JP4708857B2 - Molded body, method for producing the same, and method for promoting oxidation reaction using the same - Google Patents

Molded body, method for producing the same, and method for promoting oxidation reaction using the same Download PDF

Info

Publication number
JP4708857B2
JP4708857B2 JP2005142240A JP2005142240A JP4708857B2 JP 4708857 B2 JP4708857 B2 JP 4708857B2 JP 2005142240 A JP2005142240 A JP 2005142240A JP 2005142240 A JP2005142240 A JP 2005142240A JP 4708857 B2 JP4708857 B2 JP 4708857B2
Authority
JP
Japan
Prior art keywords
molded body
relative density
oxygen
atmosphere
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005142240A
Other languages
Japanese (ja)
Other versions
JP2006315930A (en
Inventor
卓 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2005142240A priority Critical patent/JP4708857B2/en
Publication of JP2006315930A publication Critical patent/JP2006315930A/en
Application granted granted Critical
Publication of JP4708857B2 publication Critical patent/JP4708857B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Producing Shaped Articles From Materials (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Catalysts (AREA)
  • Fire-Extinguishing Compositions (AREA)
  • Filtering Materials (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、被酸化性物質を酸化するのに好適な成形体とその製造方法、前記成形体を用いた酸化反応促進方法に関するもので、特に、気体状、或いは気体中の粉塵状又は霧状の化学物質や、カビの胞子等の被酸化性物質を酸化するのに好適な活性負電荷酸素原子を含有する成形体とその製造方法、前記成形体を用いた酸化反応促進方法に関する。 The present invention relates to a molded article suitable for oxidizing an oxidizable substance, a method for producing the same, and a method for promoting an oxidation reaction using the molded article. In particular, the present invention relates to a gas, or a dust or mist in a gas. The present invention relates to a molded article containing an active negative charge oxygen atom suitable for oxidizing an oxidizable substance such as a chemical spore or a mold spore, a production method thereof, and a method for promoting an oxidation reaction using the molded article.

空気中の化学物質の中には、人体に直接被害を及ぼすばかりでなく、土壌や水資源に溶解して、地球環境に多大な負荷を及ぼすものがある。従来これらの有害な化学物質は、活性炭への吸着や除外塔を用いた液層への吸収によって、空気中から分離・除去されていた。また、上記化学物質と同様に空気中に存在し、人体、建材又は食品に被害を及ぼすカビの胞子も、化学物質と同様の方法で空気中から分離・除去されていた。 Some chemical substances in the air not only cause direct damage to the human body, but also dissolve in soil and water resources and have a great impact on the global environment. Conventionally, these harmful chemical substances have been separated and removed from the air by adsorption onto activated carbon or absorption into a liquid layer using an exclusion tower. In addition, mold spores that exist in the air as well as the above-mentioned chemical substances and damage human bodies, building materials or foods have been separated and removed from the air in the same manner as chemical substances.

しかし、このような方法は、化学物質を単に空気中から固相あるいは液相へ移動させるに過ぎず、化学物質の有害性を本質的に解消しているとは言い難い。カビの胞子も上記方法では死滅させることはできず、有害性を本質的に解消できない。 However, such a method merely moves the chemical substance from the air to the solid phase or liquid phase, and it cannot be said that the harmfulness of the chemical substance is essentially eliminated. Mold spores cannot be killed by the above method, and the harmfulness cannot be essentially eliminated.

化学物質又はカビの胞子等の有害性を解消するための有効な方法として、燃焼あるいは紫外線照射等による酸化、又は分解処理があげられるが、このような方法は熱や光等のエネルギーを大量に消費するため、別の面で地球環境への負荷を増大してしまう。 As an effective method for eliminating the harmfulness of chemical substances or mold spores, there are oxidation or decomposition treatment by combustion or ultraviolet irradiation, etc., but such a method uses a large amount of energy such as heat and light. Consumption increases the load on the global environment in another way.

空気中の化学物質の有害性は、従来は、鉱工業における廃棄物あるいは自動車の排気ガス等において問題とされてきたが、最近は住宅用建材から発生する揮発性有機物質(VOC)やたばこの煙等の、より身近な物質において問題視されるようになってきた。また、カビの胞子についても、カビによって深刻な健康被害がもたらされる場合があるため、同様に問題視されるようになってきた。 The harmfulness of chemical substances in the air has been considered to be a problem for waste in the mining industry or exhaust gas of automobiles, but recently, volatile organic substances (VOC) and tobacco smoke generated from residential building materials. It has come to be regarded as a problem in familiar materials such as. In addition, mold spores are also regarded as a problem because mold can cause serious health damage.

身近になってきた化学物質又はカビの胞子の有害性を解消する方法としては、できるだけ簡便な処理方法を用いることが望ましく、例えば、空気中の酸素を利用した酸化処理方法が適すると考えられる。しかし、空気中の比較的安定な酸素分子を、酸化剤として使用可能にするためにはその活性化が必要になる。 As a method of eliminating the harmfulness of chemical substances or mold spores that have become familiar, it is desirable to use a treatment method that is as simple as possible. For example, an oxidation treatment method using oxygen in the air is considered suitable. However, it is necessary to activate relatively stable oxygen molecules in the air in order to be usable as an oxidizing agent.

酸素を活性化していわゆる活性酸素を作り出すには、放電プラズマ、燃焼、紫外線照射等の方法が用いられるが、いずれも過分のエネルギーを要するか、常時太陽光のように紫外線を含む光を照射せねばならず、簡便な処理方法とは言い難い。 In order to activate oxygen to produce so-called active oxygen, methods such as discharge plasma, combustion, and ultraviolet irradiation are used. Either method requires excessive energy, or always irradiates light containing ultraviolet rays such as sunlight. It must be a simple treatment method.

一方、O やOの酸素イオンラジカルは、活性酸素の1種であり、有機物や無機物の酸化過程で重要な役割を果たすことが知られている。また、酸化物化合物の固体表面上に吸着したO について、広範な研究が行われている(非特許文献1参照)。
J.H.Lunsford、Catal.Rev.8,135,1973、M.Che and A.J.Tench,Adv.Catal,32,1,1983。
On the other hand, the oxygen ion radicals of O 2 and O are one kind of active oxygen, and are known to play an important role in the oxidation process of organic substances and inorganic substances. In addition, extensive research has been conducted on O 2 adsorbed on the solid surface of an oxide compound (see Non-Patent Document 1).
J. et al. H. Lunsford, Catal. Rev. 8, 135, 1973, M.M. Che and A.A. J. et al. Tench, Adv. Catal, 32, 1, 1983.

この研究では、γ線などの高エネルギーの放射線を酸化物化合物表面に照射することでO を作成している。 In this research, O 2 is created by irradiating the surface of an oxide compound with high-energy radiation such as γ rays.

を構成アニオンとする結晶はRO(R=アルカリ金属)が知られているが、これらの化合物はいずれも300℃以下の低温で容易に分解してしまうため、酸化促進材や殺菌材などの用途には使用できない。 RO 2 (R = alkali metal) is known as a crystal having O 2 as a constituent anion. However, since these compounds are easily decomposed at a low temperature of 300 ° C. or lower, oxidation promoters and sterilizers are used. It cannot be used for materials.

1970年にH.B.Bartlらは、12CaO・7Al(以下、C12という)結晶においては、2分子を含む単位胞にある66個の酸素のうち、2個はネットワークに含まれず、結晶の中に存在するケージ内の空間に「フリー酸素」として存在すると主張している(非特許文献2参照)。
H.B.Bartl and T.Scheller、Neues Jarhrb.Mineral.,Monatsh.1970、547。
In 1970, H.C. B. Bartl et al., In 12CaO · 7Al 2 O 3 (hereinafter referred to as C 12 A 7 ) crystal, 2 out of 66 oxygen atoms in a unit cell containing 2 molecules are not included in the network, It claims to exist as “free oxygen” in the existing space in the cage (see Non-Patent Document 2).
H. B. Bartl and T.W. Scheller, Neues Jarhrb. Mineral. , Monash. 1970, 547.

また、細野らは、CaCOとAlまたはAl(OH)を原料として空気中で1200℃の温度で固相反応により合成したC12結晶中に1×1019個/cm程度のO が包接されていることを電子スピン共鳴の測定から発見し、フリー酸素の一部がO の形でゲージ内に存在するというモデルを提案している(非特許文献3参照)。
H.Hosono and Y.Abe,Inorg.Chem.26、1193、1997。
Moreover, Hosono et al. 1 × 10 19 pieces / cm in a C 12 A 7 crystal synthesized by solid phase reaction in air at a temperature of 1200 ° C. using CaCO 3 and Al 2 O 3 or Al (OH) 3 as raw materials. It was discovered from electron spin resonance measurement that about 3 O 2 was included, and a model was proposed in which a part of free oxygen exists in the gauge in the form of O 2 (non-patent document). Reference 3).
H. Hosono and Y. Abe, Inorg. Chem. 26, 1193, 1997.

12は、融点1415℃の安定な酸化物であり、包接されるO の量を増加させ、可逆的な取り込み、放出が可能となれば、酸化促進材や殺菌材などとしての用途が開けるものと期待できる。 C 12 A 7 is a stable oxide having a melting point of 1415 ° C. If it increases the amount of O 2 − included and can be reversibly taken up and released, it can be used as an oxidation promoter or sterilizer. Can be expected to open up applications.

細野らは、更に、前記O を包接するC12について検討を行い、CaCO、Ca(OH)又はCaOと、Al又はAl(OH)とを原料に用い、酸素分圧10Pa以上、水蒸気分圧10Pa以下の乾燥酸化雰囲気下、1200℃以上1415℃未満に焼成し、固相反応させることで、活性酸素種であるO 及びOを1020個/cm以上の高濃度で包接するC12を得ている(特許文献1参照)。
特開2002―3218号公報。
Hosono et al. Further studied C 12 A 7 that includes O 2 , and used CaCO 3 , Ca (OH) 2 or CaO, and Al 2 O 3 or Al (OH) 3 as raw materials. O 2 and O which are active oxygen species are obtained by baking to 1200 ° C. or more and less than 1415 ° C. in a dry oxidation atmosphere having an oxygen partial pressure of 10 4 Pa or more and a water vapor partial pressure of 10 2 Pa or less to cause a solid phase reaction. C 12 A 7 which is included at a high concentration of 10 20 pieces / cm 3 or more is obtained (see Patent Document 1).
Japanese Patent Laid-Open No. 2002-3218.

しかし、細野らの見いだした高濃度に活性酸素種を含有するC12をそのまま使用する場合、例えば700℃以上の高温度に加熱しながら、負電荷を有するO やOを固体外部に引き出すためには、電界を印加することが必要であるため、化学物質又はカビの胞子の簡便な処理方法への適用が困難であった。 However, when C 12 A 7 containing active oxygen species at a high concentration found by Hosono et al. Is used as it is, for example, O 2 or O having a negative charge is solidified while being heated to a high temperature of 700 ° C. or higher. In order to draw out to the outside, it is necessary to apply an electric field, so that it has been difficult to apply to a simple treatment method of chemical substances or mold spores.

本発明は、上記のような公知技術の状況に鑑みてなされたものであり、C12固体中に安定に包接、貯蔵(以下、単に「包蔵」という)される活性酸素を常温・常圧下で有効に利用することで、空気中の有害な化学物質又はカビの胞子等の酸化反応を促進して、該化学物質を効率的に酸化・除去するための材料及び処理方法を提供することを目的とするものである。 The present invention has been made in view of the above-described state of the art, and active oxygen that is stably included and stored (hereinafter simply referred to as “encapsulation”) in a C 12 A 7 solid is treated at room temperature. Provided are a material and a treatment method for efficiently oxidizing and removing the chemical substance by promoting the oxidation reaction of harmful chemical substances in the air or mold spores by being effectively used under normal pressure. It is for the purpose.

即ち、本発明は、12CaO・7Alの組成式で表され、負電荷酸素原子(O)を1×1019個/cm以上含有する結晶質カルシウムアルミネートを85体積%以上含有し、しかも相対密度が55〜85%であることを特徴とする成形体である。 That is, the present invention contains 85% by volume or more of crystalline calcium aluminate represented by a composition formula of 12CaO · 7Al 2 O 3 and containing 1 × 10 19 negative-charge oxygen atoms (O ) or more / cm 3. And it is a molded object characterized by relative density being 55 to 85%.

本発明は、好ましくは、ハニカム構造であることを特徴とする前記の成形体である。 The present invention is preferably the above-mentioned formed body having a honeycomb structure.

本発明は、好ましくは、基材上に膜状に形成されていることを特徴とする前記の成形体である。 The present invention is preferably the above-mentioned molded product which is formed in a film shape on a substrate.

本発明は、Ca:Alのモル比が0.70:1〜1.40:1である原料粉末を、相対密度が50〜80%になるように成形した後、酸素分圧4×10Pa以上の雰囲気下、1000℃〜1200℃に加熱することを特徴とする前記の成形体の製造方法である。 In the present invention, a raw material powder having a Ca: Al molar ratio of 0.70: 1 to 1.40: 1 is molded to have a relative density of 50 to 80%, and then an oxygen partial pressure of 4 × 10 4 is used. In the method for producing a molded body, the heating is performed at 1000 ° C. to 1200 ° C. in an atmosphere of Pa or higher.

本発明は、被酸化性物質を、前記の成形体に、1体積%以上の酸素を含む雰囲気中、5〜300℃の条件の下で接触させることを特徴とする酸化反応促進方法である。 The present invention is a method for promoting an oxidation reaction, characterized in that an oxidizable substance is brought into contact with the molded article in an atmosphere containing 1% by volume or more of oxygen under a condition of 5 to 300 ° C.

本発明の成形体は、後述するとおりに、常温〜300℃の比較的低温及び常圧下において、活性酸素を固体表面及び/又は空気中に発生させることができるので、例えば、空気中の有害な化学物質やカビの胞子等を簡便に酸化、分解して除去するなどの用途に好適に用いることができる。 Since the molded product of the present invention can generate active oxygen on the solid surface and / or in the air at a relatively low temperature of normal temperature to 300 ° C. and normal pressure as described later, for example, harmful in the air. It can be suitably used for applications such as easy oxidation, decomposition and removal of chemical substances, mold spores and the like.

また、本発明の成形体の製造方法は、前記特徴のある成形体を確実に、安定して得ることができる特徴を有する。 Moreover, the manufacturing method of the molded object of this invention has the characteristic which can obtain the molded object with the said characteristic reliably and stably.

また、本発明の酸化反応促進方法は、前記特徴のある成形体を用いているので、活性酸素を常温〜300℃の比較的低温及び常圧下で発生しえるという特徴を示し、従来技術に比し格段と穏やかな条件下でも、所望の酸化反応を確実に促進できる効果が得られる。 In addition, since the oxidation reaction promoting method of the present invention uses the molded article having the characteristics described above, it exhibits the characteristic that active oxygen can be generated at a relatively low temperature of normal temperature to 300 ° C. and normal pressure, compared with the prior art. Even under extremely mild conditions, it is possible to reliably promote the desired oxidation reaction.

本発明者は、C12中のO又はO を利用して有害な被酸化性物質を酸化することを目的にいろいろ検討した結果、Oが重要な働きをしているらしいこと、そして、C12はそのままではOが安定に内部に包蔵されていて、700℃以上の高温でしかも電界を印加しないとOを外部に取り出せないが、相対密度が55〜85%の成形体として、雰囲気を特定な条件下、しかも従来技術に比べて穏やかな5〜300℃、0.8〜1.5atmという条件下とするときにはOを外部に取り出すことができ、被酸化性物質を酸化して無害化できるという知見を得て、本発明に至ったものである。 The present inventors have, C 12 O in A 7 - or O 2 - result of variously studied for the purpose of oxidizing the harmful oxidizable substances utilizing, O - seems has an important role In addition, if C 12 A 7 is used as it is, O is stably embedded in the inside, and O cannot be extracted to the outside unless an electric field is applied at a high temperature of 700 ° C. or higher, but the relative density is 55 to 85. %, It is possible to take out O to the outside when the atmosphere is under specific conditions, and at 5 to 300 ° C. and 0.8 to 1.5 atm, which is milder than that of the prior art. The inventors have obtained the knowledge that an oxidizing substance can be oxidized and rendered harmless, and have reached the present invention.

即ち、本発明は、C12の組成式で表され、負電荷酸素原子(後述の理由に基づき、Oを示すものとする)を1×1019個/cm以上含有する結晶質カルシウムアルミネートを85体積%以上含有し、しかも相対密度が55〜85%であることを特徴とする成形体である。前記構成を満たすときに、常温付近の比較的低温(5〜300℃)、常圧下(0.8〜1.5atm)であっても被酸化性物質を容易に酸化することができる。 That is, the present invention is a crystalline material represented by a composition formula of C 12 A 7 and containing 1 × 10 19 atoms / cm 3 or more of negatively charged oxygen atoms (which represents O based on the reason described later). The molded body is characterized in that it contains 85% by volume or more of calcium aluminate and has a relative density of 55 to 85%. When the above configuration is satisfied, the oxidizable substance can be easily oxidized even at a relatively low temperature (about 5 to 300 ° C.) near normal temperature and under normal pressure (0.8 to 1.5 atm).

常温付近の比較的低温でしかも電界をかけずにOがC12内部から出て被酸化性物質を酸化できることの理由については、本発明者は、相対密度が55〜85%の成形体にして所定量の酸素を含む雰囲気下に配することによって、C12内部に包蔵されていたOと雰囲気中の酸素との間で下式に示す反応が生じてOが表面に露出し、そこで被酸化性物質と接触、反応することができると推察している。
4O(内部) + O(雰囲気中) → 2O (内部)+ 2O(表面)
なお、Oが被酸化性物質と接触、反応することによってC12中に負電荷の欠損が生じるが、C12表面における被酸化性物質とOの反応(酸化)の結果、余剰となった電子(e)がC12内部において、O と下式に示すような電子の授受を行うことによって、補填されると考えられる。
(内部)+3e → 2O2―(内部)
O without the relatively low temperatures, yet electric field near room temperature - for reasons that can oxidize oxidizable substances out of the interior C 12 A 7, the present inventors have molded a relative density of 55 to 85% When placed in an atmosphere containing a predetermined amount of oxygen as a body, the reaction represented by the following formula occurs between O contained in C 12 A 7 and oxygen in the atmosphere, so that O It is inferred that it can contact and react with oxidizable substances.
4O - (internal) + O 2 (in the atmosphere) → 2O 2 - (internal) + 2O - (surface)
Incidentally, O - contact with oxidizable substances, although loss of negative charge in the C 12 A 7 is generated by reacting, C 12 oxidizable substance and O in the A 7 surface - a result of the reaction (oxidation) of The surplus electrons (e ) are considered to be compensated by exchanging electrons as shown in the following formula with O 2 in C 12 A 7 .
O 2 - (internal) + 3e - → 2O 2- (internal)

本発明に於いて、C12の組成式で表される結晶質カルシウムアルミネートは、成形体中に85体積%以上含まれることが必要で、前記効果がより明瞭になるので90体積%以上含有することが好ましい。尚、成形体の前記C12以外の部分は、前記発明の効果を阻害しないものであればどのようなものであっても良く、例えば、非晶質カルシウムアルミネートや、C12とは異なるCaO・Al(CA)、3CaO・Al(CA)等の結晶質カルシウムアルミネートであっても良い。 In the present invention, the crystalline calcium aluminate represented by the composition formula of C 12 A 7 needs to be contained in the molded body in an amount of 85% by volume or more, and the above effect becomes clearer. It is preferable to contain above. Note that the C 12 A 7 other parts of the molded body may be any as long as it does not inhibit the effect of the invention, for example, amorphous calcium aluminate, C 12 A 7 It may be a crystalline calcium aluminate such as CaO.Al 2 O 3 (CA) and 3CaO.Al 2 O 3 (C 3 A) which is different from the above.

また、負電荷酸素原子の含有量については、酸化反応が明瞭に促進されるためには、1×1019個/cm以上であれば発明の目的を達成する上で十分であるが、1×1020個/cm以上であることが好ましい。 As for the content of negatively charged oxygen atoms, in order that the oxidation reaction is clearly promoted, 1 × 10 19 atoms / cm 3 or more is sufficient to achieve the object of the invention. × 10 20 pieces / cm 3 or more is preferable.

本発明に於いて、成形体の相対密度は55〜85%である。相対密度とは、成形体のかさ密度を、当該成形体を構成する結晶の理論密度で除した値であるが、成形体が2種以上の結晶から構成される場合には、各結晶の体積比率の重み付けをした値を基準に用いる。尚、C12結晶の理論密度(結晶密度)は2.676g/cmであり、成形体がC12結晶からのみ構成されている場合、相対密度55〜85%の成形体とは、かさ密度が1.472〜2.275g/cmの成形体を示す。 In the present invention, the relative density of the molded body is 55 to 85%. The relative density is a value obtained by dividing the bulk density of the molded body by the theoretical density of the crystals constituting the molded body, but when the molded body is composed of two or more kinds of crystals, the volume of each crystal. A ratio weighted value is used as a reference. The theoretical density (crystal density) of the C 12 A 7 crystal is 2.676 g / cm 3 , and when the molded body is composed only of C 12 A 7 crystals, the molded body having a relative density of 55 to 85% Indicates a molded body having a bulk density of 1.472 to 2.275 g / cm 3 .

本発明の成形体は、相対密度が55〜85%であり、このときに前記の効果が生じるが、その理由について発明者は次のように推定している。相対密度が85%以下になると、成形体に含まれる気孔が増加して、これらが相互に連結するようになり、成形体表面から連通する気孔すなわち開気孔の割合が増える。このため成形体内部においても被酸化性物質と接触し得る表面積が大きくなる。Oと被酸化性物質との接触・反応は、成形体の表面もしくはその近傍で生じると考えられるため、前記表面積の増大によって、前記接触・反応が促進されて、本発明の効果が得られる。 The molded body of the present invention has a relative density of 55 to 85%, and at this time, the above-described effect occurs. The reason for this is estimated by the inventors as follows. When the relative density is 85% or less, the pores contained in the molded body are increased and these are connected to each other, and the ratio of pores communicating from the molded body surface, that is, open pores, is increased. For this reason, the surface area which can contact with an oxidizable substance also becomes large inside a molded object. Since the contact / reaction between O and the oxidizable substance is considered to occur at or near the surface of the molded body, the contact / reaction is promoted by the increase in the surface area, and the effects of the present invention can be obtained. .

一方、相対密度が55%未満であると、成形体の強度が著しく低下し、取り扱いが困難になるし、85%を超えると、成形体が緻密になり前記表面積が著しく低下するため、前記接触・反応が円滑に進まなくなる。このため何れも本発明には適さなくなる。 On the other hand, if the relative density is less than 55%, the strength of the molded product is remarkably reduced and handling becomes difficult. If the relative density exceeds 85%, the molded product becomes dense and the surface area is significantly reduced.・ The reaction does not proceed smoothly. For this reason, none of them is suitable for the present invention.

本発明の成形体は、塊状物でも構わないが、酸化反応が成形体表面で生じることから、外表面の面積もなるべく大きいことが好ましい。したがって、後述するハニカム構造としたり、膜状成形体とする等のより好ましい実施態様が達成される。 The molded body of the present invention may be a lump, but since the oxidation reaction occurs on the surface of the molded body, the area of the outer surface is preferably as large as possible. Therefore, a more preferable embodiment such as a honeycomb structure described later or a film-shaped formed body is achieved.

ハニカム構造体の場合、外周部で強度を確保できるので被酸化性物質と接触する内部隔壁は、表面積を大きくするためなるべく薄い方が好ましいが、薄すぎると製造中に破損してしまう。このためハニカム構造を形成する内部隔壁の厚さは0.2〜0.7mmであることが好ましい。 In the case of a honeycomb structure, the strength can be ensured at the outer peripheral portion, so that the inner partition wall contacting the oxidizable material is preferably as thin as possible in order to increase the surface area, but if it is too thin, it will be damaged during production. For this reason, it is preferable that the thickness of the internal partition which forms a honeycomb structure is 0.2-0.7 mm.

膜状成形体の場合は、基材によって強度が確保できるので、自立しているハニカム構造体の内部隔壁よりも更に薄くすることが可能であり、現実に製膜しやすい厚さとして1〜200μm程度が好ましく選択される。前記基材としては、当該成形物が300℃以下に加温されて効果を一層発揮しやすいことを考慮して、耐熱性を有するものが望ましく、例えば石英、ジルコニア、ムライト、アルミナ、マグネシア等が挙げられ、熱衝撃に強く安価であることから、特に石英が好ましい。 In the case of a film-shaped formed body, the strength can be ensured by the base material, so that it can be made thinner than the internal partition walls of the self-supporting honeycomb structure, and the thickness that is easy to form a film is actually 1 to 200 μm. The degree is preferably selected. As the base material, in view of the fact that the molded product is heated to 300 ° C. or less and more easily exerts its effect, it is desirable to have heat resistance, such as quartz, zirconia, mullite, alumina, magnesia, etc. Quartz is particularly preferable because it is resistant to thermal shock and is inexpensive.

次に本発明の成形体の製造方法について説明する。 Next, the manufacturing method of the molded object of this invention is demonstrated.

Ca源の物質としては、例えば石灰石(CaCO)、消石灰(Ca(OH))または生石灰(CaO)などがあげられる。またAl源の物質としてはアルミナ(Al)、水酸化アルミニウム(Al(OH))、ボーキサイトまたはアルミ残灰などがあげられ、これらのCa源とAl源を混合して用いても良いが、Ca:Alのモル比が0.70:1〜1.40:1であれば、最初からCa及びAlの双方を含む物質、例えば非晶質カルシウムアルミネートや、CA及び/又はCA等の他のカルシウムアルミネートを一部含む結晶質のC12であっても良い。もちろん結晶質C12だけからなるものであっても良い。これらのうち入手が容易であり安全性が高いことから、特にCaCO及びAlの混合物を好適に使用することができる。 Examples of the Ca source material include limestone (CaCO 3 ), slaked lime (Ca (OH) 2 ), and quicklime (CaO). Examples of the Al source material include alumina (Al 2 O 3 ), aluminum hydroxide (Al (OH) 3 ), bauxite, or aluminum residual ash. These Ca source and Al source may be used in combination. If the molar ratio of Ca: Al is 0.70: 1 to 1.40: 1, a material containing both Ca and Al from the beginning, such as amorphous calcium aluminate, CA and / or C It may be crystalline C 12 A 7 partially containing other calcium aluminate such as 3 A. Of course, it may be composed of only crystalline C 12 A 7 . Among these, since it is easy to obtain and has high safety, a mixture of CaCO 3 and Al 2 O 3 can be particularly preferably used.

前記の原料は粉末として、そのままプレス成形機や冷間静水圧プレス(CIP)機を用いて成形しても良いが、焼成前のグリーン成形体の時点において強度を付与して取り扱いやすくするため、必要に応じてバインダーを配合しても良い。 The raw material may be molded as a powder as it is using a press molding machine or a cold isostatic press (CIP) machine, but in order to give strength and easy handling at the time of the green molded body before firing, You may mix | blend a binder as needed.

バインダーとしては、ポリビニルアルコール、ニトロセルロース、ポリアクリル酸エステル、ポリビニルブチラール、ポリメタクリル酸エステルあるいはエチルセルロース、メチルセルロース等の物質が用いられる。 As the binder, substances such as polyvinyl alcohol, nitrocellulose, polyacrylic acid ester, polyvinyl butyral, polymethacrylic acid ester, ethyl cellulose, or methyl cellulose are used.

バインダーは、メタノール、エタノール、イソプロパノール、n−ブタノール等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類、ジオキサン、テトラヒドロフラン等のエーテル類、メチルセロソルブ、ブチルセロソルブ等のセロソルブ類、n−へキサン、シクロヘキサン等の炭化水素類、クロロホルム、塩化メチレン等の塩素化炭化水素類、トルエン、キシレン等の芳香族類等の有機溶剤や水に混合した溶液として用いることができる。 Binders include alcohols such as methanol, ethanol, isopropanol and n-butanol, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, esters such as methyl acetate, ethyl acetate and butyl acetate, ethers such as dioxane and tetrahydrofuran , Organic solvents such as cellosolves such as methyl cellosolve and butyl cellosolve, hydrocarbons such as n-hexane and cyclohexane, chlorinated hydrocarbons such as chloroform and methylene chloride, aromatics such as toluene and xylene, and water It can be used as a mixed solution.

前記溶液の適量を、原料粉末と混合することによって粘土状もしくはスラリー状の原料を作製できる。複雑な形状のグリーン成形体を成形する際には、スラリー状の原料を用い、鋳込み成形法によって成形することができる。特にハニカム構造のグリーン成形体の場合は粘土状の原料を用い、押し出し法によって成形すると良く、また膜状のグリーン成形体の場合はスラリー状の原料を用い、ディップコート法、ドクターブレード法等によって成形すると良い。 A clay or slurry raw material can be produced by mixing an appropriate amount of the solution with the raw material powder. When a green molded body having a complicated shape is formed, it can be formed by a casting method using a slurry raw material. In particular, in the case of a green molded body with a honeycomb structure, a clay-like raw material is used, and it is good to mold by an extrusion method. In the case of a film-like green molded body, a slurry-like raw material is used, and a dip coating method, a doctor blade method, It is good to mold.

グリーン成形体の相対密度は、最終的な成形体とは異なり50〜80%であることが選択される。50%未満では強度が小さくグリーン成形体の取り扱いが困難になる。また80%を超えると、加熱後の成形体が緻密になり表面積が著しく低下するため被酸化性物質との反応が円滑に進まなくなる。このため何れも本発明には適さない。また、ここで言う相対密度の定義は前述した通りであるが、ただ、バインダー部分の理論密度についてはその種類によらず1.0g/cmとした。 The relative density of the green molded body is selected to be 50-80% unlike the final molded body. If it is less than 50%, the strength is small and it becomes difficult to handle the green molded body. On the other hand, if it exceeds 80%, the compact after heating becomes dense and the surface area is remarkably reduced, so that the reaction with the oxidizable substance does not proceed smoothly. For this reason, none is suitable for the present invention. In addition, the definition of the relative density referred to here is as described above. However, the theoretical density of the binder portion is 1.0 g / cm 3 regardless of the type.

グリーン成形体は、酸素分圧4×10Pa以上の雰囲気下1000℃〜1200℃に加熱される。酸素分圧が4×10Pa未満、又は加熱温度が1000℃未満であると、成形物には1×1019個/cm未満の負電荷酸素原子(O)しか含まれない。又加熱温度が1200℃を超えると、成形物の緻密化が進み相対密度が85%を超えてしまい、表面積が著しく低下する。このため何れも本発明には適さない。 The green molded body is heated to 1000 ° C. to 1200 ° C. in an atmosphere having an oxygen partial pressure of 4 × 10 4 Pa or more. When the oxygen partial pressure is less than 4 × 10 4 Pa or the heating temperature is less than 1000 ° C., the molded product contains only 1 × 10 19 atoms / cm 3 of negatively charged oxygen atoms (O ). On the other hand, when the heating temperature exceeds 1200 ° C., densification of the molded product proceeds and the relative density exceeds 85%, and the surface area is significantly reduced. For this reason, none is suitable for the present invention.

本発明の成形体は、常温付近の比較的低温(5〜300℃)及び常圧下(0.8〜1.5atm)で負電荷酸素原子(O)を発生し、被酸化性物質を酸化することを促進する特徴を示す。 The molded body of the present invention generates negatively charged oxygen atoms (O ) at a relatively low temperature (5-300 ° C.) and normal pressure (0.8-1.5 atm) near normal temperature, and oxidizes the oxidizable substance. Features that promote

被酸化性物質を酸化する際に、1体積%以上の酸素を含む雰囲気中、5℃〜300℃の条件を選択する場合には、気体状、粉塵状又は霧状の被酸化性物質をより一層確実に酸化させることができるので好ましい。尚、雰囲気中の酸素濃度については5体積%以上がより好ましい。 When oxidizing the oxidizable substance, in the atmosphere containing 1% by volume or more of oxygen, when selecting a condition of 5 ° C. to 300 ° C., the gaseous, dusty or mist oxidizable substance is more This is preferable because it can be more reliably oxidized. The oxygen concentration in the atmosphere is more preferably 5% by volume or more.

(実施例1〜5)炭酸カルシウム(CaCO)粉末と、アルミナ(γ−Al)粉末とを、CaとAlのモル比がCa:Al=6:7(≒0.86:1)になるように混合した後、金型と油圧プレスを用い、圧力10MPaをかけて、直径50mm、厚さ5mmの円板形状のグリーン成形体を作製した。円板の寸法、重量並びにCaCO及びγ−Alの真比重から求めた前記グリーン成形体の相対密度は65%であった。 (Examples 1 to 5) Calcium carbonate (CaCO 3 ) powder and alumina (γ-Al 2 O 3 ) powder were mixed at a molar ratio of Ca: Al of Ca: Al = 6: 7 (≈0.86: 1). Then, using a mold and a hydraulic press, a pressure of 10 MPa was applied to produce a disk-shaped green molded body having a diameter of 50 mm and a thickness of 5 mm. The relative density of the green molded body determined from the size and weight of the disc and the true specific gravity of CaCO 3 and γ-Al 2 O 3 was 65%.

前記グリーン成形体を酸素分圧8.1×10Paの雰囲気下、1150℃で2時間加熱し、冷却後円板状の成形体が得られた。前記成形体の一部を粉砕してX線回折測定を行ったところ、結晶質のC12を90体積%含み、残部が3CaO・Al(CA)であった。また室温及び77KでのESRスペクトルを測定し、それぞれの吸収バンドの強度からO イオンラジカル及びOイオンラジカルの濃度を求めたところ、それぞれ1×1020cm−3であった。また、寸法、重量並びにC12とCAの結晶密度から、成形体の相対密度を求めたところ78%であった。 The green molded body was heated at 1150 ° C. for 2 hours in an oxygen partial pressure of 8.1 × 10 4 Pa. After cooling, a disk-shaped molded body was obtained. A part of the molded body was pulverized and subjected to X-ray diffraction measurement. As a result, 90% by volume of crystalline C 12 A 7 was contained, and the balance was 3CaO · Al 2 O 3 (C 3 A). The measured ESR spectrum at room temperature and 77K, the intensity of each absorption bands O 2 - ion radical and O - was determined the concentration of ions radicals were respectively 1 × 10 20 cm -3. Further, when the relative density of the molded product was determined from the dimensions, weight, and crystal density of C 12 A 7 and C 3 A, it was 78%.

前記成形体を、内径45mmの透明石英管に、成形体外周が石英管内壁に接するように挿入し、成形体外周と石英管内壁の間を、耐熱エポキシ系接着剤を用いて封止した。石英管の一方の端から、VOCの一種であるアセトアルデヒドを50ppm及び表1に示す濃度の酸素ガスを含み、残部はアルゴンガスからなる混合ガスを導入した。次いで常温のままで保持、若しくは所定温度まで石英管を加熱した後、導入側のガス圧を0.12MPaまで加圧して石英管の他方の常圧(0.10MPa)側の端まで、成形体を介して導入ガスを浸透させた。常圧側端には外気との間に逆止弁を設け、導入側端から浸透してきたガスによって押し出された外気が再び管内に逆流しないようにした。常圧側端におけるアルゴンガス濃度が導入側の端とほぼ等しくなった時点で、導入ガスが充分浸透したとみなし、この時点における常圧端側のアセトアルデヒド濃度を測定した。結果を表1に示した。 The molded body was inserted into a transparent quartz tube having an inner diameter of 45 mm so that the outer periphery of the molded body was in contact with the inner wall of the quartz tube, and the space between the outer periphery of the molded body and the inner wall of the quartz tube was sealed with a heat-resistant epoxy adhesive. From one end of the quartz tube, 50 ppm of acetaldehyde, which is a kind of VOC, and oxygen gas having a concentration shown in Table 1 were introduced, and a mixed gas consisting of argon gas was introduced into the balance. Next, after holding the quartz tube at room temperature or heating the quartz tube to a predetermined temperature, the gas pressure on the introduction side is increased to 0.12 MPa, and the molded body is moved to the other atmospheric pressure (0.10 MPa) side end of the quartz tube. The introduced gas was allowed to permeate through. A check valve is provided between the atmospheric pressure side end and the outside air so that the outside air pushed out by the gas permeating from the introduction side end does not flow back into the pipe again. When the argon gas concentration at the atmospheric pressure side end became substantially equal to the introduction side end, it was considered that the introduced gas had sufficiently permeated, and the acetaldehyde concentration at the atmospheric pressure end side at this point was measured. The results are shown in Table 1.

Figure 0004708857
Figure 0004708857

(比較例1〜5)実施例1と同様にして、CaCO粉末と、γ−Al粉末から、直径50mm、厚さ5mmの円板形状で、相対密度62%のグリーン成形体を作製した。これを、酸素分圧3×10Paの雰囲気下、1220℃で2時間加熱し、冷却後円板状の成形体を得た。また、前記成形体の一部を粉砕してX線回折測定を行ったところ、結晶質のC12を80体積%含み、残部がほぼ同量(10体積%)のCAとCAであった。ESRスペクトルの吸収バンド強度からO イオンラジカル及びOイオンラジカルの濃度を求めたところ、それぞれ5×1018cm−3であった。寸法、重量並びにC12とCA並びにCAの結晶密度から、成形体の相対密度を求めたところ88%であった。 (Comparative Examples 1 to 5) In the same manner as in Example 1, from a CaCO 3 powder and a γ-Al 2 O 3 powder, a green molded body having a diameter of 50 mm and a thickness of 5 mm and a relative density of 62% was obtained. Produced. This was heated at 1220 ° C. for 2 hours in an atmosphere with an oxygen partial pressure of 3 × 10 4 Pa, and after cooling, a disk-shaped molded body was obtained. Further, when a part of the molded body was crushed and subjected to X-ray diffraction measurement, 80% by volume of crystalline C 12 A 7 was contained, and the balance was approximately the same amount (10% by volume) of C 3 A and CA. Met. From the absorption band intensity ESR spectrum O 2 - ion radical and O - was determined the concentration of ions radicals were respectively 5 × 10 18 cm -3. The relative density of the molded product was found to be 88% from the dimensions, weight, and crystal density of C 12 A 7 and C 3 A and CA.

前記成形体を、実施例1と同様にして石英管内部に装填し、アセトアルデヒド、酸素及びアルゴンの混合ガスを一方の端から導入し、他方の端で成形体内を浸透してきたアセトアルデヒドの濃度を測定した。これらの結果は表1に示した。 The molded body was loaded into the quartz tube in the same manner as in Example 1, a mixed gas of acetaldehyde, oxygen and argon was introduced from one end, and the concentration of acetaldehyde permeating the molded body at the other end was measured. did. These results are shown in Table 1.

(実施例6)Ca:Alのモル比が1.40:1であり、これらを非晶質カルシウムアルミネートとして合計93.3質量%含み、残部がSiO、TiO、Fe或いはMgO等からなる粉末と、エタノールと、バインダーであるポリビニルブチラール(電気化学工業(株)社製、#3000−K)とを、質量比で100:100:0.05になるように混合してスラリーを作製した。次に、前記スラリーを原料に用い、石膏型を用いて鋳込み成形を行い、外径12mm、肉厚1.5mm、長さ200mmの試験管形状のグリーン成形体を得た。80℃で6時間乾燥した後、成形体の寸法、重量及び粉末の真比重から求めた前記グリーン成形体の相対密度は、54%であった。 (Example 6) The molar ratio of Ca: Al is 1.40: 1, these contain a total of 93.3% by mass as amorphous calcium aluminate, and the balance is SiO 2 , TiO 2 , Fe 2 O 3 or A powder composed of MgO or the like, ethanol, and polyvinyl butyral (# 3000-K, manufactured by Denki Kagaku Kogyo Co., Ltd.) as a binder are mixed at a mass ratio of 100: 100: 0.05. A slurry was prepared. Next, the slurry was used as a raw material, and cast molding was performed using a plaster mold to obtain a test tube-shaped green molded body having an outer diameter of 12 mm, a wall thickness of 1.5 mm, and a length of 200 mm. After drying at 80 ° C. for 6 hours, the relative density of the green molded body determined from the size and weight of the molded body and the true specific gravity of the powder was 54%.

前記グリーン成形体を、9.5×10Paの酸素雰囲気下、1200℃で2時間加熱し、試験管形状の成形体を得た。これを一部粉砕してX線回折測定を行ったところ、結晶質のC12を87体積%含み、残部がCAであった。ESRスペクトルの吸収バンドの強度から求めたOイオンラジカルの濃度は3.5×1020cm−3、寸法、重量並びにC12とCAの結晶密度から、成形体の相対密度を求めたところ83%であった。 The green molded body was heated at 1200 ° C. for 2 hours in an oxygen atmosphere of 9.5 × 10 4 Pa to obtain a test tube-shaped molded body. This was partially pulverized and subjected to X-ray diffraction measurement. As a result, 87% by volume of crystalline C 12 A 7 was contained, and the balance was C 3 A. The O - ion radical concentration determined from the intensity of the absorption band in the ESR spectrum is 3.5 × 10 20 cm −3 , the size and weight, and the relative density of the compact from the crystal density of C 12 A 7 and C 3 A. When calculated, it was 83%.

この成形体の内側に、VOCの一種であるホルムアルデヒド(HCHO)を50ppm及び酸素ガスを5体積%含み、残部はアルゴンガスからなる混合ガスを導入した。次いで常温のまま導入側のガス圧を0.15MPaまで加圧して成形体の外側まで導入ガスを浸透させた。試験管の外側をフッ素系不活性液体(アウジモント(株)社製、ガルデンLS230)に浸し、内側から浸透してくる前記混合ガスを液上で捕集し、HCHO濃度を測定したところ、1ppm以下であった。 Inside this molded body, a mixed gas composed of 50 ppm of formaldehyde (HCHO), which is a kind of VOC, and 5% by volume of oxygen gas, and the balance consisting of argon gas was introduced. Subsequently, the gas pressure on the introduction side was increased to 0.15 MPa while maintaining the normal temperature, and the introduction gas was permeated to the outside of the molded body. When the outside of the test tube is immersed in a fluorine-based inert liquid (Audmont Co., Ltd., Galden LS230), the mixed gas permeating from the inside is collected on the liquid, and the HCHO concentration is measured. Met.

(比較例6)2.0×10Paの酸素雰囲気下で加熱した以外は、実施例6と同様にして試験管形状の成形体を作製したところ、Oイオンラジカルの濃度が1×1018cm−3の成形体が得られた。これを用い、実施例6と同様にして捕集したガス中のHCHO濃度は、35ppmであった。 But heated in an oxygen atmosphere (Comparative Example 6) 2.0 × 10 4 Pa, were manufactured molded body tube shaped in the same manner as in Example 6, O - concentration of ion radicals of 1 × 10 A molded body of 18 cm −3 was obtained. Using this, the HCHO concentration in the gas collected in the same manner as in Example 6 was 35 ppm.

(実施例7)炭酸カルシウム(CaCO)粉末と、アルミナ(γ−Al)粉末を、CaとAlのモル比がCa:Al=0.82:1になるように混合した後、この混合粉末と水及びバインダーであるメチルセルロース(MC)が、重量比で100:35:16になるように、ヘンシェルミキサーを用いて混合し、粘土状の組成物を得た。これを押し出し成形機を用い、3mm×3mmの正方形の目開きを有し、隔壁肉厚1mm、断面寸法・形状が43mm×43mmの正方形で、長さ120mmの直方体型ハニカム状グリーン成形体とした。これを120℃で3時間乾燥した後、寸法、重量並びにCaCO、γ−Al及びMCの理論密度から求めた前記グリーン成形体の相対密度は57%であった。 (Example 7) After mixing calcium carbonate (CaCO 3 ) powder and alumina (γ-Al 2 O 3 ) powder so that the molar ratio of Ca and Al is Ca: Al = 0.82: 1, The mixed powder, water, and methyl cellulose (MC) as a binder were mixed using a Henschel mixer so that the weight ratio was 100: 35: 16, to obtain a clay-like composition. Using an extrusion molding machine, this was a rectangular parallelepiped honeycomb-like green molded body having a square opening of 3 mm × 3 mm, a partition wall thickness of 1 mm, a cross-sectional dimension / shape of 43 mm × 43 mm, and a length of 120 mm. . This was dried 3 hours at 120 ° C., size, weight and CaCO 3, the relative density of the green compact obtained from the theoretical density of gamma-Al 2 O 3 and MC was 57%.

前記グリーン成形体を、9.0×10Paの酸素雰囲気下、1100℃で2時間加熱し、ハニカム状の成形体が得られた。これを一部粉砕してX線回折測定を行ったところ、結晶質のC12を97体積%含み、残部がCaO・Al(CA)であった。ESRスペクトルの吸収バンドの強度から求めたOイオンラジカルの濃度は4×1020cm−3、寸法、重量並びにC12とCAの結晶密度から、成形体の相対密度を求めたところ65%であった。 The green molded body was heated at 1100 ° C. for 2 hours in an oxygen atmosphere of 9.0 × 10 4 Pa to obtain a honeycomb-shaped molded body. This was partially pulverized and subjected to X-ray diffraction measurement. As a result, 97% by volume of crystalline C 12 A 7 was contained, and the balance was CaO · Al 2 O 3 (CA). The O - ion radical concentration determined from the intensity of the absorption band of the ESR spectrum was 4 × 10 20 cm −3 , the size and weight, and the relative density of the molded body was determined from the crystal density of C 12 A 7 and CA. %Met.

空気中にクロカビ及びススカビの胞子を浮遊させたガスを、室温にて上記ハニカム成形体中を通過させた後、温度25℃、相対湿度99%の培養槽中に導入し、胞子を培養した。4週間後に培養により表面に生じたカビの発育状態を実体顕微鏡で観察した結果、50倍の顕微鏡ではカビの発育が殆ど認められなかった。 A gas in which spore mold and spore mold were suspended in the air was allowed to pass through the honeycomb molded body at room temperature, and then introduced into a culture tank having a temperature of 25 ° C. and a relative humidity of 99% to culture the spores. As a result of observing the growth state of the mold produced on the surface after culturing with a stereomicroscope after 4 weeks, almost no mold growth was observed with a 50 × microscope.

(比較例7)グリーン成形体の加熱条件を、2.0×10Paの酸素雰囲気及び1220℃の温度とした以外は実施例7と同様にしてハニカム状の成形体を作製した。これを一部粉砕してX線回折測定を行ったところ、結晶質のC12を80体積%含み、残部がCAであり、ESRスペクトルの吸収バンドの強度から求めたOイオンラジカルの濃度は5×1018cm−3、寸法、重量並びにC12とCAの結晶密度から求めた相対密度は86%であった。これを用い、実施例6と同様にしてカビの胞子の培養を行った結果、肉眼で明白にカビの発育が認められた。 (Comparative Example 7) A honeycomb-shaped molded body was manufactured in the same manner as in Example 7 except that the heating condition of the green molded body was set to an oxygen atmosphere of 2.0 × 10 4 Pa and a temperature of 1220 ° C. This was carried out by partially grinding X-ray diffraction measurement, a crystalline C 12 A 7 of containing 80 vol%, the balance is CA, O was determined from intensity of the absorption bands of ESR spectra - ion radical The concentration was 5 × 10 18 cm −3 , the dimensions and weight, and the relative density determined from the crystal density of C 12 A 7 and CA was 86%. Using this, mold spores were cultured in the same manner as in Example 6. As a result, mold growth was clearly observed with the naked eye.

(実施例8)酸化カルシウム(CaO)粉末と、γ−Al粉末を、CaとAlのモル比がCa:Al=0.82:1になるように混合した後、大気中、1300℃で3時間焼成して白色粉末を得た。 (Example 8) Calcium oxide (CaO) powder and γ-Al 2 O 3 powder were mixed so that the molar ratio of Ca to Al was Ca: Al = 0.82: 1. The powder was baked at 3 ° C. for 3 hours to obtain a white powder.

これをさらに酸素分圧8.1×10Paの雰囲気下、1250℃で2時間加熱し、冷却後焼結体の一部を粉砕してX線回折測定を行ったところ、C12を92体積%含み、残部がCAとCAからなる混合物であった。また、ESRスペクトルの吸収バンドの強度からOイオンラジカルの濃度を求めたところ、1×1020cm−3であった。 This was further heated at 1250 ° C. for 2 hours in an oxygen partial pressure of 8.1 × 10 4 Pa. After cooling, a part of the sintered body was pulverized and subjected to X-ray diffraction measurement. As a result, C 12 A 7 Was 92% by volume, and the balance was a mixture of CA and C 3 A. Moreover, when the density | concentration of O < - > ion radical was calculated | required from the intensity | strength of the absorption band of an ESR spectrum, it was 1 * 10 < 20 > cm < -3 >.

前記焼結体を、ボールミルを用いてエタノール中で湿式粉砕し、乾燥することによって、比表面積2.1m/gの粉末を得た。 The sintered body was wet pulverized in ethanol using a ball mill and dried to obtain a powder having a specific surface area of 2.1 m 2 / g.

この粉末を、エタノール及びバインダーであるポリビニルブチラール(電気化学工業(株)社製、#3000−K)と、重量比で100:100:0.05になるように混合してスラリーを作製した。このスラリーを外径10mm、内径8mm、長さ300mmの不透明石英製円筒にディップコート法にて塗布した後、80℃で4時間乾燥し、塗布膜の肉厚、重量及び粉末の真比重から求めた塗布膜の相対密度は、52%であった。 This powder was mixed with ethanol and polyvinyl butyral as a binder (manufactured by Denki Kagaku Kogyo Co., Ltd., # 3000-K) in a weight ratio of 100: 100: 0.05 to prepare a slurry. This slurry was applied to an opaque quartz cylinder having an outer diameter of 10 mm, an inner diameter of 8 mm, and a length of 300 mm by dip coating, followed by drying at 80 ° C. for 4 hours, and obtained from the thickness and weight of the coating film and the true specific gravity of the powder. The relative density of the coated film was 52%.

塗布膜を有する石英製円筒を、9.0×10Paの酸素雰囲気下、1100℃で3時間加熱し、不透明石英製円筒を基材とする、厚さ100μmの膜状成形体を得た。膜の一部を剥ぎ取ってX線回折測定を行ったところ、結晶質のC12を95体積%含み、残部が5CaO・3Al(C)であった。ESRスペクトルの吸収バンドの強度から求めたOイオンラジカルの濃度は5×1020cm−3、塗布膜の肉厚、重量並びにC12とCの結晶密度から、相対密度を求めたところ82%であった。 A quartz cylinder having a coating film was heated at 1100 ° C. for 3 hours in an oxygen atmosphere of 9.0 × 10 4 Pa to obtain a film-like molded body having a thickness of 100 μm and using an opaque quartz cylinder as a base material. . When a part of the film was peeled off and X-ray diffraction measurement was performed, it was found that 95% by volume of crystalline C 12 A 7 was contained, and the balance was 5CaO.3Al 2 O 3 (C 5 A 3 ). The O - ion radical concentration determined from the intensity of the absorption band of the ESR spectrum is 5 × 10 20 cm −3 , and the relative density is determined from the thickness and weight of the coating film and the crystal density of C 12 A 7 and C 5 A 3. When calculated, it was 82%.

この不透明石英製円筒を基材とする成形体を37個作製し、断面が六角形になるように束ねて、外周部を耐熱エポキシ系接着剤で固定した。 Thirty-seven compacts based on this opaque quartz cylinder were produced, bundled so that the cross section was a hexagon, and the outer periphery was fixed with a heat-resistant epoxy adhesive.

喫煙室に煙道を設置し、ここに前記成形体の束を、束の外周部と煙道内壁の間に隙間が空かないように、充填物を挟んで装填した。喫煙室使用時に、前記成形体束の、喫煙室内側及び喫煙室外側の開口部直近における、有機酸、アルデヒド、ケトン、芳香族炭化水素、脂肪族炭化水素、ピリジン、フラン、インドール等の複素環化合物、多環芳香族炭化水素等の、VOCの全濃度をガスクロマトグラフィーにて測定、比較したところ、後者は前者の5%以下であった。 A flue was installed in a smoking room, and the bundle of the compacts was loaded with a filler sandwiched between the outer periphery of the bundle and the inner wall of the flue. Heterocycles such as organic acids, aldehydes, ketones, aromatic hydrocarbons, aliphatic hydrocarbons, pyridine, furan, indole, etc., in the vicinity of the opening on the inside and outside of the smoking room of the molded product bundle when used in a smoking room When the total concentrations of VOCs such as compounds and polycyclic aromatic hydrocarbons were measured and compared by gas chromatography, the latter was 5% or less of the former.

(比較例8)塗布膜の加熱条件を、2.0×10Paの酸素雰囲気及び1220℃の温度とした以外は実施例8と同様にして厚さ100μmの膜状成形体を得た。膜の一部を剥ぎ取ってX線回折測定を行ったところ、結晶質のC12を80体積%含み、残部がCであった。ESRスペクトルの吸収バンドの強度から求めたOイオンラジカルの濃度は8×1018cm−3、塗布膜の肉厚、重量並びにC12とCの結晶密度から、相対密度を求めたところ88%であった。 (Comparative Example 8) A film-shaped molded article having a thickness of 100 µm was obtained in the same manner as in Example 8 except that the heating condition of the coating film was changed to an oxygen atmosphere of 2.0 x 10 4 Pa and a temperature of 1220 ° C. When a part of the film was peeled off and X-ray diffraction measurement was performed, it contained 80% by volume of crystalline C 12 A 7 and the balance was C 5 A 3 . The O - ion radical concentration obtained from the intensity of the absorption band of the ESR spectrum is 8 × 10 18 cm −3 , and the relative density is determined from the thickness and weight of the coating film and the crystal density of C 12 A 7 and C 5 A 3. When calculated, it was 88%.

実施例8と同様にして、成形体の束を作製して喫煙室の煙道に装填し、喫煙室内側及び喫煙室外側の開口部直近における、VOCの全濃度を測定、比較したところ、後者は前者の80%であった。 In the same manner as in Example 8, a bundle of molded articles was prepared and loaded into the flue of the smoking room, and the total concentration of VOCs in the vicinity of the opening on the smoking room side and the outside of the smoking room was measured and compared. Was 80% of the former.

本発明の成形体は常温常圧下で、簡便に化学物質やカビの胞子等の被酸化性物質の酸化を促進することが可能である。従ってシックハウス症候群の原因物質とされるホルムアルデヒドをはじめとする揮発性有機物質(VOC)、たばこの煙あるいはカビの胞子等も常温、常圧下で酸化・無害化することが可能であるため、脱臭剤、フィルターあるいは家屋の壁材用材料等を初めいろいろな産業に利用でき有用である。 The molded article of the present invention can easily promote oxidation of oxidizable substances such as chemical substances and mold spores under normal temperature and pressure. Therefore, volatile organic substances (VOC) such as formaldehyde, which is a causative agent of sick house syndrome, cigarette smoke or mold spores can be oxidized and detoxified at normal temperature and pressure. It is useful because it can be used in various industries such as filters and materials for wall materials of houses.

本発明の成形体の製造方法に拠れば、前記特徴のある成形体を、確実に安定して提供することができるので、産業上非常に有用である。 According to the method for producing a molded article of the present invention, the molded article having the above characteristics can be provided reliably and stably, which is very useful industrially.

本発明の酸化反応促進方法は、前記の特定な成形体を用いているので、従来技術の場合に比べて穏やかな条件下で、有害な被酸化性物質を酸化し、無害化できるので産業上非常に有用である。 Since the oxidation reaction promoting method of the present invention uses the above-mentioned specific molded body, it can industrially detoxify and detoxify harmful oxidizable substances under mild conditions as compared with the prior art. Very useful.

Claims (5)

Ca:Alのモル比が0.70:1〜1.40:1である原料粉末を、相対密度が50〜80%になるように成形した後、酸素分圧4×10Pa以上の雰囲気下、1000℃〜1200℃に加熱することを特徴とする、12CaO・7Alの組成式で表され、負電荷酸素原子を1×1019個/cm以上含有する結晶質カルシウムアルミネートを85体積%以上含有し、しかも相対密度が55〜85%である成形体の製造方法。 After molding a raw material powder having a Ca: Al molar ratio of 0.70: 1 to 1.40: 1 so that the relative density is 50 to 80%, an atmosphere having an oxygen partial pressure of 4 × 10 4 Pa or more A crystalline calcium aluminate represented by a composition formula of 12CaO · 7Al 2 O 3 and containing 1 × 10 19 negative atoms / cm 3 or more, characterized by heating to 1000 ° C. to 1200 ° C. Of 85% by volume or more and a method for producing a molded body having a relative density of 55 to 85%. ハニカム構造体又膜状形成体とする請求項1記載の成形体の製造方法。   The method for producing a formed body according to claim 1, wherein the formed body is a honeycomb structure or a film-shaped formed body. 請求項1又は2記載の成形体の製造方法で得られうる成型体。   The molded object which can be obtained with the manufacturing method of the molded object of Claim 1 or 2. Ca:Alのモル比が0.70:1〜1.40:1である原料粉末を、相対密度が50〜80%になるように成形した後、酸素分圧4×10 Pa以上の雰囲気下、1000℃〜1200℃に加熱して得られうる、12CaO・7Alの組成式で表され、負電荷酸素原子を1×1019個/cm以上含有する結晶質カルシウムアルミネートを85体積%以上含有し、しかも相対密度が55〜85%である成形体に、被酸化性物質を、1体積%以上の酸素を含む雰囲気中、5〜300℃の条件の下で接触させることを特徴とする酸化反応促進方法。 After molding a raw material powder having a Ca: Al molar ratio of 0.70: 1 to 1.40: 1 so that the relative density is 50 to 80%, an atmosphere having an oxygen partial pressure of 4 × 10 4 Pa or more A crystalline calcium aluminate represented by a composition formula of 12CaO · 7Al 2 O 3 and containing 1 × 10 19 negative atoms / cm 3 or more , which can be obtained by heating to 1000 ° C. to 1200 ° C. Contacting an oxidizable substance with a compact containing 85% by volume or more and having a relative density of 55 to 85% in an atmosphere containing 1% by volume or more of oxygen under a condition of 5 to 300 ° C. An oxidation reaction promoting method characterized by the above. 前記成形体は、ハニカム構造体又膜状形成体である請求項4記載の酸化反応促進方法。 The compacts according to claim 4 Symbol mounting oxidation reaction method for promoting a honeycomb structure also filmy forming body.
JP2005142240A 2005-05-16 2005-05-16 Molded body, method for producing the same, and method for promoting oxidation reaction using the same Expired - Fee Related JP4708857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005142240A JP4708857B2 (en) 2005-05-16 2005-05-16 Molded body, method for producing the same, and method for promoting oxidation reaction using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005142240A JP4708857B2 (en) 2005-05-16 2005-05-16 Molded body, method for producing the same, and method for promoting oxidation reaction using the same

Publications (2)

Publication Number Publication Date
JP2006315930A JP2006315930A (en) 2006-11-24
JP4708857B2 true JP4708857B2 (en) 2011-06-22

Family

ID=37536924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005142240A Expired - Fee Related JP4708857B2 (en) 2005-05-16 2005-05-16 Molded body, method for producing the same, and method for promoting oxidation reaction using the same

Country Status (1)

Country Link
JP (1) JP4708857B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5297208B2 (en) * 2009-01-08 2013-09-25 株式会社荏原製作所 Fluorine-containing compound treating agent and exhaust gas treating method
JP5350809B2 (en) * 2009-01-09 2013-11-27 株式会社荏原製作所 Exhaust gas treatment equipment with pretreatment tank
JP2011003620A (en) * 2009-06-16 2011-01-06 Toyota Central R&D Labs Inc Insulating film for electromagnetic element, and field effect element
WO2012157460A1 (en) * 2011-05-13 2012-11-22 旭硝子株式会社 Method for producing electrode containing conductive mayenite compound

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003128415A (en) * 2001-10-18 2003-05-08 Japan Science & Technology Corp 12CaO-7Al2O3 COMPOUND AND METHOD FOR PREPARING THE SAME
JP2003226571A (en) * 2002-02-07 2003-08-12 Denki Kagaku Kogyo Kk Method for manufacturing calcium aluminate containing oxygen radical
JP2004238222A (en) * 2003-02-04 2004-08-26 Denki Kagaku Kogyo Kk Oxygen radical-containing calcium aluminate powder and method of preparing the same
JP2004244303A (en) * 2003-01-21 2004-09-02 Denki Kagaku Kogyo Kk Method of manufacturing oxygen radical-containing calcium aluminate film and laminate
JP2005035857A (en) * 2003-07-18 2005-02-10 Denki Kagaku Kogyo Kk Laminate of oxygen-radical-containing calcium aluminate film
JP2005047741A (en) * 2003-07-28 2005-02-24 Denki Kagaku Kogyo Kk Synthetic method of active oxygen species inclusion matter
JP2006096571A (en) * 2004-09-28 2006-04-13 Denki Kagaku Kogyo Kk Synthetic method of active oxygen species inclusion matter and active oxygen species inclusion matter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003128415A (en) * 2001-10-18 2003-05-08 Japan Science & Technology Corp 12CaO-7Al2O3 COMPOUND AND METHOD FOR PREPARING THE SAME
JP2003226571A (en) * 2002-02-07 2003-08-12 Denki Kagaku Kogyo Kk Method for manufacturing calcium aluminate containing oxygen radical
JP2004244303A (en) * 2003-01-21 2004-09-02 Denki Kagaku Kogyo Kk Method of manufacturing oxygen radical-containing calcium aluminate film and laminate
JP2004238222A (en) * 2003-02-04 2004-08-26 Denki Kagaku Kogyo Kk Oxygen radical-containing calcium aluminate powder and method of preparing the same
JP2005035857A (en) * 2003-07-18 2005-02-10 Denki Kagaku Kogyo Kk Laminate of oxygen-radical-containing calcium aluminate film
JP2005047741A (en) * 2003-07-28 2005-02-24 Denki Kagaku Kogyo Kk Synthetic method of active oxygen species inclusion matter
JP2006096571A (en) * 2004-09-28 2006-04-13 Denki Kagaku Kogyo Kk Synthetic method of active oxygen species inclusion matter and active oxygen species inclusion matter

Also Published As

Publication number Publication date
JP2006315930A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
JP2766459B2 (en) Adsorbent manufacturing method
CN107778022B (en) Porous ceramic structure
JP2014031317A (en) Mullite bodies and methods of forming mullite bodies
JPWO2014115814A1 (en) Alumina fiber and alumina fiber aggregate
JP4708857B2 (en) Molded body, method for producing the same, and method for promoting oxidation reaction using the same
US20130316129A1 (en) Silicon carbide material, honeycomb structure, and electric heating type catalyst carrier
JP4939319B2 (en) Method for producing porous photocatalyst, porous photocatalyst, and purification device
WO2006013695A1 (en) Carbon dioxide absorbing material, and method and apparatus for separating carbon dioxide using the same
EP2626132B1 (en) Exhaust gas purification filter, and method for producing same
JP2016523800A (en) Molded ceramic substrate composition for catalyst integration
JP2015510442A (en) Vacuum insulation including high specific surface area getter material
JP5605560B2 (en) Photocatalyst-supported porous clay material
JPWO2007039985A1 (en) Inorganic sintered body containing photocatalyst coated with silicon oxide film
JP2008043829A (en) Humidity-adjusting ceramic material containing photocatalyst coated with silicon oxide film
CN102784633A (en) Preparation method for photocatalyst TiO2 supporter and manufacturing method for photocatalyst air cleaner
Ramadani et al. The renewable of low toxicity gelcasting porous ceramic as Fe2O3 catalyst support on phenol photodegradation
JP6001673B2 (en) Membrane separation system and membrane separation method
JP5718831B2 (en) Alkali-resistant inorganic porous material and method for producing the same
JP2004244303A (en) Method of manufacturing oxygen radical-containing calcium aluminate film and laminate
JP6341793B2 (en) Metal oxide catalyst and deodorizing material
JP6392859B2 (en) Molded ceramic substrate composition for catalyst integration
JP2014136185A (en) Silicon carbide-based base material having gas adsorption and regeneration functions
JP2007031248A (en) Substance including negatively charged oxygen atom, and method for producing the same
JP3716850B2 (en) Environmental purification function base material by diatomaceous earth
JP2016526006A (en) Molded ceramic substrate composition for catalyst integration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110317

LAPS Cancellation because of no payment of annual fees