JP5297208B2 - Fluorine-containing compound treating agent and exhaust gas treating method - Google Patents

Fluorine-containing compound treating agent and exhaust gas treating method Download PDF

Info

Publication number
JP5297208B2
JP5297208B2 JP2009002192A JP2009002192A JP5297208B2 JP 5297208 B2 JP5297208 B2 JP 5297208B2 JP 2009002192 A JP2009002192 A JP 2009002192A JP 2009002192 A JP2009002192 A JP 2009002192A JP 5297208 B2 JP5297208 B2 JP 5297208B2
Authority
JP
Japan
Prior art keywords
fluorine
containing compound
exhaust gas
treating agent
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009002192A
Other languages
Japanese (ja)
Other versions
JP2010158619A (en
Inventor
洋一 森
哲夫 駒井
豊司 篠原
日出人 郡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2009002192A priority Critical patent/JP5297208B2/en
Publication of JP2010158619A publication Critical patent/JP2010158619A/en
Application granted granted Critical
Publication of JP5297208B2 publication Critical patent/JP5297208B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment agent excellent in durability capable of efficiently decomposing a fluorine-containing compound in emission, and a method of treating emission. <P>SOLUTION: The agent of treating a fluorine-containing compound in emission is produced by kneading and molding a mixture of Al(OH)<SB>3</SB>having a mean diameter (a median diameter) of at least 55 &mu;m and equal to or smaller than 160 &mu;m and Ca(OH)<SB>2</SB>in a mole ratio of 3:7 to 5:5 into a molded article made to have a bulk density of at least 950 g/L and subsequently drying and calcining the molded article, or by packing a treatment agent comprising a composite oxide as its main component obtained by calcining a mixture of Al(OH)<SB>3</SB>and Ca(OH)<SB>2</SB>, at a packing density of at least 0.68 kg/L. The method of treating emission includes causing the agent to make contact with emission comprising a fluorine-containing compound at a temperature of 550 to 850&deg;C. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、フッ素含有化合物を含むガスの処理に関し、特に、半導体工業において半導体製造装置の内面等をドライクリーニングする工程や、酸化膜等の各種成膜をエッチングする工程から排出されるフッ素含有化合物、特にパーフルオロ化合物(PFC)を含む排ガスを処理する際に用いるフッ素含有化合物処理剤及び排ガス処理方法に関する。   The present invention relates to treatment of a gas containing a fluorine-containing compound, and in particular, a fluorine-containing compound discharged from a step of dry-cleaning an inner surface of a semiconductor manufacturing apparatus or a step of etching various film formation such as an oxide film in the semiconductor industry. In particular, the present invention relates to a fluorine-containing compound treating agent and an exhaust gas treating method used when treating an exhaust gas containing a perfluoro compound (PFC).

半導体や液晶の製造工程中に多種類の有害ガスが使用されており、環境中への排気による環境汚染や、地球温暖化ガスの排出による温暖化促進が懸念される。特に、半導体工業における半導体製造装置内面のクリーニング工程や、エッチング工程或いはCVD工程などにおいては、CHFなどのフッ化炭化水素や、CF、C、C、C、C、C、SF、NFなどのパーフルオロ化合物(PFC)などのフッ素含有化合物が用いられており、これらのプロセスからの排ガス中に含まれるフッ素含有化合物は、地球温暖化ガスとしてその除去システムの確立が急務とされている。 Many kinds of harmful gases are used during the manufacturing process of semiconductors and liquid crystals, and there is concern about environmental pollution due to exhaust into the environment and promotion of global warming due to the discharge of global warming gas. In particular, in a cleaning process of an inner surface of a semiconductor manufacturing apparatus in the semiconductor industry, an etching process, a CVD process, or the like, a fluorinated hydrocarbon such as CHF 3 , CF 4 , C 2 F 6 , C 3 F 8 , C 4 F 6. , C 4 F 8 , C 5 F 8 , SF 6 , and fluorine-containing compounds such as perfluoro compounds (PFC) such as NF 3 are used. The fluorine-containing compounds contained in the exhaust gas from these processes are: As a global warming gas, it is urgently required to establish a removal system.

フッ素含有化合物を含む排ガスの処理方法としては、例えば、酸化アルミニウム及びアルカリ土類金属の酸化物を含む処理剤を用いて排ガス中のフルオロカーボンを分解処理する方法(特許文献1);酸化アルミニウム及びアルカリ土類金属の酸化物を含む処理剤を用いて排ガス中のフッ化硫黄を分解処理する方法(特許文献2);アルミナ及びアルカリ土類金属化合物、及び場合によっては銅、錫、バナジウム等の金属の酸化物を含む処理剤を用いて排ガス中のフッ素化合物を分解処理する方法(特許文献3);水酸化アルミニウムと水酸化カルシウムとを含む処理剤を用いて排ガス中のPFCを分解処理する方法(特許文献4);などが提案されている。   As a method for treating exhaust gas containing a fluorine-containing compound, for example, a method of decomposing fluorocarbon in exhaust gas using a treatment agent containing aluminum oxide and an oxide of an alkaline earth metal (Patent Document 1); aluminum oxide and alkali A method of decomposing sulfur fluoride in exhaust gas using a treating agent containing an earth metal oxide (Patent Document 2); alumina and alkaline earth metal compounds, and in some cases metals such as copper, tin, vanadium, etc. Method for Decomposing Fluorine Compound in Exhaust Gas Using Treatment Agent Containing Oxide (Patent Document 3); Method for Decomposing PFC in Exhaust Gas Using Treatment Agent Containing Aluminum Hydroxide and Calcium Hydroxide (Patent Document 4); and the like have been proposed.

しかしながら、上記のような従来の処理方法は、特にCFなどの難分解性ガスを処理する場合、処理温度が800〜1000℃と高いため、処理装置の熱による劣化が速く、装置のエネルギー消費量も大きいという問題があった。また、従来の処理剤は、使用寿命が短くて交換頻度が高いという問題を包含していた。例えば、特許文献1〜3に開示されている方法では、PFCを酸化アルミニウム(アルミナ)と反応させてフッ化アルミニウムを生成させることによってPFCガスを分解している。しかしながら、酸化アルミニウムの反応活性が低いので、この反応を効率よく進行させるためには、高温の反応条件が必要である。更に、生成したフッ化アルミニウムが酸化アルミニウムの表面に層を形成し、これによって酸化アルミニウムが被毒されて短時間で触媒活性を失うおそれがあり、その様な場合は、処理剤の交換頻度が高くなってしまうという問題がある。 However, the conventional processing method as described above, particularly when processing a hardly decomposable gas such as CF 4 , has a high processing temperature of 800 to 1000 ° C., so that the processing apparatus is rapidly deteriorated by heat, and the energy consumption of the apparatus is high. There was a problem that the amount was large. Moreover, the conventional processing agent included the problem that service life is short and replacement frequency is high. For example, in the methods disclosed in Patent Documents 1 to 3, PFC gas is decomposed by reacting PFC with aluminum oxide (alumina) to produce aluminum fluoride. However, since the reaction activity of aluminum oxide is low, high-temperature reaction conditions are required to allow this reaction to proceed efficiently. Further, the generated aluminum fluoride forms a layer on the surface of the aluminum oxide, which may poison the aluminum oxide and lose the catalytic activity in a short time. There is a problem of becoming high.

PFCガスを水酸化アルミニウムと反応させて、水酸化アルミニウムの水酸基の水素によってフッ素をフッ化水素とし、次に生成したフッ化水素を水酸化カルシウムと反応させてフッ化カルシウムを生成させることによって、PFCガスなどのフッ素含有化合物を従来法よりも低い温度で効率よく分解処理することができる方法が提案されている(特許文献4)。しかし、かかる方法は、小型の装置では効果があるものの、実機規模にスケールアップすると、アルミニウムの活性が阻害され、十分な除去効果を示さない場合があることが確認された。
特開2002−224565号公報 特開2002−370013号公報 特開2001−190959号公報 特開2005−262128号公報
PFC gas is reacted with aluminum hydroxide, fluorine is converted to hydrogen fluoride with hydrogen of the hydroxyl group of aluminum hydroxide, and then the generated hydrogen fluoride is reacted with calcium hydroxide to generate calcium fluoride. A method that can efficiently decompose a fluorine-containing compound such as PFC gas at a temperature lower than that of the conventional method has been proposed (Patent Document 4). However, although this method is effective in a small apparatus, it has been confirmed that when it is scaled up to an actual scale, the activity of aluminum is inhibited and a sufficient removal effect may not be exhibited.
JP 2002-224565 A JP 2002-370013 A JP 2001-190959 A JP-A-2005-262128

本発明は、かかる従来技術の問題点を解決し、スケールアップした実機でも失活せずにPFCガスを効率よく分解することができ、耐久性に優れた排ガス処理剤及び排ガスの処理方法を提供することを課題とする。   The present invention solves such problems of the prior art, and provides an exhaust gas treatment agent and an exhaust gas treatment method that are capable of efficiently decomposing PFC gas without being deactivated even with a scaled-up actual machine, and having excellent durability. The task is to do.

上記課題を解決するために、本発明では、平均粒子径(メディアン径)55μm以上1
60μm以下のAl(OH)とCa(OH)とのモル比が3:7〜5:5である混合物を、かさ密度が950g/L以上に混練成形後、乾燥した成形物を430℃よりも高く890℃以下の温度範囲で焼成して非晶質Al とCaOとの複合酸化物を形成したことを特徴とする排ガス中のフッ素含有化合物処理剤としたものである。
また、本発明では、前記焼成して得られた非晶質Al とCaOとの複合酸化1L容積当たり0.68kg以上の充填密度で充填することとしたものである。


In order to solve the above problems, in the present invention, the average particle diameter (median diameter) is 55 μm or more and 1
A mixture in which the molar ratio of Al (OH) 3 and Ca (OH) 2 of 60 μm or less is from 3: 7 to 5: 5 is kneaded and molded to a bulk density of 950 g / L or more, and then the dried molded product is 430 ° C. Higher than 890 ° C. and a composite oxide of amorphous Al 2 O 3 and CaO is formed to form a fluorine-containing compound treating agent in exhaust gas .
In the present invention, a composite oxide of amorphous Al 2 O 3 and CaO obtained by the firing is obtained by a filling in the packing density of more than 0.68kg per 1L volume.


また、本発明では、前記フッ素含有化合物処理剤と、フッ素含有化合物を含む排ガスとを550℃〜850℃の温度で接触させることを特徴とする排ガス処理方法としたものである。
前記フッ素含有化合物処理剤において、混練成形は、押し出し成形機を用い、加圧圧縮させながら押し出し成形するのがよく、また、前記において、フッ素含有化合物としては、PFCを有効に処理することができる。
Moreover, in this invention, it is set as the waste gas processing method characterized by making the said fluorine-containing compound processing agent and the waste gas containing a fluorine-containing compound contact at the temperature of 550 degreeC-850 degreeC.
In the fluorine-containing compound treating agent, the kneading and molding is preferably carried out by using an extrusion molding machine while pressing and compressing, and in the above, PFC can be effectively treated as the fluorine-containing compound. .

本発明によれば、平均粒子径(メディアン径)55μm以上160μm以下のAl(OH)と、Ca(OH)とのモル比が3:7〜5:5である混合物を、かさ密度が950g/L以上に混練成形するか、又は、混練成形後に乾燥して焼成した成形物を、0.68kg/L以上の充填密度で充填することによって、かさ密度又は充填密度が、それらより以下の成形物に比べ、フッ素含有化合物の処理性能が上昇し、また、耐久性に優れた処理剤とすることができた。 According to the present invention, a mixture having an average particle diameter (median diameter) of 55 μm or more and 160 μm or less of Al (OH) 3 and Ca (OH) 2 having a molar ratio of 3: 7 to 5: 5 is obtained. By filling a molded product kneaded and molded to 950 g / L or more, or dried and baked after kneading and molding at a filling density of 0.68 kg / L or more, the bulk density or the packing density is less than them. Compared to the molded product, the treatment performance of the fluorine-containing compound was improved, and a treatment agent excellent in durability could be obtained.

以下に、本発明を詳細に説明する。
本発明のフッ素含有化合物処理剤の原材料であるAl(OH)は、その平均粒子径が55μm以上、好ましくは、60μm以上160μm以下、より好ましくは90μm以上120μm以下である。ここで、平均粒子径とは、メディアン径を意味し、粒子径ごとに頻度(含有量)を積算し、含有量の累積が最小粒子径からはじめて50%になる点での粒子径である。
平均粒子径が上記範囲外であると、フッ素含有化合物処理剤としての所望の処理性能が得られず、短時間でCF除去率が95%以下に劣化してしまい、実用に耐えない。
The present invention is described in detail below.
Al (OH) 3 which is a raw material of the fluorine-containing compound treating agent of the present invention has an average particle size of 55 μm or more, preferably 60 μm or more and 160 μm or less, more preferably 90 μm or more and 120 μm or less. Here, the average particle diameter means the median diameter, and is the particle diameter at which the frequency (content) is integrated for each particle diameter, and the accumulation of the content reaches 50% from the minimum particle diameter.
If the average particle size is out of the above range, desired treatment performance as a fluorine-containing compound treating agent cannot be obtained, and the CF 4 removal rate deteriorates to 95% or less in a short time, which is not practical.

本発明のフッ素含有化合物処理剤の原材料であるCa(OH)の平均粒子径はA1(OH)の平均粒径によって変動するが、A1(OH)よりもCa(OH)の平均粒子径(メディアン径)は小さい方が好ましい。Ca(OH)の平均粒子径(メディアン径)としては、好ましくは1μm以上10μm以下、より好ましくは3μm以上8μm以下、最も好ましくは4μm以上6μm以下である。 The average particle diameter of Ca (OH) 2 that is a raw material of the fluorine-containing compound treating agent of the present invention varies depending on the average particle diameter of A1 (OH) 3 , but the average of Ca (OH) 2 is higher than that of A1 (OH) 3. A smaller particle diameter (median diameter) is preferred. The average particle diameter (median diameter) of Ca (OH) 2 is preferably 1 μm to 10 μm, more preferably 3 μm to 8 μm, and most preferably 4 μm to 6 μm.

A1(OH)とCa(OH)とは、平均粒子径の大きいA1(OH)を核にして、その表層にCa(OH)が効率よく配置されることで活性が維持されると考えられる。よって、Ca(OH)の粒径がA1(OH)の平均粒径に比べて小さすぎるとA1(OH)の表面全体を隙間なく覆い、PFCとの接触を阻止して結果的にPFCの分解を阻害し、逆にCa(OH)の粒径がA1(OH)の平均粒径に比べて大きすぎるとPFC分解時のFとの接触効率が低下し結果的に分解が不充分となり、何れの場合もPFCの分解効率を下げると考えられる。 The activity of A1 (OH) 3 and Ca (OH) 2 is maintained by efficiently arranging Ca (OH) 2 on the surface layer of A1 (OH) 3 having a large average particle diameter as a nucleus. it is conceivable that. Thus, Ca (OH) covers without gaps an entire surface of the excessively when A1 (OH) 3 smaller than the average particle diameter of the particle size of 2 A1 (OH) 3, resulting in by preventing contact between the PFC Inhibiting the decomposition of PFC, conversely, if the Ca (OH) 2 particle size is too large compared to the average particle size of A1 (OH) 3 , the contact efficiency with F during PFC decomposition is reduced, resulting in decomposition. In any case, it is considered that the PFC decomposition efficiency is lowered.

上記混合物におけるA1(OH)とCa(OH)とのモル比は、3:7〜5:5、好ましくは3:7〜4:6である。A1(OH)とCa(OH)とのモル比が上記範囲外であると、PFC分解処理剤としての所望の処理性能が得られず、短時間でCF除去率が処理目標の95%以下に劣化してしまい、実用に耐えない。
本発明のフッ素含有化合物処理剤は、上記混合物を混練機で混練して、押し出し成形して得たかさ密度が950g/L以上の成形物を乾燥し、430℃よりも高く890℃以下の温度範囲、好ましくは580℃〜850℃、より好ましくは590℃〜630℃の温度範囲で、窒素流又は空気流中で焼成することにより得られる。
The molar ratio of A1 (OH) 3 and Ca (OH) 2 in the above mixture is 3: 7 to 5: 5, preferably 3: 7 to 4: 6. If the molar ratio of A1 (OH) 3 and Ca (OH) 2 is outside the above range, the desired processing performance as a PFC decomposition treatment agent cannot be obtained, and the CF 4 removal rate is a processing target of 95 in a short time. %, It will not be practical.
The fluorine-containing compound treating agent of the present invention is obtained by drying a molded product having a bulk density of 950 g / L or more obtained by kneading the above mixture with a kneader and extrusion molding, and having a temperature higher than 430 ° C. and lower than 890 ° C. It is obtained by calcining in a nitrogen stream or an air stream in the temperature range, preferably 580 ° C to 850 ° C, more preferably 590 ° C to 630 ° C.

A1(OH)とCa(OH)との成形物の焼成温度は、脱水可能な温度であって且つ失活しない温度範囲であることが必要になる。A1(OH)の脱水温度は約270℃であり、Ca(OH)の脱水温度は約430℃であるから、少なくとも430℃を超えることが好ましい。温度範囲が890℃を超えると、CF除去率が低下する。焼成温度は、排ガスの処理温度より低い温度で焼成することが望ましい。
高熱処理により酸化アルミニウムが結晶化してしまい、活性が劣化することによると考えられる。
The firing temperature of the molded product of A1 (OH) 3 and Ca (OH) 2 needs to be a temperature that allows dehydration and does not deactivate. Since the dehydration temperature of A1 (OH) 3 is about 270 ° C. and the dehydration temperature of Ca (OH) 2 is about 430 ° C., it is preferable to exceed at least 430 ° C. When the temperature range exceeds 890 ° C., the CF 4 removal rate decreases. The firing temperature is desirably lower than the exhaust gas treatment temperature.
It is considered that aluminum oxide is crystallized by high heat treatment and the activity deteriorates.

A1(OH)とCa(OH)との成形物は、窒素流又は空気流中で焼成する。窒素流又は空気流は、成形物を固定配置して焼成する場合は一定時間で流入方向を逆転させ、もしくは成形物を移動させつつ、窒素又は空気流中で焼成させることが好ましい。焼成により進行する脱水反応の結果、発生する水分を混合物周囲に滞留させず、速やかに蒸発・除去させるためである。高熱高湿雰囲気でA1(OH)とCa(OH)との成形物を焼成し続けると、水分の存在により酸化アルミニウムが結晶化(活性点における微細構造レベルでの結晶化を意味する)してしまい、活性が劣化すると考えられる。よって、A1(OH)や焼成により得られる酸化アルミニウムなどの周囲に不活性ガスを流すことによって、発生する水分を速やかに除去することが必要である。窒素流又は空気流の向流気流は、例えば、A1(OH)とCa(OH)との成形物をカラムに充填して、カラムの上下から窒素流又は空気流を送るなどして与えることができる。 A molded product of A1 (OH) 3 and Ca (OH) 2 is fired in a nitrogen stream or an air stream. When the molded product is fixedly disposed and fired, the nitrogen flow or the air flow is preferably fired in a nitrogen or air stream while reversing the inflow direction for a certain time or moving the molded product. This is because moisture generated as a result of the dehydration reaction that proceeds by firing is not allowed to stay around the mixture, but is quickly evaporated and removed. When a molded product of A1 (OH) 3 and Ca (OH) 2 is continuously fired in a high-heat and high-humidity atmosphere, aluminum oxide is crystallized due to the presence of moisture (meaning crystallization at the fine structure level at the active site). Therefore, the activity is considered to deteriorate. Therefore, it is necessary to quickly remove the generated water by flowing an inert gas around A1 (OH) 3 or aluminum oxide obtained by baking. The countercurrent airflow of nitrogen flow or air flow is given by, for example, filling a column with a molded product of A1 (OH) 3 and Ca (OH) 2 and sending nitrogen flow or air flow from the top and bottom of the column. be able to.

焼成時間は特に限定されず、使用するA1(OH)とCa(OH)との量によっても変動するが、一般的に6〜12時間とするのが脱水効果やエネルギー消費効率の点で好ましく、8〜10時間とするのがさらに好ましい。技術的にはCa(OH)が脱水する温度(約430℃)まで昇温した後、さらに1〜2時間焼成することで充分であると考えられる。焼成温度に達するまでの昇温速度が速すぎると脱水が不充分な場合が生じ、遅すぎると経済的理由(エネルギーや時間を消費する)から好ましくない。通常は、100℃/hrの昇温速度が最適である。
本発明の調製方法により得られる成形物は、反応槽内で0.68kg/L以上の充填密度で充填してフッ素含有化合物処理剤として用いられる。
The firing time is not particularly limited and varies depending on the amounts of A1 (OH) 3 and Ca (OH) 2 used, but generally 6 to 12 hours is the point of dehydration effect and energy consumption efficiency. Preferably, the time is 8 to 10 hours. Technically, it is considered sufficient that the temperature is raised to a temperature at which Ca (OH) 2 dehydrates (about 430 ° C.) and then baked for an additional 1-2 hours. If the rate of temperature rise until reaching the firing temperature is too fast, dehydration may be insufficient, and if it is too slow, it is not preferred for economic reasons (consuming energy and time). Usually, a temperature increase rate of 100 ° C./hr is optimum.
The molded product obtained by the preparation method of the present invention is filled as a fluorine-containing compound treating agent by filling with a packing density of 0.68 kg / L or more in a reaction vessel.

650℃で7〜9時間焼成して得られたフッ素含有化合物処理剤のXRD分析チャートを図1に示す。上段のピークデータは、得られたフッ素含有化合物処理剤の生データからの解析ピークであり、下段のカードピークは、ライブラリーデータからのCaOの特性ピークである。得られたフッ素含有化合物処理剤のピークは、CaOのライブラリーデータピークと完全に一致する。参考として、図2に結晶性アルミナの標準X線回析スペクトルを示すが、得られたフッ素含有化合物処理剤にはAlの特性ピークが見られない。Ca(OH)は、全量が焼成によりCaOに変化しているといえる。これらのことから、本発明のフッ素含有化合物処理剤には、焼成により発生する水分がすべて除かれ、水熱反応が進まないため、結晶性Alが生じていないと考えられる。 An XRD analysis chart of the fluorine-containing compound treating agent obtained by baking at 650 ° C. for 7 to 9 hours is shown in FIG. The upper peak data is an analysis peak from raw data of the obtained fluorine-containing compound treating agent, and the lower card peak is a characteristic peak of CaO from library data. The peak of the obtained fluorine-containing compound treating agent completely coincides with the library data peak of CaO. For reference, FIG. 2 shows a standard X-ray diffraction spectrum of crystalline alumina, but no characteristic peak of Al 2 O 3 is observed in the obtained fluorine-containing compound treating agent. It can be said that the total amount of Ca (OH) 2 is changed to CaO by firing. From these facts, it is considered that the fluorine-containing compound treating agent of the present invention does not generate crystalline Al 2 O 3 because all the water generated by firing is removed and the hydrothermal reaction does not proceed.

本発明のフッ素含有化合物処理剤は、 非晶質Al とCaOとの複合酸化物であり、以下のように酸素を介して緩やかに結合していると考えられる。 The fluorine-containing compound treating agent of the present invention is a composite oxide of amorphous Al 2 O 3 and CaO, and is considered to be loosely bonded through oxygen as follows.

本発明のフッ素含有化合物処理剤をフッ素化合物と接触させると、(Al_O)部分の触媒作用により
CF→C+4F
の分解反応が進み、(O_Ca)部分からの酸素(O)とカルシウム(Ca)とにより
C+2O→CO
4F+2Ca→2CaF
の酸化還元反応が進むと考えられる。
When the fluorine-containing compound treating agent of the present invention is brought into contact with a fluorine compound, CF 4 → C + 4F is caused by the catalytic action of the (Al_O) moiety.
As the decomposition reaction proceeds, oxygen (O) and calcium (Ca) from the (O_Ca) portion cause C + 2O → CO 2
4F + 2Ca → 2CaF 2
It is thought that the redox reaction proceeds.

このように、本発明のフッ素含有化合物処理剤を用いてフッ素含有化合物を含む排ガスを処理すると、PFCが分解して、フッ化カルシウム(CaF)が生成する。フッ化カルシウムは、フッ素製造の原料として知られる蛍石の主成分であり、酸で処理することによってフッ素ガスを発生させることができる。したがって、本発明のフッ素含有化合物処理剤は、極めて効率的にフッ素含有化合物を含むガスからフッ素を再利用可能な形態で回収することができる。
なお、本フッ素含有化合物処理剤には、酸化力向上助剤として、Pd、Pt、Rh、Ru等、及び/又は耐熱向上剤として、ZrO、La等、その他の物質を添加してもよい。
Thus, when the exhaust gas containing a fluorine-containing compound is treated using the fluorine-containing compound treating agent of the present invention, PFC is decomposed and calcium fluoride (CaF 2 ) is generated. Calcium fluoride is a main component of fluorite known as a raw material for producing fluorine, and fluorine gas can be generated by treatment with acid. Therefore, the fluorine-containing compound treating agent of the present invention can very efficiently recover fluorine in a reusable form from the gas containing the fluorine-containing compound.
The fluorine-containing compound treating agent may contain other substances such as Pd, Pt, Rh, Ru, etc. as an oxidizing power improvement aid and / or ZrO 2 , La, etc. as a heat resistance improver. .

本発明のフッ素含有化合物処理剤により処理することのできるフッ素含有化合物としては、CHF等のフッ化炭化水素、CF、C、C、SF、NFなどのパーフルオロ化合物(PFC)等を挙げることができる。このようなフッ素含有化合物を含むガスとしては、半導体工業で半導体製造装置の内面等をドライクリーニングする工程や、各種成膜をエッチングする工程で排出される排ガスなどを挙げることができる。 Examples of the fluorine-containing compound that can be treated with the fluorine-containing compound treating agent of the present invention include fluorinated hydrocarbons such as CHF 3 , CF 4 , C 2 F 6 , C 3 F 8 , SF 6 , NF 3 and the like. A fluoro compound (PFC) etc. can be mentioned. Examples of such a gas containing a fluorine-containing compound include exhaust gas discharged in a process of dry cleaning the inner surface of a semiconductor manufacturing apparatus in the semiconductor industry and a process of etching various film formations.

また、本発明のフッ素含有化合物処理剤は、PFCなどに加えて、酸化性ガス、酸性ガスなども分解処理することができる。半導体製造工程から排出される排ガス中には、PFCばかりでなく、他にF、Cl、Br等の酸化性ガス、HF、SiF、COF、HCl、HBr、SiCl、SiBr等の酸性ガスなどが含まれる場合がある。本発明の排ガス処理剤によれば、これらの酸化性ガスや酸性ガスも、PFC等のフッ素含有化合物と共に分解処理することができる。 Further, the fluorine-containing compound treating agent of the present invention can decompose oxidizing gas, acidic gas, etc. in addition to PFC. In the exhaust gas discharged from the semiconductor manufacturing process, not only PFC but also oxidizing gases such as F 2 , Cl 2 , Br 2 , HF, SiF 4 , COF 2 , HCl, HBr, SiCl 4 , SiBr 4 are used. And so on. According to the exhaust gas treating agent of the present invention, these oxidizing gas and acidic gas can also be decomposed together with a fluorine-containing compound such as PFC.

以下、実施例により、本発明を更に具体的に説明する。
(1) フッ素含有化合物処理剤の調製
(a) 原料
A1(OH) :55μm(メディアン径)、純度99.8%以上
Ca(OH) :1.9μm(メディアン径)(原料のCaOの純度
は、74.5wt%)
Hereinafter, the present invention will be described more specifically with reference to examples.
(1) Preparation of fluorine-containing compound treating agent (a) Raw material A1 (OH) 3 : 55 μm (median diameter), purity 99.8% or more Ca (OH) 2 : 1.9 μm (median diameter) (of raw material CaO purity
Is 74.5wt%)

(b) 製造方法に関して
A1(OH) Ca(OH)を水を添加しながら混練機で混練する。
混練機兼押し出し成形機として、例えばスクリュープレスが用いられ、A1(OH)と Ca(OH)をスクリュー部に供給し、水を添加しながら加圧圧縮させつつ前進させる。この際に発熱が激しい場合は、混練部外周を冷却させながら混練してもよい。その際、混練強度を変化させてかさ密度を制御する。混練強度を強くするとかさ密度は大きくなる。スクリュー先端に取り付けた金網の孔から材料を連続的に押し出し押出し成形する。金網の孔径は直径2mmである。
次に、吐出成型された造粒品を、乾燥させ、中の水分を除去する。
乾燥は、輻射熱によることが好ましい。100℃以上、150℃未満の雰囲気(空気又は窒素雰囲気)中で、造粒品を移動させながら乾燥させることが好ましい。これらの製造工程により、かさ密度が1〜0.87kg/Lの成形物を得る。
この成形物を610℃±20℃で焼成(ロータリーキルンが好ましい。)して、性能試験に用いた。
(B) Production method A1 (OH) 3 Ca (OH) 2 is kneaded with a kneader while adding water.
For example, a screw press is used as a kneading machine / extrusion molding machine, and A1 (OH) 3 and Ca (OH) 2 are supplied to the screw part and advanced while being pressurized and compressed while adding water. If the heat generation is intense at this time, the kneading part may be kneaded while cooling the outer periphery. At that time, the bulk density is controlled by changing the kneading strength. Increasing the kneading strength increases the bulk density. The material is continuously extruded and extruded through holes in a wire mesh attached to the screw tip. The hole diameter of the wire net is 2 mm.
Next, the discharged granulated product is dried to remove moisture therein.
Drying is preferably by radiant heat. It is preferable to dry the granulated product while moving it in an atmosphere (air or nitrogen atmosphere) of 100 ° C. or higher and lower than 150 ° C. By these manufacturing steps, a molded product having a bulk density of 1 to 0.87 kg / L is obtained.
This molded product was fired at 610 ° C. ± 20 ° C. (preferably a rotary kiln) and used for a performance test.

(c) かさ密度の測定方法
1L用のメスシリンダーに混合体を1L近く入れ、メスシリンダーごとタッピング(メスシリンダーの底を台の上でこきざみにたたいて、剤を沈みこませる)し、剤が沈み込んだ分を追加し、さらにタッピングを行い、最終的に沈みこまなくなった状態での容積(1L)と重さからかさ密度(単位:g/L)を求めている。
(d) 充填密度の調整
容積49mlのミニカラムにフッ素含有化合物を充填し、その重さと容積から充填密度を求めた。
実際の反応槽への充填密度の調整には、電直バイブレーターを用いることができる。電直バイブレーターとは、モーター直結の振動を振動棒/振動板に伝達するもので、振動棒/板を処理剤中で振動させることで、反応槽内の処理剤の充填密度を高めることができる。
(C) Bulk density measurement method Put the mixture in a measuring cylinder for 1L, and tap the entire measuring cylinder (tap the bottom of the measuring cylinder on the table to sink the agent). The part in which the agent is submerged is added, tapping is further performed, and the bulk density (unit: g / L) is obtained from the volume (1 L) and the weight in the state where the agent has finally stopped sinking.
(D) Adjustment of packing density A mini-column with a volume of 49 ml was packed with a fluorine-containing compound, and the packing density was determined from its weight and volume.
An electric direct vibrator can be used to adjust the packing density in the actual reaction vessel. Electro-direct vibrator transmits vibration directly connected to a motor to a vibrating bar / vibrating plate. By vibrating the vibrating bar / plate in the processing agent, the packing density of the processing agent in the reaction vessel can be increased. .

(2) 性能試験
前記のように調整したフッ素含有化合物処理剤を各49mlミニカラムに充填し、CF流入濃度:1.0%、ガス流量:410ml/min、処理温度:750℃で5時間通ガスした後、初期CF除去率を求めた。
また、続いてCFガス出しを続け、除去率が95%を下回るまでの時間として「処理時間」を求め、除去率が95%になった時点でのCF処理量として「初期活性CF処理量」を求めた。かさ密度、充填密度とそれらの結果を表1に示す。
(2) Performance test Each 49 ml mini-column is filled with the fluorine-containing compound treating agent prepared as described above, CF 4 inflow concentration: 1.0%, gas flow rate: 410 ml / min, treatment temperature: 750 ° C. for 5 hours. After gassing, the initial CF 4 removal rate was determined.
Subsequently, the CF 4 gas is continuously discharged, “processing time” is obtained as the time until the removal rate falls below 95%, and “initial activation CF 4 ” is obtained as the CF 4 treatment amount when the removal rate reaches 95%. The throughput was determined. Table 1 shows the bulk density and packing density.


ここでの処理時間は8時間以上、又は、初期CF除去率の少なくともいずれか一方が99%以上であることが実用できる処理剤性能として望ましい。
これらの結果から、かさ密度は0.95kg/L以上、充填密度は0.68以上でCF除去率、処理時間ともの良好な性能が得られることがわかった。

The treatment time here is preferably 8 hours or more, or at least one of the initial CF 4 removal rates is 99% or more as a practical treatment agent performance.
From these results, it was found that the bulk density was 0.95 kg / L or more, the packing density was 0.68 or more, and good performance in terms of CF 4 removal rate and processing time was obtained.

本発明のフッ素含有化合物処理剤のXRD分析データ。The XRD analysis data of the fluorine-containing compound processing agent of this invention. XRD分析による結晶性のAlライブラリーデータ。Crystalline Al 2 O 3 library data by XRD analysis.

Claims (6)

平均粒子径(メディアン径)55μm以上160μm以下のAl(OH)とCa(OH)とのモル比が3:7〜5:5である混合物を、かさ密度が950g/L以上に混練成形後、乾燥した成形物を430℃よりも高く890℃以下の温度範囲で焼成して非晶質Al とCaOとの複合酸化物を形成したことを特徴とする排ガス中のフッ素含有化合物処理剤。 A mixture in which the molar ratio of Al (OH) 3 and Ca (OH) 2 having an average particle diameter (median diameter) of 55 μm to 160 μm is from 3: 7 to 5: 5 is kneaded and molded to a bulk density of 950 g / L or more. Thereafter, the dried molded product was fired in a temperature range higher than 430 ° C. and lower than 890 ° C. to form a composite oxide of amorphous Al 2 O 3 and CaO, and a fluorine-containing compound in exhaust gas Processing agent. 請求項1記載のフッ素含有化合物処理剤と、フッ素含有化合物を含む排ガスとを550℃〜850℃の温度で接触させることを特徴とする排ガス処理方法。   An exhaust gas treatment method comprising contacting the fluorine-containing compound treating agent according to claim 1 with exhaust gas containing a fluorine-containing compound at a temperature of 550 ° C to 850 ° C. 前記焼成して得られた非晶質Al とCaOとの複合酸化物を、1L容積当たり0
.68kg以上の充填密度で充填したことを特徴とする請求項1記載の排ガス中のフッ素含有化合物処理剤。
A composite oxide of amorphous Al 2 O 3 and CaO obtained by the firing was reduced to 0 per liter volume.
. 2. The fluorine-containing compound treating agent in exhaust gas according to claim 1 , which is filled at a packing density of 68 kg or more.
請求項3記載のフッ素含有化合物処理剤と、フッ素含有化合物を含む排ガスとを550℃〜850℃の温度で接触させることを特徴とする排ガス処理方法。   An exhaust gas treatment method comprising contacting the fluorine-containing compound treating agent according to claim 3 with exhaust gas containing a fluorine-containing compound at a temperature of 550 ° C to 850 ° C. 前記混練成形は、押し出し成形機を用い、加圧圧縮させながら押出し成形することを特徴とする請求項1又は3記載の排ガス中のフッ素含有化合物処理剤。 The fluorine-containing compound treating agent in exhaust gas according to claim 1 or 3 , wherein the kneading and molding is performed by extrusion molding using an extrusion molding machine under pressure and compression. 前記フッ素含有化合物を含む排ガスは、PFC(パーフルオロ化合物)含有排ガスであることを特徴とする請求項2又は4記載の排ガス処理方法。   The exhaust gas treatment method according to claim 2 or 4, wherein the exhaust gas containing the fluorine-containing compound is a PFC (perfluoro compound) -containing exhaust gas.
JP2009002192A 2009-01-08 2009-01-08 Fluorine-containing compound treating agent and exhaust gas treating method Active JP5297208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009002192A JP5297208B2 (en) 2009-01-08 2009-01-08 Fluorine-containing compound treating agent and exhaust gas treating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009002192A JP5297208B2 (en) 2009-01-08 2009-01-08 Fluorine-containing compound treating agent and exhaust gas treating method

Publications (2)

Publication Number Publication Date
JP2010158619A JP2010158619A (en) 2010-07-22
JP5297208B2 true JP5297208B2 (en) 2013-09-25

Family

ID=42576196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009002192A Active JP5297208B2 (en) 2009-01-08 2009-01-08 Fluorine-containing compound treating agent and exhaust gas treating method

Country Status (1)

Country Link
JP (1) JP5297208B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200021083A (en) 2017-06-16 2020-02-27 쿠라리안토 쇼쿠바이 가부시키가이샤 Decomposition remover of fluorine-containing gas, method for producing same, method for removing fluorine-containing gas using same, and method for recovering fluorine resources

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5350809B2 (en) * 2009-01-09 2013-11-27 株式会社荏原製作所 Exhaust gas treatment equipment with pretreatment tank

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10314576A (en) * 1997-05-16 1998-12-02 Kotegawa Sangyo Kk Acid gas removing material
JP3789277B2 (en) * 1999-04-28 2006-06-21 昭和電工株式会社 Reagent for decomposing fluorine compounds, decomposing method and use thereof
JP4255114B2 (en) * 2003-05-07 2009-04-15 電気化学工業株式会社 CFC decomposition method
JP5048208B2 (en) * 2004-03-19 2012-10-17 株式会社荏原製作所 Method and apparatus for treating gas containing fluorine-containing compound
JP4786143B2 (en) * 2004-05-25 2011-10-05 学校法人東海大学 Method for producing double oxide ceramics
JP4394555B2 (en) * 2004-09-30 2010-01-06 株式会社日立製作所 Method and apparatus for treating fluorine compound-containing gas
JP4708857B2 (en) * 2005-05-16 2011-06-22 電気化学工業株式会社 Molded body, method for producing the same, and method for promoting oxidation reaction using the same
JP5020136B2 (en) * 2007-07-10 2012-09-05 株式会社荏原製作所 Fluorine fixing agent, PFC decomposition treatment agent, and preparation method thereof
JP5284873B2 (en) * 2008-10-29 2013-09-11 株式会社荏原製作所 Gas processing apparatus and semiconductor manufacturing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200021083A (en) 2017-06-16 2020-02-27 쿠라리안토 쇼쿠바이 가부시키가이샤 Decomposition remover of fluorine-containing gas, method for producing same, method for removing fluorine-containing gas using same, and method for recovering fluorine resources

Also Published As

Publication number Publication date
JP2010158619A (en) 2010-07-22

Similar Documents

Publication Publication Date Title
JP5148490B2 (en) Porous calcium oxide granules and porous calcium hydroxide granules
CN100344345C (en) Method for removing halogen series gas
JP5284873B2 (en) Gas processing apparatus and semiconductor manufacturing apparatus
CN1913956A (en) Method and apparatus for treating exhaust gas
JP5020136B2 (en) Fluorine fixing agent, PFC decomposition treatment agent, and preparation method thereof
JP5145904B2 (en) Halogen-based gas scavenger and halogen-based gas scavenging method using the same
JP5473928B2 (en) Method for producing carbonyl difluoride
JP5297208B2 (en) Fluorine-containing compound treating agent and exhaust gas treating method
JP2010137174A (en) Detoxifying agent for halogen gas and method for detoxifying halogen gas using the same
CN102140054B (en) Preparation method of tetrafluoromethane
JP5016616B2 (en) Method for treating exhaust gas containing fluorine compound and reaction tank for treatment
JP5499816B2 (en) Halogen gas removal method
JP2001219031A (en) Method and device for decomposing perfluorinated compound
JP5423594B2 (en) Method for removing fluorine-containing compound gas
JP5031783B2 (en) Decomposition treatment agent
WO2018230121A1 (en) Fluorine-containing gas decomposing/removing agent, method for producing same, and fluorine-containing gas removing method and fluorine resource recovery method each using same
JP5476043B2 (en) Method and apparatus for treating exhaust gas containing fluorine compound
JP5284773B2 (en) Exhaust gas treatment method for increasing treatment temperature, operation method of exhaust gas treatment device, and exhaust gas treatment device
JP2009202091A (en) Halogen-containing compound degrading agent
JP5016618B2 (en) Method for treating exhaust gas containing SF6
KR100968089B1 (en) Low temperature Adsorption treatment Agent for Fluorine Compound gas, Method of treating for Fluorine compound gas Using thereof, And Apparatus For Treatment of Fluorine compound gas
KR20140015979A (en) Absorption reaction material for removing pfc and acid gas
JP5328605B2 (en) Fluorine compound decomposition treatment agent and decomposition treatment method
KR101448475B1 (en) Absorption material for removing PFC and acid gas
JP2005230609A (en) Method and apparatus for treating gas containing fluorine-containing compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5297208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250