are also included. In order to recover xenon from the exhaust gas, carbon dioxide in the exhaust gas is removed by an adsorbent such as Na-X zeolite, and then activated carbon is used using a PSA purifier disclosed in JP-A-2006-61831. It becomes possible by using an adsorbent.

また、クリプトンと酸素と炭酸ガスを含む希ガス回収用ガスからクリプトンを回収する場合には、初めに炭酸ガスをNa−Xゼオライトなどの吸着剤により除去したのち、特開2004−819号公報に開示されているPSA精製装置を用い、クリプトンを回収する。特開2004−819号公報に開示されているPSA精製装置は、2種の吸着剤を用いるもので、第1の吸着剤として、クリプトンに対して易吸着性を示す平衡分離型吸着剤である活性炭を用い、第2の吸着剤として、酸素に対して易吸着性を示す速度分離型吸着剤であるゼオライト4Aを用いるものである。   Further, when recovering krypton from a rare gas recovery gas containing krypton, oxygen, and carbon dioxide, carbon dioxide is first removed by an adsorbent such as Na-X zeolite, and then disclosed in JP-A-2004-819. The krypton is recovered using the disclosed PSA purifier. The PSA purifying apparatus disclosed in Japanese Patent Application Laid-Open No. 2004-819 uses two types of adsorbents, and is an equilibrium separation type adsorbent that exhibits easy adsorptivity to krypton as the first adsorbent. Activated carbon is used as the second adsorbent, and zeolite 4A, which is a speed-separated adsorbent exhibiting easy adsorptivity to oxygen, is used.

あるいは、初めに炭酸ガスをNa−Xゼオライトなどの吸着剤により除去したのち、特開2006−61831号公報に開示されているPSA精製装置を用い、吸着剤として活性炭を用いることによってもクリプトンを回収できる。
なお、上述の回収方法では、希ガス回収用ガスから初めに炭酸ガスを除去するためにNa−Xゼオライトなどの吸着剤を用いているが、これは周知の温度スイング吸着法(TSA)によって行うものである。
Alternatively, carbon dioxide is first removed with an adsorbent such as Na-X zeolite, and then krypton is recovered by using a PSA purifier disclosed in JP-A-2006-61831 and using activated carbon as the adsorbent. it can.
In the above-described recovery method, an adsorbent such as Na-X zeolite is first used to remove carbon dioxide from the rare gas recovery gas. This is performed by a well-known temperature swing adsorption method (TSA). Is.

また、不純希ガスから希ガスを回収するために、不純希ガスを直接PSA精製装置に導入した場合には、吸着剤にハロゲン化合物が吸着固定され、分離機能を失い、希ガスを回収することはできない。   In addition, in order to recover the rare gas from the impure noble gas, when the impure noble gas is directly introduced into the PSA purifier, the halogen compound is adsorbed and fixed to the adsorbent, and the separation function is lost and the noble gas is recovered. I can't.

図2は、この発明の処理装置の他の例を示すものである。この例の装置では、向流熱交換器14が用いられている点が図1に示したものと異なるところである。
ハロゲン除去筒4a(4b)から導出された被処理ガスは、酸素が添加されて向流熱交換器14に導入され、酸化筒6から導出された高温の被処理ガスと熱交換して加熱されたうえ、酸化筒6に導入されるようになっている。
FIG. 2 shows another example of the processing apparatus of the present invention. The apparatus of this example is different from that shown in FIG. 1 in that a counterflow heat exchanger 14 is used.
The to-be-treated gas derived from the halogen removing cylinder 4a (4b) is added with oxygen and introduced into the countercurrent heat exchanger 14, and is heated by exchanging heat with the high-temperature to-be-treated gas derived from the oxidation cylinder 6. In addition, it is introduced into the oxidation cylinder 6.

この構成により、酸化筒6で加えられた熱エネルギーが有効に回収、利用されることになるので、ヒータ8による加熱エネルギーを低減でき、省エネルギーになる。   With this configuration, the heat energy applied in the oxidation cylinder 6 is effectively recovered and used, so that the heating energy by the heater 8 can be reduced and energy is saved.

以下、具体例を示す。
図1に示す処理装置を用いて、表1に示す組成の模擬被処理ガスを処理した。
Specific examples are shown below.
Using the processing apparatus shown in FIG. 1, a simulated gas to be processed having the composition shown in Table 1 was processed.

Figure 2010076972
Figure 2010076972

ハロゲン除去筒4a(4b)には、ステンレス製の反応筒(内径:50mm)に大陽日酸株式会社製酸化鉄系除害剤:200gを充填したものを用いた。
酸化筒6には、酸化触媒として日産ガードラー触媒(株)製Pd触媒G74D(パラジウム;0.5%/アルミナ)30gをステンレス鋼製の反応筒(内径17.5mm)に充填したものを用いた。
脱水筒11a(11b)には、吸着剤として東ソー(株)製ゼオラムA−3(カリウムイオン交換型ゼオライト、以下カリウムAゼオライトという)60gを内径17.5mmのステンレス鋼製筒に充填したものを用いた。
As the halogen removal cylinder 4a (4b), a stainless steel reaction cylinder (inner diameter: 50 mm) filled with 200 g of an iron oxide-based detoxifying agent manufactured by Taiyo Nippon Sanso Corporation was used.
As the oxidation cylinder 6, a stainless steel reaction cylinder (inner diameter: 17.5 mm) filled with 30 g of Pd catalyst G74D (palladium; 0.5% / alumina) manufactured by Nissan Gardler Catalysts Ltd. was used as an oxidation catalyst. .
In the dehydrating cylinder 11a (11b), 60 g of Zeorum A-3 (potassium ion exchange type zeolite, hereinafter referred to as potassium A zeolite) manufactured by Tosoh Corporation as an adsorbent was filled in a stainless steel cylinder having an inner diameter of 17.5 mm. Using.

塩素、塩化物、臭化物、臭素は、おのおのの検知器(バイオニクス機器製TG−100、TG−400、TG−3400、およびハネウェル社製SPM)にて、ハロゲン除去筒4a(4b)の後段で測定を行った。脱水筒11a(11b)の後段で露点計にて露点を測定した。
また、有機物はFT−IR(堀場製作所製FT−100G)その他のガスはガスクロマトグラフにて排ガス出口にて測定を行った。
Chlorine, chloride, bromide, and bromine are used in the detectors (TG-100, TG-400, TG-3400, manufactured by Bionics, and SPM manufactured by Honeywell) in the subsequent stage of the halogen removal cylinder 4a (4b). Measurements were made. The dew point was measured with a dew point meter after the dehydrating cylinder 11a (11b).
Further, FT-IR (FT-100G manufactured by Horiba, Ltd.) for organic substances and other gases were measured at the exhaust gas outlet by a gas chromatograph.

表1に示した組成の模擬被処理ガスを総流量2000cc/minで8時間導入した。酸化筒6には、表2に示すように酸素を添加した。酸化筒6は外部から80℃に加熱して使用した。このとき出口ガス温度は反応熱で170℃に達した。
脱水筒11a(11b)は、3時間ごとに切り替えて使用した。このときに露点が−80℃を上回ることはなかった。再生は温度300℃、再生窒素流量;0.25L/分とし再生を行った。
A simulated gas to be processed having the composition shown in Table 1 was introduced at a total flow rate of 2000 cc / min for 8 hours. As shown in Table 2, oxygen was added to the oxidation cylinder 6. The oxidation cylinder 6 was used by heating to 80 ° C. from the outside. At this time, the outlet gas temperature reached 170 ° C. by reaction heat.
The dehydrating cylinder 11a (11b) was used by switching every 3 hours. At this time, the dew point did not exceed -80 ° C. Regeneration was performed at a temperature of 300 ° C. and a regeneration nitrogen flow rate of 0.25 L / min.

Figure 2010076972
Figure 2010076972

ハロゲン除去筒4a(4b)の後段でハロゲン化物が検知器によって検出されることはなかった。
脱水筒11a(11b)から導出されたガス中の有機物、酸素、炭酸ガスおよび水の平均濃度を表3に示す。
Halide was not detected by the detector after the halogen removal cylinder 4a (4b).
Table 3 shows the average concentrations of organic substances, oxygen, carbon dioxide gas and water in the gas derived from the dehydrating cylinder 11a (11b).

Figure 2010076972
Figure 2010076972

表3から、ガス中のハロゲン、水素、炭化水素は検出されず、酸素、炭酸ガスが含まれていることがわかる。   From Table 3, it can be seen that halogen, hydrogen, and hydrocarbons in the gas were not detected and oxygen and carbon dioxide gas were contained.

本発明の処理装置の例を示す概略構成図である。It is a schematic block diagram which shows the example of the processing apparatus of this invention. 本発明の処理装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the processing apparatus of this invention.

符号の説明Explanation of symbols

4a(4b)・・ハロゲン除去筒、6・・酸化筒、11a(11b)・・脱水筒 4a (4b) ... Halogen removal cylinder, 6 ... Oxidation cylinder, 11a (11b) ... Dehydration cylinder

Claims (6)

希ガスと、不純物としてのハロゲン化合物と水素もしくはハロゲン化合物と水素と炭化水素を含む不純希ガスを被処理ガスとし、この被処理ガスから、ハロゲン化合物を除去し、ついでこの被処理ガスに酸素を添加して水素もしくは炭化水素を酸化して水もしくは水と炭酸ガスを含む被処理ガスとし、この被処理ガスから水を除去することを特徴とする不純希ガスの処理方法。   A rare gas and an impure noble gas containing a halogen compound and hydrogen as impurities or a halogen compound, hydrogen and hydrocarbon are used as a gas to be treated, the halogen compound is removed from the gas to be treated, and oxygen is then added to the gas to be treated. A method for treating an impure noble gas, characterized in that hydrogen or hydrocarbon is added to oxidize water or a gas to be treated containing water and carbon dioxide gas, and water is removed from the gas to be treated. 前記ハロゲン化合物の除去が、被処理ガスを吸着剤または金属酸化物からなる反応剤に接触させるものである請求項1記載の不純希ガスの処理方法。   2. The method for treating an impure noble gas according to claim 1, wherein the removal of the halogen compound is performed by bringing the gas to be treated into contact with an adsorbent or a reactant made of a metal oxide. 前記酸化が、金属触媒によるものである請求項1記載の不純希ガスの処理方法。   The impure noble gas treatment method according to claim 1, wherein the oxidation is performed by a metal catalyst. 請求項1ないし3のいずれかに記載された不純希ガスの処理方法により不純物が除去された希ガスを含むガスを圧力スイング吸着法により精製し、希ガスを回収することを特徴とする希ガスの回収方法。   A noble gas, wherein a gas containing a noble gas from which impurities are removed by the impure noble gas processing method according to any one of claims 1 to 3 is purified by a pressure swing adsorption method, and the noble gas is recovered. Recovery method. 希ガスと、不純物としてのハロゲン化合物と水素もしくはハロゲン化合物と水素と炭化水素を含む不純希ガスを被処理ガスとし、この被処理ガスを導入してハロゲン化合物を除去するハロゲン除去部と、このハロゲン除去部から導出された被処理ガスに酸素を添加して酸化する酸化部と、この酸化部から導出された被処理ガス中の水を除去する水除去部を備えた不純希ガスの処理装置。   A rare gas and a halogen compound and hydrogen as impurities, or an impure noble gas containing a halogen compound, hydrogen and hydrocarbon as a gas to be treated, and a halogen removing section for removing the halogen compound by introducing the gas to be treated; An impure noble gas processing apparatus comprising: an oxidation unit that adds oxygen to a gas to be processed derived from a removal unit and oxidizes; and a water removal unit that removes water in the gas to be processed derived from the oxidation unit. 請求項5記載の処理装置の水除去部の後段に圧力スイング吸着法により希ガスを回収する精製装置を設けたことを特徴とする希ガスの回収装置。   6. A rare gas recovery apparatus, comprising a purification device for recovering a rare gas by a pressure swing adsorption method at a subsequent stage of the water removal section of the treatment apparatus according to claim 5.
JP2008246957A 2008-09-25 2008-09-25 Method for treating impure rare gas Pending JP2010076972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008246957A JP2010076972A (en) 2008-09-25 2008-09-25 Method for treating impure rare gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008246957A JP2010076972A (en) 2008-09-25 2008-09-25 Method for treating impure rare gas

Publications (1)

Publication Number Publication Date
JP2010076972A true JP2010076972A (en) 2010-04-08

Family

ID=42207852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008246957A Pending JP2010076972A (en) 2008-09-25 2008-09-25 Method for treating impure rare gas

Country Status (1)

Country Link
JP (1) JP2010076972A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031049A (en) * 2010-07-07 2012-02-16 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying helium gas
WO2015075840A1 (en) * 2013-11-25 2015-05-28 ギガフォトン株式会社 Gas purification system and laser device
JP2017077534A (en) * 2015-10-21 2017-04-27 大陽日酸株式会社 Hydrogen gas purification device and hydrogen gas purification method
KR101912348B1 (en) 2017-07-06 2018-12-28 대성산업가스 주식회사 Apparatus for manufacturing noble gases
KR102018690B1 (en) * 2018-06-21 2019-09-05 대성산업가스 주식회사 Apparatus for separating neon and helium gases
CN111001265A (en) * 2019-12-26 2020-04-14 江苏楚锐环保科技有限公司 High-quality zeolite rotary wheel production process and production equipment thereof
JP2022068203A (en) * 2018-08-21 2022-05-09 株式会社荏原製作所 Method for manufacturing impurity removing device and method for booting up oxygen removing device
US11679979B2 (en) 2018-05-08 2023-06-20 Curium Us Llc Systems and methods for production of Xenon-133

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104517A (en) * 1992-09-22 1994-04-15 Jgc Corp Rare gas recovering method for chemically pumped iodine laser system
JPH10245210A (en) * 1997-03-04 1998-09-14 Linde Ag Production of krypton-xenon
JP2004161503A (en) * 2002-11-08 2004-06-10 Nippon Sanso Corp Gas purification method
JP2005349332A (en) * 2004-06-11 2005-12-22 Taiyo Nippon Sanso Corp Method for separating gas and its apparatus
JP2008137847A (en) * 2006-12-01 2008-06-19 Air Liquide Japan Ltd Xenon retrieval system and retrieval device
JP2008168169A (en) * 2007-01-09 2008-07-24 Iwatani Internatl Corp Method for recovering neon
WO2008111488A1 (en) * 2007-03-09 2008-09-18 Taiyo Nippon Sanso Corporation Process for the concentration of xenon and equipment therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104517A (en) * 1992-09-22 1994-04-15 Jgc Corp Rare gas recovering method for chemically pumped iodine laser system
JPH10245210A (en) * 1997-03-04 1998-09-14 Linde Ag Production of krypton-xenon
JP2004161503A (en) * 2002-11-08 2004-06-10 Nippon Sanso Corp Gas purification method
JP2005349332A (en) * 2004-06-11 2005-12-22 Taiyo Nippon Sanso Corp Method for separating gas and its apparatus
JP2008137847A (en) * 2006-12-01 2008-06-19 Air Liquide Japan Ltd Xenon retrieval system and retrieval device
JP2008168169A (en) * 2007-01-09 2008-07-24 Iwatani Internatl Corp Method for recovering neon
WO2008111488A1 (en) * 2007-03-09 2008-09-18 Taiyo Nippon Sanso Corporation Process for the concentration of xenon and equipment therefor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031049A (en) * 2010-07-07 2012-02-16 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying helium gas
US10666008B2 (en) 2013-11-25 2020-05-26 Gigaphoton Inc. Gas laser apparatus
WO2015075840A1 (en) * 2013-11-25 2015-05-28 ギガフォトン株式会社 Gas purification system and laser device
WO2015076415A1 (en) * 2013-11-25 2015-05-28 ギガフォトン株式会社 Gas laser device
JPWO2015076415A1 (en) * 2013-11-25 2017-03-16 ギガフォトン株式会社 Gas laser device
US9722384B2 (en) 2013-11-25 2017-08-01 Gigaphoton Inc. Gas laser apparatus
US10038295B2 (en) 2013-11-25 2018-07-31 Gigaphoton Inc. Gas laser apparatus
US11081850B2 (en) 2013-11-25 2021-08-03 Gigaphoton Inc. Gas laser apparatus
US10971883B2 (en) 2013-11-25 2021-04-06 Gigaphoton Inc. Gas laser apparatus
JP2017077534A (en) * 2015-10-21 2017-04-27 大陽日酸株式会社 Hydrogen gas purification device and hydrogen gas purification method
KR101912348B1 (en) 2017-07-06 2018-12-28 대성산업가스 주식회사 Apparatus for manufacturing noble gases
US11679979B2 (en) 2018-05-08 2023-06-20 Curium Us Llc Systems and methods for production of Xenon-133
KR102018690B1 (en) * 2018-06-21 2019-09-05 대성산업가스 주식회사 Apparatus for separating neon and helium gases
JP2022068203A (en) * 2018-08-21 2022-05-09 株式会社荏原製作所 Method for manufacturing impurity removing device and method for booting up oxygen removing device
CN111001265A (en) * 2019-12-26 2020-04-14 江苏楚锐环保科技有限公司 High-quality zeolite rotary wheel production process and production equipment thereof
CN111001265B (en) * 2019-12-26 2021-11-12 维珂瑞(北京)环境科技有限公司 High-quality zeolite rotary wheel production process and production equipment thereof

Similar Documents

Publication Publication Date Title
JP2010076972A (en) Method for treating impure rare gas
TWI460003B (en) Gas purifying method and gas purifying device
JP5392745B2 (en) Xenon concentration method, xenon concentration device, and air liquefaction separation device
US8597584B2 (en) Gas purifying process and device
JP2010533063A5 (en)
JP5248478B2 (en) Xenon concentration method and concentration apparatus
JP5216220B2 (en) Neon recovery method
JP2010241686A (en) Method and apparatus for separating gas
JP2008212845A (en) Carbon monoxide adsorbent, gas purification method, and gas purifier
JP4450944B2 (en) Perfluorocarbon recovery method and decomposition method
JP2006021101A (en) Gas treating method and gas treatment apparatus
JP4733960B2 (en) Method and apparatus for purifying argon gas containing impurities by thermal swing adsorption method
JP2008214187A (en) Carbonyl fluoride having reduced content of hydrogen fluoride and method for producing the same
JP2007045655A (en) Method and apparatus for refining gas
JP4174298B2 (en) Gas purification method and apparatus
JP2005021891A (en) Method and apparatus for gas refining
JP5133929B2 (en) Method and apparatus for producing ultra-high purity nitrogen gas
JP5684898B2 (en) Gas purification method
US20230382741A1 (en) Method for removing oxygen molecule and method for purifying carbon monoxide
JP4322171B2 (en) Gas processing method and apparatus
JP2010037166A (en) Method for purifying krypton and xenon
TW386891B (en) Process and device for treating gas flows
JP2006282487A (en) Metal fluoride deoxidizer, method for producing the same, and method for producing gas with hydrogen fluoride concentration reduced
JP2005111434A (en) Purifying material for removing moisture in nitric oxide gas and nitric oxide gas purifier
JP2001300562A (en) Treatment method of ammonia-containing water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703